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Abstract 

Semistructured data is not strictly typed like relational 

or object-oriented data and may be irregular or incom- 

plete. It often arises in practice, e.g., when heteroge- 

neous data sources are integrated or data is taken from 

the World Wide Web. Views over semistructured data 

can be used to filter the data and to restructure (or pro- 

vide structure to) it. To achieve fast query response time, 

these views are often materialized. This paper proposes 

an incremental maintenance algorithm for materialized 

views over semistructured data. We use the graph-based 

data model OEM and the query language Lorel, devel- 

oped at Stanford, as the framework for our work. our 

algorithm produces a set of queries that compute the up- 

dates to the view based upon an update of the source. 

We develop an analytic cost model and compare the cost 

of executing our incremental maintenance algorithm to 

that of recomputing the view. We show that for nearly 

all types of database updates, it is more efficient to ap- 

ply our incremental maintenance algorithm to the view 

than to recompute the view from the database, even when 

there are thousands of updates. 

1 Introduction 

Database views increase the flexibility of a database 
system by adapting the data to user or application 
needs [37, 441. V iews are frequently materialized to 
speed up querying when the underlying data is remote 
or response time is critical [28, 91. Once a view is ma- 
terialized, however, its contents must be maintained in 
order to preserve its consistency with the base data. 
Maintenance can be performed either by recomputing 
the view contents from the database or by comput- 
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ing the incremental updates to the view based on the 
updates to the database. In this paper, we study the 
maintenance of materialized views for semistructured 
data. We propose a simple view specification mecha- 
nism and an algorithm for incremental maintenance. 
We then demonstrate the algorithm’s strengths (and 
weaknesses) with a maintenance cost analysis. 

Unlike relational or object-oriented data, semistruc- 
tured data need not conform to a fixed schema. The 
data may be irregular or incomplete, and often arises 
in practice, e.g., when heterogeneous data sources are 
integrated or data is extracted from the World Wide 
Web [32, 1, 34, lo]. V iews over semistructured data 
can be used to filter the data and to restructure (or 
provide structure to) it [34]. Filtering is crucial since 
semistructured data is often encountered by applica- 
tions interested in a very small portion of the available 
data (e.g., some specific data from the Web). Further- 
more, a view is the only way in which we can restruc- 
ture semistructured data that is outside of our control. 

For performance reasons, views over semistructu- 
red data often need to be materialized. Queries over 
semistructured data (possibly traversing long paths) 
are expensive to evaluate, as Mike Carey argued re- 
cently [13]. A materialized view can be used to isolate 
the data of interest, allowing subsequent queries to 
run over a smaller, often more structured, data set. 
Materialized views can also be used to rewrite queries 
over the base data and improve the query performance 
[36]. Furthermore, queries over the materialized view 
may be able to take advantage of standard query opti- 
mization techniques and access methods for structured 
data, even though the underlying base data of the view 
is semistructured. 

View mechanisms and algorithms for materialized 
view maintenance have been studied extensively in 
the context of the relational model [9, 24, 23, 38, 221. 
Incremental maintenance has been shown to dra- 
matically improve performance for relational views 
[25]. Views are much richer in the object world [2] 
and, subsequently, languages for specifying and query- 
ing materialized views are significantly more intricate 
[2, 7, 42, 41, 391. 

Previous results on incremental view maintenance 
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Club” 

Figure 1: A Simple OEM Database 

for object databases [39, 401 and nested data [26] are 
based on the extensive use of type information. Semi- 
structured data provides no type information, so the 
same techniques do not apply. In particular, subobject 
sharing along with the absence of a schema make it dif- 
ficult to detect if a particular update affects a view. 
Gluche and colleagues [20] use a view maintenance 
scheme that is limited to linear OQL view definitions. 
Because of subobject sharing, most nontrivial semi- 
structured view definitions are not linear, making their 
approach inapplicable in our context. 

Suciu [43] also considers incremental view mainte- 
nance for semistructured data. The view specifica- 
tion language is limited to select-project queries and 
only considers database insertions. Our approach al- 
lows joins in the view query and handles database in- 
sertions, deletions, and updates. Zhuge and Garcia- 
Molina [45] also investigate graph structured views 
and their incremental maintenance. However, their 
views consist of object collections only, while we in- 
clude edges (structure) between objects. Also, their 
maintenance algorithms only work for select-project 
views over tree-structured databases, while our ap- 
proach handles joins and arbitrary graph-structured 
databases. 

Our work is based on the Object Exchange Model 
(OEM) [35] for semistructured data. In OEM, a 
database is a directed, labeled graph. OEM has strong 
similarities to XML [32], a proposed standard for a uni- 
versal format for data on the Web. Our view specifica- 
tion language is based on the Lore1 query language for 
OEM [5]. We propose a view specification extension to 
Lore1 that introduces two sets of objects in the view: 
(1) the select-from-where part specifies the primaryob- 
jects imported to the view and (2) the new with part 
specifies paths from the primary objects to adjunct 

objects. Both the paths and the adjunct objects ap- 
pear in the view. The distinction between the two sets 

of objects is invisible to the user - it is only used to 
simplify the discussion of the incremental maintenance 
algorithm. Given a view and a database update, the 
algorithm produces a set of maintenance statements, 

evaluates them on the database to yield a set of view 
updates, and installs the updates in the view. 

We demonstrate the advantages of our algorithm 
with a cost model and a performance evaluation. We 
compare the cost of recomputation to the cost of incre- 
mentally computing the new view. Our results show 
that the incremental maintenance algorithm is several 
orders of magnitude faster than recomputing the view 
for insertion and deletion of edges between objects. 
In addition, incremental maintenance is cheaper for 
small numbers of atomic value changes. However, in 
some cases, such as when a substantial portion of the 
database is updated, it may be cost effective to recom- 
pute the view. 

