
Incremental Methods for Simple Problems in Time Series: algorithms
and experiments∗

Xiaojian Zhao Xin Zhang Tyler Neylon Dennis Shasha

Courant Institute of Mathematical Sciences
New York University, NY 10012

{xiaojian,xinzhang,shasha}@cs.nyu.edu, neylon@cims.nyu.edu

ABSTRACT

A time series (or equivalently a data stream) con-
sists of data arriving in time order. Single or multiple
data streams arise in fields including physics, finance,
medicine, and music, to name a few. Often the data
comes from sensors (in physics and medicine for exam-
ple) whose data rates continue to improve dramatically
as sensor technology improves and as the number of sen-
sors increases. So fast algorithms become ever more crit-
ical in order to distill knowledge from the data. This pa-
per presents our recent work regarding the incremental
computation of various primitives: windowed correla-
tion, matching pursuit, sparse null space discovery and
elastic burst detection. The incremental idea reflects the
fact that recent data is more important than older data.
Our StatStream system contains an implementation of
these algorithms, permitting us to do empirical studies
on both simulated and real data.

1 MOTIVATION

Many applications generate multiple data streams. For
example,

• The earth observing system data project consists
of 64,000 time series covering the entire earth [1]
though the satellite covers the earth in swaths, so the
time series have gaps.

• There are about 50,000 securities traded in the
United States, and every second up to 100,000
quotes and trades (ticks) are generated.

Such applications share the following characteristics:

• Updates come in the form of insertions of new ele-
ments rather than modifications of existing data.

• Data arrives continuously.

• One pass algorithms to filter the data are essential
because the data is vast. Provided the filter does its
job properly, there should be few enough candidates
that even expensive detailed analysis per candidate

∗This work has been partly supported by the U.S. National Sci-
ence Foundation under grants: NSF IIS-9988345,N2010-0115586, and
MCB-0209754.

will have only a modest impact on the overall run-
ning time. “Few enough” does not imply extremely
high precision. In our experiments a precision of
even 1% can still reduce computation times com-
pared to a naive method by factors of 100 or more.

2 INCREMENTAL PRIMITIVES FOR DATA FUSION

Data fusion is the set of problems having to do with
finding interesting relationships among multiple data
streams. In this section we describe algorithms for some
basic problems in data fusion: the incremental discov-
ery of pairs of time series windows having high Pear-
son correlations (we call this problemwindowed corre-
lation), the incremental selection of representing time
series among an evolving time series pool (incremental
Matching Pursuit) and the detection of a sparse null space
in a collection of time series. These representative prob-
lems offer a toolkit of techniques for many data fusion
problems.

2.1 Preliminaries
A data stream, for our purposes, is a potentially un-

ending sequence of data in time order. For specificity,
we consider data streams that produce one data item each
time unit.

Correlation over windows from the same or different
streams has many variants. This paper focuses on syn-
chronous and asynchronous (i.e., lagged) variations, de-
fined as follows.

• (Synchronous) GivenNs streams, a start timetstart,
and a window sizew, find, for each time win-
dow W of size w, all pairs of streamsS1 and
S2 such thatS1 during time windowW is highly
correlated (over 0.95 typically) withS2 during the
same time window. (Possible time windows are
[tstart · · · tstart+w−1], [tstart+1 · · · tstart+w], · · ·
wheretstart is some start time.)

• (Asynchronous correlation) Allow shifts in time.
That is, given Ns streams and a window size
w, find all time windows W1 and W2 where
|W1| = |W2| = w and all pairs of streamsS1

andS2 such thatS1 duringW1 is highly correlated
with S2 duringW2.

Comparison over return data

0

5

10

15

20

25

30

1

6
3

1
2
5

1
8
7

2
4
9

3
1
1

3
7
3

4
3
5

4
9
7

5
5
9

6
2
1

6
8
3

7
4
5

8
0
7

8
6
9

9
3
1

9
9
3

Data Points

D
is

ta
n

c
e DFT

Sketch

Real dist

Real dist
Sketch DFT

Figure 1: Discrete Fourier Transform and Sketch esti-
mates for return data.

2.2 Related work
In some applications, time series exhibit a fundamental

degree of regularity, allowing them to be represented by
the first few few coefficients of a Fast Fourier or Wavelet
Transform [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. with little
loss of information. Random walk data such as price time
series is of thiscooperativecharacter.

By contrast, the time series in some applications re-
semble white noise, so their energy is not concentrated
in only a few frequency components. For theseuncoop-
erative applications we adopt a sketch-based approach,
building on work by Johnson et al. [13], Kushikvitz et al.
[14], Indyk et al. [15], and Achlioptas [16].

2.3 The challenge and our contributions
In our earlier work [17, 18] we showed how to solve the

windowed correlation problem addressed in this paper.
That algorithm works quite well in the cooperative set-
ting using high quality digests obtained based on Fourier
transforms. Unfortunately, many applications generate
uncooperative time series. Stock market returns (i.e., the
change in price from one time period (e.g., day, hour,
or second) to the next divided by the price in the first
time period, symbolically(pt+1 − pt)/pt) for example
are “white noise-like.” That is, there is almost no corre-
lation from one time point to the next.

Empirical studies confirm that sketches work much
better than Fourier methods for uncooperative data. Fig-
ure 1 compares the distances of the Fourier and sketch
approximations for 1,000 pairs of 256 timepoint windows
having a basic window size of length 32. As you can see,
the sketch distances are close to the real distances. On
the other hand, the Fourier approximation is essentially
never correct.

For collections ofuncooperativetime series, we pro-
ceed as follows:

1. We adopt a sketch-based approach on which a
“structured random vectors” scheme is employed to
reduce the time complexity.

2. A sketch vector partition strategy is used to over-
come the “curse of dimensionality.”

3. Combinatorial design and bootstrapping is com-
bined to optimize and validate the parameter appro-
priate to any specific application.

…
…

Stock 1

Stock 2

Stock 3

Stock n

Sliding

windowTime

axis

Basic window

Time Point

Figure 2: Sliding windows and basic windows.

The end result is a system architecture that, given the
initial portions of a collection of time series streams, will
determine (i) whether the time series are cooperative or
not; (ii) if so, it will use Fourier or Wavelet methods; and
(iii) if not, it will discover the proper parameter settings
and apply them to compute sketches of the evolving data
streams.

Thus, our contributions are of two kinds: (1) a greatly
improved and more general solution to the on-line cor-
relation problem; and (2) a synthesis of techniques –
sketches, structured random vectors, combinatorial de-
sign with neighborhood search, and bootstrapping.

2.4 Algorithmic Ideas
Following [18, 17], our approach begins by distin-

guishing among three time periods from smallest to
largest.

• timepoint – the smallest unit of time over which the
system collects data, e.g., a second.

• basic window – a consecutive subsequence of time-
points over which the system maintains adigest(i.e.,
a compressed representation) e.g., two minutes.

• sliding window – a user-defined consecutive subse-
quence of basic windows over which the user wants
statistics, e.g., an hour. The user might ask, “which
pairs of streams were correlated with a value of over
0.9 for the last hour?”

