
Incremental Maintenance for Materialized Views over

Semistructured Data*

Serge Abiteboul t Jason McHught Michael Ryst Vasilis Vassalod Janet L. Wienert

’ INRIA-Rocquencourt

F-78153 Le Chesnay, France

Serge.Abiteboul@inria.fr

Abstract

Semistructured data is not strictly typed like relational

or object-oriented data and may be irregular or incom-

plete. It often arises in practice, e.g., when heteroge-

neous data sources are integrated or data is taken from

the World Wide Web. Views over semistructured data

can be used to filter the data and to restructure (or pro-

vide structure to) it. To achieve fast query response time,

these views are often materialized. This paper proposes

an incremental maintenance algorithm for materialized

views over semistructured data. We use the graph-based

data model OEM and the query language Lorel, devel-

oped at Stanford, as the framework for our work. our

algorithm produces a set of queries that compute the up-

dates to the view based upon an update of the source.

We develop an analytic cost model and compare the cost

of executing our incremental maintenance algorithm to

that of recomputing the view. We show that for nearly

all types of database updates, it is more efficient to ap-

ply our incremental maintenance algorithm to the view

than to recompute the view from the database, even when

there are thousands of updates.

1 Introduction

Database views increase the flexibility of a database
system by adapting the data to user or application
needs [37, 441. V iews are frequently materialized to
speed up querying when the underlying data is remote
or response time is critical [28, 91. Once a view is ma-
terialized, however, its contents must be maintained in
order to preserve its consistency with the base data.
Maintenance can be performed either by recomputing
the view contents from the database or by comput-

‘Research partially supported by NSF grant IRI-96-31952,
Air Force contract F33615-93-1-1339, the Swiss National Sci-
ence Foundation, and the Lilian Voudouri Foundation.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and

the title oj the publication and its date appear, and notice is
given that copying in by permission of the Very Large Data Base

Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

t Stanford University

Stanford, CA 94305, USA

Firstname. LastnameQcs.stanford.edu

http://www-db.stanford.edu/lore

ing the incremental updates to the view based on the
updates to the database. In this paper, we study the
maintenance of materialized views for semistructured
data. We propose a simple view specification mecha-
nism and an algorithm for incremental maintenance.
We then demonstrate the algorithm’s strengths (and
weaknesses) with a maintenance cost analysis.

Unlike relational or object-oriented data, semistruc-
tured data need not conform to a fixed schema. The
data may be irregular or incomplete, and often arises
in practice, e.g., when heterogeneous data sources are
integrated or data is extracted from the World Wide
Web [32, 1, 34, lo]. V iews over semistructured data
can be used to filter the data and to restructure (or
provide structure to) it [34]. Filtering is crucial since
semistructured data is often encountered by applica-
tions interested in a very small portion of the available
data (e.g., some specific data from the Web). Further-
more, a view is the only way in which we can restruc-
ture semistructured data that is outside of our control.

For performance reasons, views over semistructu-
red data often need to be materialized. Queries over
semistructured data (possibly traversing long paths)
are expensive to evaluate, as Mike Carey argued re-
cently [13]. A materialized view can be used to isolate
the data of interest, allowing subsequent queries to
run over a smaller, often more structured, data set.
Materialized views can also be used to rewrite queries
over the base data and improve the query performance
[36]. Furthermore, queries over the materialized view
may be able to take advantage of standard query opti-
mization techniques and access methods for structured
data, even though the underlying base data of the view
is semistructured.

View mechanisms and algorithms for materialized
view maintenance have been studied extensively in
the context of the relational model [9, 24, 23, 38, 221.
Incremental maintenance has been shown to dra-
matically improve performance for relational views
[25]. Views are much richer in the object world [2]
and, subsequently, languages for specifying and query-
ing materialized views are significantly more intricate
[2, 7, 42, 41, 391.

Previous results on incremental view maintenance

38

Guide /

“Beef Stew” “Mushroom” “Tomato” “Cheeseburger “Cheese” “Beef’
Club”

Figure 1: A Simple OEM Database

for object databases [39, 401 and nested data [26] are
based on the extensive use of type information. Semi-
structured data provides no type information, so the
same techniques do not apply. In particular, subobject
sharing along with the absence of a schema make it dif-
ficult to detect if a particular update affects a view.
Gluche and colleagues [20] use a view maintenance
scheme that is limited to linear OQL view definitions.
Because of subobject sharing, most nontrivial semi-
structured view definitions are not linear, making their
approach inapplicable in our context.

Suciu [43] also considers incremental view mainte-
nance for semistructured data. The view specifica-
tion language is limited to select-project queries and
only considers database insertions. Our approach al-
lows joins in the view query and handles database in-
sertions, deletions, and updates. Zhuge and Garcia-
Molina [45] also investigate graph structured views
and their incremental maintenance. However, their
views consist of object collections only, while we in-
clude edges (structure) between objects. Also, their
maintenance algorithms only work for select-project
views over tree-structured databases, while our ap-
proach handles joins and arbitrary graph-structured
databases.

Our work is based on the Object Exchange Model
(OEM) [35] for semistructured data. In OEM, a
database is a directed, labeled graph. OEM has strong
similarities to XML [32], a proposed standard for a uni-
versal format for data on the Web. Our view specifica-
tion language is based on the Lore1 query language for
OEM [5]. We propose a view specification extension to
Lore1 that introduces two sets of objects in the view:
(1) the select-from-where part specifies the primaryob-
jects imported to the view and (2) the new with part
specifies paths from the primary objects to adjunct

objects. Both the paths and the adjunct objects ap-
pear in the view. The distinction between the two sets

of objects is invisible to the user - it is only used to
simplify the discussion of the incremental maintenance
algorithm. Given a view and a database update, the
algorithm produces a set of maintenance statements,

evaluates them on the database to yield a set of view
updates, and installs the updates in the view.

We demonstrate the advantages of our algorithm
with a cost model and a performance evaluation. We
compare the cost of recomputation to the cost of incre-
mentally computing the new view. Our results show
that the incremental maintenance algorithm is several
orders of magnitude faster than recomputing the view
for insertion and deletion of edges between objects.
In addition, incremental maintenance is cheaper for
small numbers of atomic value changes. However, in
some cases, such as when a substantial portion of the
database is updated, it may be cost effective to recom-
pute the view.

