
Incremental methods for computing bounds in partially observable Markov
decision processes

Milos Hauskrecht
MIT Laboratory for Computer Science, NE43-421

545 Technology Square
Cambridge, MA 02139
milos@medg.lcs.mit.edu

Abstract

Partially observable Markov decision processes (POMDPs)
allow one to model complex dynamic decision or control
problems that include both action outcome uncertainty and
imperfect observability. The control problem is formulated
as a dynamic optimization problem with a value function
combining costs or rewards from multiple steps. In this pa-
per we propose, analyse and test various incremental meth-
ods for computing bounds on the value function for con-
trol problems with infinite discounted horizon criteria. The
methods described and tested include novel incremental ver-
sions of grid-based linear interpolation method and simple
lower bound method with Sondik’s updates. Both of these
can work with arbitrary points of the belief space and can
be enhanced by various heuristic point selection strategies.
Also introduced is a new method for computing an initial up-
per bound – the fast informed bound method. This method is
able to improve significantly on the standard and commonly
used upper bound computed by the MDP-based method. The
quality of resulting bounds are tested on a maze navigation
problem with 20 states, 6 actions and 8 observations.

Introduction
Many real-world control or dynamic decision problems
must deal with two sources of uncertainty. The first is un-
certainty of the outcomes of actions, and the second is the
control agent’s imperfect ability to observe the underlying
controlled process. In such problems there are usually more
ways to explore the underlying process by means of vari-
ous investigative actions and their outcomes. These can be
more or less informative and can come with different costs.
Thus in order to decide about the best action one needs to
consider costs and benefits associated with both control and
investigative actions. Problems with such characteristics in-
clude robot navigation (?), disease treatment (?) and vari-
ous fault repair problems.

A framework that can model both sources of uncertainty
and can represent both investigative and control actions and
their associated costs is the partially observable Markov
decision process (?; ?; ?; ?). A control or decision mak-
ing problem within the framework is expressed as a dy-

1Copyright c©1997, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

namic optimization problem with a value function combin-
ing costs or rewards from multiple steps. Unfortunately the
increased expressivity of the modelling framework is paid
for by high computational demands for optimization. Al-
though the problem of finding optimal control is computa-
tionally intractable, it is often possible to solve problems
faster using various shortcuts or approximations. These
methods can often benefit from the availability of good
value function bounds.

We first describe the partially observable MDP frame-
work, then describe and analyze incremental methods for
computing upper and lower value function bounds. We il-
lustrate the quality of these bounds on a robot maze naviga-
tion problem.

Partially observable Markov decision process

A partially observable Markov decision process (POMDP)
describes a stochastic control process with partially ob-
servable states and formally corresponds to a 6-tuple
(S, A, Θ, T, O, R) whereS is a set of states;A is a set of
actions;Θ is a set of observations;T : S × A × S → [0, 1]
is a set of transition probabilities between states that de-
scribe the dynamic behavior of the modeled environment;
O : S×A×Θ → [0, 1] stand for a set of observation prob-
abilities that describe the relationship among observations,
states and actions; andR : S × A × S → R denotes a
reward model that assigns rewards to state transitions and
models payoffs associated with such transitions.

The decision (or planning) problem in the context of
POMDP requires one to find an action or a sequence of ac-
tions for one or more information states that optimizes the
objective reward function. Aninformation state represents
all information available to the agent at the decision time
that is relevant to the selection of the optimal action. The
information state consists of either a complete history of ac-
tions and observations or corresponding sufficient statistics
ensuring the Markov property of the information process. A
value function represents (quantifies) control objectives by
combining rewards incurred over time using various kinds
of models. Typically, the value function is additive over
time and based on expectations, e.g. the function often

uses a finite horizon modelmaxE(
∑n

t=0
rt), maximizing

expected rewards for the nextn steps or an infinite dis-
counted horizonmaxE(

∑∞
t=0

γtrt), with a discount factor
0 ≤ γ < 1.

We will focus on problems in which: 1. the value func-
tion uses the infinite discounted horizon criterion, 2. infor-
mation state is sufficiently modeled by abelief state, which
assigns a probability to every possible state, 3. the objec-
tive is to find a stationary control for all information states
(policy problem).

