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Abstract

In this paper we consider the problem of the incremental mining of sequential patterns
when new transactions or new customers are added to an original database. We present
a new algorithm for mining frequent sequences that uses information collected during an
earlier mining process to cut down the cost of finding new sequential patterns in the up-
dated database. Our test shows that the algorithm performs significantly faster than the
naive approach of mining on the whole updated database from scratch. The difference is so
pronounced that this algorithm could also be useful for mining sequential patterns, since in
many cases it is faster to apply our algorithm than to mine sequential patterns using a stan-
dard algorithm, by breaking down the database into an original database plus an increment.

Key words: Sequential patterns, incremental mining, data mining

1 Introduction

Most research into data mining has concentrated on the problem of mining associa-
tion rules [ 1-8]. Although sequential patterns are of great practical importance (e.g.
alarms in telecommunications networks, identifying plan failures, analysis of Web
access databases, etc.) they have received relatively little attention [9—11]. First in-
troduced in [9], where an efficient algorithm called AprioriAll was proposed, the
problem of mining sequential patterns is to discover temporal relationships between
facts embedded in the database. The facts under consideration are simply the char-
acteristics of individuals, or observations of individual behavior. For example, in a
video database, a sequential pattern could be “95% of customers bought ’Star Wars
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and The Empire Strikes Back’, then *Return of the Jedi’, and then *The Phantom
Menace’ ”. In [10], the definition of the problem is extended by handling time con-
straints and taxonomies (is-a hierarchies) and a new algorithm, called GSP, which
outperformed AprioriAll by up to 20 times, is proposed.

As databases evolve the problem of maintaining sequential patterns over a signifi-
cantly long period of time becomes essential, since a large number of new records
may be added to a database. To reflect the current state of the database where previ-
ous sequential patterns would become irrelevant and new sequential patterns might
appear, there is a need for efficient algorithms to update, maintain and manage the
information discovered [12]. Several efficient algorithms for maintaining associa-
tion rules have been developed [12—15]. Nevertheless, the problem of maintaining
sequential patterns is much more complicated than maintaining association rules,
since transaction cutting and sequence permutation have to be taken into account
[16]. In order to illustrate the problem, let us consider an original and an incre-
mental database. Then, to compute the set of sequential patterns embedded in the
updated database, we have to discover all sequential patterns which were not fre-
quent in the original database but become frequent with the increment. We also
have to examine all transactions in the original database that can be extended to
become frequent. Furthermore, old frequent sequences may become invalid when
a new customer is added. The challenge is thus to discover all the frequent patterns
in the updated database with far greater efficiency than the naive method of mining
sequential patterns from scratch.

In this paper, we propose an efficient algorithm, called ISE (Incremental Sequence
Extraction), for computing the frequent sequences in the updated database when
new transactions and new customers are added to the original database. ISE min-
imizes computational costs by re-using the minimal information from the old fre-
quent sequences, i.e. the support of frequent sequences. The main new feature of
ISE is that the set of candidate sequences to be tested is substantially reduced.
Furthermore, some optimization techniques for improving the approach are also
provided.

Empirical evaluations were carried out to analyze the performance of ISE and com-
pare it against cases where GSP is applied to the updated database from scratch.
Experiments showed that ISE significantly outperforms the GSP algorithm by a
factor of 4 to 6. Indeed the difference is so pronounced that our algorithm may be
useful for mining sequential patterns as well as incremental mining, since in many
cases, instead of mining the database with the GSP algorithm, it is faster to ex-
tract an increment from the database, then apply our approach considering that the
database is broken down into an original database plus an increment. Our exper-
imental results show an improvement in performance by a factor of 2 to 5 in the
comparison.



The rest of this paper is organized as follows. Section 2, states the problem and
describes related research. The algorithm ISE is described in Section 3. Section 4
describes the experiments in detail and interprets the performance results obtained
. Finally, Section 5 concludes the paper with future avenues for research.

2 Statement of the Problem

In this section we give the formal definition of the problem of incremental sequen-
tial pattern mining. First, we formulate the concept of sequence mining summariz-
ing the formal description of the problem introduced in [9] and extended in [10].
A brief overview of the GSP algorithm is also provided. Second we examine the
incremental update problem in detail.

