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Abstract

Mobile robots can use geometric or topological maps
of their environment to navigate reliably. Automatic cre-
ation of such maps is still an unrealized goal, especially in
environments that have large cyclical structures. Drawing
on recent techniques of global registration and correlation,
we present a method, called Local Registration and Global
Correlation (LRGC), for reliable reconstruction of consis-
tent global maps from dense range data. The method is
attractive because it is incremental, producing an updated
map with every new sensor input; and runs in constant time
independent of the size of the map (except when closing
large cycles). A real-time implementation and results are
presented for several indoor environments.

1. Introduction

In this paper we address one of the major goals of mobile
robot research, the creation of a map from local sensor data
collected as the robot moves around an unknown environ-
ment. Our emphasis is on reliable, efficient techniques that
can be used on-line to create maps as the robot moves in a
new indoor environment.

There are many different types of maps used for local-
ization, based on the form of sensor information and the
representation requirements of localization. Maps can be
based on topological (connection) or metric (distance) in-
formation, or a combination of the two. Metric maps can
be further refined by whether they use features (usually
calledlandmarks) or rely on dense surface information that
does not distinguish features. Landmark methods require
either engineering the environment to provide a set of ade-
quate landmarks, or efficient recognition of features to use
as landmarks; the result is only a sparse representation of
the surfaces in the environment. In contrast, dense sensor
methods [1, 9, 14, 16, 21] attempt to use whatever sensor
information is available to create a map, and they recreate a
geometric representation of the surfaces in the environment.

When localizing the robot in a map, dense sensor matching
can take advantage of whatever surface features are present,
without having to explicitly decide what constitutes a land-
mark. In this research, we concentrate on metrically precise
maps that are derived from dense range readings, such as
those provided by sonar arrays, scanning laser range find-
ers, or stereo vision systems.

1.1. Map Building in Cyclic Environments

We abstract the problem by considering a robot that
moves through a set of discrete poses (position and orienta-
tion) and takes a scan (set of range points) at each pose. If
we assume that the map is known, then we can estimate the
poses of the robot using standard techniques from Kalman
filtering, in which the posepn of the robot at timen is com-
puted in two steps. First, the new pose is predicted from the
posepn�1 at timen � 1 using the robot motion. Then, the
sensor scansn at timen is matched against the map to give
another estimate of the robot pose, and the two are fused to
give the updated posepn.

The situation is more complicated when the map must be
estimated at the same time as the robot pose. In this case,
the entire map has to be treated as a complex random vari-
able that is estimated concurrently with the robot posep.
For example, suppose the map consists of a large set of fea-
turesM . At any point, the robot scansn may relate to only
a small subsetan �M . But the problem cannot be reduced
to estimatingp andan alone, since previous scans may have
linkedan to other subsets ofM . The basic Kalman assump-
tion, that all necessary information about a sequence of ob-
servations can be reduced to incremental changes in local
state, does not hold. Many complicated schemes have prop-
agated estimates of local subsets to the full setM , but none
of them have been particularly successful ([4, 7, 11, 15, 17];
see Lu & Milios [13] for a review).

1.2. Scan Matching and Consistent Pose Estimation

Lu and Milios take a different view. Recognizing the
Kalman assumption does not hold, they consider the full



pose setp, and try to globally optimizep based on how well
neighboring sensor scans match. There is no explicit es-
timation of the mapM ; instead, the scans themselves are
an implicit representation of the map surfaces. The whole
process is calledconsistent pose estimation, because it finds
a set of poses that minimizes the total error of the system.
Error terms come from robot motion, and also overlapping
scans: the better the scans match, the lower the error. Fig-
ure 1 shows the basic idea: the initial set of poses based
on robot motion has a high global error from non-aligned
scans, while the optimal solution has very little residual er-
ror in the scan match.
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Fig. 1. Consistent pose estimation: Set of robot poses based
on odometry with constraints between poses (left) and map
obtained from consistent pose estimation (right).

