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Abstract

In this paper we consider the problem of the incremental mining of sequential patterns

when new transactions or new customers are added to an original database. We present

a new algorithm for mining frequent sequences that uses information collected during an

earlier mining process to cut down the cost of finding new sequential patterns in the up-

dated database. Our test shows that the algorithm performs significantly faster than the

naive approach of mining on the whole updated database from scratch. The difference is so

pronounced that this algorithm could also be useful for mining sequential patterns, since in

many cases it is faster to apply our algorithm than to mine sequential patterns using a stan-

dard algorithm, by breaking down the database into an original database plus an increment.

Key words: Sequential patterns, incremental mining, data mining

1 Introduction

Most research into data mining has concentrated on the problem of mining associa-

tion rules [1–8]. Although sequential patterns are of great practical importance (e.g.

alarms in telecommunications networks, identifying plan failures, analysis of Web

access databases, etc.) they have received relatively little attention [9–11]. First in-

troduced in [9], where an efficient algorithm called AprioriAll was proposed, the

problem of mining sequential patterns is to discover temporal relationships between

facts embedded in the database. The facts under consideration are simply the char-

acteristics of individuals, or observations of individual behavior. For example, in a

video database, a sequential pattern could be “95% of customers bought ’Star Wars
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and The Empire Strikes Back’, then ’Return of the Jedi’, and then ’The Phantom

Menace’ ”. In [10], the definition of the problem is extended by handling time con-

straints and taxonomies (is-a hierarchies) and a new algorithm, called GSP, which

outperformed AprioriAll by up to 20 times, is proposed.

As databases evolve the problem of maintaining sequential patterns over a signifi-

cantly long period of time becomes essential, since a large number of new records

may be added to a database. To reflect the current state of the database where previ-

ous sequential patterns would become irrelevant and new sequential patterns might

appear, there is a need for efficient algorithms to update, maintain and manage the

information discovered [12]. Several efficient algorithms for maintaining associa-

tion rules have been developed [12–15]. Nevertheless, the problem of maintaining

sequential patterns is much more complicated than maintaining association rules,

since transaction cutting and sequence permutation have to be taken into account

[16]. In order to illustrate the problem, let us consider an original and an incre-

mental database. Then, to compute the set of sequential patterns embedded in the

updated database, we have to discover all sequential patterns which were not fre-

quent in the original database but become frequent with the increment. We also

have to examine all transactions in the original database that can be extended to

become frequent. Furthermore, old frequent sequences may become invalid when

a new customer is added. The challenge is thus to discover all the frequent patterns

in the updated database with far greater efficiency than the naive method of mining

sequential patterns from scratch.

In this paper, we propose an efficient algorithm, called ISE (Incremental Sequence

Extraction), for computing the frequent sequences in the updated database when

new transactions and new customers are added to the original database. ISE min-

imizes computational costs by re-using the minimal information from the old fre-

quent sequences, i.e. the support of frequent sequences. The main new feature of

ISE is that the set of candidate sequences to be tested is substantially reduced.

Furthermore, some optimization techniques for improving the approach are also

provided.

Empirical evaluations were carried out to analyze the performance of ISE and com-

pare it against cases where GSP is applied to the updated database from scratch.

Experiments showed that ISE significantly outperforms the GSP algorithm by a

factor of 4 to 6. Indeed the difference is so pronounced that our algorithm may be

useful for mining sequential patterns as well as incremental mining, since in many

cases, instead of mining the database with the GSP algorithm, it is faster to ex-

tract an increment from the database, then apply our approach considering that the

database is broken down into an original database plus an increment. Our exper-

imental results show an improvement in performance by a factor of 2 to 5 in the

comparison.
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The rest of this paper is organized as follows. Section 2, states the problem and

describes related research. The algorithm ISE is described in Section 3. Section 4

describes the experiments in detail and interprets the performance results obtained

. Finally, Section 5 concludes the paper with future avenues for research.

2 Statement of the Problem

In this section we give the formal definition of the problem of incremental sequen-

tial pattern mining. First, we formulate the concept of sequence mining summariz-

ing the formal description of the problem introduced in [9] and extended in [10].

A brief overview of the GSP algorithm is also provided. Second we examine the

incremental update problem in detail.

2.1 Mining of Sequential Patterns

Let DB be a set of customer transactions where each transaction T consists of

customer-id, transaction time and a set of items involved in the transaction.

Let I ✁ ✂
i1 ✄ i2 ✄✆☎✝☎✞☎✝✄ im ✟ be a set of literals called items. An itemset is a non-empty set

of items. A sequence s is a set of itemsets ordered according to their time stamp.

It is denoted by ✠ s1s2 ☎✝☎✝☎ sn ✡ , where s j, j ☛ 1 ☎✝☎ n, is an itemset. A k-sequence is a

sequence of k items (or of length k). For example, let us consider that a given cus-

tomer purchased items 1 ✄ 2 ✄ 3 ✄ 4 ✄ 5, according to the following sequence:s ✁ ✠✌☞ 1)

(2, 3) (4) (5) ✡ . This means that apart from 2 and 3 that were purchased together,

i.e. during a common transaction, items in the sequence were bought separately. s

is a 5-sequence.

A sequence ✠ s1s2 ☎✝☎✍☎ sn ✡ is a sub-sequence of another sequence ✠ s ✎1s ✎2 ☎✍☎✝☎ s ✎m ✡ if

there exist integers i1 ✠ i2 ✠ ☎✝☎✍☎ i j ☎✍☎✝☎ ✠ in such that s1 ✏ s ✎i1 ✄ s2 ✏ s ✎i2 ✄✆☎✍☎✝☎✞✄ sn ✏ s ✎in . For

example, the sequence s ✎ = ✠ (2) (5) ✡ is a sub-sequence of s because (2) ✏ (2, 3)

and (5) ✏ (5). However ✠ (2) (3) ✡ is not a sub-sequence of s since items were not

bought during the same transaction.

Property 1 If A ✏ B for sequences A, B then supp ☞ A ✑✓✒ supp ☞ B ✑ because all trans-

actions in DB that support B necessarily also support A.

All transactions from the same customer are grouped together and sorted in increas-

ing order and are called a data sequence. A support value (supp(s)) for a sequence

gives its number of actual occurrences in DB. Nevertheless, a sequence in a data

sequence is taken into account only once to compute the support even if several

occurrences are discovered. In other words, the support of a sequence is defined as
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the fraction of total distinct data sequences that contain s. A data sequence contains

a sequence s if s is a sub-sequence of the data sequence. In order to decide whether

a sequence is frequent or not, a minimum support value (minSupp) is specified by

the user, and the sequence is said to befrequent if the condition supp ☞ s ✑✔✒ minSupp

holds.

Given a database of customer transactions the problem of sequential pattern mining

is to find all the sequences whose support is greater than a specified threshold (min-

imum support). Each of these represents a sequential pattern, also called a frequent

sequence.

The task of discovering all the frequent sequences in large databases is quite chal-

lenging since the search space is extremely large (e.g. with m attributes there are

O ☞ mk ✑ potentially frequent sequences of length k) [11]. To the best of our knowl-

edge, the problem of mining sequential patterns according to the previous defini-

tions has received relatively little attention.

We shall now briefly review the GSP algorithm. For building up candidate and fre-

quent sequences, the GSP algorithm makes multiple passes over the database. The

first step aims at computing the support of each item in the database. When this step

has been completed, the frequent items (i.e. those that satisfy the minimum support)

have been discovered. They are considered as frequent 1-sequences (sequences hav-

ing a single itemset, itself a singleton). The set of candidate 2-sequences is built up

according to the following assumption: candidate 2-sequences could be any cou-

ple of frequent items, whether embedded in the same transaction or not. Frequent

2-sequences are determined by counting the support. From this point, candidate k-

sequences are generated from frequent (k-1)-sequences obtained in pass-(k-1). The

main idea of candidate generation is to retrieve, from among (k-1)-sequences, pairs

of sequences (s, s ✎ ) such that discarding the first element of the former and the last

element of the latter results in two fully matching sequences. When such a condi-

tion holds for a pair (s, s ✎ ), a new candidate sequence is built by appending the last

item of s ✎ to s. The supports for these candidates are then computed and those with

minimum support become frequent sequences. The process iterates until no more

candidate sequences are formed.