2.1 Mining of Sequential Patterns

Let DB be a set of customer transactions where each transaction 7' consists of
customer-id, transaction time and a set of items involved in the transaction.

Let I ={i1,i2,...,i;} be a set of literals called items. An itemset is a non-empty set
of items. A sequence s is a set of itemsets ordered according to their time stamp.
It is denoted by < s152...s, >, where s;, j € 1..n, is an itemset. A k-sequence is a
sequence of k items (or of length k). For example, let us consider that a given cus-
tomer purchased items 1,2,3,4,5, according to the following sequence:s =< (1)
(2, 3) (4) (5)>. This means that apart from 2 and 3 that were purchased together,
1.e. during a common transaction, items in the sequence were bought separately. s
is a 5-sequence.

A sequence < s1s7...5, > is a sub-sequence of another sequence < s/s...s}, > if
there exist integers i| < iy < ...ij... < i, such that s; C sgl,sz C sﬁz, o8y C sgn. For
example, the sequence s’ = < (2) (5) > is a sub-sequence of s because (2) C (2, 3)
and (5) C (5). However < (2) (3) > is not a sub-sequence of s since items were not
bought during the same transaction.

Property 1 IfA C B for sequences A, B then supp(A) > supp(B) because all trans-
actions in DB that support B necessarily also support A.

All transactions from the same customer are grouped together and sorted in increas-
ing order and are called a data sequence. A support value (supp(s)) for a sequence
gives its number of actual occurrences in DB. Nevertheless, a sequence in a data
sequence is taken into account only once to compute the support even if several
occurrences are discovered. In other words, the support of a sequence is defined as



the fraction of total distinct data sequences that contain s. A data sequence contains
a sequence s if s is a sub-sequence of the data sequence. In order to decide whether
a sequence is frequent or not, a minimum support value (minSupp) is specified by
the user, and the sequence is said to befrequent if the condition supp(s) > minSupp
holds.

Given a database of customer transactions the problem of sequential pattern mining
is to find all the sequences whose support is greater than a specified threshold (min-
imum support). Each of these represents a sequential pattern, also called a frequent
sequence.

The task of discovering all the frequent sequences in large databases is quite chal-
lenging since the search space is extremely large (e.g. with m attributes there are
O(mk) potentially frequent sequences of length k) [11]. To the best of our knowl-
edge, the problem of mining sequential patterns according to the previous defini-
tions has received relatively little attention.

We shall now briefly review the GSP algorithm. For building up candidate and fre-
quent sequences, the GSP algorithm makes multiple passes over the database. The
first step aims at computing the support of each item in the database. When this step
has been completed, the frequent items (i.e. those that satisfy the minimum support)
have been discovered. They are considered as frequent 1-sequences (sequences hav-
ing a single itemset, itself a singleton). The set of candidate 2-sequences is built up
according to the following assumption: candidate 2-sequences could be any cou-
ple of frequent items, whether embedded in the same transaction or not. Frequent
2-sequences are determined by counting the support. From this point, candidate k-
sequences are generated from frequent (k-1)-sequences obtained in pass-(k-7). The
main idea of candidate generation is to retrieve, from among (k-1)-sequences, pairs
of sequences (s, s") such that discarding the first element of the former and the last
element of the latter results in two fully matching sequences. When such a condi-
tion holds for a pair (s, s’), a new candidate sequence is built by appending the last
item of s to s. The supports for these candidates are then computed and those with
minimum support become frequent sequences. The process iterates until no more
candidate sequences are formed.

2.2 Incremental Mining on Discovered Sequential Patterns

Let DB be the original database and minSupp the minimum support. Let db be the
increment database where new transactions or new customers are added to DB. We
assume that each transaction on db has been sorted by customer-id and transaction
time. U = DB Udb is the updated database containing all sequences from DB and
db.



Cust-Id Itemsets
Cl 10 20 | 20 | 50 70 Itemsets
C2 10 20 | 30 | 40 506070 | 80 100
C3 10 20 [ 40 | 30 5060 80 90
Cc4 60 90
(DB) (db)

Fig. 1. An original database (DB) and an increment database with new transactions (db)

Let LP8 be the set of frequent sequences in DB. The problem of incremental min-
ing of sequential patterns is to find frequent sequences in U, noted LY, with respect
to the same minimum support. Furthermore, the incremental approach has to take
advantage of previously discovered patterns in order to avoid re-running all mining
algorithms when the data is updated.