Because the posesp are considered as a whole, consis-
tent pose estimation can work on cyclic environments (as in
Figure 1), in which the robot returns to positions previously
visited. Unfortunately, since the basic operation of error
estimation, scan-matching, is nonlinear, finding a minimal-
error pose estimate is computationally difficult, and Lu and
Milios use a hill-climbing approximation that is very sensi-
tive to the initial estimate ofp. The initial estimate is de-
rived from dead-reckoning, and if it is not close to the true
solution, the method often converges to a local minimum
that is incorrect. This problem is especially critical in large
cyclic environments, since the dead-reckoning errors when
“closing the loop” are often significant enough so that scans
which should be close do not overlap. In short, the method
of Lu and Milios requires maps that aretopologically cor-
rect, that is, every pair of poses whose scans overlap are
correctly identified as such.

Another problem with the Lu and Milios method is that,
as the number of posesn increases, the amount of compu-
tation grows asO(n3). It would be good to have an in-
cremental method, one that computes “anytime” results as
information comes in, so that the map is always the best that
can be estimated. Although Lu and Milios provide an incre-
mental algorithm, it essentially runs the original algorithm
on all poses accumulated to the current point, without any
computational savings.

1.3. Other Approaches: Expectation Maximization

Thrunet al. [18] developed an EM approach for building
topologically correct maps. Their method uses landmarks in
the environment (currently observed by button presses from
an operator) for determining topological relations. How-
ever, no information from proximity sensors is used for es-
timating the robot poses and therefore the resulting maps
have only low accuracy.

A hybrid method was proposed by Thrunet al. [19].
It first runs the EM method for finding out the topological
relationships and then uses consistent pose estimation for
fine-tuning the map. However, this method still requires
user input, has a high computational demand and cannot be
used in an incremental way. A recently reported variant of
the EM approach uses sonar data instead of button presses,
but is limited in the size of the environment and the accuracy
of the resulting map [2].

1.4. Local Registration and Global Correlation

In this paper we propose a new method for consistent
global pose estimation, based on the Lu and Milios ideas.
We introduce two techniques for solving the problems noted
above, namely, efficiently adding new information to the
current map, and determining topologically correct rela-
tions between the poses, especially after long cycles.

Consider the case where a consistent global map has
been built, and a new posepn is added (Figure 2). This
new pose will have a link to the previous pose based on
odometry, and to several of the previous poses based on scan
overlaps and the resultant scan matches. These relationships
are shown in Figure 2 by the bold arcs between poses. As
long as the robot is forging ahead and exploring new areas,
these arcs all cluster into local neighborhoods that are well-
connected, with no long-distance relationships.
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Fig. 2. Effect of adding a new pose of an unexplored envi-
ronment to the map.

Local registration works well if the robot constantly ex-
plores new areas. As it completes a large cycle, however,
the problem of topological correctness becomes important,



because new poses must be related to old ones. At this
point, it is critical to make topological identifications reli-
ably, because a mistake can cause the map to be badly mis-
aligned. Single scans do not generally have enough infor-
mation to yield good false positive rejection, especially if
the environment is relatively uniform in one direction, as
happens often along corridors. Instead, we integrate a set
of local scans into amap patch, and use this more extended
template to find matches in the old map.

The map patch technique is obviously more reliable than
single scans in rejecting false positives, but it leaves open
the question of how to efficiently perform matching, since
single-scan techniques are no longer applicable. Fortu-
nately, one author has recently investigated correlational
concepts for matching map patches in the context of lo-
calization [12]. The resultant techniques have been shown
to be both efficient and reliable, and we make use of them
here to determine topological correctness in map-building
with cycles. Correlation operates in a “background” mode,
checking for matches against the old map whenever the
robot moves to an appropriate location, and adds in links
between the new map and the old whenever appropriate.

In the rest of this paper we present the LRGC algorithm,
showing how the basic techniques of scan matching, regis-
tration, and correlation can be knit together into a practical,
real-time system for map construction using dense range in-
formation.