2.2 Incremental Mining on Discovered Sequential Patterns

Let DB be the original database and minSupp the minimum support. Let db be the

increment database where new transactions or new customers are added to DB. We

assume that each transaction on db has been sorted by customer-id and transaction

time. U ✁ DB ✕ db is the updated database containing all sequences from DB and

db.
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Cust-Id Itemsets

C1 ✖✘✗✚✙✛✗ ✙✜✗ ✢✜✗✚✣✛✗ Itemsets

C2 ✖✘✗✚✙✛✗ ✤✛✗ ✥✦✗ 50 60 70 80 100

C3 ✖✘✗✚✙✛✗ ✥✦✗ ✤✛✗ 50 60 80 90

C4 ✧✜✗ ★✜✗
(DB) (db)

Fig. 1. An original database (DB) and an increment database with new transactions (db)

Let LDB be the set of frequent sequences in DB. The problem of incremental min-

ing of sequential patterns is to find frequent sequences in U , noted LU , with respect

to the same minimum support. Furthermore, the incremental approach has to take

advantage of previously discovered patterns in order to avoid re-running all mining

algorithms when the data is updated.

First, we consider the problem when new transactions are appended to customers

already existing in the database. In order to illustrate this problem, let us consider

the base DB given in Figure 1, giving facts about a population reduced to just

four customers. Transactions are ordered according to their time-stamp. For in-

stance, the data sequence of customer C3 is ✠✩☞ 10 20 ✑✪☞ 40 ✑✫☞ 30 ✑ ✡ . Let us assume

that the minimum support value is 50%, which means that in order to be consid-

ered as frequent a sequence must be observed for at least two customers. The set

of all maximum frequent sequences embedded in the database is the following:

LDB ✁ ✂ ✠✌☞ 10 20 ✑✬☞ 30 ✑ ✡ , ✠✌☞ 10 20 ✑✬☞ 40 ✑ ✡✭✟ . After some update activities, let

us consider the increment database db (described in Figure 1) where new transac-

tions are appended to customers C2 and C3. Assuming that the support value is the

same, the following two sequences ✠✮☞ 60 ✑✬☞ 90 ✑ ✡ and ✠✌☞ 10 20 ✑✯☞ 50 70 ✑ ✡ be-

come frequent after the database update since they have sufficient support. Let us

consider the first of these. The sequence is not frequent in DB since the minimum

support does not hold (it only occurs for the last customer). With the increment

database, this sequence becomes frequent since it appears in the data sequences

of the customer C3 and C4. The sequence ✠✰☞ 10 20 ✑ ✡ could be detected for

customers C1, C2 and C3 in the original database. By introducing the increment

database the new frequent sequence ✠✱☞ 10 20 ✑✲☞ 50 70 ✑ ✡ is discovered because it

matches with transactions of C1 and C2. Furthermore, new frequent sequences are

discovered: ✠✮☞ 10 20 ✑✬☞ 30 ✑✭☞ 50 60 ✑✯☞ 80 ✑ ✡ and ✠✌☞ 10 20 ✑✯☞ 40 ✑✭☞ 50 60 ✑✬☞ 80 ✑ ✡ .

✠✳☞ 50 60 ✑✴☞ 80 ✑ ✡ is a frequent sequence in db and on scanning DB we find that the

frequent sequences in LDB are its predecessor.
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Cust-Id Itemsets

C1 ✖✘✗✚✙✛✗ ✙✜✗ ✢✜✗✚✣✛✗ Itemsets

C2 ✖✘✗✚✙✛✗ ✤✛✗ ✥✦✗ 50 60 70 80 100

C3 ✖✘✗✚✙✛✗ ✥✦✗ ✤✛✗ 50 60 80 90

C4 ✧✜✗ ★✜✗
C5 10 40 70 80

(DB) (db)

Fig. 2. An original database (DB) and an increment database with new transactions and new

customers (db)

Let us now consider the problem when new customers and new transactions are

appended to the original database (Figure 2). Let us consider that the minimum

support value is still 50%, which means that in order to be considered as frequent a

sequence must now be observed for at least three customers since a new customer

C5 has been added. According to this constraint the set of frequent sequences em-

bedded in the original database becomes LDB ✁ ✂ ✠✵☞ 10 20 ✑ ✡✭✟ since the sequences

✠✰☞ 10 20 ✑✶☞ 30 ✑ ✡ and ✠✰☞ 10 20 ✑✷☞ 40 ✑ ✡ occur only for customers C2 and C3.

Nevertheless, the sequence ✠✸☞ 10 20 ✑ ✡ is still frequent since it appears in the

data sequences of customer C1, C2 and C3. By introducing the increment database,

the set of frequent sequences in the updated database is LU ✁ ✂ ✠✚☞ 10 20 ✑✹☞ 50 ✑ ✡✬✄✠✺☞ 10 ✑✻☞ 70 ✑ ✡✯✄ ✠✰☞ 10 ✑✻☞ 80 ✑ ✡ , ✠✰☞ 40 ✑✼☞ 80 ✑ ✡ , ✠✰☞ 60 ✑ ✡✯✟ . Let us now take a

closer look at the sequence ✠✽☞ 10 20 ✑✾☞ 50 ✑ ✡ . This sequence could be detected

for customer C1 in the original database but it is not a frequent sequence. Nev-

ertheless, as the item 50 becomes frequent with the increment database, this se-

quence also matches with transactions of C2 and C3. In the same way, the sequence

✠✿☞ 10 ✑❀☞ 70 ✑ ✡ becomes frequent since, with the increment, it appears in the data

sequences of C1, C2 and the new customer C5.

2.3 Related Work

The problem of incremental association rule mining has been much addressed

([12,13,17–21]), but incremental sequential pattern mining has received very lit-

tle attention. Furthermore, among the available work in the field, no research has

dealt with time constraints or is ready to do so. This section is intended to give two

points of view: FASTUP [22] and a SuffixTree approach [23] on the one hand, and

ISM [16] on the other.
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2.3.1 SuffixTree and FASTUP Approaches

In [23], the authors proposed a solution based on the suffix tree techniques. The

structure used in that context acquires the data and builds up the frequent sequences

in one scan, by means of a suffix tree. This method is thus very appropriate to incre-

mental sequence extraction, because it only has to continue the data reading after

the update. Even though the effectiveness of such a method cannot be denied, its

complexity has to be discussed. The complexity in space of the proposed algorithm

(as well as that of ISM, described below) depends on the size of the database.

FASTUP, proposed by [22], is an example of the first work done for incremental

sequential pattern mining, where complexity in space depends on the size of the re-

sult. Indeed, FASTUP stands for an enhanced GSP, taking into account the previous

mining result, before generating and validating candidates, using the generating-

pruning method.

The main idea is that FASTUP, by means of the previous result, takes advantage

of information about sequence thresholdsto generate candidates, . It can therefore

avoid generating some sequences, depending on their support.

2.3.2 ISM

The ISM algorithm, proposed by [16], is actually an extension of SPADE [24],

which aims at considering the update by means of the negative border and a rewrit-

ing of the database.

Figure 3 is an example of a database and its update (items in bold characters). We

observe that 3 clients have been updated.