The presented maintenance algorithm can be used
both for immediate maintenance [9] and for deferred
maintenance [38, 171 of the views. The techniques
presented here are also applicable to other query
languages for semistructured data [12], for the Web
[27, 311, and (to some extent) to query languages for
hypertext documents [15, 61.

2 View Specification

We use the Lore system [29] to investigate material-
ized view maintenance over semistructured data. We
now introduce OEM, the data model used by Lore; the
Lore1 query language; the view specification language;
and the update operations. [5] and [3] provide further
details on Lore1 and the view specification language,
respectively.

2.1 The OEM Data Model

An OEM database is a labeled, directed graph
such as the small example database given in Fig-
ure 1. Each vertex in the graph represents an
object; each object has a unique object identifier

(oid) such as &2. Atomic objects contain a value
from one of the atomic types, e.g., integer, real,
string, gif, java, audio. All other objects are
complex objects and (in the Lore system) have a set
of (label, subobjectoid) pairs as their value. In Fig-
ure 1, object 8.~5 is atomic and has the value “Thai

39

City”. Object &4 is complex and has as its value
{(Entree, &lo), (Name, &ll), (Rating, &12), (Entree,

&13)}. Names are special labels that each serve as an
alias for a single object, and are used as entry points
into the database. In Figure 1, Guide is a name that
denotes object &l.

There is no notion of a schema in an OEM database.
Semantic information is included in the labels, which
are part of the data and can change dynamically.
In this respect, an OEM database is self-describing.

OEM has been designed to handle incompleteness of
data, as well as the structural and type heterogeneity
as exhibited in Figure 1. For example, observe that
the Restaurant object &2 has no Entree subobjects,
while Restaurants &3 and &4 each have two.

2.2 The Lore1 Query Language

Lorel, for Lore Language, uses the familiar select-from-
where syntax of SQL, and can be considered an exten-
sion to O&L [14] that provides powerful path expres-
sions for traversing the data and extensive coercion
rules for a more forgiving type system. Both features
are useful when operating in a semistructured environ-
ment. Consider the Lore1 query in Example 1.

Example 1 (Lore1 Query)

select e
from Guide.Restaumnt r, r.Entree e
where r.Name = “Baghdad Cafe”
and e. Ingredient = “Mushroom”; 0

The query asks for all Entree subobjects of a Restau-

rant object where the restaurant’s name is “Baghdad
Cafe” and one of the ingredients of the entree has the
value “Mushroom”. The result of this query over the
database in Figure 1 is the set {&9}.

The expression Guide.Restaurant r, r.Entree e is
a path expression describing a traversal through the
database. In this paper, a path expression is com-
posed of one-step paths of the form x.L y, where x is
bound to a set of objects, L is the label for some out-
going edge, and y designates the set of objects that
are reached by starting from an object in the set x
and traversing an edge labeled L. Each one-step path
describes a single step traversal through the data and
can be written (x, L, y).

While Lore1 supports many ways for specifying
paths (for example, by combining one-step path ex-
pressions, eliminating variables, or using wild cards),
in this paper, we use one-step paths for clarity. Path
expressions appearing in the where clause that are not
quantified by the from clause are implicitly existen-
tially quantified according to Lore1 semantics.

2.3 View Specification in Lore1

A view specification statement in Lore1 [3] imports ob-
jects and edges from a source database into a view.
In addition, new objects and edges can be created in
the view. Our view specification language can: (1)

identify objects within a graph; (2) import arbitrary
subgraphs; (3) add or remove objects appearing in
the view. To specify views, we use Lorel’s query and
update operations and extend the select-from-where

statement with a with clause.
The with clause is composed of path expressions

where each path begins from a variable appearing in
the select clause. Each object and edge along a path in
the with clause is included in the view. Intuitively, the
select-from-where statement returns a flat set of ob-
jects. The with clause imports some of the structure
of the database in the view. It is a compromise be-
tween returning everything or nothing reachable from
selected objects.

We call the objects included in the view by the
select-from-where part of the view specification the
primary objects and the objects included in the view
by the with clause the adjunct objects. An object can
be both a primary and an adjunct object in a view.
Although a view definition may consist of several view
specification statements, in this paper, we concentrate
on views defined by a single statement.

The view specification in Example 2 defines a view
for the result of the query in Example 1 (now written
in an O&L-like syntax [5]) along with all Name and
Ingredient subobjects of each Entree.

Example 2 (Canonical View Specification)

define view FavoriteEntrees as Entrees =

select e

from Guide.Restaurant r, r.Entree e
where exists x in r.Name: x = “Baghdad Cafe”

and exists y in e.Ingredient: y = “Mushroom”
with e.Name n, e.Ingredient i; 0

The objects bound to e are primary objects, while
all the subobjects discovered by the with clause are
adjunct objects. Without the with clause, a view is
a simple collection of objects that satisfy the query,
without edges or subobjects present.

2.4 Materialized Views

We now explain how views are materialized in Lore,
using a simple top-down query evaluation strategy [29].
First, the from then where clauses are evaluated to
obtain bindings for variables that appear in the from

clause and satisfy the where clause. The select clause
is evaluated for these bindings. Each primary object
identified by the select clause is then augmented with
the subobjects and edges in the with clause. In the
view, each imported database object is represented by
a new delegate object.

Figure 2 shows the materialized view for Example 2
applied to the database in Figure 1. The objects &9,
&14, and &15 in Figure 1 provide bindings for e, n and
i; the sole primary object &9’ and the adjunct objects
&14’ and 8~15’ are the corresponding delegate objects
in the view.

40

Name Ingredient

&& .,M&mm.,
Figure 2: The materialized view for Example 2

2.5 Update Operations

The Lore1 update statements [5] contain three elemen-
tary update operations that can affect a materialized
view:

l Insertion and deletion of the edge with label L from
the object with oid 01 to the object with oid 02,
denoted (Ins, 01, L, 02) and (Del, 01, L, 02).

l Change of value of the atomic object with oid 01
from OldVal to New Val, denoted (Chg, 01, OldVal,
New I/al).

3 View Maintenance

When an update operation affects a materialized view,
the view must be maintained to keep it consistent with
the database. A view V is considered consistent with
the database DB if the evaluation of the view speci-
fication S over the database yields the view instance
(V = S(DB)). Therefore, when the database DB is
updated to DB’, we need to update the view V to
V’ = S(DB’) in order to preserve its consistency.