First, we consider the problem when new transactions are appended to customers
already existing in the database. In order to illustrate this problem, let us consider
the base DB given in Figure 1, giving facts about a population reduced to just
four customers. Transactions are ordered according to their time-stamp. For in-
stance, the data sequence of customer C3 is < (10 20) (40) (30) >. Let us assume
that the minimum support value is 50%, which means that in order to be consid-
ered as frequent a sequence must be observed for at least two customers. The set
of all maximum frequent sequences embedded in the database is the following:
LPB = {< (10 20) (30) >, < (10 20) (40) >}. After some update activities, let
us consider the increment database db (described in Figure 1) where new transac-
tions are appended to customers C2 and C3. Assuming that the support value is the
same, the following two sequences < (60) (90) > and < (10 20) (50 70) > be-
come frequent after the database update since they have sufficient support. Let us
consider the first of these. The sequence is not frequent in DB since the minimum
support does not hold (it only occurs for the last customer). With the increment
database, this sequence becomes frequent since it appears in the data sequences
of the customer C3 and C4. The sequence < (10 20) > could be detected for
customers C1, C2 and C3 in the original database. By introducing the increment
database the new frequent sequence < (10 20) (50 70) > is discovered because it
matches with transactions of C1 and C2. Furthermore, new frequent sequences are
discovered: < (10 20) (30) (50 60) (80) > and < (10 20) (40) (50 60) (80) >.
< (50 60) (80) > is a frequent sequence in db and on scanning DB we find that the
frequent sequences in LP? are its predecessor.



Cust-Id Itemsets
Cl 10 20 | 20 | 50 70 Itemsets
C2 10 20 | 30 | 40 506070 | 80 100
C3 10 20 [ 40 | 30 5060 80 90
Cc4 60 90
C5 10 40 70 80
(DB) (db)

Fig. 2. An original database (DB) and an increment database with new transactions and new
customers (db)

Let us now consider the problem when new customers and new transactions are
appended to the original database (Figure 2). Let us consider that the minimum
support value is still 50%, which means that in order to be considered as frequent a
sequence must now be observed for at least three customers since a new customer
C5 has been added. According to this constraint the set of frequent sequences em-
bedded in the original database becomes L”8 = {< (10 20) >} since the sequences
< (10 20) (30) > and < (10 20) (40) > occur only for customers C2 and C3.
Nevertheless, the sequence < (10 20) > is still frequent since it appears in the
data sequences of customer C1, C2 and C3. By introducing the increment database,
the set of frequent sequences in the updated database is LY = {< (10 20) (50) >,
< (10) (70) >, < (10) (80) >, < (40) (80) >, < (60) >}. Let us now take a
closer look at the sequence < (10 20) (50) >. This sequence could be detected
for customer C1 in the original database but it is not a frequent sequence. Nev-
ertheless, as the item 50 becomes frequent with the increment database, this se-
quence also matches with transactions of C2 and C3. In the same way, the sequence
< (10) (70) > becomes frequent since, with the increment, it appears in the data
sequences of C1, C2 and the new customer C5.

2.3  Related Work

The problem of incremental association rule mining has been much addressed
([12,13,17-21]), but incremental sequential pattern mining has received very lit-
tle attention. Furthermore, among the available work in the field, no research has
dealt with time constraints or is ready to do so. This section is intended to give two
points of view: FASTUP [22] and a SuffixTree approach [23] on the one hand, and
ISM [16] on the other.



2.3.1 SuffixTree and FASTUP Approaches

In [23], the authors proposed a solution based on the suffix tree techniques. The
structure used in that context acquires the data and builds up the frequent sequences
in one scan, by means of a suffix tree. This method is thus very appropriate to incre-
mental sequence extraction, because it only has to continue the data reading after
the update. Even though the effectiveness of such a method cannot be denied, its
complexity has to be discussed. The complexity in space of the proposed algorithm
(as well as that of ISM, described below) depends on the size of the database.

FASTUP, proposed by [22], is an example of the first work done for incremental
sequential pattern mining, where complexity in space depends on the size of the re-
sult. Indeed, FASTUP stands for an enhanced GSP, taking into account the previous
mining result, before generating and validating candidates, using the generating-
pruning method.