Solving the control problem
The optimal value function for the infinite horizon dis-
counted problem and a belief state satisfies the standard
fixed point formula:

V ∗(b) = max
a∈A

ρ(b, a) + γ
∑

o∈Θ+

P (o|b, a)V ∗(τ(b, o, a)) (1)

whereV ∗(.) is the optimal value function;b denotes an|S|
dimensional belief state;ρ(b, a) is the expected transition
reward from stateb under actiona and can be computed as:

ρ(b, a) =
∑

s∈S

ρ(s, a)b(s) =
∑

s∈S

∑

s′∈S

R(s, a, s′)P (s′|s, a)b(s);

Θ+ is a set of observations that are available in the next
step;γ is a discount factor; andτ is a transition function
that maps the information stateb, action and observation to
the next belief state:

b+(s′) = τ(b, o, a)(s′) = (1/β)P (o|s′, a)
∑

s∈S

P (s′|s, a)b(s)

with β normalizing the belief vector.
Once the optimal value function is known the optimal

control functionµ∗ can be computed easily as:

µ∗(b) = argmaxa∈Aρ(b, a) + γ
∑

o∈Θ+

P (o|b, a)V ∗(τ(b, o, a))

(2)
The equation 1 for an optimal value function can be

rewritten by means of a value function mappingH : B →
B with B standing for bounded real valued functions, as:
HV ∗ = V ∗. The mappingH is isotone and for0 ≤ γ < 1,
it is a contraction under the supremum norm. The ma-
jor consequences ofH being a contraction are that by the
Banach theorem there is a unique fixed point solutionV ∗

and that one can construct an iteration method with a step
V i+1 = HV i that converges to it. Therefore the use of the
standard iteration method would theoretically allow us to
compute arbitarily close approximation ofV ∗ by perform-
ing a sufficient number of iterations. Such an approxima-
tion can then be used in equation 2 instead of the optimal
value function.

The major problem with the iteration method is in com-
puting value function updates within one iteration step for

all possible belief states. Although hard and likely impossi-
ble in general (e.g., for models with time lags), it has turned
out that when the information state is sufficiently modeled
by a belief state, and when the value functionV i is de-
scribed by a finite, piecewise linear and convex function
thenV i+1 = HV i is computable and corresponds also to a
finite, piecewise linear and convex function. This is based
on the result in (?) showing that the value function for a
belief state can be computed as:

V i+1(b) =

max
a∈A

∑

s∈S

b(s)[ρ(s, a) +
∑

o∈Θ+

∑

s′∈S

P (s′, o|s, a)α
ι(b,a,o)
i (s′)]

whereι(b, a, o) indexes a linear vectorαi in a set of linear
vectorsΓi that maximizes:

∑

s′∈S

[
∑

s∈S

P (s′, o|s, a)b(s)]αi(s
′)

for fixed b, a, o. The linear vector that maximizesV i+1 at b
then is:

αi+1
b = argmax

α
i+1

b,a

∑

s∈S

αi+1
b,a (s)b(s) (3)

whereαi+1

b,a is the optimizing linear vector for actiona:

αi+1
b,a (s) = ρ(s, a) +

∑

o∈Θ+

∑

s′∈S

P (s′, o|s, a)α
ι(b,a,o)
i (s′)

Though the value function update is computable, the
number of linear vectors describing the new improved value
function can grow exponentially with the number of itera-
tions, making the whole problem intractable. Moreover, the
computation of a set of all useful linear segments ofV i+1

can be solved efficiently only whenRP = NP (?).

The role of value function bounds
The computational inefficiency of exact value function up-
dates as well as generalǫ-optimal solutions leads naturally
to the exploration of various approximations and shortcuts
that can speed up exact methods or provide good control
solutions with less computation. These are often built on
the availability of good value function bounds or the ability
to compute them fast.

Value function bounds and methods for computing them
can be used within the POMDP framework in several ways.
Bound methods can provide a good initial value function
for the exact version of the value iteration algorithm, can
be combined or interleaved with steps of exact methods
for computing optimal orǫ-optimal solutions. For example
bounds can be used to speed up the on-line decision (con-
trol) methods that compute an optimal orǫ-optimal control
action for a specific belief state via forward expansion of the
decision tree (?). Good value function bounds often reduce
the size of the tree explored via branch and bound strategies
and allow one to cut the suboptimal action branches from
the active tree.

Moves Sensors

Figure 1: The robot navigation problem: Maze20

Finally value function bounds can be used as good ap-
proximations of an optimal value function. Especially im-
portant with regard to control are suboptimal bounds that
can guarantee minimal expected reward. However, the eval-
uation of the quality of various bound functions for approx-
imating control and their comparison to alternative methods
is a subject of another paper (?).