The first iterations of SPADE on DBspade, ended in the lattice given in Figure 4

(without the gray section). The main idea of ISM is to keepthe negative border (in

grey Fig. 4) NB, which is made of j-candidates, at the bottom of the hierarchy in

the lattice. In other words, let s be a sequence in NB, then ❁ s ✎✍❂ s ✎ is child of s and

s ✎❃☛ NB, and more precisely NB is made of sequences which are not frequent but

being generated by frequent subsequences. We can observe, in Figure 4 the lattice

and negative border for DBspade. Note that hash lines stand for a hierarchy that

does not end in a frequent sequence.

The first step of ISM aims at pruning, the sequences that become infrequent from

the set of frequent sequences after the update. One scan of the database is enough to

update the lattice as well as the negative border. The second step aims at taking into

account the new frequent sequences one by one, in order to make the information

browse the lattice using the SPADE generating process. The field of observation
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Client Itemset Items

10 A B

1 20 B

30 A B

100 A C

20 A C

2 30 A B C

50 B

10 A

30 B

3 40 A

110 C

120 B

30 A B

4 40 A

50 B

140 C

Fig. 3. DBspade, a database and its update

considered by ISM is thus limited to the new items. For further information you

can refer to [16,25].

Example 1 Let us consider item “C” in DBspade. This item only has a threshold

of 1 sequence according to SPADE. After the update given in Figure 3, ISM will

consider that support, which is now of 4 sequences. “C” is now going from NB to

the set of frequent sequences. In the same way, the sequences ✠ ( A ) ( A ) ( B ) ✡
and ✠ ( A ) ( B ) ( B ) ✡ become frequent after the update and go from NB to the

set of frequent sequences. This is the goal of the first step.

The second step is intended to consider the generation of candidates, but is limited

to the sequences added to the set of frequent sequences during the first step. For

instance, sequences ✠ ( A ) ( A ) ( B ) ✡ and ✠ ( A ) ( B ) ( B ) ✡ can generate the

candidate ✠ ( A ) ( A ) ( B ) ( B ) ✡ which will have a support of 0 sequences and

will be added to the negative border. After the update, the set of frequent sequences

will thus be: A, B, C, ✠ ( A ) ( A ) ✡ , ✠ ( B ) ( A ) ✡ , ✠ ( A B ) ✡ , ✠ ( A ) ( B ) ✡ ,

✠ ( B ) ( B ) ✡ , ✠ ( A ) ( C ) ✡ , ✠ ( B ) ( C ) ✡ , ✠ ( A ) ( A ) ( B ) ✡ , ✠ ( A B ) ( B )
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33
AB>B

44
AA>>AA

33
B>A

33
AB

44
AA>>BB

44
BB>>BB

AA BB

{}

22
A>B>B

11
B>B>B

11
B>A>B

11
B>B>A

22
A>B>A

22
AB>A

00
B>A>A

00
A>A>A

22
A>AB

22
A>A>B

11
B>AB

CC44 44 11

Fig. 4. The negative border, considered by ISM after using SPADE on the database from

Figure 3, before the update

✡ , ✠ ( A ) ( B ) ( B ) ✡ , ✠ ( A ) ( A ) ( C ) ✡ , ✠ ( A ) ( B ) ( C ) ✡ .

At the end of the second and last step, the lattice is updated and ISM can give the

new set of frequent sequences, as well as a new negative border, allowing the al-

gorithm to take a new update into account. As we observe in Figure 4, the lattice

storing the frequent itemsets and the negative border can be very large and mem-

ory intensive. Our proposal aims at providing better memory management and at

studying candidate generation in order to reduce the number of sequences to be

evaluated at each scan of the database.

3 ISE Algorithm

In this section we introduce the ISE algorithm for computing frequent sequences in

the updated database. After a brief description of our proposal, we explain, step by

step, our method for efficiently mining new frequent sequences using information

collected during an earlier mining process. Then we present the associated algo-

rithm and the optimization techniques.
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LDB Frequent sequences in the original database.

Ldb
1 Frequent 1-sequences embedded in db and validated on U .

candExt Candidate sequences generated from db.

f reqExt Frequent sequences obtained from candExt and validated on U .

f reqSeed Frequent sub-sequences of LDB extended with an item from Ldb
1 .

candInc Candidate sequences generated by appending sequences of

f reqExt to sequences of f reqSeed.

f reqInc Frequent sequences obtained from candInc and validated on U .

LU Frequent sequences in the updated database.

Table 1

Notation for Algorithm

3.1 An overview

How to solve the problem of incremental mining of frequent sequences by using

previously discovered information? To find all new frequent sequences, three kinds

of frequent sequences are considered. First, sequences embedded in DB could be-

come frequent since they have sufficient support with the incremental database,

i.e. sequences similar to sequences embedded in the original database appear in

the increment. Next, new frequent sequences embedded in db but not appearing in

the original database. Finally, sequences of DB might become frequent when items

from db are added.

To discover frequent sequences, the ISE algorithm executes iteratively. in Table 1

we summarize the notation used in the algorithm. Since the main consequence of

adding new customers is to verify the support of the frequent sequences in LDB, in

the next section we first illustrate iterations through examples mainly concerning

added transactions to existing customers. Finally, example 5 illustrates the behavior

of ISE when new transactions and new customers are added to the original database.

3.1.1 First Iteration

During the first pass on db, we count the support of individual items and we are

provided with 1-candExt standing for the set of items occurring at least once in db.

Considering the set of items embedded in DB we determine which items of db are

frequent in U . This set is called Ldb
1 .

At the end of this pass, if there are additional customers, we prune out frequent

sequences in LDB that no longer verify the minimum support.

Example 1 Let us consider the increment database in Figure 1. When db is scanned
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we find the support of each individual item during the pass over the data:
✂ ☞❄✠

☞ 50 ✑ ✡ , 2 ✑ , ☞❄✠❅☞ 60 ✑ ✡ , 2 ✑ , ☞❆✠✵☞ 70 ✑ ✡ , 1 ✑ , ☞❄✠❅☞ 80 ✑ ✡ , 2 ✑ , ☞❄✠❅☞ 90 ✑ ✡ , 1 ✑ , ☞❄✠❅☞ 100 ✑ ✡ ,

1 ✑ ✟ . Let us consider that a previous mining of DB provided us with the items em-

bedded in DB with their support:

item 10 20 30 40 50 60 70 90

support 3 3 2 2 1 1 1 1

Combining these items with the result of the scan db, we obtain the set of frequent

1-sequences which are embedded in db and frequent in U: Ldb
1
✁ ✂ ✠✌☞ 50 ✑ ✡ , ✠

☞ 60 ✑ ✡ , ✠✩☞ 70 ✑ ✡ , ✠✩☞ 80 ✑ ✡ , ✠✩☞ 90 ✑ ✡✯✟ .

We use the frequent 1-sequences in db to generate new candidates. This candi-

date generation works by joining Ldb
1 with Ldb

1 and yields the set of candidate 2-

sequences. We scan db and obtain the 2-sequences embedded in db. Such a set is

called 2-candExt. This phase is quite different from the GSP approach since we do

not consider the support constraint. We assume, according to Lemma 2 (Cf. Sec-

tion 3.2), that a candidate 2-sequence is in 2-candExt if and only if it occurs at

least once in db. The main reason is that we do not want to provide the set of all

2-sequences, but rather to obtain the set of potential extensions of items embedded

in db. In other words, if a candidate 2-sequence does not occur in db it cannot pos-

sibly be an extension of an original frequent sequence of DB, and thus cannot give

a frequent sequence for U . In the same way, if a candidate 2-sequence occurs in db,

this sequence might be an extension of previous sequences in DB.

Next, we scan U to find out frequent 2-sequences from 2-candExt. This set is called

f reqExt and it is achieved by discarding the 2-sequences that do not verify the min-

imum support from 2-candExt,.