The main idea is that FASTUP, by means of the previous result, takes advantage
of information about sequence thresholdsto generate candidates, . It can therefore
avoid generating some sequences, depending on their support.

2.3.2 ISM

The ISM algorithm, proposed by [16], is actually an extension of SPADE [24],
which aims at considering the update by means of the negative border and a rewrit-
ing of the database.

Figure 3 is an example of a database and its update (items in bold characters). We
observe that 3 clients have been updated.

The first iterations of SPADE on DBspade, ended in the lattice given in Figure 4
(without the gray section). The main idea of ISM is to keepthe negative border (in
grey Fig. 4) NB, which is made of j-candidates, at the bottom of the hierarchy in
the lattice. In other words, let s be a sequence in NB, then iﬂs’ / s’ is child of s and
s’ € NB, and more precisely NB is made of sequences which are not frequent but
being generated by frequent subsequences. We can observe, in Figure 4 the lattice
and negative border for DBspade. Note that hash lines stand for a hierarchy that
does not end in a frequent sequence.

The first step of ISM aims at pruning, the sequences that become infrequent from
the set of frequent sequences after the update. One scan of the database is enough to
update the lattice as well as the negative border. The second step aims at taking into
account the new frequent sequences one by one, in order to make the information
browse the lattice using the SPADE generating process. The field of observation



Client | Itemset | Items
10 AB
1 20 B
30 AB
100 AC
20 AC
2 30 ABC
50 B
10 A
30 B
3 40 A
110 C
120 B
30 AB
4 40 A
50 B
140 C

Fig. 3. DBspade, a database and its update

considered by ISM is thus limited to the new items. For further information you
can refer to [16,25].

Example 1 Let us consider item “C” in DBspade. This item only has a threshold
of 1 sequence according to SPADE. After the update given in Figure 3, ISM will
consider that support, which is now of 4 sequences. “C” is now going from NB to
the set of frequent sequences. In the same way, the sequences < (A )(A)(B) >
and < (A ) ( B ) ( B ) > become frequent after the update and go from NB to the
set of frequent sequences. This is the goal of the first step.

The second step is intended to consider the generation of candidates, but is limited
to the sequences added to the set of frequent sequences during the first step. For
instance, sequences < (A )(A)(B)>and <(A)(B)(B)> can generate the
candidate < (A ) (A ) ( B ) ( B ) > which will have a support of 0 sequences and
will be added to the negative border. After the update, the set of frequent sequences
will thus be: A, B,C, < (A)(A)> <(B)(A)> <(AB)> <(A)(B)>,
<(B)(B)><(A)(C)><(B)(C)><(A)(A)(B)> <(AB)(B)



1 2 1
B>B>A/ \A>AB/ \B>AB, B B

0 0 2 2 1
A>A>A \B>A>A |AB>A A A>B>B/\ B>B>B

Fig. 4. The negative border, considered by ISM after using SPADE on the database from
Figure 3, before the update

><(A)(B)(B)> <(A)(A)(C)> <(A)(B)(C)>.

At the end of the second and last step, the lattice is updated and ISM can give the
new set of frequent sequences, as well as a new negative border, allowing the al-
gorithm to take a new update into account. As we observe in Figure 4, the lattice
storing the frequent itemsets and the negative border can be very large and mem-
ory intensive. Our proposal aims at providing better memory management and at
studying candidate generation in order to reduce the number of sequences to be
evaluated at each scan of the database.

3 IsE Algorithm

In this section we introduce the ISE algorithm for computing frequent sequences in
the updated database. After a brief description of our proposal, we explain, step by
step, our method for efficiently mining new frequent sequences using information
collected during an earlier mining process. Then we present the associated algo-
rithm and the optimization techniques.



LPB Frequent sequences in the original database.

L‘llb Frequent 1-sequences embedded in db and validated on U.
candExt | Candidate sequences generated from db.
freqExt | Frequent sequences obtained from cand Ext and validated on U.

[PB extended with an item from L’fb.

freqSeed | Frequent sub-sequences of
candInc | Candidate sequences generated by appending sequences of
freqExt to sequences of fregSeed.

freqlnc | Frequent sequences obtained from candInc and validated on U.