The presented maintenance algorithm can be used 
both for immediate maintenance [9] and for deferred 
maintenance [38, 171 of the views. The techniques 
presented here are also applicable to other query 
languages for semistructured data [12], for the Web 
[27, 311, and (to some extent) to query languages for 
hypertext documents [15, 61. 

2 View Specification 

We use the Lore system [29] to investigate material- 
ized view maintenance over semistructured data. We 
now introduce OEM, the data model used by Lore; the 
Lore1 query language; the view specification language; 
and the update operations. [5] and [3] provide further 
details on Lore1 and the view specification language, 
respectively. 

2.1 The OEM Data Model 

An OEM database is a labeled, directed graph 
such as the small example database given in Fig- 
ure 1. Each vertex in the graph represents an 
object; each object has a unique object identifier 

(oid) such as &2. Atomic objects contain a value 
from one of the atomic types, e.g., integer, real, 
string, gif, java, audio. All other objects are 
complex objects and (in the Lore system) have a set 
of (label, subobjectoid) pairs as their value. In Fig- 
ure 1, object 8.~5 is atomic and has the value “Thai 
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City”. Object &4 is complex and has as its value 
{(Entree, &lo), (Name, &ll), (Rating, &12), (Entree, 

&13)}. Names are special labels that each serve as an 
alias for a single object, and are used as entry points 
into the database. In Figure 1, Guide is a name that 
denotes object &l. 

There is no notion of a schema in an OEM database. 
Semantic information is included in the labels, which 
are part of the data and can change dynamically. 
In this respect, an OEM database is self-describing. 

OEM has been designed to handle incompleteness of 
data, as well as the structural and type heterogeneity 
as exhibited in Figure 1. For example, observe that 
the Restaurant object &2 has no Entree subobjects, 
while Restaurants &3 and &4 each have two. 

2.2 The Lore1 Query Language 

Lorel, for Lore Language, uses the familiar select-from- 
where syntax of SQL, and can be considered an exten- 
sion to O&L [14] that provides powerful path expres- 
sions for traversing the data and extensive coercion 
rules for a more forgiving type system. Both features 
are useful when operating in a semistructured environ- 
ment. Consider the Lore1 query in Example 1. 

Example 1 (Lore1 Query) 

select e 
from Guide.Restaumnt r, r.Entree e 
where r.Name = “Baghdad Cafe” 
and e. Ingredient = “Mushroom”; 0 

The query asks for all Entree subobjects of a Restau- 

rant object where the restaurant’s name is “Baghdad 
Cafe” and one of the ingredients of the entree has the 
value “Mushroom”. The result of this query over the 
database in Figure 1 is the set {&9}. 

The expression Guide.Restaurant r, r.Entree e is 
a path expression describing a traversal through the 
database. In this paper, a path expression is com- 
posed of one-step paths of the form x.L y, where x is 
bound to a set of objects, L is the label for some out- 
going edge, and y designates the set of objects that 
are reached by starting from an object in the set x 
and traversing an edge labeled L. Each one-step path 
describes a single step traversal through the data and 
can be written (x, L, y). 

While Lore1 supports many ways for specifying 
paths (for example, by combining one-step path ex- 
pressions, eliminating variables, or using wild cards), 
in this paper, we use one-step paths for clarity. Path 
expressions appearing in the where clause that are not 
quantified by the from clause are implicitly existen- 
tially quantified according to Lore1 semantics. 

2.3 View Specification in Lore1 

A view specification statement in Lore1 [3] imports ob- 
jects and edges from a source database into a view. 
In addition, new objects and edges can be created in 
the view. Our view specification language can: (1) 

identify objects within a graph; (2) import arbitrary 
subgraphs; (3) add or remove objects appearing in 
the view. To specify views, we use Lorel’s query and 
update operations and extend the select-from-where 

statement with a with clause. 
The with clause is composed of path expressions 

where each path begins from a variable appearing in 
the select clause. Each object and edge along a path in 
the with clause is included in the view. Intuitively, the 
select-from-where statement returns a flat set of ob- 
jects. The with clause imports some of the structure 
of the database in the view. It is a compromise be- 
tween returning everything or nothing reachable from 
selected objects. 

We call the objects included in the view by the 
select-from-where part of the view specification the 
primary objects and the objects included in the view 
by the with clause the adjunct objects. An object can 
be both a primary and an adjunct object in a view. 
Although a view definition may consist of several view 
specification statements, in this paper, we concentrate 
on views defined by a single statement. 

The view specification in Example 2 defines a view 
for the result of the query in Example 1 (now written 
in an O&L-like syntax [5]) along with all Name and 
Ingredient subobjects of each Entree. 

Example 2 (Canonical View Specification) 

define view FavoriteEntrees as Entrees = 

select e 

from Guide.Restaurant r, r.Entree e 
where exists x in r.Name: x = “Baghdad Cafe” 

and exists y in e.Ingredient: y = “Mushroom” 
with e.Name n, e.Ingredient i; 0 

The objects bound to e are primary objects, while 
all the subobjects discovered by the with clause are 
adjunct objects. Without the with clause, a view is 
a simple collection of objects that satisfy the query, 
without edges or subobjects present. 

2.4 Materialized Views 

We now explain how views are materialized in Lore, 
using a simple top-down query evaluation strategy [29]. 
First, the from then where clauses are evaluated to 
obtain bindings for variables that appear in the from 

clause and satisfy the where clause. The select clause 
is evaluated for these bindings. Each primary object 
identified by the select clause is then augmented with 
the subobjects and edges in the with clause. In the 
view, each imported database object is represented by 
a new delegate object. 