Example 2 Let us consider Ldb
1 in the previous example. From this set, we can

generate the following sequences ✠✌☞ 50 60 ✑ ✡ , ✠✌☞ 50 ✑✬☞ 60 ✑ ✡ , ✠✌☞ 50 70 ✑ ✡ , ✠
☞ 50 ✑❇☞ 70 ✑ ✡ , ..., ✠✿☞ 80 ✑❇☞ 90 ✑ ✡ . To discover 2-candExt in the updated database,

we only have to consider if an item occurs at least once in db. For instance, since

the candidate ✠✸☞ 50 ✑✶☞ 60 ✑ ✡ does not appear in db, it is no longer considered

when U is scanned. After the scan of U with remaining candidates, we are thus

provided with the following set of frequent 2-sequences, 2- f reqExt ✁ ✂ ✠❈☞ 50 60 ✑ ✡ ,

✠✩☞ 50 ✑❉☞ 80 ✑ ✡ , ✠❊☞ 50 70 ✑ ✡ , ✠✩☞ 60 ✑✴☞ 80 ✑ ✡ , ✠❊☞ 60 ✑✴☞ 90 ✑ ✡✯✟ .

An additional operation is performed on the frequent items discovered in db. Based

on Property 1 and Lemma 2 (Cf. Section 3.2) the main idea is to retrieve in DB the

frequent sub-sequences of LDB preceding items of db, according to their order in

time.
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In order to find the frequent sub-sequences preceding an item efficiently, we create

for each frequent sub-sequence an array that has as many elements as the number

of frequent items in db. When scanning U , for each data sequence and for each

frequent sub-sequence we check whether it is contained in the data sequence. In

such a case, the support of each item following the sub-sequence is incremented.

During the scan to find out 2-freqExt, we also obtain the set of frequent sub-

sequences preceding items of db. From this set, by appending the items of db to

the frequent sub-sequences we obtain a new set of frequent sequences. This set is

called f reqSeed. In order to illustrate how this new set of frequent sequences is

obtained, let us consider the following example.

Items Frequent sub-sequences

50 ✠❊☞ 10 ✑ ✡ 3 ✠✩☞ 20 ✑ ✡ 3 ✠❊☞ 30 ✑ ✡ 2 ✠❊☞ 40 ✑ ✡ 2

✠❊☞ 10 ✑✴☞ 30 ✑ ✡ 2 ✠✩☞ 10 ✑❉☞ 40 ✑ ✡ 2 ✠✩☞ 20 ✑✫☞ 30 ✑ ✡ 2 ✠✩☞ 20 ✑✫☞ 40 ✑ ✡ 2 ✠❊☞ 10 20 ✑ ✡ 3

✠❊☞ 10 20 ✑✫☞ 30 ✑ ✡ 2 ✠❊☞ 10 20 ✑✴☞ 40 ✑ ✡ 2

60 ✠❊☞ 10 ✑ ✡ 2 ✠✩☞ 20 ✑ ✡ 2 ✠❊☞ 30 ✑ ✡ 2 ✠❊☞ 40 ✑ ✡ 2

✠❊☞ 10 ✑✴☞ 30 ✑ ✡ 2 ✠✩☞ 10 ✑❉☞ 40 ✑ ✡ 2 ✠✩☞ 20 ✑✫☞ 30 ✑ ✡ 2 ✠✩☞ 20 ✑✫☞ 40 ✑ ✡ 2 ✠❊☞ 10 20 ✑ ✡ 2

✠❊☞ 10 20 ✑✫☞ 30 ✑ ✡ 2 ✠❊☞ 10 20 ✑✴☞ 40 ✑ ✡ 2

70 ✠❊☞ 10 ✑ ✡ 2 ✠✩☞ 20 ✑ ✡ 2

✠❊☞ 10 20 ✑ ✡ 2

80 ✠❊☞ 10 ✑ ✡ 2 ✠✩☞ 20 ✑ ✡ 2 ✠❊☞ 30 ✑ ✡ 2 ✠❊☞ 40 ✑ ✡ 2

✠❊☞ 10 ✑✴☞ 30 ✑ ✡ 2 ✠✩☞ 10 ✑❉☞ 40 ✑ ✡ 2 ✠✩☞ 20 ✑✫☞ 30 ✑ ✡ 2 ✠✩☞ 20 ✑✫☞ 40 ✑ ✡ 2 ✠❊☞ 10 20 ✑ ✡ 2

✠❊☞ 10 20 ✑✫☞ 30 ✑ ✡ 2 ✠❊☞ 10 20 ✑✴☞ 40 ✑ ✡ 2

90 -

Fig. 5. Frequent sub-sequences occurring before items of db

Example 3 Let us consider the item 50 in Ldb
1 . For customer C1, 50 is preceded

by the following frequent sub-sequences: ✠✩☞ 10 ✑ ✡ , ✠✚☞ 20 ✑ ✡ and ✠✚☞ 10 20 ✑ ✡ . If

we now consider customer C2 with the updated transaction, we are provided with

the following set of frequent sub-sequences preceding 50: ✠✸☞ 10 ✑ ✡ , ✠✸☞ 20 ✑ ✡ ,

✠✚☞ 30 ✑ ✡ , ✠✩☞ 40 ✑ ✡ , ✠✚☞ 10 20 ✑ ✡ , ✠✩☞ 10 ✑✪☞ 30 ✑ ✡ , ✠✚☞ 10 ✑❋☞ 40 ✑ ✡ , ✠✚☞ 20 ✑❋☞ 30 ✑ ✡ ,

✠✱☞ 20 ✑●☞ 40 ✑ ✡ , ✠❍☞ 10 20 ✑■☞ 30 ✑ ✡ and ✠❍☞ 10 20 ✑■☞ 40 ✑ ✡ . The process is repeated

until all transactions are examined. In Figure 5 we show the frequent sub-sequences

as well as their support in U.

Let us now examine item 90. Even if the sequence ✠✸☞ 60 ✑✾☞ 90 ✑ ✡ could be de-

tected for C3 and C4, it is not considered since 60 was not frequent in the orig-

inal database, i.e. 60 ❂☛ LDB. Actually, this sequence is discovered as frequent in
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2-freqExt.

The set f reqSeed is obtained by appending to each item of Ldb
1 its associated

frequent sub-sequences. For example, if we consider item 70, then the following

sub-sequences are inserted into f reqSeed: ✠❏☞ 10 ✑❑☞ 70 ✑ ✡ , ✠✺☞ 20 ✑❑☞ 70 ✑ ✡ and

✠✩☞ 10 20 ✑✫☞ 70 ✑ ✡ .

At the end of the first scan on U , we are thus provided with a new set of frequent

2-sequences (in 2-freqExt) as well as a new set of frequent sequences (in freqSeed).

In subsequent iterations we go on to discover the all frequent sequences not yet

embedded in f reqSeed and 2-freqExt.

3.1.2 jth iteration

Let us assume that we are at the jth pass. In these subsequent iterations, we start by

generating new candidates from the two sets found in the previous pass. The main

idea of the candidate generation is to retrieve among sequences of f reqSeed and

j-freqExt, two sequences (s ☛ f reqSeed, s ✎ ☛ j- f reqExt) such that the last item of s

is the first item of s ✎ . When such a condition holds for a pair (s,s ✎ ), a new candidate

sequence is built by dropping the last item of s and appending s ✎ to the remaining

sequence. Furthermore, an additional operation is performed on j-freqExt: we use

the same candidate generation algorithm as in GSP to produce new candidate (j+1)-

sequences from j- f reqExt. Candidates occurring at least once in db, are inserted

in the ( j ▲ 1)-candExt set. The supports for all candidates are then obtained by

scanning U and those with minimum support become frequent sequences. The two

sets become respectively f reqInc and ( j ▲ 1)- f reqExt. The last one and f reqSeed

are then used to generate new candidates. The process iterates until all frequent

sequences are discovered, i.e. until no more candidates are generated.