Our incremental maintenance algorithm computes
the new state of the materialized view from the cur-
rent state of the database, the view, and the database
updates. Similar to relational view maintenance al-
gorithms, the incremental maintenance algorithm uses
the database updates to minimize the portion of the
database examined when computing the view updates

P31.
The algorithm applies to an important subset of

Lore1 [3]. More specifically, it handles every view spec-
ification statement without wild cards, subqueries, or
negation (except on atomic objects, e.g., z # 5 is per-
mitted). To simplify the presentation, in our examples
the select clause is of the form “select y” (generalizing
for any select clause is straightforward).

3.1 Overview of the Maintenance Algorithm

We treat the primary and adjunct objects (Vpr;rra and
V&) separately during maintenance. The algorithm’s
input is shown in Figure 3.

The view specification S, the database update U,
and the database state DB’ after the update are
used to compute the view maintenance statements in
Lore1 syntax.l These statements generate the sets

1 We extend Lord to allow the use of explicit object identifiers
wherever names are allowed within a statement.

1. View specification statement S:
select Vi
from UO.L1 ul, VJ.Lk Vk, &&-I& Vn

// vJ can be any variable that
JJ already appeared in the sequence

where conditions(vl, . . . , un)
with ui.Lll WI, ~11.hz ~12, . . . , ~l(p-l).Llp wlp,

U,.L,l Wjl , wJ(k--1)&k Wjk, . . .I

WJ(F1) 49 WPI

JJ where u, is Ui or wkl
// (2 5 j, 1 s k 2 (j - l), 1 5 I)

2. Update U: (Zns,ol, L,oz), (Del, 01, L, 02), or
(Chg, 01, OldVal, NewVal)

3. New database state DB’

4. View instance V

Figure 3: Incremental maintenance algorithm input

ADDprim, DEL,,im, ADD,di, and DEL,di of ob-
jects and edges to add to and remove from the view.
In Figure 3, we abbreviate the where clause with
“conditions(211, . . . , wn) .” Conditions are written in
disjunctive normal form using boolean expressions,
such as y = ‘Wushroom”, as in SQL.

1. Check for relevance of update U to the view instance
V defined by the view specification S. Generate a set
of relevant variables R. If R is empty, stop.

2. Generate maintenance statements and create
ADDprim and DEL,,,, using U, S, and R.

3. Generate maintenance statements and create

ADD od3 and DEL,d, using U, S, R, and ADD,,,,
or DELpri,.

4. Install ADDprim, DELprim, ADDad,, and DEL,d,
in V.

Figure 4: Basic structure of the incremental mainte-
nance algorithm

J

Figure 4 outlines the steps of the view maintenance
algorithm. We describe the algorithm as it operates on
a single update. First, it checks whether the update is

relevant to the view, that is, if update U could cause
a change to the view instance V. If so, the algorithm
creates the Lore1 statements that generate ADD,,,;,
and DEL,,i, . The statements identify the primary
objects to add and remove by explicitly binding the
objects in the update to the view specification. The
algorithm then creates the sets of maintenance state-
ments that generate ADD~dj and DEL~dj. ADD~dj
and DELzdi contain the adjunct objects and edges to
add and remove for each with clause variable x. Ad-
junct objects may be affected in three ways: (1) by
newly inserted or deleted primary objects; (2) by cur-
rent adjunct objects that are the source of an inserted
or deleted edge; and (3) by atomic value changes.

3.2 Relevance of an Update

To avoid generating (and evaluating!) unnecessary
maintenance statements, we first perform some sim-

41

function RelewantVars(Update U, View specification S)
// If updated object is not in RelevantOids, then it’s not
// relevant. ReleuantOids is {(aid, queryvariable)}.
if (01(U), .) 6 ReleuantOids then return 0;
// Find out which variables are relevant to the update
vars t0; reluars t0;
foreach v E variables(S) do

// If updated object is not in ReleuantOids, then it’s

// not relevant

if (01(U), w) E ReleuantOids then vars tuars U {u}

// If update is atomic change, do simple syntactic check
if type(u) = Chg then

foreach v E uars do
// Let constants(S, u) be the constants appearing

// in S compared to u, e.g., using = here
foreach c E constants(S, u) do

// See if there’s a predicate in the view spec
// whose value may have changed
if (Old Val(U) # c and New Val(U) = c) or

(OldVal(U) = c and NewVal(U) # c) then
reloarstreluarsU{w};

elserelvars +-wars;

return reluars;

Figure 5: Relevant Vars returns the view specification

variables for which the update U is relevant.

ple relevance checks. We use an auxiliary data struc-

ture, RelevantOids, to keep information that would be

available from the schema in a structured database.

RelevantOids contains the object identifier of every ob-

ject touched during the evaluation of a view specifica-

tion, paired with the variable to which it was bound,

whether or not the object eventually appears in the

view. It is used to check quickly whether a database

update could possibly affect the view. For example, if

object 01 in a Chg update does not appear in Releuan-

tOids, then it was not examined during view evaluation

and the update can be ignored.

We also use syntactic checks that indicate whether

specific atomic value changes could affect the view.

For each comparison in the view specification where

clause that involves a constant value, we compare the

constant to the update’s OldVal and New Val. If both

or neither of OldVal and New Val satisfy the compari-

son, then the change cannot affect the view.

Figure 5 presents the function Relevant Vars, which

determines the set of variables appearing in the query

that the update could be bound to given a view spec-

ification.

For example, suppose that the value of object &5

in Figure 1 is changed from “Thai City” to “Hunan

Wok”. We can infer that this update does not affect

the view in Example 2, because the view specification

mentions neither “Thai City” nor “Hunan Wok”. On

the other hand, if the value of &5 is changed to “Bagh-

dad Cafe”, which is the constant used in the compari-

son x.Name = “Baghdad Cafe”, then the update may

be relevant.

We do not attempt to quantify the savings achieved

by using RelevantOids in this paper. However, we

note that for views defined over a small portion of the

database, most updates are irrelevant.

3.3 Generating Maintenance Statements

We now describe how to generate the maintenance

statements for each type of update: edge insertion,

edge deletion, or atomic value change. Consider first

the edge insertion and edge deletion cases. For each

one-step path in the view specification, we generate

a maintenance statement that checks whether the up-

dated edge binds to it. If so, the statement produces

updates to the view. We use auxiliary data structures

to represent the one-step paths appearing in the view

specification. OneStepPathf,,, , OneStepPath,,i,,

and OneStepPath,dj contain all the one-step paths

that appear in the from clause, from and where

clauses, and with clause, respectively. For example,

OneStepPath,,i, for the view specification in Exam-

ple 2 is { Guide.Restaurant r, r.Entree e, r.Name x,

e. Ingredient y} . Note that each OneStepPath set is

small since it depends on the query and not on the

database.