Figure 2 shows the materialized view for Example 2 
applied to the database in Figure 1. The objects &9, 
&14, and &15 in Figure 1 provide bindings for e, n and 
i; the sole primary object &9’ and the adjunct objects 
&14’ and 8~15’ are the corresponding delegate objects 
in the view. 
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Name Ingredient 

&& .,M&mm., 
Figure 2: The materialized view for Example 2 

2.5 Update Operations 

The Lore1 update statements [5] contain three elemen- 
tary update operations that can affect a materialized 
view: 

l Insertion and deletion of the edge with label L from 
the object with oid 01 to the object with oid 02, 
denoted (Ins, 01, L, 02) and (Del, 01, L, 02). 

l Change of value of the atomic object with oid 01 
from OldVal to New Val, denoted (Chg, 01, OldVal, 
New I/al). 

3 View Maintenance 

When an update operation affects a materialized view, 
the view must be maintained to keep it consistent with 
the database. A view V is considered consistent with 
the database DB if the evaluation of the view speci- 
fication S over the database yields the view instance 
(V = S(DB)). Therefore, when the database DB is 
updated to DB’, we need to update the view V to 
V’ = S(DB’) in order to preserve its consistency. 

Our incremental maintenance algorithm computes 
the new state of the materialized view from the cur- 
rent state of the database, the view, and the database 
updates. Similar to relational view maintenance al- 
gorithms, the incremental maintenance algorithm uses 
the database updates to minimize the portion of the 
database examined when computing the view updates 

P31. 
The algorithm applies to an important subset of 

Lore1 [3]. More specifically, it handles every view spec- 
ification statement without wild cards, subqueries, or 
negation (except on atomic objects, e.g., z # 5 is per- 
mitted). To simplify the presentation, in our examples 
the select clause is of the form “select y” (generalizing 
for any select clause is straightforward). 

3.1 Overview of the Maintenance Algorithm 

We treat the primary and adjunct objects (Vpr;rra and 
V&) separately during maintenance. The algorithm’s 
input is shown in Figure 3. 

The view specification S, the database update U, 
and the database state DB’ after the update are 
used to compute the view maintenance statements in 
Lore1 syntax.l These statements generate the sets 

1 We extend Lord to allow the use of explicit object identifiers 
wherever names are allowed within a statement. 

1. View specification statement S: 
select Vi 
from UO.L1 ul, . . . . VJ.Lk Vk, . . . . &&-I& Vn 

// vJ can be any variable that 
JJ already appeared in the sequence 

where conditions(vl, . . . , un) 
with ui.Lll WI, ~11.hz ~12, . . . , ~l(p-l).Llp wlp, 

U,.L,l Wjl , . . . . wJ(k--1)&k Wjk, . . .I 

WJ(F1) 49 WPI 

JJ where u, is Ui or wkl 
// (2 5 j, 1 s k 2 (j - l), 1 5 I) 

2. Update U: (Zns,ol, L,oz), (Del, 01, L, 02), or 
(Chg, 01, OldVal, NewVal) 

3. New database state DB’ 

4. View instance V 

Figure 3: Incremental maintenance algorithm input 

ADDprim, DEL,,im, ADD,di, and DEL,di of ob- 
jects and edges to add to and remove from the view. 
In Figure 3, we abbreviate the where clause with 
“conditions( 211, . . . , wn) .” Conditions are written in 
disjunctive normal form using boolean expressions, 
such as y = ‘Wushroom”, as in SQL. 

1. Check for relevance of update U to the view instance 
V defined by the view specification S. Generate a set 
of relevant variables R. If R is empty, stop. 

2. Generate maintenance statements and create 
ADDprim and DEL,,,, using U, S, and R. 

3. Generate maintenance statements and create 

ADD od3 and DEL,d, using U, S, R, and ADD,,,, 
or DELpri,. 

4. Install ADDprim, DELprim, ADDad,, and DEL,d, 
in V. 

Figure 4: Basic structure of the incremental mainte- 
nance algorithm 

J 

Figure 4 outlines the steps of the view maintenance 
algorithm. We describe the algorithm as it operates on 
a single update. First, it checks whether the update is 

relevant to the view, that is, if update U could cause 
a change to the view instance V. If so, the algorithm 
creates the Lore1 statements that generate ADD,,,;, 
and DEL,,i, . The statements identify the primary 
objects to add and remove by explicitly binding the 
objects in the update to the view specification. The 
algorithm then creates the sets of maintenance state- 
ments that generate ADD~dj and DEL~dj. ADD~dj 
and DELzdi contain the adjunct objects and edges to 
add and remove for each with clause variable x. Ad- 
junct objects may be affected in three ways: (1) by 
newly inserted or deleted primary objects; (2) by cur- 
rent adjunct objects that are the source of an inserted 
or deleted edge; and (3) by atomic value changes. 

3.2 Relevance of an Update 

To avoid generating (and evaluating!) unnecessary 
maintenance statements, we first perform some sim- 
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function RelewantVars(Update U, View specification S) 
// If updated object is not in RelevantOids, then it’s not 
// relevant. ReleuantOids is {(aid, queryvariable)}. 
if (01(U), .) 6 ReleuantOids then return 0; 
// Find out which variables are relevant to the update 
vars t0; reluars t0; 
foreach v E variables(S) do 

// If updated object is not in ReleuantOids, then it’s 

// not relevant 

if (01(U), w) E ReleuantOids then vars tuars U {u} 

// If update is atomic change, do simple syntactic check 
if type(u) = Chg then 

foreach v E uars do 
// Let constants(S, u) be the constants appearing 

// in S compared to u, e.g., using = here 
foreach c E constants(S, u) do 

// See if there’s a predicate in the view spec 
// whose value may have changed 
if (Old Val( U) # c and New Val(U) = c) or 

(OldVal(U) = c and NewVal(U) # c) then 
reloarstreluarsU{w}; 

elserelvars +-wars; 

return reluars; 

Figure 5: Relevant Vars returns the view specification 

variables for which the update U is relevant. 

ple relevance checks. We use an auxiliary data struc- 

ture, RelevantOids, to keep information that would be 

available from the schema in a structured database. 