Figure 2 shows the relationship between sliding win-
dows and basic windows.

The use of the intermediate time interval called the ba-
sic window yields several advantages [18, 17], mainly on
the near online response rates and free choice of window
size.

2.5 The Sketch Approach
For each random vectorr of length equal to the sliding

window lengthsw = nb× bw, we compute the dot prod-
uct with each successive lengthsw portion of the stream
(successive portions being one timepoint apart andbw
being the length of a basic window). As noted by In-
dyk [19], convolutions (computed via Fast Fourier Trans-
forms) can perform this efficiently off-line. The difficulty
is how to do this efficiently online.

Our approach is to use a “structured” random vector.
The apparently oxymoronic idea is to form each struc-
tured random vectorr from the concatenation ofnb ran-
dom vectors:r = s1, ..., snb where eachsi has length
bw. Further eachsi is eitheru or −u, andu is a random
vector in{1,−1}bw. This choice is determined by a ran-
dom binaryk-vectorb: if bi=1,si=u and if bi=0,si=−u.
The structured approach leads to an asymptotic perfor-
mance ofO(nb) integer additions andO(log bw) floating
point operations per datum and per random vector. In our
applications, we see 30 to 40 factor improvements over
the naive method.

In order to compute the dot products with structured
random vectors, we first compute dot products with the
random vectoru. We perform this computation by mak-
ing the inner products once everybw timesteps. Then
each dot product withr is simply a sum ofnb already
computed dot products. The use of structured random
vectors reduces the randomness, but experiments show
that this does not appreciably diminish the accuracy of
the sketch approximation. (For those who are interested
in the algorithm, please refer to [20]).

Though structured random vectors enjoy good per-
formance, a clever use of unstructured (that is, stan-
dard) random vectors together with convolutions can lead
to an asymptotic cost ofO(log sw log(sw/bw)) float-
ing point multiplications per datum. Structured ran-
dom vector approaches useO(log bw) multiplications
andO(log(sw/bw)) additions per datum. For the prob-
lem sizes we consider in this paper, the structured random
vector approach is faster, though in principle it must be
weighed against the small loss in accuracy.
2.6 Overcoming High Dimensionality by Parti-

tioning
In many applications, sketch vectors are of length up

to 60. (In such a case, there are 60 random vectors to
which each window is compared and the sketch vector is
the vector of the dot products to those random vectors).
Multi-dimensional search structures don’t work well for
more than 4 dimensions in practice [18]. Comparing each
sketch vector with every other one destroys scalability
though because it introduces a term proportional to the
square of the number of windows under consideration.

For this reason, we adopt an algorithmic framework
that partitions each sketch vector into subvectors and
builds data structures for the subvectors. For example,
if each sketch vector is of length 40, we might partition
each one into ten groups of size four. This would yield
ten data structures. We then combine the closeness results
of pairs from each data structure to determine an overall
set of candidates of correlated windows. Sketch vector
partitioning introduces a search space in four parameters,
which we explore using combinatorial design.
2.7 Empirical Study

Our empirical tests are based on financial data and on
test sets from the UC Riverside repository [21].1

1The stock data in the experiments are end-of-day prices from7,861
stocks from the Center for Research in Security Prices (CRSP) at Whar-
ton Research Data Services (WRDS) of the University of Pennsylvania

Sketch Distance/Real Distance

0

0.5

1

1.5

2

2.5

cs
tr ee

g
w
in
d

ev
ap

or
ato

r

fo
eta

l_
ec

g

sp
ot
_e

xr
ate

s

ste
am

ge
n

w
in
di
ng

pr
ice

re
tu
rn

Practical Data Sets

R
a
ti

o

standard deviation

mean

(a) Sketch

DFT Distance/Real Distance

0

0.5

1

1.5

2

2.5

cs
tr ee

g
wind

ev
ap

or
ato

r

fo
eta

l_e
cg

sp
ot_

ex
rat

es

ste
am

ge
n

wind
ing pr

ic
e

re
tu
rn

Practical Data Sets

R
a
ti

o standard deviation

mean

(b) DFT

Figure 3: DFT distance versus sketch distance over em-
pirical data

The Hardware is a 1.6G, 512M RAM PC running Red-
Hat 8.0. The language is K (www.kx.com).

2.7.1 Experiment: cooperativeness is a property of
an application

In this experiment, we took a window size of 256 (sw =
256 and bw = 32) across 10 data sets and tested the
accuracy of the Fourier coefficients as an approxima-
tion to distance compared with structured random vector-
based sketches. Figure 3 shows that the Discrete Fourier
Transform-based distance performs badly in some data
types while our sketch based distance works stably across
all the data sets.

2.7.2 Performance Tests

The previous subsection shows that the sketch framework
gives a sufficiently high recall and precision. The next
question is what is the performance gain of using (i) our
sketch framework as a filter followed by verification on
the raw data from individual windows compared with (ii)
simply comparing all window pairs. Because the differ-
ent applications have different numbers of windows, we
take a sample from each application, yielding the same
number of windows.

[22]. All the other empirical data sets came from the UCR TimeSeries
Data Mining Archive [21] maintained by Eamonn Keogh.

Comparison of Processing Time

0

0.2

0.4

0.6

0.8

1

1.2

pri
ce

re
tu
rn

ev
ap

or
ato

r

sp
ot_

ex
rat

es

w
ind

ing cs
tr eeg

fo
eta

l_e
cg

ste
am

ge
n

w
ind

Practical Data Sets

W
a
ll

 C
lo

c
k

 T
im

e
(s

e
c
o

n
d

)

sketch
dft

scan

Figure 4: System performance over a variety of datasets.

Given a vector pool containingn time seriesV =
(v1, v2, · · · , vn) and a target vectorvt, tolerated er-
ror ǫ, and approximating vector setVA = ∅. Define
cos θ = ~vt ∗ ~vi as the cosine betweenvt and a vector
in V . Here vector~v = v

‖v‖ .

1. Set i=1;
2. Search the poolV and find the vectorvi whose

angle| cos θ| with respect tovt is maximal;
3. Compute the residueR = vt − civi whereci =

‖vt‖
‖vi‖

cos θ. VA = VA ∪ vi

4. If ‖R‖ < ǫ terminate, returnVA

5. Else seti = i + 1 andvt = R, go back to2

Figure 5: Matching Pursuit Algorithm

Figure 4 compares the results from our system, a
Fourier-based approach, and a linear scan over several
data sets. To perform the comparison we normalize the
results of the linear scan to 1. The figure shows that
both the sketch-based approach described here and the
Fourier-based approach are much faster than the linear
scan. Neither is consistently faster than the other. How-
ever as already noted, the sketch-based approach pro-
duces consistently accurate results unlike the Fourier-
based one.