2. The LRGC Algorithm

The Local Registration / Global Correlation algorithm
relies on the three techniques of scan matching, consistent
pose estimation, and map correlation. In this section we
present the techniques in detail, showing the modifications
necessary to work under LRGC. Finally, the overall algo-
rithm is explained, and its results under real-world condi-
tions are displayed in the following section.

2.1. Scan Matching

Scan matching is the process of translating and rotating
a range scan (obtained from a range measuring device such
as a laser range finder) such that a maximal overlap with
ana priori map, e.g. another scan, emerges. The matching
algorithm returns a pose probability distribution of where
to place the scan in order to have the range measurements
correspond to map features. There might be more than one
location where a scan fits and this is expressed by the prob-
ability distribution.

Usually the pose probability is restricted to Gaussian dis-
tributions, and the search is bound locally around an initial
estimate of the scan pose which is obtained from odometry.
Often closed-form solutions for determining the displace-
ment exist and typical run-time complexities areO(n2) or

less, wheren is the number of range measurements in the
scan [6, 14].

Many scan-matching methods have been proposed in the
past. Cox [6] matches scan points to line segments in ana
priori map. Weiss & von Puttkamer [20] create histograms
for correlating pairs of scans. Castellanoset al. [3] and
Gutmannet al. [10] extract line segments out of a scan and
match them with ana priori map of line segments. Lu &
Milios [14] do not rely on a polygonal structure of the en-
vironment and developed a universal method for matching
a pair of scans. We use a combination of the Cox and Lu &
Milios method (the method from Gutmann & Schlegel [9]),
which benefits from the universal capabilities of the Lu &
Milios method and the better run-time and pose quality of
the Cox method. The method is highly efficient [10] and
has proven to yield very accurate results [9, 8].

It is critical that scan-matching does not overestimate the
certainty of a pose, or else it can be difficult to find a con-
sistent interpretation of a set of overlapping poses (see [11]
about this particular problem). Scan matching should also
produce quantitatively good results, e.g. straight lines in a
corridor environment should be accurately aligned.

2.2. Consistent Pose Estimation

The key concept for fusing scan match information is
the consistent pose estimation method from Lu & Milios
[14]. As noted above this method requires a good initial
estimate of the scan poses in order to generate useful results.
Therefore we use this method in two ways:

1. For creating local patches (local maps of the last few
scans the robot obtained), since in this case the scan
poses are always topologically correct: very little odo-
metrical error has been accumulated. Even with larger
odometry errors, as for example in sliding motion or
with synchronization problems between sensor data
and odometry, use of scan matching and local regis-
tration can often recover the correct geometry.

2. For closing a loop after topological relationships are
obtained from map correlation. In this case, consistent
pose estimation is first run with the new links added to
the map and then, after closing the loop leading to a
topological correct map, rerun with new scan matches
between the newly linked poses for fine-tuning the
map.

A typical local network topology was shown in Figure
2. When a new posepn is added to the chain, we register
only the lastK poses, a local neighborhood of the new scan.
To test if theK-neighborhood update tracks global consis-
tency, we performed a number of experiments to compare
it to an update of all poses. Figure 3 shows the effect of
varyingK for a 150-pose map, where the distance between



poses was about 0.3 meters. ForK � 7, the average error
per pose is smaller than a millimeter, and stays essentially
unchanged as the neighborhood is expanded.1
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Fig. 3. Average pose error as a function of registration
neighborhood sizeK.

Errors in local registration occur when there is not
enough local context to bring borderline readings into align-
ment. Figure 4 shows the difference errors forK = 5 and
K = 10 as a map is being built. Around pose 30, a difficult
scan causes the error to shoot up; the larger neighborhood
quickly recovers as it adds more context, but the smaller one
never does.
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Fig. 4. Average pose error during construction of a 150-
pose map.