RelevantOids contains the object identifier of every ob- 

ject touched during the evaluation of a view specifica- 

tion, paired with the variable to which it was bound, 

whether or not the object eventually appears in the 

view. It is used to check quickly whether a database 

update could possibly affect the view. For example, if 

object 01 in a Chg update does not appear in Releuan- 

tOids, then it was not examined during view evaluation 

and the update can be ignored. 

We also use syntactic checks that indicate whether 

specific atomic value changes could affect the view. 

For each comparison in the view specification where 

clause that involves a constant value, we compare the 

constant to the update’s OldVal and New Val. If both 

or neither of OldVal and New Val satisfy the compari- 

son, then the change cannot affect the view. 

Figure 5 presents the function Relevant Vars, which 

determines the set of variables appearing in the query 

that the update could be bound to given a view spec- 

ification. 

For example, suppose that the value of object &5 

in Figure 1 is changed from “Thai City” to “Hunan 

Wok”. We can infer that this update does not affect 

the view in Example 2, because the view specification 

mentions neither “Thai City” nor “Hunan Wok”. On 

the other hand, if the value of &5 is changed to “Bagh- 

dad Cafe”, which is the constant used in the compari- 

son x.Name = “Baghdad Cafe”, then the update may 

be relevant. 

We do not attempt to quantify the savings achieved 

by using RelevantOids in this paper. However, we 

note that for views defined over a small portion of the 

database, most updates are irrelevant. 

3.3 Generating Maintenance Statements 

We now describe how to generate the maintenance 

statements for each type of update: edge insertion, 

edge deletion, or atomic value change. Consider first 

the edge insertion and edge deletion cases. For each 

one-step path in the view specification, we generate 

a maintenance statement that checks whether the up- 

dated edge binds to it. If so, the statement produces 

updates to the view. We use auxiliary data structures 

to represent the one-step paths appearing in the view 

specification. OneStepPathf,,, , OneStepPath,,i,, 

and OneStepPath,dj contain all the one-step paths 

that appear in the from clause, from and where 

clauses, and with clause, respectively. For example, 

OneStepPath,,i, for the view specification in Exam- 

ple 2 is { Guide.Restaurant r, r.Entree e, r.Name x, 

e. Ingredient y} . Note that each OneStepPath set is 

small since it depends on the query and not on the 

database. 

3.3.1 Edge Insertion 

For edge insertion, let the update be (Ins, 01, L, 02). 

We generate a primary object maintenance statement 

for every possible pair of bindings of 01 and 02 using 

the procedure GenAddPrim in Figure 6. 

Example 3 (Generating ADDprim) 

Suppose that update (Ins, &lo, Ingredient, 8~15) is 

performed on the database in Figure 1. The Bagh- 

dad Cafe restaurant now has two entrees with the in- 

gredient “Mushroom”. Given the view specification, 

RelevantVars returns the set {e}. GenAddPrim then 

generates one statement. 

ADD+,, += 

select e 
from Guide.Restaurant r, r.Entree e 
where exists x in r.Name: x = “Baghdad Cafe” 
and exists 8~15 in &lO.Zngredient: 

8~15 = “Mushroom n 
and e = &lo; 

This maintenance statement can be evaluated more 

efficiently than the original view specification, as we 

show in Section 4. 0 

We then generate the maintenance statements for 

the adjunct objects. There are two cases to consider: 

(1) adjunct objects attached to the new primary ob- 

jects in ADD,,i, and (2) adjunct objects that are 

newly connected to the view by the inserted edge from 

01 to 02 (when 01 is an adjunct object). 

For the first case, we generate maintenance state- 

ments starting from the set ADD,,i,. For the second 

case, we first test whether the inserted edge matches 

a relevant (adjunct object) variable and has a match- 

ing label. If so, then we generate a set of maintenance 
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procedure GenAddPrim(Update U = (Ins,ol, L, os), View specification S, RelevantVars R) 
// For each relevant variable 
foreach a E R do 

// For each place where the update can be substituted in the view specification 
foreach (a,L,b) E OneStepPath,,;, do 

// Write a maintenance statement based on the view specification 
ADD rrlm+= copy S except for the with clause and 

VLi in from clause replace “a.Li” with “oI.Li” 
VL, in from clause replace “b.Lj” with “o2.L,” 
replace “a” with “or” and ‘lb” with “02” in where clause 
add “and a = or” to each disjunct in where clause 
if (a,L,b) E OneStepPathf ram add “and b = 02” to each disjunct in where clause 

Figure 6: GenAddPrim generates the ADD,+,, maintenance statements. 

procedure GenAddAdj(Update U = (I ns, 01, L, 02), View specification S, ReleuantVars R) 
// (1) If primary objects were added, need to add adjunct objects from them 
if ADD,,,, # 0 then 

// For each one-step path in the with clause 
foreach (~~(k-~),L,k,W,k) E OneStepPath,d, do 

// Write a maintenance statement based on the view specification (no where or with clause) 

ADD;j,k += select (wj(k-l),L,k,W,k) 

from ADDprim Vi, Vi.LJ1W~17 . . . . WJ(k-I).Ljk W,k; 
// (2) For each place that edge could be adjunct edge 
foreach v E R do 

foreach (tJ,L,Wjk) E OneStepPath,d, do 
// Write a set of maintenance statements starting from added edge: 
// Add inserted edge to the view 

ADD:&’ += select (01, L,oz); 

1 J From 02, add any necessary edges 
ADD~j;k+‘) 

+= s&d (02,LJ(k+l)~wJ(k+l)) from %!~LJ(k+l)WJ(k+l); 

// In a similar fashion, include all paths 

foreach (wj(k+n-1)&k+,) ,q(k+n)) E 0 do 

ADD,w;*++ += select (W~(k+n-1),Lj(k+n),U(kt~)) 

from 02.L,(k+l)wj(k+l)t . . . , Wj(k+n-l)&k+n) wj(k+n); 

Figure 7: GenAddAdj generates the ADD,* maintenance statements. 