Test example: Maze20
For the purpose of testing and illustrating results, we have
built a toy robot maze navigation problem with 20 states,
6 actions and 8 observations. The maze (figure 1) consists
of 20 partially connected rooms (states) in which a robot
functions and collects rewards. The robot moves in 4 di-
rections (North, South, East and West) and checks for the
presence of walls using sensors. Neither “move” actions
nor sensor inputs are perfect. The robot moves in an un-
intended direction with probability of 0.3 (0.15 for each of
the neighboring directions). A move into the wall keeps the
robot on the same position. Investigative actions help the
robot navigate by activating sensor inputs. There are 2 in-
vestigative actions: checking the presence of a wall in the
North-South directions and checking of walls in the East-
West directions. Sensor accuracy in detecting walls is 0.75
for a two wall case, 0.8 for a one wall case and 0.89 for a no
wall case, with smaller probabilities for wrong perceptions.

The control objective is to maximize the expected dis-
counted rewards with a discount factor of 0.9. A small re-
ward is given for every action not leading to bumping into
the wall (4 points for a move and 2 points for an investiga-
tive action), and one big reward (150 points) is given for
achieving the special target room (shown as a circle on the
figure). After reaching the goal state, the robot is placed
with some probability into one of the ‘initial” rooms.

Computing upper bound
A standard method for computing an upper bound com-
bines point interpolation techniques and value iteration
strategy (see (?) (?)). In this method a value function is
represented nonparametrically using a set of grid points to-
gether with their values and an interpolation rule that esti-
mates the value at non-grid points with a convex combina-
tion of |S| grid points. The values at grid points are updated

(iterated) using the approximate update formula, i.e. any
grid pointb definingV̂ i+1 is computed as:

V̂ i+1(b) = max
a∈A

ρ(b, a) + γ
∑

o∈Θ+

P (o|b, a)V̂ i(τ(b, o, a))

The update of the complete function with a fixed grid
can be expressed using value function mappingHinter as:
V̂ i+1 = HinterV̂

i. It can be shown (see (?)) that Hinter

is a contraction mapping that preserves the upper bound,
i.e. starting from an initial upper bound every new value
function in the iteration method is guaranteed to be an up-
per bound. As a consequence, value iteration withHinter

mapping converges to a fixed point solutionV̂ ∗ ≥ V ∗.
The efficiency of the value function update depends

strongly on the efficiency of the point interpolation rule.
The interpolation rule must first select a set of|S| points
from the gridG suitable for interpolation. In general there
can be

(
|S|
|G|

)
possible sets and finding the best interpolating

set can be time-consuming. One possible solution to this
is to use regular grids (?), that evenly partition the belief
space and allow one to choose interpolating set efficiently.
However such grids must use a specific number of points
and any increase in the resolution of a grid is paid for by
an exponential increase in the grid size. For example for
the Maze20 problem with 20 states the sequence of reg-
ular grids consists of20, 210, 1540, 8855, 42504, · · · grid
points, which makes the method practically usable only for
grids with small resolutions.

To provide more flexibility in grid selection, we designed
a simple point interpolation method that allows arbitrary
grids and is guaranteed to run in time linear in the size of
the grid. The designed interpolation rule builds upon the
fact that any pointb of the belief space of dimension|S|
and can be easily interpolated with a set of grid points that
consists of an arbitary pointb′ ∈ G and |S| − 1 critical
points of the belief simplex (critical points correspond to
(1, 0, 0, · · ·), (0, 1, 0, · · ·), etc.). In other words, for any grid
point b′ ∈ G there is a simple interpolating set that allows
one to compute a linear interpolation̂V i

b′ (b) at an arbitrary
point b. As any interpolation over the values of a convex
function guarantees an upper bound, the tightest possible
bound value for a set of grid points can be chosen, i.e.:

V̂ i(b) = min
b′∈G

V̂ i
b′ (b).

The proposed interpolation rule can be computed in
O(|G||S|) time, which is linear in the size of grid. Al-
though the method does not implement the optimal inter-
polation, we believe that its simplicity allows it to make use
of a larger number of grid points. Moreover any increase
in the grid size is very easy, and can be a basis for vari-
ous efficient incremental strategies that gradually improve

the upper bound. A simple incremental improvement algo-
rithm is illustrated bellow. The algorithm starts from the
initial upper boundV̂init, expands the grid gradually ink
point increments, and uses Gauss-Seidel updates for points
in the active grid. As the grid size is bounded by linear
growth, the algorithm is guaranteed to run efficiently for a
fixed number of iterations.