For ease of understanding, Fig 6 illustrates, candidate generation at the jth itera-

tion. We can observe that, for the sake of efficiency, each scan aims at counting

support for extensions and incremental candidates obtained by means of previously

discovered extensions.

In the end, LU , the set of all frequent sequences, is obtained from LDB, and the

maximal sequences from f reqSeed ▼ f reqInc ▼ f reqExt. At this step, ISE provides

all the frequent sequences in the updated database, as shown in Theorem 1.

For ease of understanding, Figure 7 graphically describes the processes in the first

and jth iterations.

Example 4 Considering our example, 3rd iteration, we can thus generate from 2-

freqExt a new candidate sequence ✠ (50 60) (80) ✡ . Let us now consider how new

candidate sequences are generated from f reqSeed and 2- f reqExt. Let us consider

the sequence s ✁ ✠ (20) (40) (50) ✡ from f reqSeed and s ✎ ✁ ✠ (50 60) ✡ from 2-

f reqExt. The new candidate sequence ✠ (20) (40) (50 60) ✡ is obtained by drop-
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freqSeed 2− freqExt

scan (U)

3− candExtcandIncr

freqIncr 3− freqExt

scan (U)

4− candExtcandIncr

freqIncr 4− freqExt

scan (U)

candIncr 5− candExt

Fig. 6. ISE iterations with j ◆ 2

ping 50 from s and appending s ✎ to the remaining sequence.

At the 4th iteration, ✠ (50 60) (80) ✡ is added to 3-freqExt and combined with f reqSeed,

it generates new candidates as example: ✠ (10 20) (30) (50 60) (80) ✡ , ✠ (10 20)

(40) (50 60) (80) ✡ , ✠ (20) (40) (50 60) (80) ✡ and ✠ (20) (30) (50 60) (80) ✡ . Nev-

ertheless, there are no more candidates generated from 3-freqExt, and the process

ends by verifying the support of the candidates on U. The final maximal frequent

sequence set obtained is LU ✁ ✂ ✠ (60 90) ✡ , ✠ (10 20) (50 70) ✡ , ✠ (10 20) (30)

(50 60) (80) ✡ , ✠ (10 20) (40) (50 60) (80) ✡✯✟ .
Now let us examine how new customers are taken into account in the ISE algorithm.

As previously described, frequent sequences on the original database may become

invalid when adding customer since the support constraint does not hold anymore.

The main consequence for the ISE algorithm is to prune out from LDB, the set of

sequences that no longer satisfies the support. This is achieved at the beginning of

the process. In order to illustrate how such a situation is managed by ISE, let us

consider the following example.

Example 5 Let us now consider Figure 2, where a new customer as well as new

transactions are added to the original database. When db is scanned we find the

support of each individual item during the pass over the data:
✂ ☞❄✠✿☞ 10 ✡✬✄ 1 ✑ ✄ ☞❄✠☞ 40 ✑ ✡✯✄ 1 ✑ ✄ ☞❄✠✺☞ 50 ✑ ✡✯✄ 2 ✑ ✄ ☞❄✠❏☞ 60 ✑ ✡✬✄ 2 ✑ ✄ ☞❖✠P☞ 70 ✑ ✡✯✄ 2 ✑ ✄ ☞❄✠✺☞ 80 ✑ ✡✯✄ 3 ✑ ✄ ☞❆✠✺☞ 90 ✑ ✡

✄ 1 ✑ ✄ ☞◗✠❊☞ 100 ✑ ✄ 1 ✑ ✡✭✟ . Combining these items with LDB
1 , we obtain Ldb

1
✁ ✂ ✠❊☞ 10 ✑ ✡

✄ ✠✿☞ 40 ✑ ✡✯✄ ✠✮☞ 50 ✑ ✡✬✄ ✠✮☞ 60 ✑ ✡✬✄ ✠✮☞ 70 ✑ ✡✬✄ ✠✿☞ 80 ✑ ✡✭✟ . As one customer has been

added, in order to be frequent a sequence must appear in at least three transac-

tions. Let us now consider LDB. The set LDB
1 becomes:

✂ ☞❄✠✱☞ 10 ✑ ✄ 4 ✡ ✑ ✄ ☞❄✠❍☞ 20 ✑ ✡
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Scan db and prune out unfrequent sequences from LDB

Generate candidates from Ldb

11

2− candExt

LLdb

11

               check 2− candExt

               Associate subsequences of LDB and Ldb

11

Scan U

2− freqExt
freqSeed

Generate candidate extensions from 2− freqExt
Generate candidate sequences from freqSeed + 2− freqExt
i=3

i− candExt
candInc

check i− candExt
check candInc

Scan U

i− freqExt
freqInc

Generate candidate extensions from i− freqExt
Generate candidate sequences from freqSeed + i− freqExt
i=i+1

No more candInc or candExt can be generated

Fig. 7. Processes in the first and jth iterations of ISE

✄ 3 ✑ ✄ ☞◗✠❏☞ 40 ✑ ✡✯✄ 3 ✑ . That is to say that item 30 is pruned out from LDB
1 since it

is no longer frequent. According to Property 1, the set LDB
2 is reduced to

✂ ☞❄✠
☞ 10 20 ✑ ✄ 3 ✡ ✑ and LDB

3 is pruned out because the minimum support constraint does

not hold anymore. From Ldb
1 , we can now generate new candidates in 2-candExt:✂ ✠✺☞ 10 40 ✑ ✡✯✄ ✠❏☞ 10 ✑✼☞ 40 ✑ ✡✯✄ ✠✺☞ 10 50 ✑ ✡✯✄✆☎✝☎✍☎ ✠❏☞ 70 ✑✻☞ 80 ✑ ✡✭✟ . When db is

scanned, we prune out candidates not occurring in the increment and are pro-

vided with candidate 2-sequences occurring at least once in db. Next we scan U to

verify 2-candidates and sequences of the updated LDB that chronologically precede

sequences of Ldb
1 . There are only three candidate sequences that satisfy the sup-

port: 2- f reqExt ✁ ✂ ✠✩☞ 10 ✑✪☞ 70 ✑ ✡✯✄ ✠✩☞ 10 ✑✪☞ 80 ✑ ✡ ✠✚☞ 40 ✑❋☞ 80 ✑ ✟ . Let us now have

a closer look to frequent sequences occurring before items of Ldb
1 :
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Items Frequent Sub-sequences

10 ✠✩☞ 10 ✑ ✡ 0 ✠❊☞ 20 ✑ ✡ 0 ✠❊☞ 10 20 ✑ ✡ 0

40 ✠✩☞ 10 ✑ ✡ 2 ✠❊☞ 20 ✑ ✡ 2 ✠❊☞ 10 20 ✑ ✡ 2

50 ✠✩☞ 10 ✑ ✡ 3 ✠❊☞ 20 ✑ ✡ 3 ✠❊☞ 10 20 ✑ ✡ 3

60 ✠✩☞ 10 ✑ ✡ 2 ✠❊☞ 20 ✑ ✡ 2 ✠❊☞ 10 20 ✑ ✡ 2

70 ✠✩☞ 10 ✑ ✡ 3 ✠❊☞ 20 ✑ ✡ 2 ✠❊☞ 10 20 ✑ ✡ 2

80 ✠✩☞ 10 ✑ ✡ 3 ✠❊☞ 20 ✑ ✡ 2 ✠❊☞ 10 20 ✑ ✡ 2

The minimum support constraint holds for the following sequences: f reqSeed ✁ ✂ ✠
☞ 10 ✑❘☞ 70 ✑ ✡✯✄ ✠❙☞ 10 ✑❉☞ 80 ✑ ✡ ✠✵☞ 10 20 ✑❘☞ 50 ✑ ✡✭✟ (The sequences ✠✳☞ 10 ✑❘☞ 70 ✑ ✡ and

✠❊☞ 10 ✑✫☞ 80 ✑ ✡ are also in 2- f reqExt, this is a particular case addressed in section

3.3). Since, we cannot generate new candidates from f reqSeed and 2- f reqExt,

the process completes and all maximal frequent sequences are stored in LU ✁ ✂ ✠
☞ 10 20 ✑✫☞ 50 ✑ ✡✯✄ ✠✩☞ 10 ✑✫☞ 70 ✑ ✡✬✄ ✠❊☞ 10 ✑✫☞ 80 ✑ ✡ , ✠✩☞ 40 ✑✴☞ 80 ✑ ✡ , ✠✩☞ 60 ✑ ✡✯✟ .