3 MATCHING PURSUIT

Matching Pursuit(MP) is an algorithm, introduced by
Stephan Mallat and Zhifeng Zhang [23], for approximat-
ing a target vector by greedily selecting a linear combina-
tion of vectors from a dictionary. Figure 5 holds pseudo-
code for the MP algorithm. MP takes as input a target
vectorvt and a set of vectorsV from which it quickly
extracts as output a smaller subsetVA along with weights
ci so thatvt ≈

∑

vi∈VA
civi.

MP has been applied to many applications such as im-
age processing [24], physics [25, 26], medicine [27, 28]
etc. Several researchers have proposed fast variants of
the algorithm [29, 30, 31]. However, to the best of our
knowledge none has discussed how to apply MP incre-
mentally to a group of time series. In this section, we
will give a brief description of our incremental matching
pursuit technique.
3.1 Incremental MP

Imagine a scenario where a group of representative
stocks will be chosen to form an index e.g. for the Stan-
dard and Poor’s (S&P) 500. This situation can be consid-
ered as a version of MP where the candidate pool consists

Given a vector pool containingn time seriesV =
(v1, v2, · · · , vn) and a target vectorvt, tolerated error
ǫ, and approximating vectorVA = ∅; cacheC = ∅;
threshold vectorT = ∅. Definecos θ = ~vt ∗ ~vi as the
cosine betweenvt and a vector inV . Vector~v = v

‖v‖ .

1. Initialization. Perform MP over the initial sliding
window to arrive atvt ≈

∑

civi. Let C = VA =
{vi| representative vectors selected fromV } and
Tj = | cos θj | which is calculated atjth iteration.

2. while(Update){
3. Set i=1 andVA = ∅
4. Search the cacheC. The first vector with

| cos θ| ≥ Ti will be selected as representative
vectorvi. If there is no such vector inC, turn
to V and do the same search. If no such vector
exists inV either, the vector inV whose| cos θ|
is largest is chosen to be representative vectorvi

5. Compute the residueR = vt − civi whereci =
‖vt‖
‖vi‖

cos θ. VA = VA ∪ vi;
6. If ‖R‖ < ǫ terminate, setC = C ∪ VA, output

VA, at nextupdatego back to 3
7. Else seti = i + 1 andvt = R, go back to4
8. }

Figure 6: Incremental Matching Pursuit Algorithm

of all the stock price vectors in the market and the target
vector is the summation of all the vectors weighted by
their volumes traded. The incremental problem is to ad-
just the setVA and the corresponding weights for each
update to the underlying vectors periodically. Formally,
given a target vector and a vector pool of sizen, when-
ever an update takes place over both the target vector and
the vectors in the pool, MP is performed. Here an opera-
tion “update” on a vector is defined such that a new basic
window (bw) of data are inserted to the head and data of
length bw are dropped off as outdated from the tail.

A naive method for the problem is straightforward.
Whenever an update happens MP is run. However, re-
computing MP entirely for each new sliding window is
inefficient. A better idea is to reuse the previously com-
puted linearly combination of vectors. We may expect a
slight change of the approximating vector setVA and per-
haps a larger change in the weights, when the basic win-
dow is small (Reminder: A basic window is a sequences
of time points as defined in Figure 2). Whether this holds
for an application is an empirical question. In our experi-
ments on stock prices, this holds for very small basic win-
dows only. With a relatively large basic window size (e.g.
30 time points), only the most significantly weighted ap-
proximating vectors fromVA remain important. More-
over, any perturbation may direct the approximation to a
different path and results in a different setVA.

Our solution therefore lies in the angle space — the
information given by the angle vector(cos θ1, cos θ2, . . .)
wherecos θi = ~vt ∗ ~vi for eachvi ∈ VA.

3.2 Opportunities in Angle Space
The angle vector(cos θ1, cos θ2, . . .) appears in experi-

ments to change only slightly over incremental vector up-
dates. This gives us a clue to a promising, though heuris-
tic algorithm. The basic idea is that although the approxi-
matingvectorsvi may vary a lot between two consecutive
sliding windows, everyanglecos θi of the corresponding
rounds remains relatively consistent.

Therefore instead of searching through all ofV for the
vector best approximating the residue or new target vec-
tor at each iteration, if a vector in the pool is found hav-
ing | cos θ| with respect to the current target vector that is
larger than a certain threshold, then it is chosen. If such
a vector doesn’t exist, the vector with largest| cos θ| is
chosen as usual. This vector is selected as the represen-
tative vector and its residue with the target vector will be
the new target vector for the next round of search. Here
the difference from the standard algorithm resides in the
search strategy: whenever a "good" vector is found, the
current round of iteration is stopped, as opposed to the
exhaustive search in Figure 5. The gain from this new
algorithm is obvious: no need to compute thecos θ be-
tween target vector andall the vectors in the poolV in
each iteration round.

One major concern with this method is the approxima-
tion power. Since the resultant vector of each search step
is not optimal — in order words, not the one with largest
| cos θ| — the overall approximation power may be com-
promised. The empirical study shows that this is not a
problem. We may carefully choose a vector of thresholds
to yield results comparable to those calculated by regular
MP.

Here is an example:
Given a threshold vector, say, T =

{0.9, 0.8, 0.7, 0.6, 0.5, . . .}, a target vectorvt and a
candidate vector poolV , the first iteration is conducted
by computingcos θ betweenvt andv in V one by one.
The first vector found with| cos θ| ≥ 0.9 will be selected
as the representative vector in this iteration, naming itv1.
Otherwise, if there is no such vector, the vector inV with
largest| cos θ| is chosen to be the representative vector
v1. Then update the target vector byvt = vt −P (vt, v1),
whereP (vt, v1) is the projection ofvt onto v1. Test
the termination criterion; if it is not met, start the next
iteration. The second iteration is similar to the first
one — the only difference being that the threshold for
comparison is0.8. Continue the algorithm with 0.7 in
the third iteration, 0.6 in the fourth iteration, etc. until
the termination condition is satisfied.

Figure 6 gives the full pseudocode.
In practical applications, we apply the regular nonin-

cremental MP to the initial sliding window. Its| cos θ| at
each iteration will be used to initialize the threshold vec-
tor T . When the approximation power of using this angle
vectorT gets unacceptably bad due to new data charac-
teristics, the threshold vector is reinitialized to reflectthe
changes.

One bonus of this algorithm comes from the cache
technique. Just as described above, the approximating

Time Comparison

0

0.2

0.4

0.6

0.8

1

1.2

2/
5%

10
/5
%

50
/5
%

10
0/5

%
2/
10

%

10
/1
0%

50
/1
0%

10
0/
10

%
2/
20

%

10
/20

%

50
/20

%

10
0/
20

%

bw/power ratio

ti
m

e
 r

a
ti

o

Incremental MP

Naive MP

(a) Time Comparison

Approximation Power Comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2/5
%

10
/5
%

50
/5
%

10
0/5

%
2/
10

%

10
/10

%

50
/1
0%

10
0/1

0%
2/2

0%

10
/20

%

50
/20

%

10
0/
20

%

bw/power ratio
v
ec

to
r

n
u
m

b
er

 r
at

io

Incremental MP

Naive MP

(b) Approximation Power Comparison

Figure 7: Time and Approximation Power Comparison

vectorsVA in the present sliding window may appear
with high probability in the search launched for the fol-
lowing sliding window, we may take advantage of this
property by keeping track of a cacheC for the poolV .
The representative vector search is therefore performed
first from the cache. If no “good” vector can be found in
the cache, the rest of the vector pool is searched.