LY Frequent sequences in the updated database.
Table 1
Notation for Algorithm

3.1 Anoverview

How to solve the problem of incremental mining of frequent sequences by using
previously discovered information? To find all new frequent sequences, three kinds
of frequent sequences are considered. First, sequences embedded in DB could be-
come frequent since they have sufficient support with the incremental database,
1.e. sequences similar to sequences embedded in the original database appear in
the increment. Next, new frequent sequences embedded in db but not appearing in
the original database. Finally, sequences of DB might become frequent when items
from db are added.

To discover frequent sequences, the ISE algorithm executes iteratively. in Table 1
we summarize the notation used in the algorithm. Since the main consequence of
adding new customers is to verify the support of the frequent sequences in LPZ, in
the next section we first illustrate iterations through examples mainly concerning
added transactions to existing customers. Finally, example 5 illustrates the behavior
of ISE when new transactions and new customers are added to the original database.

3.1.1 First Iteration

During the first pass on db, we count the support of individual items and we are
provided with /-candExt standing for the set of items occurring at least once in db.
Considering the set of items embedded in DB we determine which items of db are
frequent in U. This set is called L{?.

At the end of this pass, if there are additional customers, we prune out frequent
sequences in LP? that no longer verify the minimum support.

Example 1 Let us consider the increment database in Figure 1. When db is scanned

10



we find the support of each individual item during the pass over the data: {(<
(50) >, 2), (< (60) >, 2), (< (70) >, 1), (< (80) >, 2), (< (90) >, 1), (< (100) >,
1)}. Let us consider that a previous mining of DB provided us with the items em-
bedded in DB with their support:

item | 10 20|30 |40 |50 |60 |70 |90
support | 3 | 3 |2 |2 |1 |1 ]1]1

Combining these items with the result of the scan db, we obtain the set of frequent
1-sequences which are embedded in db and frequent in U: L‘fb ={< (50) >, <
(60) >, < (70) >, < (80) >, < (90) >}.

We use the frequent 1-sequences in db to generate new candidates. This candi-
date generation works by joining Lfb with Lﬁ’b and yields the set of candidate 2-
sequences. We scan db and obtain the 2-sequences embedded in db. Such a set is
called 2-candExt. This phase is quite different from the GSP approach since we do
not consider the support constraint. We assume, according to Lemma 2 (Cf. Sec-
tion 3.2), that a candidate 2-sequence is in 2-candExt if and only if it occurs at
least once in db. The main reason is that we do not want to provide the set of all
2-sequences, but rather to obtain the set of potential extensions of items embedded
in db. In other words, if a candidate 2-sequence does not occur in db it cannot pos-
sibly be an extension of an original frequent sequence of DB, and thus cannot give
a frequent sequence for U. In the same way, if a candidate 2-sequence occurs in db,
this sequence might be an extension of previous sequences in DB.

Next, we scan U to find out frequent 2-sequences from 2-candExt. This set is called
freqExt and it is achieved by discarding the 2-sequences that do not verify the min-
imum support from 2-candExt,.

Example 2 Let us consider Lfb in the previous example. From this set, we can
generate the following sequences < (50 60) >, < (50) (60) >, < (50 70) >, <
(50) (70) >, ..., < (80) (90) >. To discover 2-candExt in the updated database,
we only have to consider if an item occurs at least once in db. For instance, since
the candidate < (50) (60) > does not appear in db, it is no longer considered
when U is scanned. After the scan of U with remaining candidates, we are thus
provided with the following set of frequent 2-sequences, 2- freqgExt = {< (50 60) >,
< (50) (80) >, < (5070) >, < (60) (80) >, < (60) (90) >}.

An additional operation is performed on the frequent items discovered in db. Based
on Property 1 and Lemma 2 (Cf. Section 3.2) the main idea is to retrieve in DB the
frequent sub-sequences of LPZ preceding items of db, according to their order in
time.

11



In order to find the frequent sub-sequences preceding an item efficiently, we create
for each frequent sub-sequence an array that has as many elements as the number
of frequent items in db. When scanning U, for each data sequence and for each
frequent sub-sequence we check whether it is contained in the data sequence. In
such a case, the support of each item following the sub-sequence is incremented.

During the scan to find out 2-fregExt, we also obtain the set of frequent sub-
sequences preceding items of db. From this set, by appending the items of db to
the frequent sub-sequences we obtain a new set of frequent sequences. This set is
called fregSeed. In order to illustrate how this new set of frequent sequences is
obtained, let us consider the following example.