3.2 The ISE Algorithm

Building on the above discussion, we shall now describe the ISE algorithm.

Algorithm ISE

Input: DB the original database, LDB the set of frequent sequences in DB, the

support of each item embedded in DB, db the increment database, minSupp the

minimum support threshold and k the size of the maximal sequences in LDB.

Output: The set LU of all frequent sequences in U ✁ DB ✕ db

Method:

//First Iteration

Ldb
1 ❚ /0

foreach i ☛ db do
if (supportDB ❯ db ☞ i ✑❱✒ minSupp) then Ldb

1 ❚ Ldb
1 ▼ ✂ i ✟ ;

enddo

Prune out from LDB sequences no more verifying the minimum support;

2-candExt ❚ generate candidate 2-sequences by joining Ldb
1 with Ldb

1 ;
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// find sequences occurring in db

Scan db for 2-candExt;

Generate from LDB, the set of frequent sub-sequences;

Scan U to validate candidate 2-candExt and frequent sub-sequences occurring be-

fore

items of Ldb
1 ;

f reqSeed ❚ frequent sub-sequences occurring before items of Ldb
1 and appended

with the item;

2- f reqExt ❚ frequent sequences from 2-candExt;

// jth Iteration

j=2;

While ☞ j- f reqExt!= /0 ✑ do
candInc ❚ generate candidates from f reqSeed and j- f reqExt;

j++;

j-candExt ❚ Generate candidate

j-sequences from j- f reqExt;

// find sequences occurring in db

Scan db for j-candExt;

if ( j-candExt!= /0 OR candInc!= /0)then
Scan U for j-candExt and candInc;

endif
j- f reqExt ❚ frequent j-sequences;

f reqInc ❚ f reqInc + candidates from candInc verifying the support on U ;

enddo
LU ❚ LDB ▼ ✂ maximal frequent sequences in f reqSeed ▼ f reqInc ▼ f reqExt ✟ ;
end Algorithm ISE

To prove that ISE provides the set of frequent sequences embedded in U , we first

show in the following two lemmas that every new frequent sequence can be written

as the composition of two sub-sequences. The former is a frequent sequence in the

original database while the latter occurs at least once in the updated data.

Lemma 1 Let F be a frequent sequence on U such that F does not appear in LDB.

Then F is such that its last itemset occurs at least once in db.

Proof:

❲ case ❳F ❳ ✁ 1: Since F ❂☛ LDB, F contains an itemset occurring at least once in db,

thus F ends with a single itemset occurring at least once in db.❲ case ❳F ❳ ✡ 1: F can be written as ✠✰✠ A ✡ ✠ B ✡✰✡ with A and B sequences

such that 0 ❨✩❳A ❳❩✠✩❳F ❳ , 0 ✠✚❳B ❳❩❨❊❳F ❳ , ❳A ❳❬▲❭❳B ❳ ✁ ❳F ❳ with B ❂☛ db. Let MB be the

set of all data sequences containing B. Let MAB be the set of all data sequences
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containing F . We know that if ❳MB ❳ ✁ n and ❳MAB ❳ ✁ m then minSupp ❨ m ❨ n

(according to Property 1). Furthermore MAB ☛ DB (since B ❂☛ db and transactions

are ordered by time) then ✠✿✠ A ✡ ✠ B ✡✮✡ is frequent on DB, this implies

F ☛ LDB which contradicts assumption F ❂☛ LDB. Thus, if a frequent sequence F

does not appear in LDB, F ends with an itemset occurring at least once in db ❪
Lemma 2 Let F be a frequent sequence on U such that F does not appear in LDB.

F can thus be written as ✠✰✠ D ✡ ✠ S ✡✰✡ , where D and S are two sequences,

❳D ❳❫✒ 0, ❳ S ❳❴✒ 1, such that S is the maximal sub-sequence occurring at least once

in db and D is included in (or is) a frequent sequence from LDB.

Proof:

❲ case ❳ S ❳ ✁ ❳F ❳ : thus ❳D ❳ ✁ 0 and D ☛ LDB.❲ case 1 ❨✿❳ S ❳✘✠✮❳F ❳ : that is, D ✁ ✠✚☞ i1 ✑❵☞ i2 ✑ ☎✍☎ ☞ i j ❛ 1 ✑ ✡ and S ✁ ✠✚☞ i j ✑ ☎✝☎ ☞ it ✑ ✡ where

S is the maximal sub-sequence ending F and occurring at least once in db (from

Lemma 1 we know that ❳ S ❳❜✒ 1). Let MD be the set of all data sequences con-

taining D. Let MF be the set of all data sequences containing F . We know that if

❳MD ❳ ✁ n and ❳MF ❳ ✁ m then minSupp ❨ m ❨ n (according to Property 1). Fur-

thermore, MD ☛ DB (since by assumption i j ❛ 1 ❂☛ db and transactions are ordered

chronologically). Thus D ☛ LDB ❪
Considering a new frequent sequence, we show that it can be written as two sub-

sequences such that the latter is generated as a candidate extension by ISE.

Lemma 3 Let F be a frequent sequence on U such that F does not appear in LDB.

F can be written as ✠✩✠ D ✡ ✠ S ✡✚✡ where D and S are two sequences verifying

❳D ❳❴✒ 0 and ❳ S ❳❴✒ 1, S is the maximal sub-sequence occurring at least once in db,

D is included in (or is) a frequent sequence from LDB and S is included in candExt.

Proof: Thanks to Lemma 2, we only have to show that S occurs in candExt.

❲ case S is a one transaction sequence, reduced to a single item: S is thus found at

the first scan on db and added to 1-candExt.❲ case S contains more than one item: candExt is built up ’a la GSP’ from all fre-

quent items in db and is thus a superset of all frequent sequences on U occurring

in db ❪
The following Theorem guarantees the correctness of the ISE approach.

Theorem 1 Let F be a frequent sequence on U such that F does not appear in LDB

and ❳F ❳✘❨ k ▲ 1. Then F is generated as a candidate by ISE.

Proof: From Lemma 2 let us consider different possibilities for S.

❲ case S ✁ F: Thus S will be generated in candExt (Lemma 3) and added to
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f reqExt.❲ cases S ❝✁ F:❞ case S is a one transaction sequence, reduced to a single item i: Thus ✠❊✠ D ✡✠✩☞ i ✑ ✡✩✡ will be considered in the association made by f reqSeed.❞ case S contains more than one item: Let us consider i11
the first item from the

first itemset of S. i11
is frequent on db, thus ✠❊✠ D ✡ ✠❊☞ i11

✑ ✡❊✡ is generated

in f reqSeed. According to Lemma 3, S occurs in f reqExt and will be used by

ISE to build ✠✩✠ D ✡ ✠ S ✡✩✡ in candInc ❪

3.3 Optimizations

In order to speed up the performance of the ISE algorithm we consider two opti-

mization techniques for generating candidates.