3.3 Empirical Study
The experimental data comes from the same sources as

in the last section. Additional synthesized random walk
time series are also used to illustrate gains in other ap-
plications. Similar results also hold for data distributions
such as white noise (not shown here).

Figure 7 compares the results from incremental MP
and naive MP. The sliding window size is fixed atsw =
200 time points. Whenever an update event happens, both
incremental and regular MP are triggered. The power ra-
tio in the figure is defined as ‖residue‖

‖Original target vector‖ . So
a small power ratio entails more iterations. Performance
is measured in terms of average time costs and returned
approximating vector number (i.e. the average size ofVA

in each sliding window). To better demonstrate the com-
parison, we normalize the results of regular MP to1.

One apparent observation in Figure 7(a) is the signifi-
cant speed improvement whenbw is small compared to
the sliding window size. This substantial speedup de-
rives largely from the vector cache. Figure 7(b) shows
that the number of vectors required by incremental MP is
no more than 1.4 times the number required by naive MP
to achieve the same representation fidelity.

The experimental results suggest the potential applica-
tion of incremental MP in a real-time setting where rapid

response is as important as discovering a small approxi-
mating setVA.

4 FINDING SMALL L INEAR I DENTITIES

4.1 Problem & Motivation
Given data in the form of time series, it may be that

some small subsets of the series are related to each other
by simple linear equations. For example, if each time se-
ries represents the latest 100 prices of a certain stock, then
a relation of the typeMSFT = HPQ + IBM tells us that,
for the last 100 trades of these stocks, Microsoft’s share
price has been exactly the sum of Hewlett-Packard’s and
IBM’s.

An investor with such extra knowledge could take ad-
vantage of it in several ways. If we know the price of
HPQ andIBM, then we may infer that ofMSFT. If the
investor wishes to have a portfolio split evenly between
HPQ andIBM, then some overhead can be saved by sim-
ply investing inMSFT. On a larger scale, we could ef-
fectively invest in an equivalent of the entire S&P 500 (a
weighted linear combination of 500 different stocks) by
actually investing in a much smaller number. Of course
these techniques can be extended to any set of time se-
ries with a propensity for linear dependencies — not just
stocks.

One principle of the following work is the idea that
smaller linear identities are less likely to be mere coinci-
dences. If the equality involves fewer unknowns, then we
have more power to use less information to make useful
deductions.

From a mathematical perspective, we can consider the
time series{x1, . . . , xn} as the columns of a matrixX .
There is a 1-1 correspondence between sparse (mostly
zero) column vectorsv with Xv = 0 and small linear
equations between the vectorsxi. For example, ifv2 =
1, v5 = −1, v11 = 3 and all other coordinates are zero,
then equationXv = 0 corresponds withx2 +3x11 = x5.
Hence we are trying to solve the

Sparse Null Space Problem Given anm × n
matrixX with corankc, find a full rank, optimally sparse
n × c matrixN with XN = 0.

An n × c matrix N having full rank means that
rank(N) = min(n, c). In our case,c ≤ n, so all the
columns ofN must be linearly independent (this ex-
cludes, for example, the trivial solutionN = 0). By
“optimally sparse,” we mean thatN contains as many
zero entries as possible. It turns out that maximizing the
global number of zeros inN also maximizes the column
(local) sparsity, which is our real motivation. It can also
be shown that, for each time seriesxi, globally solving
Sparse Null Space also locally finds a minimal linear
equality involvingxi (if one exists).

In addition, we would like to find ourSparse Null
Space in an incremental, time-efficient manner to take
advantage of the fact that our data consists of constantly
evolving time series.
4.2 Related Work

It is easy to see that finding aSparse Null Space
is really just a (polynomially-equivalent) version ofMa-

trix Sparsification: given matrix B, find a column-
equivalent matrixA with as many zero entries as pos-
sible. In the 1980’s, L.J. Stockmeyer showed that this
problem (and hence ours as well) is NP-hard (see [32] for
the proof). All efforts thereafter have focused on using
heuristics to achieve approximate sparsification in poly-
nomial time.

In 1979, Topcu [33] introduced the Turnback algo-
rithm, which gives a banded null matrix for a banded in-
put matrix of theSparse Null Space problem. However,
this algorithm does not guarantee any more sparsity than
using mere Gaussian elimination on the columns of an
arbitrary null matrix.

In 1984, Hoffman and McCormick [32] found a class
of matrices on whichMatrix Sparsification was solvable
in polynomial time. They also introduced the idea of us-
ing combinatorics and matchings within bipartite graphs
to help sparsify matrices. A few years later, Coleman &
Pothen [34], and Gilbert & Heath [35] formulated mod-
ifications to both the turnback techniques and the graph
matching methods.
4.3 Our Approach

Instead of attempting to find a sparse null matrix from
scratch, we assume that we have an already sparsified null
matrix which must be updated as new rows are introduced
— that is, as the time series evolve. This already sparsi-
fied null matrix is provided by the previous iterations of
our own algorithm, which is capable of both building and
maintaining this information.

Here we will sketch two techniques for sparsely track-
ing the null space of a set of time series. First we’ll notice
a trick for following the null space of a set of full history
time series — that is, a matrix that is continuously gain-
ing new rows. Then we’ll see a generalization of the first
method which can be applied to a partial history sliding
window — a matrix that continues to gain new rows and
simultaneously lose old ones.

4.3.1 Tracking Full History Time Series

Our n time series form the columns of matrixAt, which
hast rows representing thet time ticks passed thus far.
Let ai represent theith row of At — the data from theith

time tick. Now we may recursively define

di := nmat(aiNi−1) Ni := Ni−1di (1)

where N0 is the identity matrix, andnmat returns a
sparse null matrix of a row matrix (which is easily com-
puted). It can be shown thatNt is then a null matrix ofAt

of maximum rank. It can also be shown that each of the
di, if nmat is computed properly, are optimally sparse.
Thus this algorithm takes advantage of the fact that the
product of sparse matrices is still likely to be somewhat
sparse.

If ℓ is the maximum number of nonzeros in any column
of Ni−1, then the time complexity of a single step (adding
a single row) for this algirthm isO(ℓn).

In order to help keep the null matrices extremely
sparse, we may optionally introducẽNi := smat(Ni),

Figure 8: One iteration of tracking the null space

wheresmat is an arbitrary incremental column sparsifi-
cation technique. Replacing each “Ni−1” with “ Ñi−1” in
(1) above does not affect the correctness of the technique
— specifically, each newNt is still guaranteed to be a full
null matrix for the full historyAt.

However, in section §4.4 below, our experimental re-
sults reveal that this technique works relatively well with-
out this optional (smat) step.