Several properties of this incremental registration proce-
dure should be noted. First, because the number of nodes
considered at each step is limited, the computational bur-
den is constant, that is, it does not depend on the size of

1Pose errors are calculated based on incremental differences between
each two poses. For example, if local registration produced�x =

500mm and�y = 50mm between poses 1 and 2, and global registra-
tion was�x = 550mm and�y = 50mm for the same two poses, then
the pose error would be50mm.

the map. Given the efficiency of individual scan matches,
incremental registration proceeds very quickly, e.g., under
100 ms in typical circumstances. A second point is that
because scan-matching is a nonlinear procedure, local reg-
istration of a new scan will sometimes produce results that
differ radically from complete global registration. In these
cases, the new scan causes a small shift in some previous
posepi outside the local registration area, and this shift in
turn causes a completely different alignment of scan match-
ing for pi and one of its neighbors. However, one can argue
that local registration does not necessarily produce a worse
result, since the new alignment for global registration may
be a local minimum, rather than a global one. We have not
examined this issue very closely, however, and it deserves
further attention.

We turn now to the problem of registration after clos-
ing a loop. Since consistent pose estimation is anO(n3)
process in the number of poses, several optimizations are
necessary to make the method efficient, since all the poses
along the loop have to be taken into account. Usually these
poses are only linked locally to neighboring poses which
leads to a sparse matrix of relationships. Therefore efficient
linear algorithms that make use of the sparseness are used
for computing consistent poses.

Furthermore we follow the idea from Lu & Milios [14] to
limit the size of the observation matrix to a maximum value
by examining the network for strong links (pose constraints
with low uncertainty). Strong links are then treated as con-
stant relations between scan poses and the corresponding
poses can be obtained from each other. Therefore one pose
of each strong link can be removed which reduces the size
of the observation matrix. Although this leads to a subop-
timal solution, we didn' t experience a gross difference to
the optimal case when the maximum number of poses was
set to a relative large number, e.g. 200 in our implementa-
tion. All of these optimizations mean that closing even large
loops takes less then 10 seconds of computation in almost
all cases.

2.3. Map Correlation

To determine the topological relationship between poses
that close a cycle, we compare a recent portion of the map
around the current pose with the older portions of the map.
Where there is a good match, it is likely that the new pose is
topologically connected to one of the older poses. In our
current method of global registration, once a topological
connection is made, it is not possible to undo it, since all
poses are updated and no history is kept. Therefore, any
such connection needs to be very certain before it is made,
and false positive rejection is critical. This is the main rea-
son for matching a patch that integrates several scans, and
also for providing post-match filters to reject false positives.

Another constraint on map matching is that it must be



efficient, since we intend to run it constantly in the back-
ground as the robot starts cycling back to places previously
visited. Recent investigations by one of the authors has
provided a fast and accurate matching technique based on
correlation [12]. The justification for this technique lies
in a Bayesian analysis of the match probability. For any
given new map patchr and old mapm, we seek the poste-
rior probabilityp(ljr;m) that the robot is at posel. Using
Bayes' rule, we have:

p(ljr;m) = k � p(rjl;m)p(l;m):

The sensor response functionp(rjl;m) is the probability
that we would see the map patch from the robot posel, given
the old mapm. As shown in [12], the sensor response can
be approximated by a correlation operator. A regular grid
is imposed on the map area, and for each celli we calcu-
late the probabilityp(ri) of the map patch impinging on the
cell andp(mi) of the old map impinging on the cell. The
correlation operator is:

X

i

p(ri)p(mi):

In practice it is convenient to put all the uncertainty into
the map probabilityp(mi), simplifying the above sum and
making it amenable to optimized implementation (see [12]
for details). Figure 5 shows the correlation response for
a typical map patch and old map. The dotted outline is the
map patch, trailing behind current position of the robot. The
oval shows where the robot could be, based on dead reck-
oning error. And the correlation response is dark where a
good match has been found, and lighter where there is no
match.