Items | Frequent sub-sequences

50 | < (10) >3 < (20) >3 < (30) >2 < (40) >»
< (10) (30) >2 < (10) (40) >2 < (20) (30) >2 < (20) (40) >2 < (1020) >
< (10 20) (30) >, < (1020) (40) >,

60 | < (10)>2 < (20) >2 < (30) >2 < (40) >,
< (10) (30) >2 < (10) (40) >2 < (20) (30) >2 < (20) (40) >2 < (1020) >
< (1020) (30) >> < (1020) (40) >

70 | < (10) >2 < (20) >»
< (10 20) >

80 | <(10)>; < (20) >y < (30) >2 < (40) >»
< (10) (30) >» < (10) (40) >2 < (20) (30) >2 < (20) (40) >» < (1020) >,
< (1020) (30) >> < (1020) (40) >

N |-

Fig. 5. Frequent sub-sequences occurring before items of db

Example 3 Let us consider the item 50 in L‘lib. For customer Cy, 50 is preceded
by the following frequent sub-sequences: < (10) >, < (20) > and < (10 20) >. If
we now consider customer C, with the updated transaction, we are provided with
the following set of frequent sub-sequences preceding 50: < (10) >, < (20) >

< (30) >, < (40) >, < (1020) >, < (10) (30) >, < (10) (40) >, < (20) (30) >

< (20) (40) >, < (10 20) (30) > and < (10 20) (40) >. The process is repeated
until all transactions are examined. In Figure 5 we show the frequent sub-sequences
as well as their supportin U.

Let us now examine item 90. Even if the sequence < (60) (90) > could be de-
tected for C3 and Cy, it is not considered since 60 was not frequent in the orig-
inal database, i.e. 60 ¢ LPB. Actually, this sequence is discovered as frequent in
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2-freqExt.

The set freqSeed is obtained by appending to each item of Lfb its associated
frequent sub-sequences. For example, if we consider item 70, then the following
sub-sequences are inserted into freqSeed: < (10) (70) >, < (20) (70) > and
< (1020) (70) >.

At the end of the first scan on U, we are thus provided with a new set of frequent
2-sequences (in 2-freqExt) as well as a new set of frequent sequences (in fregSeed).
In subsequent iterations we go on to discover the all frequent sequences not yet
embedded in fregSeed and 2-freqExt.

3.1.2  j™ iteration

Let us assume that we are at the j** pass. In these subsequent iterations, we start by
generating new candidates from the two sets found in the previous pass. The main
idea of the candidate generation is to retrieve among sequences of fregSeed and
Jj-freqExt, two sequences (s € freqSeed, s' € j-freqExt) such that the last item of s
is the first item of s’. When such a condition holds for a pair (s,s’), a new candidate
sequence is built by dropping the last item of s and appending s’ to the remaining
sequence. Furthermore, an additional operation is performed on j-freqExt: we use
the same candidate generation algorithm as in GSP to produce new candidate (j+1)-
sequences from j-freqExt. Candidates occurring at least once in db, are inserted
in the (j+ 1)-candExt set. The supports for all candidates are then obtained by
scanning U and those with minimum support become frequent sequences. The two
sets become respectively freglnc and (j+ 1)-freqExt. The last one and freqSeed
are then used to generate new candidates. The process iterates until all frequent
sequences are discovered, i.e. until no more candidates are generated.

For ease of understanding, Fig 6 illustrates, candidate generation at the ;" itera-
tion. We can observe that, for the sake of efficiency, each scan aims at counting
support for extensions and incremental candidates obtained by means of previously
discovered extensions.

In the end, LY, the set of all frequent sequences, is obtained from LPB, and the
maximal sequences from freqSeed | freqInc| freqExt. At this step, ISE provides
all the frequent sequences in the updated database, as shown in Theorem 1.

For ease of understanding, Figure 7 graphically describes the processes in the first
and ;' iterations.

Example4 Considering our example, 3" iteration, we can thus generate from 2-
freqExt a new candidate sequence <(50 60) (80)>. Let us now consider how new
candidate sequences are generated from freqSeed and 2- freqExt. Let us consider
the sequence s =<(20) (40) (50)> from freqSeed and s' =<(50 60)> from 2-
freqExt. The new candidate sequence <(20) (40) (50 60)> is obtained by drop-
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Fig. 6. ISE iterations with j>2

ping 50 from s and appending s' to the remaining sequence.