4.3.2 Tracking a Partial History Sliding Window

We will need to do a little more work when rows are
also being lost. Suppose our sliding window has constant
width s. Then we can consider thes × n matrix At as
consisting of rowsat throughat+s−1 (as above,n is still
the number of time series). It will be convenient to let
A′

t consist of rowsat+1 throughat+s−1, so that, writing
informally,A′

t = At − at.
Along with each matrixAt, we will track two corre-

sponding matrices,Bt which is n × n and invertible,
and Ct which is in column echelon form (lower trian-
gular) with sparser rows near the top. We will maintain
the matrix equalityAtBt = Ct. By doing so, the lastc
columns ofBt will form a full null matrix of At, where
c = corank(At).

Our algorithm consists entirely of findingBt+1 and
Ct+1 based onBt, Ct and the new rowat+s. Notice that
At =

(

at

A′

t

)

. If AtBt = Ct and ct+s = at+sBt then,

usingC′
t = Ct − ct, we have

(

A′

t

at+s

)

Bt =
(

C′

t

ct+s

)

. Call

this last matrixC̃t+1 and notice that it isalmostin col-
umn echelon form, and so is easy to reduce. The entire
algorithm can be summarized as:

ct+s := at+sBt

Bt+1 := Bt · col_reduce(C̃t+1)

Ct+1 := C̃t+1 · col_reduce(C̃t+1)

(This pseudocode is illustrated in Figure 8.) Here, the
functioncol_reduce(X) returns a matrixY so thatXY
is in column echelon form. The actual implementation of
this pseudocode should of course efficiently perform the
column reduction by acting directly onB andC at once.

Each iteration can take advantage of the almost-
column-reduced nature ofC for improved time effi-
ciency. In addition, any sparsity in the null space within

B is minimally perturbed in a single incremental itera-
tion.

Each iteration of this algorithm takes timeO(n2).
As above, we may wish to augment each iteration by

applying ansmat algorithm to the null space basis within
B. Doing so at each step does not alter the invariant con-
dition AB = C or otherwise affect the correctness of the
algorithm.

In our experimental results (§4.4), we attempt extra
sparsification (a version ofsmat) only when the corank
(dimension of the null space) increases. When this hap-
pens, we attempt to sparsify the new column by greedily
performing any column-pairwise sparsifications offered
by any of the old columns. This process runs in time
O(n2). In our experiments, the corank rarely increased.

Notice that if we are only adding (not subtracting)
columns to At, then the column reduction of̃Ct+1

amounts to multiplying the null space portions ofBt and
C̃t+1 by nmat(at+sBt), which corresponds exactly with
our technique from §4.3.1 above.

4.4 Experimental Results
We used both real (stock prices) and simulated data to

test each of these two algorithms (full or partial history
sliding window). Our real data is from the NYSETAQ
stock database, and contains trade prices of a randomly
selected subset of 500 stocks. The data was normalized
so that 100 time ticks correspond to 1 full day (9am–
4pm) of trading. The simulated data consists of time se-
ries which were mostly random linear combinations of
the several previous values, and occasionaly a completely
new random set of values.

Our algorithm is compared with (nonincremental) back
substitution. The back substitution is performed at each
time tick on the full sliding window. Recall that the turn-
back algorithm, aside from giving a banded structure,
does not guarantee any increase in sparsity over back
substitution; hence these sparsity comparisons should be
similar to those from a turnback experiment as well.

Although time comparisons between these two algo-
rithms are somewhat unfair, it is useful to see how well
the sparsity of our much faster incremental algorithms
fares against that of the slower nonincremental algorithm.
(The authors are unaware of any other incremental sparse
null space tracking algorithms to compare against.)

Initially, both algorithms (for full or parital history
sliding windows) achieve sparsity nearly as efficiently as
back substitution. However, the stability and sparsity of
the partial history sliding window algorithm deteriorates
over time. To deal with this problem, we periodically
restarted the tracked decompositionAB = C. Luckily,
when the need to periodically recalibrate is anticipated,
we can do so in an incremental fashion (using essentially
the full history technique from §4.3.1), without any awk-
ward pauses in computation.

• Figure 9 shows how the density (percentage of the
null matrix which is nonzero) evolves over 60 iter-
ates of our algorithm on the simulated data. Notice
the significant improvement we gain by periodically

0 10 20 30 40 50 60
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Iterations

D
en

si
ty

 (
ou

t o
f 1

.0
)

Null space density on 400 simulated data streams

Recal
NoRecal
BackSubs

Figure 9: Density of null space comparison on simulated
data. Back substitution remains between 3–6% while our
periodically recalibrated algorithm achieves between 3–
7%.

5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

Iterations

A
vg

 #
 N

on
ze

ro
s

P
er

 C
ol

um
n

in
 N

ul
l M

at
rix

Average Column Density on Stock Price Data

Recalib’d
BackSubs

Figure 10: Average number of nonzeros per column in
stock price data. A full column could have contained up
to 500 nonzeros. Back substitution alternated between
38–41 while our algorithm accomplished between 41–49.

recalibrating our decomposition (which occurs ev-
ery 20 iterations in the figures).

• Figure 10 compares the average number of nonzero
entries per column between our algorithm and back
substitution run on the stock price data. Although
back substitution consistently does at least as well,
the factor of improvement is small – in this exper-
iment, the average ratio is 1.11 and the maximum
is 1.25. In practice, a factor of 1.11 would mean
that the linear identities we are finding contain 11%
more terms than they would with the (much slower)
back substitution method. For example, in the stock
market application of tracking an index, the larger
dependent set would mean that 11% more stocks
would be needed to track the index.

• Figure 11 illustrates how the time complexity of our
algorithm grows with respect to the width of the par-
tial history sliding window. Each data point is the ra-
tio between one iteration of our algorithm in propor-
tion to back substitution on 1000 columns of simu-
lated data. (In this experiment our algorithm always
ran at least 49 times faster than the alternative.)

In summary, these incremental algorithms are time ef-
ficient and maintain sparsity well in comparison with
back substitution. In addition, they are easily extensible

50 100 150 200 250 300
0

50

100

150

200

250

300

Sliding window width

R
el

at
iv

e
sp

ee
du

p
fa

ct
or

Speedup factor of our algorithm against back substitution

Figure 11: Relative speedup factor between our algorithm
and back substitution over partial history sliding windows
of increasing width. Tests were run on 1000 streams of
simulated data. The factor represents the time efficiency
gained over one iteration.

with augmented null matrix manipulation via an optional
smat function.

5 ELASTIC BURST DETECTION

5.1 Problem Statement
A burst is a large number of events occurring within

a certain period of time. It’s a noteworthy phenomenon
in many natural and social processe, for example, a burst
of trading volume in some stock might indicate insider
trading.