3.3.2 Edge Deletion statements that add the inserted edge and all subse- 
quent paths in OneStepPath,dj. Both cases are han- 

dled by procedure GenAddAdj in Figure 7. 
Let the update be (Del, 01, L, 02). A deleted edge may: 
(1) be irrelevant and not affect the view; (2) cause a 
primary object (or objects) to be deleted; (3) appear 
directly in the (adjunct) view and need to be removed. 
Either (2) or (3) could cause additional adjunct edges 
to be removed from the view. In principle, a delete 
edge update generates maintenance statements sim- 
ilar to an insert edge update. However, the delete 
edge statements must simulate the existence of the 
now deleted edge in the view to determine whether 
it originally contributed to the appearance of objects 
or edges in the view. Also, the delete edge state- 
ments must check (using a subquery) whether a po- 
tentially deleted object or edge should remain in the 
view due to paths not involving the deleted edge. For 
example, if the Entree object &9 in Figure 1 had two 

“Mushroom” ingredients, then applying the update 
(Del, &9, Ingredient, &15) should not remove the En- 

tree object &9 from the view. 

Example 4 (Generating ADD,6) 

GenAddAdj generates the following maintenance state- 
ments for the update (Ins, &lo, Ingredient, 8~15). 

ADD& += 

select (e,Name,n) 
from ADD,,,+,, e, e.Name n; 

ADD;, += 

select (e,Zngredient,i) 
from ADD,,+, e, e.Ingredient i; 

Since the inserted edge is not connected to an ex- 
isting adjunct object (&lo is not currently an adjunct 
object in the view), no statements are generated by 
the second half of GenAddAdj. 0 

Because the addition of an edge in the absence of 

negation cannot cause a deletion, we do not have to 
generate DEL,,+, or DEL,dj . 

Figure 8 shows the procedure GenDelPrim, used to 
generate the maintenance statements for the primary 
objects. 
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procedure GenDelPrim(Update U = (Del,ol, L, OZ), View specification S, RelevantVars R) 
// For each relevant variable 
foreach a E R do 

// For each place where the update can be substituted in the view spec 
foreach (a,L,b) E OneStepPath,,i, do 

// Write a maintenance statement based on the view specification: 
DEL,rim+= copy S except for the with clause and 

// The first two replacements reconstruct the before state 
replace “a.L b” with “(o1.L U (02)) b” in from clause. 
replace “exists b in a.L” with “exists b in (01 .L U (02))” in where clause. 
// The remaining replacements handle normal appearance of bound variables 
VLi in from clause replace “a.Li” with “0r.L;” 
VL, in from clause replace “b.LJ” with “02. L, n 
replace “an with “01” in where clause 
replace “b” with “02” in where clause 
add “and a = 01” to each disjunct in where clause 
if (a,L,b) E OneStepPathfrom add “and b = 02” to each disjunct in where clause 
// The duplicate test is a subquery that ensures that the object bound 

l/t . o vi IS not in the view for another reason 
add to where clause “and not exists (S’)” where S’ is 
S without the with clause and with new variables u: for each vj 
and an additional where condition: “ui = Vi” (vt is the selected variable in S) 

Figure 8: Generating maintenance statements for DEL,,i, . 

Figure 9: Transformations for incremental maintenance statements for Example 5 

Example 5 (Generating DEL,,;,) 

Suppose the update U = (Del, 823, Entree, &9) is ap- 

plied to the database of Figure 1. The object &9 must 

be removed from the view. GenDelPrim generates one 

statement. 

DEL,,+,, += 

select e 
from Guide.Restaurant r, (&S.Entree U{&9}) e 
where exists x in &3.Name: x = “Baghdad Cafe” 
and exists y in &g.Ingredient: y = “Mushroom” 
and r=&3ande=&9 
and not exists ( 

select e’ 
from Guide.Restaurant r’, r’.Entree e’ 
where exists x’ in r’.Name: 

I’ = “Baghdad Cafe” 

and exists y’ in e’.Ingredient: 
y’ = “Mushroom” 

and e’ = e); 

This statement adds bindings for r and r.Entree to 

the view specification S and reconstructs the deleted 

edge by binding e to &9. The transformations to the 

original query are summarized in the table shown in 

Figure 9. cl 

We then generate the maintenance statements for 

the adjunct objects and edges. However, like the ob- 

jects in the primary zone, an adjunct object or edge 

can be included in the view due to multiple paths. 

Reachability via a deleted edge is not a sufficient con- 

dition for deleting an adjunct object or edge, as we 

explain in [4]. Instead, a subquery of the where clause 

looks for other variable bindings for the edge to be 

removed. If another binding is found, then the edge 

is not deleted. Due to space restrictions, we omit the 

procedure GenDelAdj here; see [4]. 

Example 6 (Generating DEL,dj) 

For the update (Del, &3, Entree, &9), procedure Gen- 

DelAdj creates one maintenance statement for each 

path in OneStepPath,dj. 