3.3.1 Edge Insertion

For edge insertion, let the update be (Ins, 01, L, 02).

We generate a primary object maintenance statement

for every possible pair of bindings of 01 and 02 using

the procedure GenAddPrim in Figure 6.

Example 3 (Generating ADDprim)

Suppose that update (Ins, &lo, Ingredient, 8~15) is

performed on the database in Figure 1. The Bagh-

dad Cafe restaurant now has two entrees with the in-

gredient “Mushroom”. Given the view specification,

RelevantVars returns the set {e}. GenAddPrim then

generates one statement.

ADD+,, +=

select e
from Guide.Restaurant r, r.Entree e
where exists x in r.Name: x = “Baghdad Cafe”
and exists 8~15 in &lO.Zngredient:

8~15 = “Mushroom n
and e = &lo;

This maintenance statement can be evaluated more

efficiently than the original view specification, as we

show in Section 4. 0

We then generate the maintenance statements for

the adjunct objects. There are two cases to consider:

(1) adjunct objects attached to the new primary ob-

jects in ADD,,i, and (2) adjunct objects that are

newly connected to the view by the inserted edge from

01 to 02 (when 01 is an adjunct object).

For the first case, we generate maintenance state-

ments starting from the set ADD,,i,. For the second

case, we first test whether the inserted edge matches

a relevant (adjunct object) variable and has a match-

ing label. If so, then we generate a set of maintenance

42

procedure GenAddPrim(Update U = (Ins,ol, L, os), View specification S, RelevantVars R)
// For each relevant variable
foreach a E R do

// For each place where the update can be substituted in the view specification
foreach (a,L,b) E OneStepPath,,;, do

// Write a maintenance statement based on the view specification
ADD rrlm+= copy S except for the with clause and

VLi in from clause replace “a.Li” with “oI.Li”
VL, in from clause replace “b.Lj” with “o2.L,”
replace “a” with “or” and ‘lb” with “02” in where clause
add “and a = or” to each disjunct in where clause
if (a,L,b) E OneStepPathf ram add “and b = 02” to each disjunct in where clause

Figure 6: GenAddPrim generates the ADD,+,, maintenance statements.

procedure GenAddAdj(Update U = (I ns, 01, L, 02), View specification S, ReleuantVars R)
// (1) If primary objects were added, need to add adjunct objects from them
if ADD,,,, # 0 then

// For each one-step path in the with clause
foreach (~~(k-~),L,k,W,k) E OneStepPath,d, do

// Write a maintenance statement based on the view specification (no where or with clause)

ADD;j,k += select (wj(k-l),L,k,W,k)

from ADDprim Vi, Vi.LJ1W~17 WJ(k-I).Ljk W,k;
// (2) For each place that edge could be adjunct edge
foreach v E R do

foreach (tJ,L,Wjk) E OneStepPath,d, do
// Write a set of maintenance statements starting from added edge:
// Add inserted edge to the view

ADD:&’ += select (01, L,oz);

1 J From 02, add any necessary edges
ADD~j;k+‘)

+= s&d (02,LJ(k+l)~wJ(k+l)) from %!~LJ(k+l)WJ(k+l);

// In a similar fashion, include all paths

foreach (wj(k+n-1)&k+,) ,q(k+n)) E 0 do

ADD,w;*++ += select (W~(k+n-1),Lj(k+n),U(kt~))

from 02.L,(k+l)wj(k+l)t . . . , Wj(k+n-l)&k+n) wj(k+n);

Figure 7: GenAddAdj generates the ADD,* maintenance statements.

3.3.2 Edge Deletion statements that add the inserted edge and all subse-
quent paths in OneStepPath,dj. Both cases are han-

dled by procedure GenAddAdj in Figure 7.
Let the update be (Del, 01, L, 02). A deleted edge may:
(1) be irrelevant and not affect the view; (2) cause a
primary object (or objects) to be deleted; (3) appear
directly in the (adjunct) view and need to be removed.
Either (2) or (3) could cause additional adjunct edges
to be removed from the view. In principle, a delete
edge update generates maintenance statements sim-
ilar to an insert edge update. However, the delete
edge statements must simulate the existence of the
now deleted edge in the view to determine whether
it originally contributed to the appearance of objects
or edges in the view. Also, the delete edge state-
ments must check (using a subquery) whether a po-
tentially deleted object or edge should remain in the
view due to paths not involving the deleted edge. For
example, if the Entree object &9 in Figure 1 had two

“Mushroom” ingredients, then applying the update
(Del, &9, Ingredient, &15) should not remove the En-

tree object &9 from the view.

Example 4 (Generating ADD,6)

GenAddAdj generates the following maintenance state-
ments for the update (Ins, &lo, Ingredient, 8~15).

ADD& +=

select (e,Name,n)
from ADD,,,+,, e, e.Name n;

ADD;, +=

select (e,Zngredient,i)
from ADD,,+, e, e.Ingredient i;

Since the inserted edge is not connected to an ex-
isting adjunct object (&lo is not currently an adjunct
object in the view), no statements are generated by
the second half of GenAddAdj. 0

Because the addition of an edge in the absence of

negation cannot cause a deletion, we do not have to
generate DEL,,+, or DEL,dj .

Figure 8 shows the procedure GenDelPrim, used to
generate the maintenance statements for the primary
objects.

43

procedure GenDelPrim(Update U = (Del,ol, L, OZ), View specification S, RelevantVars R)
// For each relevant variable
foreach a E R do

// For each place where the update can be substituted in the view spec
foreach (a,L,b) E OneStepPath,,i, do

// Write a maintenance statement based on the view specification:
DEL,rim+= copy S except for the with clause and

// The first two replacements reconstruct the before state
replace “a.L b” with “(o1.L U (02)) b” in from clause.
replace “exists b in a.L” with “exists b in (01 .L U (02))” in where clause.
// The remaining replacements handle normal appearance of bound variables
VLi in from clause replace “a.Li” with “0r.L;”
VL, in from clause replace “b.LJ” with “02. L, n
replace “an with “01” in where clause
replace “b” with “02” in where clause
add “and a = 01” to each disjunct in where clause
if (a,L,b) E OneStepPathfrom add “and b = 02” to each disjunct in where clause
// The duplicate test is a subquery that ensures that the object bound

l/t . o vi IS not in the view for another reason
add to where clause “and not exists (S’)” where S’ is
S without the with clause and with new variables u: for each vj
and an additional where condition: “ui = Vi” (vt is the selected variable in S)

Figure 8: Generating maintenance statements for DEL,,i, .