As the speed of algorithms for mining association rules, as well as sequential pat-

terns, depends very much on the size of the candidate set, we first improve perfor-

mance by using information on items embedded in Ldb, i.e. frequent items in db.

The optimization is based on the following lemma:

Lemma 4 Let us consider two sequences (s ☛ f reqSeed ✄ s ✎ ☛ f reqExt) such that

an item i ☛ Ldb
1 is the last item of s and the first item of s ✎ . If there exists an item

j ☛ Ldb
1 such that j is in s ✎ and j is not associated to s in f reqSeed, the sequence

obtained by appending s ✎ to s is not frequent.

Proof: If s is not followed by j in f reqSeed, then ✠ s j ✡ is not frequent. Hence

✠ s s ✎ ✡ is not frequent since there exists an infrequent sub-sequence of ✠ s s ✎ ✡ .

Using this lemma, at the jth iteration, with j ✒ 2, we can reduce the number of

candidates significantly by avoiding the generation of ✠ s s ✎ ✡ as a candidate. In

our experiments, the number of candidates was reduced by nearly 40%. The only

additional cost is to find out whether there is a frequent sub-sequence matching the

first one for each item occurring in the second sequence. As we are provided with

an array that stores the items occurring after the sequence for each frequent sub-

sequence, the additional cost of this optimization is relatively low.

In order to illustrate this optimization, let us consider the following example.

Example 6 Let us consider the frequent sequence s ☛ 2- f reqExt such as s ✁ ✠ (50

70) ✡ . We have found in f reqSeed the following frequent sequence ✠ (10) (30)

(50) ✡ . According to the previous generation phase, we would generate ✠ (10) (30)

(50 70) ✡ . Nevertheless, the sequence ✠ (10) (30) ✡ is never followed by 70. So,

we can conclude that ✠ (10) (30) (70) ✡ is not frequent. This sequence is a sub-
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❡
D
❡

Number of customers (size of Database)❡
C
❡

Average number of transactions per Customer❡
T
❡

Average number of items per Transaction❡
S
❡

Average length of maximal potentially large Sequences❡
I
❡

Average size of Itemsets in maximal potentially large sequences

NS Number of maximal potentially large Sequences

NI Number of maximal potentially large Itemsets

N Number of items

I ❢ Average number of itemsets removed from sequences in U to build db

D% Percentage of updated transactions in U

C% Percentage of customers removed from U in order to build db

Table 2

Parameters

sequence of ✠ (10) (30) (50 70) ✡ , thus before generating we know that ✠ (10) (30)

(50 70) ✡ is not frequent. Hence, this last sequence is not generated.

The main concern of the second optimization is to avoid generating candidate

sequences that have already been found to be frequent in a previous phase. In

fact, when generating a new candidate by appending a sequence of f reqExt to

a sequence of f reqSeed we first test if this candidate was not already discov-

ered frequent. In this case the candidate is no longer considered. To illustrate,

consider ✠ (30) (40) ✡ to be a frequent sequence in 2- f reqExt. Let us now as-

sume that ✠ (10 20) (30) (40) ✡ and ✠ (10 20) (30) ✡ are frequent in f reqSeed.

From the last sequence the generation would provide the following candidate ✠
☞ 10 20 ✑✪☞ 30 ✑✫☞ 40 ✑ ✡ which was already found frequent. This optimization reduces

the number of candidates before U is scanned at negligible cost.

4 Experiments

In this section, we present the performance results of our ISE algorithm and the

GSP algorithm. All experiments were performed on a PC Station with a CPU clock

rate of 450 MHz, 64MB of main memory, a Linux System and a 9GB disk drive

(IDE).
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Name —C— —I— N —D— Size (Mo)

C9-I4-N1K-D50K 9 4 1,000 50,000 12

C9-I4-N2K-D100K 9 4 2,000 100,000 30

C12-I2-N2K-D100K 12 2 2,000 100,000 30

C12-I4-N1K-D50K 12 4 1,000 50,000 18

C13-I3-N20K-D500K 13 3 20,000 500,000 230

C15-I4-N30K-D600K 15 4 30,000 600,000 320

C20-I4-N2K-D800K 20 4 2,000 800,000 460

Table 3

Parameter values for synthetic datasets

4.1 Datasets

We used synthetic datasets to study the algorithm performance. The synthetic datasets

were first generated using the same techniques as introduced in [10] 1 . The gener-

ation of DB and db was performed as follows. As we wanted to model real life

updates very accurately, as in [12], we first generated all the transactions from the

same statistical pattern, then databases of size ❳ U ❳ = ❳ DB ▲ db ❳ were generated.

In order to assess the relative performance of ISE when new transactions were ap-

pended to customers already existing in DB, we removed itemsets from the database

U using the user defined parameter I ❛ . The number of transactions which were

modified was provided by the parameter D% standing for the percentage of trans-

actions modified. The transactions embedding removed itemsets were randomly

chosen according to D%. Finally, removed transactions were stored in the incre-

ment database db while remaining transactions were stored in the database DB. In

the same way, in order to investigate the behavior of ISE when new customers were

added, the number of customers removed from U was provided by the parameter

C%.

Table 2 lists the parameters used in the data generation method and Table 3 shows

the databases used and their properties. For experiments we first investigated the

behavior of ISE when new transactions were added. For these experiments, I ❛ was

set to 4 and D% was set to 90%. Finally, to study the performance of our algorithm

with new customers, C% was set to 10% and 5%.

1 The synthetic data generation program is available at the following URL

(http://www.almaden.ibm.com/cs/quest).
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4.2 Comparison of ISE with GSP

In this section, we compare the naive approach, i.e. using GSP for mining the up-

dated database from scratch, and our incremental algorithm. We also test how it

scales up as the number of transactions increases. Finally, we carried out exper-

iments to analyze the performance of the ISE algorithm according to the size of

updates.

C9-I4-N1K-D50K C12-I2-N2K-D100K

C13-I3-N20K-D500K

Fig. 8. Execution times

4.2.1 Naive vs. ISE algorithm

Figure 8 shows experiments conducted on the different datasets using different

minimum support ranges to get meaningful response times. Note the minsupport

thresholds are adjusted to be as low as possible while retaining reasonable execu-

tion times. The label “Incremental Mining” corresponds to the ISE algorithm while

“GSP” stands for GSP used for mining the updated database from scratch. “Mining

from scratch” corresponds to ISE for mining sequential patterns, i.e. assuming that
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no previous mining has been performed.

Figure 8 clearly indicates that the performance gap between the two algorithms in-

creases with decreasing minimum support. We can observe that ISE is 3.5 to 4 times

faster than running GSP from scratch. It can also be noticed that ISE outperforms

GSP for small support as well as large support value: ISE is still 2.5 to 3 times

faster for large support. The same results are found even if the number of itemsets

is large. For instance, the last graph in Figure 8 reports an experiment conducted

for investigating the effect of the number of itemsets on the performance. When the

support is lower the GSP algorithm provides the worst performance.

In Section 4.3.1, we shall investigate the correlation between execution times and

the number of candidates.

4.2.2 Performance in scaled-up databases

❣❤❥✐✍❦ ❧♥♠♣♦ qr✐❫s❵♦ t✛✐
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Fig. 9. Scale-up: Number of total transactions

We examined how ISE behaves as the number of total transactions is increased. We

would expect the algorithm to have almost linear scale-up. This is confirmed by

figure 9 which shows that ISE scales up linearly as the number of transactions is

increased ten-fold, from 0.1 million to 1 million. Experiments were performed on

the C12-I4-N1K-D50K dataset with three levels of minimum support (2%, 1 ☎ 5%

and 1%). During our evaluation, the size of the increment database was always

proportional (D% ✁ 90% and I ❛ ✁ 4) to the number of new added transactions.

The execution times are normalized with respect to the time for the 0.1 million

dataset.