Incremental upper bound (k, V̂init)
select an initial grid of pointsG
for every pointb ∈ G

compute V̂init(b) and store it in̂VG definition
repeat until the stopping criterion is satisfied

repeat until the grid expansion criterion is met
for every pointb in G

compute new updatêV (b) and
update the value inV̂G

select a set ofk pointsGEXP to expandG
for every b ∈ GEXP

add b to G andV̂ (b) to V̂G

return V̂G

The standard way to compute an initial boundV̂init is to use
an MDP-based approximation. The method utilizes the op-
timal value functionV ∗

MDP obtained for the given problem
under the assumption of perfect observability. An upper
bound on partially observableV ∗ is then computed as:

V̂ (b) =
∑

s∈S

b(s)V ∗

MDP (s)

Selection of grid points
In general the quality of bounds produced by the incremen-
tal method is strongly influenced by the grid selection strat-
egy. The advantage of our interpolation rule is that it does
not rely on a specific grid (unlike regular grids). Thus it
can be easily combined with an arbitrary selection method,
which may include various heuristic strategies.

A heuristic method for selecting grid points we have de-
signed, implemented and tested attempts to maximize im-
provements in bound values using stochastic simulations.
The method builds on the fact that every grid suitable for
interpolation must include critical points (otherwise thein-
terpolation cannot be guaranteed). A value at any grid
point b improves more when more precise values are used
for its successor belief states, i.e. belief states that corre-
spond toτ (b, a, o) for an optimizing actiona and obser-
vation o. Incorporating such points into the grid would
then increase the chance of larger improvement of values
associated with critical points. Naturally one can proceed
with selection further, by incorporating succesor points for
the first level successors into the grid set as well, and
so on. The stochastic simulation method tries to sample
likely successor points by: 1. selecting an actiona that
is optimal forb given the current upper bound value func-
tion; 2. selecting the next observation randomly accord-

grid bound score
size random regular heuristic-MDP heuristic
MDP 130.11 130.11 130.11 130.11
40 129.61 - 110.92 110.92
80 129.55 - 89.58 89.59
120 129.50 - 87.81 86.38
160 129.44 - 87.63 84.49
200 129.40 98.91∗ 87.55 83.84
240 129.37 - 87.47 83.06
280 129.31 - 87.44 82.32
320 129.29 - 87.41 81.84
360 129.13 - 87.39 81.35
400 129.09 - 87.38 80.98

Table 1: Quality of upper bounds.

ing to the probability distributionp(o|b, a). In the context
of POMDPs, a similar simulation method was used in (?;
?)

Model-based sampling schemes that target belief points
with largest improvement potential can be designed by re-
peating simulations from critical points. Table 1 com-
pares results one can achieve using such methods and other
grid selection strategies for the Maze20 problem and grid
sizes of 40 - 400 points. Methods tested are: random grid
method; regular grid method; and two versions of heuris-
tic grid method, one with model-based sampling that uses
a fixed initial MDP-based bound, the other in which new
points are always sampled using the value function bound
acquired in the previous step. The quality of every bound is
measured by a score that represents an average value for all
critical points and a fixed set of2500 randomly generated
belief points. All but the regular grid method use the simple
interpolation rule described above and are tested on grids
with 40 point increments starting from the initial MDP-
based bound. The regular grid method has been tested on
the grid of size 210 that falls into the tested range. For every
grid, the inner approximate value iteration was run using
the relative stopping criterion with a maximum allowable
improvement of0.1 for every grid point.

The worst results for the Maze20 problem were achieved
for randomly generated grids. This is mostly because the
transitions in Maze20 model are local. This means that
from any critical point one can get only to belief states that
lie on the boundary of the belief simplex, i.e. those that
contain lots of zeros. Contrary to this, random sampling is
more likely to produce a belief point with nonzero proba-
bilities. As any boundary point can be interpolated using
only points on the same boundary, the internal points of
the belief simplex has no effect on their interpolation and
thus there is a very slim chance that critical points will get
updated by randomly generated grids. On the other hand,
a regular grid (with the resolution of 210 points) consists
only of points on the boundary. This fact is also reflected
by a significantly better bound score.

Both model-based sampling entries beat random as well
as regular grid approaches. Between the two the better
score was achieved by the method that samples new grid
points using the most recent bound function. The difference
in results also illustrates a potential problem with large grid
increments in the context of model-based sampling. The
reason for this is that large grid increments would likely
lead to a large number of grid points with small bound im-
provement effect.