Figure 9: Transformations for incremental maintenance statements for Example 5

Example 5 (Generating DEL,,;,)

Suppose the update U = (Del, 823, Entree, &9) is ap-

plied to the database of Figure 1. The object &9 must

be removed from the view. GenDelPrim generates one

statement.

DEL,,+,, +=

select e
from Guide.Restaurant r, (&S.Entree U{&9}) e
where exists x in &3.Name: x = “Baghdad Cafe”
and exists y in &g.Ingredient: y = “Mushroom”
and r=&3ande=&9
and not exists (

select e’
from Guide.Restaurant r’, r’.Entree e’
where exists x’ in r’.Name:

I’ = “Baghdad Cafe”

and exists y’ in e’.Ingredient:
y’ = “Mushroom”

and e’ = e);

This statement adds bindings for r and r.Entree to

the view specification S and reconstructs the deleted

edge by binding e to &9. The transformations to the

original query are summarized in the table shown in

Figure 9. cl

We then generate the maintenance statements for

the adjunct objects and edges. However, like the ob-

jects in the primary zone, an adjunct object or edge

can be included in the view due to multiple paths.

Reachability via a deleted edge is not a sufficient con-

dition for deleting an adjunct object or edge, as we

explain in [4]. Instead, a subquery of the where clause

looks for other variable bindings for the edge to be

removed. If another binding is found, then the edge

is not deleted. Due to space restrictions, we omit the

procedure GenDelAdj here; see [4].

Example 6 (Generating DEL,dj)

For the update (Del, &3, Entree, &9), procedure Gen-

DelAdj creates one maintenance statement for each

path in OneStepPath,dj.

DEL:,,. +=

select (e,Name,n)

from DEL,,;, e, e.Name n;

DELddj +=

select (e,Zngredient,i)

from DEL,,+, e, e.Ingredient i;

Neither statement in our simple example includes a

where subclause. More complex cases, however, do.
Cl

3.3.3 Atomic Value Change

Let the update U be (Chg, 01, OldVal, New Val). This

value change may cause deletions, insertions or both

to the view, or there might be no update necessary
because the change is irrelevant to the view. Due
to object sharing, an object may have many incom-
ing edges with different labels. Therefore, the original
edge traversed to find an object is not the only possi-
bly relevant edge. Consequently, we bind the changed
object to each variable identified by the procedure Rel-

evant Vars, using a separate maintenance statement for
each variable. A single maintenance statement handles
each case. An atomic value change that could cause
the addition of objects within the view is treated sim-
ilarly to an edge insertion, where the inserted edge is
the edge followed to get to the atomic object during
view evaluation. The deletion case is similar. Note
that Relevant Vars can help optimize the execution of
the maintenance statements by tracking whether the
changed value could potentially cause the addition ver-
sus the removal of objects.

Due to space constraints we omit the procedure for
atomic value changes, but we include the following il-
lustrative example.

Example 7 (Atomic Value Change)
Suppose the update U is (Upd, 8~7, “BaghdadCafe”,

“Wendy’s”). We identify x as the only relevant vari-
able for Example 2. This atomic value change can-

not result in adding new objects to the materialized
view, because the new value “Wendy’s” does not sat-
isfy the condition on 2. However, the old value “Bagh-
dad Cafe” does. If x is bound to &7 then the condi-
tion’s value changes from true to false and some ob-
jects may no longer be in the view. We therefore gen-
erate DEL,,i, for the deletion of (r,Name,&7) since
Name is the label associated with x.

DEL,,;, +=

select e
from Guide.Restaurant r, r.Entree e
where exists &7 in r.Name :
and (O!dVal(&7) = “‘BagFdad Cafe”)

exists y m e.Ingredzent: y = “Mushroom”
and not exists (

select e’
from Guide.Restaurant r’, r’.Entree e’
where exists 2’ in r’.Name:

x’ = “Baghdad Cafe”
and exists y’ in e’. Ingredient:

y’ = %Iushroom”
and e’ = e);

Based on DEL,,i,, DEL” and DELhdj are calcu-
lated as shown in Example “8. 0

3.4 Installing the Maintenance Changes

The changes represented by ADDprim, ADD,dj,

DEL,rim, and DEL,dj are installed in the materi-
alized view. Since there is no duplication of objects in
the view, deletions need to be installed in the view be-
fore insertions. If a view object ceases to be a primary
object, it may still remain in the view as an adjunct ob-
ject and vice versa. Finally, if the update is an atomic

value change of an object in the view, the new value
is installed in the delegate object. Given ADDprim,

ADD,g , DELprim, and DEL,dj, the installation pro-
cess can use indices to identify the objects and edges
that are already in the view.

4 Cost Model

In this section, we present an analytic model that eval-
uates the cost of both view recomputation and incre-
mental maintenance for a given update. A more de-
tailed cost model that follows a similar approach for
an object-oriented system is presented in [8], and [30]
presents a more complex cost model for Lore. The cost
model can be used by the query optimizer to choose
dynamically, for a given set of updates, whether to
recompute or to incrementally maintain the view.

Figure 10: Path expression evaluation and statistics
(path expression: A.B b, b.C c)

The cost assigned to a plan is the estimated num-
ber of object fetches during query processing. While
more complex cost models have been proposed for ob-
ject oriented systems, e.g., [19], they rely heavily on
the object clustering guaranteed by the system. In
the absence of clustering, we count the number of ob-
ject fetches, since we cannot accurately determine in
advance whether two objects will be on the same page.