As an interesting and important phenomenon, burst
discovery has attracted more and more interest under dif-
ferent settings. For example, [37] models the bursty be-
haviors in self- similar time series, such as disk I/O activ-
ity, network traffic; [38] studies the bursty and hierarchi-
cal structure in temporal text stream, such as emails, news
articles, etc; [39] mines the bursty behavior in the query
logs of the MSN search engine; [40, 41, 42] study the
problem of detecting significant spatial clusters in multi-
dimensional space. [43, 44] use multiresolution synopsis
to estimate the number of 1’s in the lastN elements in
a 0-1 stream and the sum of bounded integers in an inte-
ger stream. Our interest here is in one dimensional data
stream.

If the lengthw of the time window when a burst occurs
is known in advance, the detection can easily be done in
linear time by keeping a running count of the number of
events in the lastw time units. However, in many situ-
ations, the window length is unknown a priori. For ex-
ample, interesting gamma ray bursts could last several
seconds, several minutes or even several days. One has
to monitor bursts across multiple window sizes. Further-
more, in many data applications, looking at different win-
dow scales at the same time gives different insight into the
data.

The elastic burst detection problem [18] is to simulta-
neously detect bursts across multiple window sizes. For-
mally:

Problem 1 Given a non-negative time seriesx1, x2, ...,
a set of window sizesW = w1, w2..., wm, a mono-
tonic, associative aggregation functionA (such as "sum"
or "maximum") that maps a consecutive sequence of

Level 0

Level 1

Level 2

Level 3

Level 4

base level

shifted level

Figure 12: Shifted Binary Tree (SBT) and the shadow
property. The shadowed subsequences of size 7 and 5
are included in the shadowed windows at level 4 and 3
respectively.

data elements to a number (it is monotonic in the sense
that A[xt · · ·xt+w−1] ≤ A[xt · · ·xt+w], for all w), and
thresholds associated with each window size,f(wj), for
j = 1, 2, ..., m, the elastic burst detection is the problem
of finding all pairs(t, w) such thatt is a time point and
w is a window size inW andA[xt · · ·xt+w−1] ≥ f(w).

A naive algorithm is to check each window size of in-
terest one at a time. To detect bursts over them win-
dow sizes in a sequence of lengthN would then require
O(mN) time. This is unacceptable in a high-speed data
stream environment.

5.2 Shifted Binary Tree (SBT)
In [18], we presented a simple data structure called the

Shifted Binary Tree (SBT)that could be the basis of a filter
that would detect all bursts, yet perform in time indepen-
dent of the number of windows when the probability of
bursts is very low.

A Shifted Binary Tree is a hierarchical data structure
inspired by the Haar Wavelet Tree. The leaf nodes of this
tree (denoted level 0) have a one-to-one correspondence
to the time points of the incoming data; a node at level
1 aggregates two adjacent nodes at level 0. In general, a
node at leveli+1 aggregates two nodes at leveli, so cov-
ers2i+1 time points. The SBT includes a shifted sublevel
to each base level above level 0. In the shifted subleveli,
the corresponding windows are still of length2i but those
windows are shifted by2i−1 from the base level. Figure
12 shows an example of a Shifted Binary Tree.

The overlapping between the base levels and the sub-
levels guarantees that all the windows of lengthw, w ≤
1 + 2i, are included in one of the windows at leveli + 1.
Because the aggregation functionA is monotonically in-
creasing,A[xt · · ·xt+w−1] ≤ A[xt · · ·xt+w+c], for all
w and c. So if A[xt · · ·xt+w+c] ≤ f(w), then surely
A[xt · · ·xt+w−1] ≤ f(w). The Shifted Binary Tree takes
advantage of this monotonic property as follows: each
node at leveli + 1 is associated with the threshold value
f(2 + 2i−1). If more thanf(2 + 2i−1) events are found
in a window of size2i+1, then a detailed search must
be performed to check if some subwindow of sizew,
2 + 2i−1 ≤ w ≤ 1 + 2i, hasf(w) events. Thus, any
burst in a window of sizew will be found.

When bursts are very rare, detailed searches whether
fruitful (they confirm a burst) or not will also be rare, so
the structure will incur an amortized constant time work
per time point[18]. However,

• When bursts are rare but not very rare, the number

Table 1: Comparing SAT with SBT
SBT SAT

Number of children 2 ≥ 2
Levels of children i ≤ i

for level i + 1
Shift at leveli + 1: 2 ∗ Si k ∗ Si

Si+1 k ≥ 1
Overlapping window window size at ≥ wi

size at leveli + 1: level i: wi

Oi+1

of fruitless detailed searches grows, suggesting that
we may want more levels than offered in the Shifted
Binary Tree.

• Conversely, when bursts are exceedingly rare we
may need fewer levels than offered in the SBT.

In other words we want a specific structure that fits a spe-
cific problem.

In this paper, we present a generalized framework [45]
for efficient elastic burst detection, which includes a fam-
ily of data structures, calledshifted aggregation trees
(SAT), and a heuristic algorithm to find an efficient SAT
given the inputs. Experiments show the SAT significantly
outperforms the SBT over a variety of inputs.

5.3 Shifted Aggregation Tree (SAT)
In [45], we generalized the Shifted Binary Tree to a

family of data structures,Shifted Aggregation Tree (SAT),
which provides a pool of data structures to choose for
different inputs.

Like a Shifted Binary Tree, a Shifted Aggregation Tree
(SAT) is a hierarchical tree structure. It has several levels,
each of which contains several nodes. The nodes at level
0 are in one-to-one correspondence with the original time
series. Any node at leveli is computed by aggregating
some nodes below leveli. Two consecutive nodes in the
same level overlap in time.

A SAT is different from a SBT in two ways:

• The parent-child structure
This defines the topological relationship between a
node and its children, i.e. how many children it has
and their placements.

• The shifting pattern
This defines how many time points apart two neigh-
boring nodes at the same level are. We called this
distance theshift.

In a SBT, the parent-child structure for each node is
always the same, one node aggregates two nodes at one
level lower; the shifting pattern is also fixed, two neigh-
boring nodes in the same level always half-overlap. In a
SAT, a node could have 3 children and be 2 time points
away from its preceding neighbor, or could have 64 chil-
dren and 128 time points away from its preceding one.
Table 5.3 gives a side-by-side comparison of the differ-
ence between a SAT and a SBT. Clearly, a SBT is a spe-
cial case of a SAT.

5.4 SAT Tradeoffs
A similar update-search framework can be used to-

gether with a Shifted Aggregation Tree to detect bursts.
The total running time is the sum of the updating time
and the detailed searching time. Intuitively, if a SAT has
more levels and smaller shifts, it would take longer time
to maintain the structure. On the other hand, more lev-
els and smaller shifts reduce the chance to trigger a fruit-
less detailed search and reduce the time for such a search.
Therefore a good SAT should balance the updating time
with the detailed searching time to obtain the optimal per-
formance. Depending on different inputs, different SAT
structures should be used to achieve better running time.
5.5 Heuristic State-Space Algorithm to Find an

Efficient SAT
Given the input time series and the window thresholds,

we can use a heuristic state-space algorithm to find an ef-
ficient SAT structure. Each SAT is seen as a state and the
growth from one SAT to another is seen as a transforma-
tion. We start from the SAT only containing the original
time series, then keep growing the candidate set of SATs
by adding one more level to the top of each candidate
SAT. A cost is associated with each SAT, which is de-
fined as the CPU time when running this SAT on a small
sample data. This growing process stops when a set of
final SATs covering the maximum window size of inter-
est are reached. The final SAT with the minimum cost is
picked as the desired SAT.
5.6 Empirical Results

We have used two real world data sets to test the
new detection framework with the Shifted Aggregation
Trees. The testing machine is 2Ghz Pentium 4 PC with
512M RAM, running Windows XP. The program is im-
plemented in C++.