Improving initial upper bound
The MDP-based initial bound can be significantly improved
by a new method – the fast informed bound method. The
method is iterative and does not use grids, but rather tries
to utilize information from the POMDP model directly. In
this method a value function̂V i is represented as a piece-
wise linear convex function with at most|A| different linear
vectors inΓi, each corresponding to one action. Linear vec-
torsαi+1

a ∈ Γi+1 are updated using the following formula:

αi+1
a (s′) = ρ(s′, a) + γ

∑

o∈Θ+

max
αi

k
∈Γi

∑

s∈S

P (s, o|s′, a)αi
k(s)

The function update can be described via function map-
ping HFBM . HFBM is a contraction with a fixed point
solutionV̂ ∗ ≥ V ∗, thus the method converges to the upper
bound of the optimal value function. The major advantage
of the fast bound method is that there are at most|A| dif-
ferentαi+1

a s. This guarantees an efficient update with re-
gard to|S|, |A|, |Θ|. Testing the fast bound method on the
Maze20 problem yielded the bound score of102.48 com-
paring to130.11 for the MDP-approximation, thus leading
to a significant bound improvement.

Computing lower bounds
A lower bound on the optimal value function for infinite
horizon discounted problem can be acquired using a sim-
ple method that updates derivatives (linear vectors) for be-
lief points using equation 3 (?). Assume that̂V i ≤ V ∗

is a convex piecewise linear lower bound on the opti-
mal value function, defined by a a linear vector setΓi,
and let αb be a linear vector for a pointb that is com-
puted fromV̂ i by the Sondik’s method. As it holds that
V̂ i(b) ≤

∑
s b(s)αb(s) ≤ V ∗(b), one can easily construct

a new value function̂V i+1 ≥ V̂ i by simply updatingΓi to:
Γi+1 = Γi ∪ αb (?). Such a value function update guar-
antees that the new lower bound is improved. Note that
after adding new linear vector toΓi some of the previous
linear vectors can become redundant. To fix that the up-
date step can be combined with various redundancy check
procedures.

The new lower bound update rule can be turned directly
into various iterative algorithms with the incremental bound

improvement property. Unfortunately the new update rule
also causes the size ofΓi to grow with every iteration. How-
ever, assuming that only a single optimizing linear vector
for every point is selected, the growth is linear in the num-
ber of steps. This together with the efficient update proce-
dure guarantees efficient running time of such an algorithm
for a fixed number of iteration steps. A simple incremental
lower bound improvement algorithm is shown below. The
algorithm starts from the initial lower bound̂Vinit (with lin-
ear vector setΓinit), selects a belief point and updates an
existing lower bound with a new linear vector.

Incremental lower bound (m, V̂init)
set Γ defining current bound̂V to Γinit

repeat until the stopping criterion is met
select a belief pointb
compute new updateαb for b
add theαb to Γ

return V̂

The initial lower boundV̂init can be computed via the
blind policy method (?). The main idea of the method is to
compute value functions for all “one-action” (or blind) poli-
cies. These correspond to simple linear value functions that
lower bound the optimal one and can be easily computed
within the fully observable MDP framework. The linear
value functions for every action inA can be then combined
to a lower bound piecewise linear function as:

V̂ (b) = max
a∈A

∑

s∈S

b(s)V a
MDP (s)

Selecting points for update
The update phase of the incremental lower bound method
is not limited to any specific point. One may combine it
with arbitrary point selection strategies, including various
heuristics. The above incremental method can in principle
lead also to theǫ-optimal solution. However in this case the
method must use some systematic way of chosing points to
be updated next.

With an objective to speed up the improvement of the
bound we have designed and implemented a relatively sim-
ple two tier heuristic point selection strategy that tries to
optimize updates of a bound value function at critical be-
lief points. The top level strategy attempts to order critical
belief points. It builds upon the fact that states with higher
expected rewards (e.g., a goal state in Maze20) backpropa-
gate their effects locally. Therefore it is desirable that states
in the neighbourhood of the highest reward state are up-
dated first, and distant ones later. The strategy uses the cur-
rent value function to identify the highest expected reward
states and the POMDP model to determine local dependen-
cies and order neighboring states. The lower level strategy
uses the idea of stochastic simulation, similar to the one
used in the upper bound method, to generate a sequence

updates bound score
fixed-random random heuristic

blind-policy 33.10 33.10 33.10
40 43.80 44.65 45.16
80 46.20 47.93 48.17
120 47.10 49.28 49.60
160 47.89 50.12 51.19
200 48.23 50.43 52.64
240 48.60 50.70 53.04
280 48.89 51.18 53.58
320 49.06 52.02 53.88
360 49.38 52.40 53.96
400 49.67 52.84 54.13