The cost formulas rely on our top-down query ex-
ecution strategy, described in Section 2.4. This strat-
egy results in a depth-first traversal of the data start-
ing from a named object [29]. Other query execu-
tion strategies for semistructured databases are inves-
tigated in [30, 161. The following quantities are part
of the statistics kept by the system.

l Fanout(x, L): the estimated average number of chil-
dren with the label L that are descendants of some
object in the set of objects bound to variable 2. The
variable x must already be bound using a path ex-
pression. In Figure 10, Fanout(b, C) is 1 since each
of the objects in the set b has a single C child. We
use the set x to refer to the set of objects bound to
2.

l 1x1: the estimated number of objects in the set 2.
In Figure i0, (c(= 3.

l Cost(x, L, y): the estimated cost, i.e., the number
of objects fetched in order to get all of the subob-
jects with edge labeled L originating from any ob-
ject in x, where each resulting object is placed into

45

set y. This cost is computed by CO&(X, L, y) =

1x1 * Fano&(x, L).

For example, given the path expression b. C c of Fig-

ure 10, the evaluation cost for b.C c is Cost(b, C, c) =

jbl*Fanout(b, C) = IAl*Fandut(A, B)*Fanout(b, C) =

1 * 3 * 1 = 3, where A is a named object.

Without any bindings, the cost for evaluating a path

expression P is

Cost(totaz) = c Cost(x, L, y)

(Z,L,Y)EP

The incremental maintenance statements bind vari-

ables to the objects contained in the update and use

the bindings to prune the search space. The execu-

tion proceeds until a variable x bound by the update

is encountered. If the object bound to x is not the

updated object, then the evaluation short circuits and

goes on to the next binding for x. A bound variable

lowers the cost of the computation for the rest of the

path expression since it limits the remaining portion of

a path to objects reachable from the bound variable.

Insertions and deletions provide two object bindings,

while an atomic value change provides only one. Both

the cost model and the formulas ignore object sharing,

which can reduce the actual cost.

We now apply our cost formula to the view specifi-

cation of Example 2.

Example 8 (Cost of Full Recomputation)

The cost for recomputation of the view is:

c Cost(x, L, Y)

(z,L,y)~OneStepPath,.ImUOneStepPath,dl

= IGuide * Fanout(Guide, Restaurant) *

(1 + Fanout(r, Entree) + Fanout(r, Name) +

Fanout(r, Entree) * Fanout(e, Name) +

2 * Fanout(r, Entree) * Fanout(e, Ingredient))

0

We now show how our cost formula applies to

the maintenance statements in Example 3 for update

(Ins, &lo, Ingredient, 8~15).

Example 9 (Maintenance Cost of Inserting an

Edge)
P = {(Guide,Restaurant,r), (r,Entree,e), (r,Name,x),

(e,Zngredient,y)} is the set of one-step path expressions

in the maintenance statement of Example 3 and P’ =

{(ADD,,;, ,Name,n), (ADD,,+, ,Zngredient,i)} is the

set of one-step path expressions in the maintenance

statement of Example 4. The bindings e = &lO and y

= &15 are provided.

c Cost(a:,L,y) + c CO4X,L,Y)

(+,L,Y)Ep (r,L,Y)Ep’

= IGuide * Fanout(Guide, Restaurant) + 1 +

IGuide! * Fanout(Guide, Restaurant) *

Fanout(r, Name) + 1 * Fanout(e, Ingredient) +

I ADD+, I * (Fanout (ADD,,;, , Name) +

Fanout(ADD,,i,, Ingredient))

IADD,rimI d P d P e en s u on the number of possible

bindings for e and the selectivity of the where clause,

as follows:

IADD,,i, I = lel * SeZectivity(where) =

1 * SeZectivity(where) 5 1. 0

5 Evaluation

Our evaluator program accepts a single view speci-

fication statement, a database, and a single change,

and computes the cost for both recomputation and in-

cremental maintenance using our cost model. In this

section, we present the costs for a variety of view spec-

ifications, databases, and updates. We do not use the

auxiliary structure RelevantOids in the cost model, so

the actual costs for incremental maintenance will be

lower in many cases. In all of our graphs, the cost is

shown on the y axis in a logarithmic scale.

5.1 Base Costs for Update Operations

Figure 11: Base costs for update operations

In the first experiment, shown in Figure 11, we looked

at the costs of different update operations for the view

specification of Example 2. The test database con-

tained one Guide, 1000 restaurants, on average 100

entrees and 1 name per restaurant, and 10 ingredi-

ents and 2 names per entree. Other portions of the

database were not traversed when computing or main-

taining the view and are thus irrelevant. We assumed a

fixed selectivity for the where clause of 50%. Each bar

shows the cost of maintaining the view after a single

update for a different update operation.

Recomputation is over 100 times more expensive

than incremental maintenance for insert or delete edge

operations. These savings are due to binding the vari-

ables associated with the inserted or deleted edge.

A much smaller portion of the database is traversed

during execution of the incremental view maintenance

statements compared to the view specification state-

ment. Maintaining a view for edge insertions was sig-

nificantly cheaper than for edge deletions since delete

edge maintenance statements require a subquery.

46

The maintenance cost for an atomic value change
varies wildly. Without the procedure Relevant Vars,
the incremental algorithm will generate a maintenance
statement for each condition in the where clause.
Although each statement will incorporate a variable
binding for the changed object, there is only one such
binding. Depending on where the binding occurs, the
maintenance statement cost may vary from much to
only slightly cheaper than the cost of recomputation.
Given several where conditions, recomputation may be
more cost effective. For example, for the view in Ex-
ample 2, testing a single atomic change against both
conditions in the where clause cost is almost as expen-
sive as recomputation, as shown in Figure 11. How-
ever, relevance tests using RelevantOids can often de-
termine that only a few or even none of the conditions
in the where clause are relevant. For the same exam-
ple, evaluating the maintenance statement for only one
condition is always cheaper than recomputation.

5.2 Bound Variable Position

Update Operation

Figure 12: Varying position of bound variable in from
clause

The position of the bound variable affects the cost of
incremental maintenance. For our next experiment,
we used a view specification containing a chain of eight
one-step paths in the from clause:

define view VaryingFrom as VF =

select ~2 from A.& tl, .q .L-J ~2, . . . , 27.L~ ~8;

The database contained a single named object A,

1000 L1 subobjects of A, on average 100 L2 sub-
objects per ~1, and ten Li subobjects per Zi-1 for
3 5 i 5 8. We deleted the edge (oi-1,Li,oi), for all
values of 3 5 i 5 8 in turn. Figure 12 shows that
recomputation is lo-500 times more expensive than
incremental maintenance. When the bound variable
is in the middle of a path expression, it effectively di-
vides the path into two shorter paths: to compute the
total cost, the costs of the two shorter paths need to be
added rather than multiplied (see Section 4). There-
fore, the variable binding provided by the newly in-
serted or deleted edge has the most beneficial effect
when it occurs in the middle of the path expression.