• The Sloan Digital Sky Survey (SDSS) Weblog data
This data set records the web access requests to the
SDSS website in 2003, total 17,432,468 records.
The training data for the heuristic state-space algo-
rithm consists of seven days of second-by-second
data.

• The NYSE TAQ Stock Data
This data set includes tick-by-tick trading activities
of the IBM stock between Jan. 2001 to May 2004,
total 6,134,362 ticks. Each record contains the time
precise to the second, as well as each trade’s price
and volume. A week’s (5 day) worth of data is used
as the training data.

In the experiments, we set the thresholds for different
window sizes as following. We used a week of the SDSS
weblog data and the IBM stock data as the training data
respectively. For each window sizew, we compute the
aggregates on the training data on a sliding window of
sizew. We set the threshold for sizew in such a way, the
probability for a burst of sizew to happen isp.

We are interested in comparing the Shifted Aggrega-
tion Tree with the Shifted Binary Tree under different
settings.

CPU time for different thresholds

0

20000

40000

60000

80000

100000

120000

3 4 5 6 7 8 9 10

Burst Probability p = 10^-k

W
a
ll

C
lo

c
k
 T

ic
k
s

IBM_SAT

IBM_SBT

SDSS_SAT

SDSS_SBT

Figure 13: CPU time comparison under different thresh-
olds

• Different thresholds
The thresholds are set to reflect a burst probability
ranging from10−3 to 10−10. The maximum win-
dow size is set to 300 for SDSS, 500 for IBM. Bursts
at every window size are detected.

Figure 13 shows the results for both data sets. As
the burst probability decreases, the CPU time for the
SAT decreases quickly.

• Different maximum window sizes of interest
The maximum window sizes are set from 10 seconds
up to 1800 seconds. The burst probability is set to
be10−6. Bursts in every window size are detected.

Figure 14 shows the results. As the maximum win-
dow size increases, the SAT can achieve increased
speedup comparing to the SBT.

• Different sets of window sizes of interest
Instead of detecting bursts for every window size,
we detect bursts everyn size, i.e, detect bursts for
window sizesn, 2∗n, 3∗n, Here,n is set to be 1,
5, 10, 30, 60, 120 respectively. The burst probability
is set to be10−6 and the maximum window size is
set to be 600 for SDSS, 3600 for IBM.

Figure 15 shows that as the set of window sizes be-
comes sparser, both the SAT and the SBT take less
time to process.

Overall, the new framework, which includes a fam-
ily of Shifted Aggregation Trees and a heuristic state-
space algorithm, can be adaptive to different inputs. The
Shifted Aggregation Tree overperforms the Shifted Bi-
nary Tree over a variety of inputs.

6 SUMMARY AND FUTURE WORK

High performance time series algorithms are needed
in many previous applications. In this paper four in-
cremental techniques are presented addressing fast win-
dowed correlation, incremental matching pursuit, sparse
null space discovery and elastic burst detection. The ex-
perimental results show that they can improve the effi-
ciency dramatically compared to the previous algorithms.
Furthermore the incremental idea described in this paper
may be extended to other primitives.

The work demonstrated here is very much in progress.
Our goal is to build a set of such primitives and make

CPU time different max window sizes

0

100000

200000

300000

400000

500000

600000

10 30 60 120 300 600 1800

Max window sizes

W
al

l C
lo

ck
 T

ic
ks

IBM_SAT

IBM_SBT

SDSS_SAT

SDSS_SBT

Figure 14: CPU time comparison under different maxi-
mum window sizes of interest

CPU time for different window sets

0

50000

100000

150000

200000

1 5 10 30 60 120

Window steps

W
al

l C
lo

ck
 T

ic
ks

IBM_SAT

IBM_SBT

SDSS_SAT

SDSS_SBT

Figure 15: CPU time comparison under different sets of
window sizes of interest

them available to any application needing rapid insights
from time series.

REFERENCES

[1] A. Braverman,Personal Communication, 2003.

[2] R. Agrawal, C. Faloutsos, and A. Swami, “Effi-
cient similarity searching in sequence databases,” in
Proceedings of the 4th International Conference of
Foundations of Data organization and Algorithms
(FODO), Chicago, Illinois, MN, 1993, pp. 69–84,
Springer Verlag.

[3] C. Faloutsos, M. Ranganathan, and Y. Manolopou-
los, “Fast subsequence matching in time-series
databases,” inACM SIGMOD, Minneapolis, MN,
May 1994, pp. 419–429.

[4] C. Li, P. Yu, and V. Castelli, “Hierarchyscan: A hi-
erarchical similarity search algorithm for databases
of long sequences,” inIEEE ICDE, New Orleans,
Louisiana, February 1996, pp. 546–553.

[5] D. Rafier and A. Mendelzon, “Similarity-based
queries for time series data,” inACM SIGMOD,
Tucson, Arizona, May 1997, pp. 13–25.

[6] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss, “Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries,” in
VLDB, 2001, pp. 79–88.

[7] I. Popivanov and R. Miller, “Similarity search over
time series data using wavelets,” inIEEE ICDE,
San Jose, CA, March 2002, pp. 212–225.

[8] F. Korn, H.V. Jagadish, and C. Faloutsos, “Effi-
ciently supporting ad hoc queries in large datasets
of time sequences,” inACM SIGMOD, Tucson, Ari-
zona, May 1997, pp. 289–300.

[9] E. Keogh, K. Chakrabarti, M. Pazzani, and
S. Mehrotra, “Dimensionality reduction for fast
similarity search in large time series databases,”
Knowledge and Information Systems, vol. 3, pp.
263–286, 2000.

[10] E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Paz-
zani, “Locally adaptive dimensionality reduction
for indexing large time series databases,” inACM
SIGMOD, Santa Barbara, California, May 2001, pp.
151–162.

[11] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos,
and W. Truppel, “Online amnesic approximation of
streaming time series,” inIEEE ICDE, Boston, MA,
March 2004, pp. 338–350.

[12] B. Yi and C. Faloutsos, “Fast time sequence index-
ing for arbitrary lp forms,” inVLDB, Cairo, Egypt,
September 2000, pp. 385–394.

[13] W. Johnson and J. Lindenstrauss, “Extensions of
lipschitz mapping into hilbert space,”Contempo-
rary Mathematics, vol. 26, pp. 189–206, 1984.