The prior probabilityp(l;m) reduces top(l), since the
old map is given. We use a uniform distribution over the
matching area forp(l), although we could also use a Gaus-
sian based on the robot's covariance. The normalization
factork is more difficult to determine. In general, the prob-
ability p(ljr;m) should sum to less than one over the match
area, because there is a chance that there is no match in this
area, that is, the robot's current map patch doesn' t overlap
with the old map. But it is very difficult to estimate how
likely it is that the map patch doesn' t have a match. In prac-
tice, we normalize the correlation response, and then use
filters to reject false positives, i.e., to determine if there is
no good match. We have found the following filters give a
good result.

1. High match score. The unnormalized match score
should be high.

2. Low ambiguity. We find clusters of high probability,
and compare the peaks of these clusters. The ratio of
the highest peak to the next highest should be large.

area

Correlation
response

Map
patch

Map search

Fig. 5. Map correlation. The correlation responsep(rjl;m)
in the search area (oval) is indicated.

3. Low variance. The best cluster should be sharply
peaked.

For example, in Figure 5 there are several clusters. The one
at the top has a very high match score, and it is about 5 times
as high as the next best cluster. Finally, its variance is small,
less then 20 cm in any direction.

Several factors can influence the quality of the matching
procedure. The most important ones are the size of the map
patch, and the area over which the patch is to be matched.
We discuss how to choose values for these parameters in the
next section.

2.4. Incremental, Consistent Mapping

Figure 6 shows the basic scheme that is used for updat-
ing the map when a new scan has arrived from the laser
range finder. A map is represented as an undirected graph:
nodes are robot poses with associated scans and links are
constraints between poses obtained from dead-reckoning,
scan-matching, or correlation. An empty graph is used as
initial map.

When a new scan is added to the map, it is first registered
with the lastK scans (the local neighborhood) for proper
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Fig. 6. Data flow of the incremental mapping method.

alignment and improving the position estimate from odo-
metry. The new scan pose together with its links are then
added to the current map leading to an updated map.

Loop detection is activated with each new scan. From
the updated map, an “old” map is extracted that is assumed
to be topological correct. This is done by discarding the last
m scans (withm > K) to avoid having newer scans in the
old map. A local patch is also created from the newest scans
(see below for the size of this patch). The patch is correlated
with the old map, and the resulting pose probability grid is
examined according to the filters described in the last sec-
tion. If the highest peak passes the filters, then we assume
that a topological relation has been found. In this case the
relation is added to the map and consistent pose estimation
is run for closing the loop and adjusting the map.

For finding topological relations, the search space is re-
stricted to an area around the current robot position. This
area grows with the position uncertainty of the robot. We
modeled the position uncertainty with a Gaussian distribu-
tion and only test topological relations for poses that have
a Mahalanobis distance to the robot pose smaller than a
given threshold. Also, to compensate for possible ambi-
guity in larger search spaces, the patch size grows linearly
with the position uncertainty, and therefore large cycles are
only closed if there is a good evidence for a topological rela-
tionship. After a cycle has been closed, position uncertainty
decreases and search space and patch size fall back to small
values automatically.

At the end of a mapping run, after integrating all scans,
the resulting map can be further optimized by running con-
sistent pose estimation over all scan poses.

3. Results

The mapping algorithm outlined in the last section has
been tested in various environments with different robot
systems. All of the results obtained in this section come
from the mapping algorithm running autonomously on real-
world data.

Figure 7(a) shows raw data collected by aB21 robot
equipped with a180� SICK laser range finder that has been
run in Wean hall at Carnegie Mellon University.2 The envi-
ronment is of size 80 by 25 meters and contains two cycles.
One of the cycles has a length of approximately 200 meters.

(d)

(c)

(b)(a)

(e)

(f)

Fig. 7. (a) Map obtained in an environment of size 80 by
25 meters from sensor data using raw odometric data. (b)
Before closing small cycle. (c) After closing small cycle.
(d) Before closing large cycle. (e) After closing large cycle.
(f) Final map.