DEL:,,. += 

select (e,Name,n) 

from DEL,,;, e, e.Name n; 

DELddj += 

select (e,Zngredient,i) 

from DEL,,+, e, e.Ingredient i; 

Neither statement in our simple example includes a 

where subclause. More complex cases, however, do. 
Cl 

3.3.3 Atomic Value Change 

Let the update U be (Chg, 01, OldVal, New Val ). This 

value change may cause deletions, insertions or both 



to the view, or there might be no update necessary 
because the change is irrelevant to the view. Due 
to object sharing, an object may have many incom- 
ing edges with different labels. Therefore, the original 
edge traversed to find an object is not the only possi- 
bly relevant edge. Consequently, we bind the changed 
object to each variable identified by the procedure Rel- 

evant Vars, using a separate maintenance statement for 
each variable. A single maintenance statement handles 
each case. An atomic value change that could cause 
the addition of objects within the view is treated sim- 
ilarly to an edge insertion, where the inserted edge is 
the edge followed to get to the atomic object during 
view evaluation. The deletion case is similar. Note 
that Relevant Vars can help optimize the execution of 
the maintenance statements by tracking whether the 
changed value could potentially cause the addition ver- 
sus the removal of objects. 

Due to space constraints we omit the procedure for 
atomic value changes, but we include the following il- 
lustrative example. 

Example 7 (Atomic Value Change) 
Suppose the update U is (Upd, 8~7, “BaghdadCafe”, 

“Wendy’s”). We identify x as the only relevant vari- 
able for Example 2. This atomic value change can- 

not result in adding new objects to the materialized 
view, because the new value “Wendy’s” does not sat- 
isfy the condition on 2. However, the old value “Bagh- 
dad Cafe” does. If x is bound to &7 then the condi- 
tion’s value changes from true to false and some ob- 
jects may no longer be in the view. We therefore gen- 
erate DEL,,i, for the deletion of (r,Name,&7) since 
Name is the label associated with x. 

DEL,,;, += 

select e 
from Guide.Restaurant r, r.Entree e 
where exists &7 in r.Name : 
and (O!dVal(&7) = “‘BagFdad Cafe”) 

exists y m e.Ingredzent: y = “Mushroom” 
and not exists ( 

select e’ 
from Guide.Restaurant r’, r’.Entree e’ 
where exists 2’ in r’.Name: 

x’ = “Baghdad Cafe” 
and exists y’ in e’. Ingredient: 

y’ = %Iushroom” 
and e’ = e); 

Based on DEL,,i,, DEL” and DELhdj are calcu- 
lated as shown in Example “8. 0 

3.4 Installing the Maintenance Changes 

The changes represented by ADDprim, ADD,dj, 

DEL,rim, and DEL,dj are installed in the materi- 
alized view. Since there is no duplication of objects in 
the view, deletions need to be installed in the view be- 
fore insertions. If a view object ceases to be a primary 
object, it may still remain in the view as an adjunct ob- 
ject and vice versa. Finally, if the update is an atomic 

value change of an object in the view, the new value 
is installed in the delegate object. Given ADDprim, 

ADD,g , DELprim, and DEL,dj, the installation pro- 
cess can use indices to identify the objects and edges 
that are already in the view. 

4 Cost Model 

In this section, we present an analytic model that eval- 
uates the cost of both view recomputation and incre- 
mental maintenance for a given update. A more de- 
tailed cost model that follows a similar approach for 
an object-oriented system is presented in [8], and [30] 
presents a more complex cost model for Lore. The cost 
model can be used by the query optimizer to choose 
dynamically, for a given set of updates, whether to 
recompute or to incrementally maintain the view. 

Figure 10: Path expression evaluation and statistics 
(path expression: A.B b, b.C c) 

The cost assigned to a plan is the estimated num- 
ber of object fetches during query processing. While 
more complex cost models have been proposed for ob- 
ject oriented systems, e.g., [19], they rely heavily on 
the object clustering guaranteed by the system. In 
the absence of clustering, we count the number of ob- 
ject fetches, since we cannot accurately determine in 
advance whether two objects will be on the same page. 

The cost formulas rely on our top-down query ex- 
ecution strategy, described in Section 2.4. This strat- 
egy results in a depth-first traversal of the data start- 
ing from a named object [29]. Other query execu- 
tion strategies for semistructured databases are inves- 
tigated in [30, 161. The following quantities are part 
of the statistics kept by the system. 

l Fanout(x, L): the estimated average number of chil- 
dren with the label L that are descendants of some 
object in the set of objects bound to variable 2. The 
variable x must already be bound using a path ex- 
pression. In Figure 10, Fanout(b, C) is 1 since each 
of the objects in the set b has a single C child. We 
use the set x to refer to the set of objects bound to 
2. 

l 1x1: the estimated number of objects in the set 2. 
In Figure i0, (c( = 3. 

l Cost(x, L, y): the estimated cost, i.e., the number 
of objects fetched in order to get all of the subob- 
jects with edge labeled L originating from any ob- 
ject in x, where each resulting object is placed into 
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set y. This cost is computed by CO&(X, L, y) = 

1x1 * Fano&(x, L). 

For example, given the path expression b. C c of Fig- 

ure 10, the evaluation cost for b.C c is Cost(b, C, c) = 

jbl*Fanout(b, C) = IAl*Fandut(A, B)*Fanout(b, C) = 

1 * 3 * 1 = 3, where A is a named object. 

Without any bindings, the cost for evaluating a path 

expression P is 

Cost(totaz) = c Cost(x, L, y) 

(Z,L,Y)EP 

The incremental maintenance statements bind vari- 

ables to the objects contained in the update and use 

the bindings to prune the search space. The execu- 

tion proceeds until a variable x bound by the update 

is encountered. If the object bound to x is not the 

updated object, then the evaluation short circuits and 

goes on to the next binding for x. A bound variable 

lowers the cost of the computation for the rest of the 

path expression since it limits the remaining portion of 

a path to objects reachable from the bound variable. 