5.3 Length of the from Clause

The number of variables in the from clause also affects
the cost of incremental maintenance. For this experi-

I

3 4
Length ;P.th Expko”

7 6

Figure 13: Varying length of from clause

ment, we used view specifications of the following pat-
tern and varied the length of the path expression in
the from clause from three to eight one-step paths.

define view VaryingFrom as VF2 =

select 22 from A.Ll ~1, z1.L~ 22, ..,, z~-~.L, z,;

The database was the same as in Section 5.2.
For each view specification, we inserted the edge

hrL[n/2J+lP2), which bound the middle variable in
the path. Figure 13 shows that as the number of vari-
ables increased, the recomputation cost also increased.
Each additional edge in the from clause caused the rel-
evant portion of the database to increase by a factor
of ten. The incremental maintenance costs are much
lower and increase much more slowly due to the bound
variables. The insert edge cost decreases when n = 4
because the bound variable appears in a more advan-
tageous position in the path expression.

5.4 Database Size

1,wo P.wo 3,col 4,cm 5.

Number Of ‘f766f6umW Objects

Figure 14: Varying database size

For the fourth experiment, we used the view specifica-
tion of Section 5.1, but varied the size of the relevant
portion of the database. We increased the number of
restaurants in the database from 1000 to 5000, and
kept the same average number of entrees per restau-
rant, ingredients per entree, etc. Therefore, when
the number of restaurants doubled, for example, the
size of the relevant portion of the database doubled.
The maintenance costs after various edge insertions
are shown in Figure 14. The cost of recomputation is
consistently lOO-100,000 times higher than the cost of
incrementally maintaining the view.

The size of the database had negligible effect on in-
serting an Entree and Name edge, since the inserted

47

edge provided a binding to a specific restaurant. When
inserting an Ingredient edge, the placement of the
bound variable was not as fortunate, and the execu-
tion cost of the maintenance statements grew linearly
with the size of the database, remaining many orders
of magnitude lower than the cost of recomputation.
The recomputation cost always grew linearly with the
size of the relevant portion of the database, since it
traversed the entire relevant portion.

5.5 Selectivity of the where Clause

10,ooo.ooo

Figure 15: Varying selectivity of where clause

Figure 15 shows the results of the fifth experiment. We
kept the same view definition and database structure
as in Section 5.1, but varied the selectivity of the where

clause. As the selectivity increases, more objects are
included. Therefore, the recomputation cost went up
reflecting the rising cost of locating and adding the ad-
junct objects. The incremental maintenance cost for
atomic value changes is also influenced significantly by
the selectivity of the where clause. When the selectiv-
ity is low, most atomic value changes can be screened
out by the syntactic relevance test before running any
queries. When the selectivity is high, most objects are
already included in the view, so very few new objects
need to be added to the view because of the change.
Since syntactic relevance tests only apply to atomic
value changes (and affect their cost!), the maintenance
cost for an edge insertion does not change based on the
atomic values and the selectivity.

Note that in all our other experiments, the selec-
tivity of the where clause is fixed at SO%, which, as
shown in Figure 15, is the value that most heavily dis-
advantages our incremental maintenance algorithm.

5.6 Number of Label Occurrences

For the final experiment, we varied the number of
times the label of the inserted or deleted edge matched
a label in the view specification. We used view speci-
fication statements of the following form:

define view VaryingLabel as VL =

select t
from A.Ll t, x.L:! y, y.La t
where exists t in y.Ld: t < 10
and exists w in z,Lg: w > 7
with x.Ls,’

48

Figure 16: Varying number of occurrences of a label
in view specification

We inserted or deleted the edge (or ,L,oz). For each
test, we changed some of the labels in the view specifi-
cation (as well as the corresponding labels in the source
database) to “L”, as indicated by the legend for the
results, shown in Figure 16. The database contained
100 subobjects of each object for each distinct label.

The recomputation cost was unaffected by the spe-
cific labels, since the structure of the database re-
mained the same. The incremental maintenance costs
varied, however, since each appearance of the label L
required an additional maintenance statement. How-
ever, even when the label L appeared three times in
the view specification, incremental maintenance was
still 20 times cheaper than recomputation.

6 Conclusion

Most approaches for incremental view maintenance
rely on the database schema to generate maintenance
statements. We described an incremental maintenance
algorithm for views over semistructured, schemaless
data. Our algorithm computes the changes to the view
based on the information available from the view speci-
fication, the update operation, the database state after
the update, and some auxiliary data structures that
are generated when populating the view.

Our evaluation results show that our incremental
maintenance algorithm outperforms recomputation of
the view, even for large numbers of insert and delete
edge updates. However, in some situations, incremen-
tal maintenance can be as expensive as full recompu-
tation of the view for a single atomic value change,
due to the simple query execution strategy assumed
by our cost model. The evaluation also shows that our
algorithm scales well with increasing database size.

We have implemented view materialization within
Lore [29]. We plan to implement the incremental main-
tenance algorithm as well. Several optimizations to
our incremental maintenance algorithm are possible.
First, we plan to extend the algorithm to handle sets of
updates together. Second, if the data has a tree struc-
ture, then the maintenance statements can be simpli-
fied, e.g., by eliminating the subqueries when deleting
objects or edges. Third, we would like to incorporate
query rewriting and query optimization techniques [30]
for semistructured data and provide more query execu-

tion choices to the query optimizer. Finally, we would
like to consider using inferred schematic information
such as DataGuides [33, 211 or graph schemas [ll] to
optimize view maintenance.

7 Acknowlegements

We want to thank Yue Zhuge for organizing the group
whose discussions eventually led to this paper. We
would also like to thank Jennifer Widom and the rest
of the Lore team at Stanford for many interesting dis-
cussions and comments.

References

111

PI

[31

t41

[51

PI

[71

PI

PI

[lOI

illI

1121

1131

[I41

[151

[I61

iI71

P31

I191

WI

WI

S. Abiteboul. Querying Semistructured Data. In Proc.

ICDT, pages l-18,1997.
S. Abiteboul and A. Bonner. Objects and Views. In Proc.