4.2.3 Varying the size of added transactions

We carried out some experiments to analyze the performance of the ISE algorithm

according to the size of updates. We used the databases C13-I3-N20K-D500K and

C12-I2-N2K-D100K for experiments with a threshold of respectively 0.6% and
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C13-I3-N20K-D500K C12-I2-N2K-D100K

Fig. 10. Size of updates

0.4%. From these databases, we investigated the performance of ISE the number of

itemsets removed from the generated database was varied, together with the number

of clients. Deleted transactions were stored in the increment database db while the

remaining transactions were stored in the DB database. We first ran GSP to mine

LDB and then ran ISE on the updated database. Figure 10 shows the result of this

experiment when considering the time for ISE.

For the first one, we can observe that ISE is very efficient from 1 to 6 itemsets

removed. The frequent sequences in LU are obtained in less than 110 seconds. As

the number of removed transactions increases, the amount of time taken by ISE

increases. For instance, when 10 itemsets are deleted from the original database,

ISE takes 180 seconds for 30% of transactions to 215 seconds if the items were

deleted from all the transactions. The main reason is that the changes to the original

database are so numerous that the results obtained during an earlier mining are not

helpful. Interestingly, we also noticed that the time taken by the algorithm does not

depend very much on the number of transactions updated.

Let us consider the second surface, the algorithm takes more and more time as the

number of itemsets removed grows. Nevertheless, when 3 itemsets are removed

from the generated database, ISE takes only 30 seconds to discover the set of all

sequential patterns.

4.2.4 Varying the number of added customers

We assume, since it is realistic and suited to real applications, that the average size

of the added sequences is less than or equal to the average size of the sequences em-

bedded in the original database. Intuitively, an obvious approach would be to study

the behavior of ISE when the number of new customers added to the database is in-

creased. In fact, this nave idea could not be a significant indicator. This is because
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when the number of new customers increases, then the number of occurrences of

a sequence must also be increased to satisfy the minimum support constraint. Ob-

viously, as at the beginning of the ISE algorithm, we prune out from LDB frequent

sequences that no longer satisfy the support, so the more of cutomers are added, the

more of previous frequent sequences are pruned out. The main consequence is that

the number of frequent sequences decreases, together with the execution times.

A much more interesting approach for evaluating ISE performance is to carry out

experiments comparing execution times of GSP vs. ISE on different datasets while

varying the minimum support. Figure 11 shows experiments conducted on two

datasets C9-I4-N2K-D100K and C20-I4-N2K-D800K where 10% and 5% of cus-

tomers have been added respectively. We can observe that ISE is very efficient and

even when customers are added it is nearly twice as fast as applying GSP from

scratch.

C9-I4-N2K-D100K C20-I4-N2K-D800K
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Fig. 11. Execution times when 10% and 5% of customers are added to the original database

4.3 ISE for Mining Sequential Patterns

In this section we investigate the performance of ISE for mining sequential patterns.

We designed some experiments to analyze the performance of ISE when mining

sequential patterns using the same datasets as in Section 4.2.1. Nevertheless we

performed the following operation on each dataset. First we removed 6 items to

60[l22]% of transactions in order to provide the increment database. Second we ran

GSP to mine the k-frequent sequences in DB. Finally we ran ISE. In other words,

the graphs in Figure 8 show two behaviors. The graph labeled “GSP” indicates

the time response of GSP on U , whereas the “ISE” graph shows GSP on DB plus

ISE on db. We observe that ISE is from 1.7 to 3 times faster than GSP for mining

sequential patterns. The main reason for the gain in performance is the reduced
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number of candidates. We study this effect in the next section. As expected, we

also observe that using ISE for incremental mining instead of mining from scratch

is still efficient since the incremental mining is nearly twice as faster as mining

from scratch with these data sets.

4.3.1 Candidate Sets

C13-I3-N20K-D500K C15-I4-N30K-D600K

Fig. 12. Candidate sets

In order to explain the correlation between the number of candidates and the exe-

cution times we compared the number of candidate sets generated by GSP and our

algorithm. Results are depicted in Figure 12. As we can see, the number of can-

didates for GSP is nearly twice the number for ISE. Let us have a closer look at

low support. In the first graph, GSP generates more than 7000 candidates while ISE

generates only 4000 candidates. The same result is obtained in the second graph,

where GSP generates more than 14000 candidates while our algorithm generates

8000.

4.3.2 Varying the size of updates

Finally, we carried out some experiments in order to analyze the performance of the

ISE algorithm with respect to the size of updates. Experiments were conducted on

datasets C12-I2-N2K-D100K and C13-I3-N20K-D500K with a threshold of 0.4%.

Let us consider the first surface in Figure 13. The best results are obtained when 5

itemsets are deleted from the database. All frequent sequences are then obtained in

less than 17 seconds. The algorithm is still very efficient with from 2 to 7 itemsets

deleted but when 5 itemsets are deleted from 10 % of customers, ISE is less effi-

cient.

In the second surface of Figure 13, the performance of ISE is quite similar and best

results are obtained when 9 itemsets are removed from 80% of customers.
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C12-I2-N2K-D100K C13-I3-N20K-D500K

Fig. 13. Size of updates

5 Conclusion

In this paper we present the ISE approach for the incremental mining of sequen-

tial patterns in large databases. This method is based on the discovery of frequent

sequences by only considering frequent sequences obtained by an earlier mining

step. By proposing an iterative approach based only on such frequent sequences

we are able to handle large databases without having to maintain negative border

information, which was proved to be very memory consuming [16]. Maintaining

such a border is well adapted to incremental association mining [26,19], where as-

sociation rules are only intended to discover intra-transaction patterns (itemsets).

Nevertheless, in sequence mining, we also have to discover inter-transaction pat-

terns (sequences) and the set of all frequent sequences is an unbounded superset

of the set of frequent itemsets (bounded) [16]. The main consequence is that such

approaches are very limited by the negative border size.

Our performance results show that the ISE method is very efficient since it performs

much better than re-run discovery algorithms when data is updated. We found by

means of empirical evaluations that the proposed approach was so efficient that it

was quicker to extract an increment from the original database then apply ISE to

mine sequential patterns than to use the GSP algorithm. Experiments on incremen-

tal web usage mining were also performed, for further information refer to [27].

There are various avenues for future work on incremental mining. Firstly, while

the incremental approach is applicable to databases, which are frequently updated

when new transactions or new customers are added to an original database, it also

appropriate to many other fields. For example, both electronic commerce and web

usage mining require deletion or modification to be taken into account in order to
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save storage space or because information is no longer of interest or has become

invalid. We are currently investigating how to manage these operations in the ISE

algorithm.

Second, we are currently studying how to improve the overall process of incremen-

tal mining. By means of experimentation, we would like to discover measures that

can suggest to us when ISE should be applied to find out the new frequent sequences

in the updated database. Such an approach has been proposed in another context,

[28], based on a sampling technique in order to estimate the difference between old

and new association rules. We are currently investigating whether other measures

could be found by analyzing the data distribution of the original database.

A recaser

In [16], the authors propose an incremental mining algorithm, based on the SPADE

approach [11], which can update the sequential patterns in a database when new

transactions and new customers are added. It is based on an increment sequence

lattice consisting of all frequent sequences and all sequences in the negative border

of the original database. This negative border is the collection of all sequences that

are not frequent but whose generating sub-sequences are both frequent. Further-

more, the support of each member is also retained in the lattice. The main idea of

this algorithm is that when incremental data arrives the incremental part is scanned

once to incorporate the new information in the lattice. Then new data is combined

with the frequent sequences and negative border in order to determine the portions

of the original database that need to be re-scanned. Even though this approach is

very effective, maintaining the negative border is very memory consuming and not

appropriate for very large databases [16].
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