Insertions and deletions provide two object bindings, 

while an atomic value change provides only one. Both 

the cost model and the formulas ignore object sharing, 

which can reduce the actual cost. 

We now apply our cost formula to the view specifi- 

cation of Example 2. 

Example 8 (Cost of Full Recomputation) 

The cost for recomputation of the view is: 

c Cost(x, L, Y) 

(z,L,y)~OneStepPath,.ImUOneStepPath,dl 

= IGuide * Fanout(Guide, Restaurant) * 

(1 + Fanout(r, Entree) + Fanout(r, Name) + 

Fanout(r, Entree) * Fanout(e, Name) + 

2 * Fanout(r, Entree) * Fanout(e, Ingredient)) 

0 

We now show how our cost formula applies to 

the maintenance statements in Example 3 for update 

(Ins, &lo, Ingredient, 8~15). 

Example 9 (Maintenance Cost of Inserting an 

Edge) 
P = {(Guide,Restaurant,r), (r,Entree,e), (r,Name,x), 

(e,Zngredient,y)} is the set of one-step path expressions 

in the maintenance statement of Example 3 and P’ = 

{(ADD,,;, ,Name,n), (ADD,,+, ,Zngredient,i)} is the 

set of one-step path expressions in the maintenance 

statement of Example 4. The bindings e = &lO and y 

= &15 are provided. 

c Cost(a:,L,y) + c CO4X,L,Y) 

(+,L,Y)Ep (r,L,Y)Ep’ 

= IGuide * Fanout(Guide, Restaurant) + 1 + 

IGuide! * Fanout(Guide, Restaurant) * 

Fanout(r, Name) + 1 * Fanout(e, Ingredient) + 

I ADD+, I * (Fanout (ADD,,;, , Name) + 

Fanout(ADD,,i,, Ingredient)) 

IADD,rimI d P d P e en s u on the number of possible 

bindings for e and the selectivity of the where clause, 

as follows: 

IADD,,i, I = lel * SeZectivity(where) = 

1 * SeZectivity(where) 5 1. 0 

5 Evaluation 

Our evaluator program accepts a single view speci- 

fication statement, a database, and a single change, 

and computes the cost for both recomputation and in- 

cremental maintenance using our cost model. In this 

section, we present the costs for a variety of view spec- 

ifications, databases, and updates. We do not use the 

auxiliary structure RelevantOids in the cost model, so 

the actual costs for incremental maintenance will be 

lower in many cases. In all of our graphs, the cost is 

shown on the y axis in a logarithmic scale. 

5.1 Base Costs for Update Operations 

Figure 11: Base costs for update operations 

In the first experiment, shown in Figure 11, we looked 

at the costs of different update operations for the view 

specification of Example 2. The test database con- 

tained one Guide, 1000 restaurants, on average 100 

entrees and 1 name per restaurant, and 10 ingredi- 

ents and 2 names per entree. Other portions of the 

database were not traversed when computing or main- 

taining the view and are thus irrelevant. We assumed a 

fixed selectivity for the where clause of 50%. Each bar 

shows the cost of maintaining the view after a single 

update for a different update operation. 

Recomputation is over 100 times more expensive 

than incremental maintenance for insert or delete edge 

operations. These savings are due to binding the vari- 

ables associated with the inserted or deleted edge. 

A much smaller portion of the database is traversed 

during execution of the incremental view maintenance 

statements compared to the view specification state- 

ment. Maintaining a view for edge insertions was sig- 

nificantly cheaper than for edge deletions since delete 

edge maintenance statements require a subquery. 
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The maintenance cost for an atomic value change 
varies wildly. Without the procedure Relevant Vars, 
the incremental algorithm will generate a maintenance 
statement for each condition in the where clause. 
Although each statement will incorporate a variable 
binding for the changed object, there is only one such 
binding. Depending on where the binding occurs, the 
maintenance statement cost may vary from much to 
only slightly cheaper than the cost of recomputation. 
Given several where conditions, recomputation may be 
more cost effective. For example, for the view in Ex- 
ample 2, testing a single atomic change against both 
conditions in the where clause cost is almost as expen- 
sive as recomputation, as shown in Figure 11. How- 
ever, relevance tests using RelevantOids can often de- 
termine that only a few or even none of the conditions 
in the where clause are relevant. For the same exam- 
ple, evaluating the maintenance statement for only one 
condition is always cheaper than recomputation. 

5.2 Bound Variable Position 

Update Operation 

Figure 12: Varying position of bound variable in from 
clause 

The position of the bound variable affects the cost of 
incremental maintenance. For our next experiment, 
we used a view specification containing a chain of eight 
one-step paths in the from clause: 

define view VaryingFrom as VF = 

select ~2 from A.& tl, .q .L-J ~2, . . . , 27.L~ ~8; 

The database contained a single named object A, 

1000 L1 subobjects of A, on average 100 L2 sub- 
objects per ~1, and ten Li subobjects per Zi-1 for 
3 5 i 5 8. We deleted the edge (oi-1,Li,oi), for all 
values of 3 5 i 5 8 in turn. Figure 12 shows that 
recomputation is lo-500 times more expensive than 
incremental maintenance. When the bound variable 
is in the middle of a path expression, it effectively di- 
vides the path into two shorter paths: to compute the 
total cost, the costs of the two shorter paths need to be 
added rather than multiplied (see Section 4). There- 
fore, the variable binding provided by the newly in- 
serted or deleted edge has the most beneficial effect 
when it occurs in the middle of the path expression. 