SIGMOD, pages 238-247,199l.

S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and
Y. Zhuge. Views for SemistructuredData. In Workshop on

Management of Semistructured Data, pages 83-90, 1997.
S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. L.
Wiener. Incremental Maintenance for Materialized Views
over Semistructured Data. Technical report, Stanford Uni-
versity, 1998.
S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lore1 Query Language for Semistructu-
red Data. Journal of Digital Libraries, 1(1):68-88, Jan.
1997.
C. Beeri and Y. Kornatsky. A Logical Query Language for
Hypertext Systems. In Proc. ECHT, pages 67-80, 1990.
E. Bertino. A View Mechanism for Object-Oriented
Databases. In Proc. EDBT, pages 136-151, 1991.
E. Bertino and P. Foscoli. On Modeling Cost Functions of
Object-Oriented Databases. IEEE TKDE, 9(3):500-508,

May 1997.
J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently
Updating Materialized Views. In Proc. SIGMOD, pages
61-71,1986.
P. Buneman. Semistructured Data. In Proc. PODS, pages
117-121,1997.
P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Adding Structure to Unstructured Data. In Proc. ICDT,

pages 336-350, 1997.
P. Buneman, S. Davidson, and D. Suciu. Programming
Constructs for Unstructured Data. In Proc. DBPL, 1995.

M. J. Carey. Panel on Semistructured Data. In Workshop

on Management of Semistructured Data, 1997.

R. &tell et al. The Object Database Standard: ODMG-93.

Morgan Kaufmann, 1.1 edition, 1994.
V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl.
From Structured Documents to Novel Query Facilities. In
Proc. SIGMOD, pages 313-324,1994.
V. Christophides, S. Cluet, and G. Moerkotte. Evaluat-
ing Queries with Generalized Path Expresssions. In Proc.

SIGMOD, pages 413-422,1996.
L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and
H. Trickey. Algorithms for Deferred View Maintenance.
In Proc. SIGMOD, pages 469-480,1996.

M. Fernandez and D. Suciu. Optimizing Regular Path Ex-
pressions Using Graph Schemas. In Proc. ICDE, 1998.
G. Gardarin, J. Gruser, and Z. Tang. A Cost Model for
Clustered Object-Oriented Databases. In Proc. VLDB,

pages 323-334, 1995.
D. Gluche, T. Grust, C. Mainberger, and M. H. Scholl.
Incremental Updates for Materialized OQL Views. In Proc.

DOOD, pages 52-66, 1997.
R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in Semistructured
Databases. In Proc. VLDB, pages 436-445,1997.

PI

1231

1241

P51

WI

1271

[=I

1291

[301

[311

[32l

1331

1341

1351

[361

[371

[381

[391

1401

1411

1421

[431

1441

[451

T. Griffin and L. Libkin. Incremental Maintenance of Views
with Duplicates. In Proc. SIGMOD, pages 328-339, 1995.
A. Gupta and I. S. Mumick. Maintenance of Materialized
Views: Problems, Techniques, and Applications. Bulletin

of the TCDE, 18(2):3-18, June 1995.
A. Gupta, I. S. Mumick, and V. Subrahmanian. Maintain-
ing Views Incrementally. In Proc. SIGMOD, pages 157-
166, 1993.
E. N. Hanson. A Performance Analysis of View Materiali-
sation Strategies. In Proc. SIGMOD, pages 440-453,1987.
A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A.
Ross. Implementing Incremental View Maintenance in
Nested Data Models. In Proc. DBPL, 1997.
D. Konopnicki and 0. Shmueli. W3QS: A Query System
for the World Wide Web. In Proc. VLDB, pages 54-65,
1995.
B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. Wilms.
A Snapshot Differential Refresh Algorithm. In Proc. SIG-

MOD, pages 53-60, 1986.
J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for Se-
mistructured Data. SIGMOD Record, 26(3):54-66, Sept.
1997.
J. McHugh and J. Widom. Query Optimization for Se-
mistructured Data. Technical report, Stanford University
Database Group, 1997.
A. 0. Mendelzohn, G. A. Mihaila, and T. Milo. Querying
the World Wide Web. In Proc. PDIS, pages 80-91, 1996.
Microsoft Corporation. Extensible Markup Language.
http://uuu.microsoft.con/unl/.
S. Nestorov, J. Ullman, J. L. Wiener, and S. Chawathe.
Representative Objects: Concise Representations of Semi-
structured Hierarchical Data. In Proc. ICDE, pages 79-90,
1997.
Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman.
MedMaker: A Mediation System Based on Declarative
Specifications. In Proc. ICDE, pages 132-141, 1996.
Y. Papakonstantinou, H. Garcia-Molina, and J. Widom.
Object Exchange across Heterogeneous Information
Sources. In Proc. ICDE, pages 251-260, 1995.
Y:Papakonstantinou and V. Vassalos. Query Rewriting
using Semistructured Views. Technical report, Stanford
University, 1998.
R. Ramakrishnan. Database Management Systems.

McGraw-Hill, 1997.
N. Roussopoulos, C. M. Chen, S. Kelley, A. Delis, and
Y. Papakonstantinou. The Maryland ADMS Project:
Views R Us. Bulletin of the TCDE, 18(2):19-28, June
1995.
E. A. Rundensteiner. MultiView: A Methodology for Sup-
porting Multiple Views in Object-Oriented Databases. In
Proc. VLDB, pages 187-198, Vancouver, Canada, Aug.
1992.
M. Rys, M. C. Norrie, and H. Schek. Intra-Transaction
Parallelism in the Mapping of an Object Model to a Re-
lational Multi-Processor System. In Proc. VLDB, pages
460-471,1996.
M. H. Scholl, C. Laasch, and M. Tresch. Updatable Views
in Object-Oriented Databases. In Proc. DOOD, pages 189-
207,lQQl.
C. Souza, S. Abiteboul, and C. Delobel. Virtual Schemas
and Bases. In Proc. EDBT, pages 81-94, 1994.
D. Suciu. Query Decomposition and View Maintenance for
Query Languages for Unstructured Data. In Proc. VLDB,

pages 227-238, 1996.
J. D. Ullman and J. Widom. A First Course in Database

Systems. Prentice Hall, 1997.
Y. Zhuge and H. Garcia-Molina. Graph Structured Views
and Their Incremental Maintenance. In Proc. ICDE. 1998.

49