Table 2: Quality of lower bounds

of belief points that can result from a given critical point.
These points are then used in reverse order to update the
current value function.
Both partial strategies try to sequence belief points to in-
crease the benefit of updates from other points. The com-
plete selection cycle can be repeated once all critical points
became updated. The drawback of this approach can be
that after a few cycles the strategy will sample points from
a rather restricted set of points and that can lead to smaller
and smaller improvements. A possible solution would be
to combine a heuristic strategy with random sampling of
points that tends to spread new points evenly over the belief
space.

The quality of a constructed heuristic method with the
simulation sequence of 5 steps was compared with strate-
gies that used a fixed set of 40 points consisting of all crit-
ical points and 20 randomly selected belief points, and a
strategy that generated points randomly for every update.
The quality of bounds achieved were compared after 40 up-
dates using the same bound quality measure as in the upper
bound case.
The results (table??) showed that the best bound quality
was achieved by our heuristic method. However the differ-
ences between strategies were not very large. The follow-
ing migth be reasons for this: the initial lower bound is not
far from the optimal solution and improvements are hard
to make; the new linear vector added by the method influ-
ences a larger portion of the belief space and thus changes
are easier to propagate; we did not use a very good heuristic
and better heuristics or combinations can be constructed.

Conclusion
In this paper we have proposed simple incremental methods
for computing upper and lower bounds on the optimal value
function. Both are based on the value iteration approach
and allow one to use arbitrary belief points to either refine
the grid (upper bound) or update a piecewise linear convex
function (lower bound). This feature provides room for var-
ious heuristic strategies to be used in belief point selections
that can lead to tighter and faster bounds. The upper bound

incremental methods can also benefit from the newly in-
troduced fast informed bound method, that can outperform
standard initial MDP-based bounds.
The heuristic strategies we have designed and tested are
based mostly on the idea of stochastic simulation. This ap-
proach tries to increase the chance of bound improvement
by exploiting model dependencies. We have found that the
simulation strategy works extremely well when combined
with the upper bound method on the test maze navigation
problem. Contrary to this, only a small improvement com-
pared to randomized strategies has been achieved for the
lower bound method. These differences may also turn out
to be problem specific and further study of methods on a
spectrum of other problems is needed.

Acknowledgements
This research was supported by the grant 1T15LM07092 from the
National Library of Medicine. Peter Szolovits has providedvalu-
able comments on early versions of the paper.

References
Astrom, K.J. 1965. Optimal control of Markov decision pro-
cesses with incomplete state estimation.Journal of Mathemat-
ical Analysis and Applications 10: 174-205.

Cassandra, A.R. 1994. Optimal policies for partially observable
Markov decision processes. Technical report CS-94-14, Brown
University.

Hauskrecht, M. 1996. Planning and control in stochastic domains
with imperfect information. PhD thesis proposal, EECS, MIT.

Hauskrecht, M. 1997a. Dynamic decision making in stochastic
partially observable medical domains: Ischemic heart disease ex-
ample. In Procedings of AIME-97.

Hauskrecht, M. 1997b. Approximation methods for solving con-
trol problems in partially observable Markov decision processes.
Technical Memo. MIT-LCS-TM-565.

Littman, M.L.; Cassandra, A.R.; Kaelbling, L.P. 1995a. Learn-
ing policies for partially observable environmets: scaling up. In
Proceedings of the 12-th international conference on Machine
Learning.

Littman, M.L.; Cassandra, A.R.; Kaelbling, L.P. 1995b. Efficient
dynamic programming updates in partially observable Markov
decision processes. submitted toOperations Research.

Lovejoy, W.S. 1991. Computationally feasible bounds for par-
tially observed Markov decision processes.Operations Research
39(1):192-175.

Lovejoy, W.S. 1993. Suboptimal policies with bounds for
parameter adaptive decision processes.Operations Research
41(3):583-599.

Parr, R.; Russell, S. 1995. Approximating optimal policies
for partially observable stochastic domains. In Proceedings of
IJCAI-97, 1088-1094.

Smallwood, R.D.; Sondik, E.J. 1973. The optimal control of Par-
tially observable processes over a finite horizon.Operations Re-
search 21:1071-1088.