Figure 7(b) shows the situation before closing the small
cycle. Since the accumulated odometric error is small, clos-
ing the loop is a fairly easy job (Figure 7(c)). However, after
the robot completes the large cycle, a significant amount of
odometry error has been accumulated, as shown in Figure
7(d). For closing this loop a large patch size and search
space are required, but the system is still able to align the
scans (Figure 7(e)). Please note the small inaccuracies in

2The authors would like to thank Sebastian Thrun from Carnegie Mel-
lon University for providing us with the raw data.



the lower left corner. Here the system doesn' t know yet that
these parts belong to each other. After registering the large
cycle a second time the system recognizes these relation-
ships and the inaccuracies disappear. Figure 7(f) shows the
final map.

Another series of experiments have been carried out at
the Artificial Intelligence Center at SRI using aPioneer II
robot andSICK laser range finder. Figure 8(a) shows raw
data of this experiment. The data was corrupted by a large
drift noise in odometry coming from a carpet with a direc-
tional nap. The mapping algorithm is still capable of cor-
recting for this drift error and building a topological correct
and highly accurate map (Figure 8(b)).

(b)

(a)

Fig. 8. (a) Raw data of an environment of size 85 by 15 me-
ters with large drift noise in odometry. (b) Resulting map.

Figure 9 shows further mapping runs carried out at the
Carnegie Museum of Natural Science using aB21 robot2

and at the Artificial Intelligence Lab of the University of
Freiburg using aPioneer I mobile robot equipped with a
SICKlaser range finder.

4. Conclusion

In this paper we presented the Local Registration /
Global Correlation (LRGC) method for building maps in
large, cyclic environments. The method makes use of three
different techniques for incrementally building maps, find-
ing topological relations and closing loops. Several sam-
ple mapping runs in different environments using different
robot systems have been presented that demonstrate the ca-
pabilities and accuracy of this approach. The method is

(a)

(c)

(b)

(d)

Fig. 9. Mapping runs carried out in other environments.
(a) Raw data of the Carnegie Museum of Natural Science
(45 by 15 meters). (b) Obtained map. (c) Raw data of the
Artificial Intelligence Lab, Freiburg, Germany. (24 by 13
meters). (d) Obtained map.

incremental: scans are integrated into the map as they are
taken by the laser range finder, leading to a real-time map-
ping system. Only when closing loops additional computa-
tional power is needed. As far the authors know, this is the
first real-time autonomous mapping system that produces
dense, accurate metric maps in large, cyclic environments.

Several crucial requirements of this approach should be
noted. First the algorithm requires good results from scan-
matching to build accurate local patches. For example, if a
patch of a corridor environment contains curved walls, map
correlation cannot produce sharply peaked pose grids since
the patch doesn' t fit to the map very well. In these situa-
tions, it would be difficult to use other techniques such as
Markov Localization [1, 12], since the robust false-positive
rejection of larger patch matching is not available. We are
considering using a series of smaller patches as a possible
approach here.

Another requirement of the LRGC is efficient false-



positive rejection, since topological relations obtained from
map correlation must reflect only true relations. If the fil-
ters reject too many good matches, we won' t get enough
relations to close a loop; if they don' t reject a false match,
the map will be inconsistent. While the filters we propose
have worked well, we are experimenting with a variety of
other techniques, including visual references and 3D rang-
ing. In the unavoidable case where a bad match is made,
we can try to relax the strict identification of topological re-
lations by keeping multiple hypotheses of where to close a
loop and adding detection for wrongly closed loops.

Finally, the techniques we discussed are applicable in
a fairly straightforward way to teams of robots mapping
a given area. Each robot could build its own local map,
and communicate with other robots via wireless links. Even
when the robots initially have no idea of their relative po-
sition, by correlating patches from their own maps against
other robots' , they can merge the two, in a manner similar
to closing a loop for a single robot.
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