[14] E. Kushikvitz, R. Ostrovsky, and Y. Ranbani, “Ef-
ficient search for approximate nearest neighbors in
high dimensional spaces,” inACM STOC, Dallas,
TX, May 1998, pp. 614–623.

[15] P. Indyk, “Stable distributions, pseudorandom gen-
erators, embeddings and data stream computation,”
in Proceedings of the 41st Annual Symposium on
Foundations of Computer Science. 2000, pp. 189–
197, IEEE Computer Society.

[16] D. Achlioptas, “Database-friendly random projec-
tions,” in ACM SIGMOD, Santa Barbara, Califor-
nia, May 2001, pp. 274–281.

[17] Y. Zhu and D. Shasha, “Statstream: Statistical mon-
itoring of thousands of data streams in real time,” in
VLDB, Hong Kong, China, August 2002, pp. 358–
369.

[18] D. Shasha and Y. Zhu,High Performance Discov-
ery in Time Series: Techniques and Case Studies,
Springer, 2003.

[19] P. Indyk, N. Koudas, and S. Muthukrishnan, “Iden-
tifying representative trends in massive time series
data sets using sketches,” inVLDB, Cairo, Egypt,
September 2000, pp. 363–372.

[20] R. Cole, D. Shasha, and X. Zhao, “Fast window
correlations over uncooperative time series,” inSub-
mitted to ACM SIGKDD, Chicago, IL, USA, August
2005.

[21] E. Keogh and T. Folias, “The ucr time se-
ries data mining archive. Riverside CA.
University of California - Computer Sci-
ence & Engineering Department,” 2002,
http://www.cs.ucr.edu/∼eamonn/TSDMA/index.html.

[22] “Wharton research data services(wrds),”
http://wrds.wharton.upenn.edu/.

[23] S. Mallat and Z. Zhang, “Matching pursuit with
time-frequency dictionary,”IEEE Transactions on
Signal Processing, vol. 12, no. 41, pp. 3397–3415,
1993.

[24] O. D. Escoda and P. Vandergheynst, “Video coding
using a deformation compensation algorithm based
on adaptive matching pursuit image decomposi-
tions,” in IEEE ICIP, Barcelona, Spain, September
2003, pp. 77–80.

[25] Y. Wu and V. S. Batista, “Quantum tunneling dy-
namics in multidimensional systems: A matching-
pursuit description,” The Journal of Chemical
Physics, vol. 121, pp. 1676–1680, 2004.

[26] L. Borcea, J. G. Berryman, and G. C. Papanicolaou,
“Matching pursuit for imaging high-contrast con-
ductivity,” Inverse Problems, vol. 15, pp. 811–849,
1999.

[27] P.J. Durka and K.J. Blinowska, “Analysis of
eeg transients by means of matching pursuit,”
Ann.Biomed.Engin., vol. 23, pp. 608–611, 1995.

[28] K.J. Blinowska, P.J. Durka, and W. Szelenberger,
“Time-frequency analysis of nonstationary eeg by
matching pursuit,” World Congress of Medical
Physics and Biomedical Engineering, August 1994.

[29] R. Gribonval, “Fast matching pursuit with a multi-
scale dictionary of gaussian chirps,”IEEE Transac-
tion on Signal Processing, vol. 49, no. 5, pp. 994–
1001, MAY 2001.

[30] F. Moschetti, L. Granai, P. Vandergheynst, and
P. Frossard, “New dictionary and fast atom search-
ing method for matching pursuit representation
of displaced frame difference,” inIEEE ICIP,
Rochester, NY, September 2002, pp. 685–688.

[31] K. Cheung and Y. Chan, “A fast two-stage algo-
rithm for realizing matching pursuit,” inIEEE ICIP,
Thessaloniki Greece, October 2001, pp. 431–434.

[32] A.J. Hoffman and S.T. McCormick, “A
fast algorithm that makes matrices optimally
sparse,” inProgress in Combinatorial Optimization,
William R. Pulleyblank, Ed., pp. 185–196. Aca-
demic Press, 1984.

[33] A. Topcu, A contribution to the systematic anal-
ysis of finite element structures through the force
method, Ph.D. thesis, University of Essen, Essen,
Germany, 1979, (In German).

[34] T.F. Coleman and A. Pothen, “The null space prob-
lem I. complexity,”SIAM Journal on Algebraic and
Discrete Methods, vol. 7, no. 4, pp. 527–537, Oct.
1986.

[35] J.R. Gilbert and M.T. Heath, “Computing a sparse
basis for the null space,”SIAM Journal on Alge-
braic and Discrete Methods, vol. 8, no. 3, pp. 446–
459, July 1987.

[36] T.F. Coleman and A. Pothen, “The null space prob-
lem II. algorithms,”SIAM Journal on Algebraic and
Discrete Methods, vol. 8, no. 4, pp. 544–563, Oct.
1987.

[37] M. Wang, T. Madhyastha, N. Chan, S. Papadim-
itriou, and C. Faloutos, “Data mining meets per-
formance evaluation: Fast algorithms for modeling
bursty traffic,” inIEEE ICDE, San Jose, CA, March
2002, pp. 507–516.

[38] J. Kleinberg, “Bursty and hierarchical structure in
streams,” inACM SIGKDD, Edmonton, Alberta,
Canada, July 2002, pp. 91–101.

[39] M. Vlachos, C. Meek, and Z. Vagena, “Identify-
ing similarity and periodicities and bursts for online
search queries,” inACM SIGMOD, Paris, France,
June 2004, pp. 131–142.

[40] Daniel B. Neill and Andrew W. Moore, “A fast
multi-resolution method for detection of signifi-
cant spatial disease clusters,” inAdvances in Neu-
ral Information Processing Systems 16, Sebastian
Thrun, Lawrence Saul, and Bernhard Schölkopf,
Eds., Cambridge, MA, 2004, pp. 651–658, MIT
Press.

[41] D. Neill and A. Moore, “Rapid detection of signif-
icant spatial clusters,” inACM SIGKDD, Seattle,
WA, August 2004, pp. 256–265.

[42] Daniel B. Neill, Andrew W. Moore, Francisco
Pereira, and Tom Mitchell, “Detecting signifi-
cant multidimensional spatial clusters,” inAd-
vances in Neural Information Processing Systems
17, Lawrence K. Saul, Yair Weiss, and Léon Bot-
tou, Eds., Cambridge, MA, 2005, pp. 969–976, MIT
Press.

[43] Mayur Datar, Aristides Gionis, Piotr Indyk, and Ra-
jeev Motwani, “Maintaining stream statistics over
sliding windows,” SIAM, vol. 31, no. 6, pp. 1794–
1813, September 2002.

[44] Phillip B. Gibbons and Srikanta Tirthapura, “Dis-
tributed stream algorithms for sliding windows,” in
Proceedings of the fourteenth annual ACM sym-
posium on Parallel algorithms and architectures,
2002, pp. 63–72.

[45] X. Zhang, “High performance burst detection,”
Thesis Proposal, 2005.