5.3 Length of the from Clause 

The number of variables in the from clause also affects 
the cost of incremental maintenance. For this experi- 

I 
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Length ;P.th Expko” 

7 6 

Figure 13: Varying length of from clause 

ment, we used view specifications of the following pat- 
tern and varied the length of the path expression in 
the from clause from three to eight one-step paths. 

define view VaryingFrom as VF2 = 

select 22 from A.Ll ~1, z1.L~ 22, ..,, z~-~.L, z,; 

The database was the same as in Section 5.2. 
For each view specification, we inserted the edge 

hrL[n/2J+lP2), which bound the middle variable in 
the path. Figure 13 shows that as the number of vari- 
ables increased, the recomputation cost also increased. 
Each additional edge in the from clause caused the rel- 
evant portion of the database to increase by a factor 
of ten. The incremental maintenance costs are much 
lower and increase much more slowly due to the bound 
variables. The insert edge cost decreases when n = 4 
because the bound variable appears in a more advan- 
tageous position in the path expression. 

5.4 Database Size 

1,wo P.wo 3,col 4,cm 5. 

Number Of ‘f766f6umW Objects 

Figure 14: Varying database size 

For the fourth experiment, we used the view specifica- 
tion of Section 5.1, but varied the size of the relevant 
portion of the database. We increased the number of 
restaurants in the database from 1000 to 5000, and 
kept the same average number of entrees per restau- 
rant, ingredients per entree, etc. Therefore, when 
the number of restaurants doubled, for example, the 
size of the relevant portion of the database doubled. 
The maintenance costs after various edge insertions 
are shown in Figure 14. The cost of recomputation is 
consistently lOO-100,000 times higher than the cost of 
incrementally maintaining the view. 

The size of the database had negligible effect on in- 
serting an Entree and Name edge, since the inserted 
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edge provided a binding to a specific restaurant. When 
inserting an Ingredient edge, the placement of the 
bound variable was not as fortunate, and the execu- 
tion cost of the maintenance statements grew linearly 
with the size of the database, remaining many orders 
of magnitude lower than the cost of recomputation. 
The recomputation cost always grew linearly with the 
size of the relevant portion of the database, since it 
traversed the entire relevant portion. 

5.5 Selectivity of the where Clause 

10,ooo.ooo 

Figure 15: Varying selectivity of where clause 

Figure 15 shows the results of the fifth experiment. We 
kept the same view definition and database structure 
as in Section 5.1, but varied the selectivity of the where 

clause. As the selectivity increases, more objects are 
included. Therefore, the recomputation cost went up 
reflecting the rising cost of locating and adding the ad- 
junct objects. The incremental maintenance cost for 
atomic value changes is also influenced significantly by 
the selectivity of the where clause. When the selectiv- 
ity is low, most atomic value changes can be screened 
out by the syntactic relevance test before running any 
queries. When the selectivity is high, most objects are 
already included in the view, so very few new objects 
need to be added to the view because of the change. 
Since syntactic relevance tests only apply to atomic 
value changes (and affect their cost!), the maintenance 
cost for an edge insertion does not change based on the 
atomic values and the selectivity. 

Note that in all our other experiments, the selec- 
tivity of the where clause is fixed at SO%, which, as 
shown in Figure 15, is the value that most heavily dis- 
advantages our incremental maintenance algorithm. 

5.6 Number of Label Occurrences 

For the final experiment, we varied the number of 
times the label of the inserted or deleted edge matched 
a label in the view specification. We used view speci- 
fication statements of the following form: 

define view VaryingLabel as VL = 

select t 
from A.Ll t, x.L:! y, y.La t 
where exists t in y.Ld: t < 10 
and exists w in z,Lg: w > 7 
with x.Ls,’ 
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Figure 16: Varying number of occurrences of a label 
in view specification 

We inserted or deleted the edge (or ,L,oz). For each 
test, we changed some of the labels in the view specifi- 
cation (as well as the corresponding labels in the source 
database) to “L”, as indicated by the legend for the 
results, shown in Figure 16. The database contained 
100 subobjects of each object for each distinct label. 

The recomputation cost was unaffected by the spe- 
cific labels, since the structure of the database re- 
mained the same. The incremental maintenance costs 
varied, however, since each appearance of the label L 
required an additional maintenance statement. How- 
ever, even when the label L appeared three times in 
the view specification, incremental maintenance was 
still 20 times cheaper than recomputation. 

6 Conclusion 

Most approaches for incremental view maintenance 
rely on the database schema to generate maintenance 
statements. We described an incremental maintenance 
algorithm for views over semistructured, schemaless 
data. Our algorithm computes the changes to the view 
based on the information available from the view speci- 
fication, the update operation, the database state after 
the update, and some auxiliary data structures that 
are generated when populating the view. 

Our evaluation results show that our incremental 
maintenance algorithm outperforms recomputation of 
the view, even for large numbers of insert and delete 
edge updates. However, in some situations, incremen- 
tal maintenance can be as expensive as full recompu- 
tation of the view for a single atomic value change, 
due to the simple query execution strategy assumed 
by our cost model. The evaluation also shows that our 
algorithm scales well with increasing database size. 

We have implemented view materialization within 
Lore [29]. We plan to implement the incremental main- 
tenance algorithm as well. Several optimizations to 
our incremental maintenance algorithm are possible. 
First, we plan to extend the algorithm to handle sets of 
updates together. Second, if the data has a tree struc- 
ture, then the maintenance statements can be simpli- 
fied, e.g., by eliminating the subqueries when deleting 
objects or edges. Third, we would like to incorporate 
query rewriting and query optimization techniques [30] 
for semistructured data and provide more query execu- 



tion choices to the query optimizer. Finally, we would 
like to consider using inferred schematic information 
such as DataGuides [33, 211 or graph schemas [ll] to 
optimize view maintenance. 
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