At the 4™ iteration, < (50 60) (80)> is added to 3-freqExt and combined with freqSeed,
it generates new candidates as example: <(10 20) (30) (50 60) (80)>, <(10 20)
(40) (50 60) (80)>, <(20) (40) (50 60) (80)> and <(20) (30) (50 60) (80)>. Nev-
ertheless, there are no more candidates generated from 3-freqExt, and the process
ends by verifying the support of the candidates on U. The final maximal frequent
sequence set obtained is LV = {<(60 90)>, <(10 20) (50 70)>, <(10 20) (30)
(50 60) (80)>, <(1020)(40) (50 60) (80)>}.

Now let us examine how new customers are taken into account in the ISE algorithm.
As previously described, frequent sequences on the original database may become
invalid when adding customer since the support constraint does not hold anymore.
The main consequence for the ISE algorithm is to prune out from LP5, the set of
sequences that no longer satisfies the support. This is achieved at the beginning of
the process. In order to illustrate how such a situation is managed by ISE, let us
consider the following example.

Example5 Let us now consider Figure 2, where a new customer as well as new
transactions are added to the original database. When db is scanned we find the
support of each individual item during the pass over the data: {(< (10 >,1),(<
(40) >,1),(< (50) >,2),(< (60) >,2),(< (70) >,2),(< (80) >,3),(< (90) >
,1), (< (100), 1) >}. Combining these items with LYB, we obtain L9 = {< (10) >
,< (40) >,< (50) >, < (60) >,< (70) >, < (80) >}. As one customer has been
added, in order to be frequent a sequence must appear in at least three transac-
tions. Let us now consider LPB. The set LPB becomes: {(< (10),4 >), (< (20) >
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Scan db and prune out unfrequent sequences from L”®
Generate candidates from L

\ db
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freqSeed

Generate candidate extensions from 2- freqExt
Generate candidate sequences from freqSeed + 2- freqExt
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i- candExt
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Scan U check candIne i(ieiielzrate candidate sequences from freqSeed + i- freqExt

i- freqExt
freqInc

l No more candInc or candExt can be generated

@)

Fig. 7. Processes in the first and j” iterations of ISE

,3), (< (40) >,3). That is to say that item 30 is pruned out from LY since it
is no longer frequent. According to Property I, the set Lé)B is reduced to {(<
(1020),3 >) and L3D B is pruned out because the minimum support constraint does
not hold anymore. From Lﬁlb, we can now generate new candidates in 2-candExt:
{< (10 40) >, < (10) (40) >, < (10 50) >,... < (70) (80) >}. When db is
scanned, we prune out candidates not occurring in the increment and are pro-
vided with candidate 2-sequences occurring at least once in db. Next we scan U to
verify 2-candidates and sequences of the updated LP8 that chronologically precede
sequences of Lfb . There are only three candidate sequences that satisfy the sup-
port: 2-freqExt = {< (10) (70) >, < (10) (80) > < (40) (80)}. Let us now have
a closer look to frequent sequences occurring before items of L‘lﬂ’ :
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Items | Frequent Sub-sequences

10 | < (10) >p < (20) >p < (1020) >
40 | < (10) >2 < (20) >2 < (1020) >»
50 | < (10) >3 < (20) >3 < (1020) >3
60 | < (10) > < (20) > < (1020) >,
70 | < (10) >3 < (20) >, < (1020) >
80 | < (10) >3 < (20) >, < (1020) >,

The minimum support constraint holds for the following sequences: freqSeed = {<
(10) (70) >, < (10) (80) > < (1020) (50) >} (The sequences < (10) (70) > and
< (10) (80) > are also in 2-freqExt, this is a particular case addressed in section
3.3). Since, we cannot generate new candidates from freqSeed and 2-freqExt,
the process completes and all maximal frequent sequences are stored in LV = {<

(1020) (50) >, < (10) (70) >, < (10) (80) >, < (40) (80) >, < (60) >}.
3.2 The ISE Algorithm

Building on the above discussion, we shall now describe the ISE algorithm.

Algorithm ISE

Input: DB the original database, LP? the set of frequent sequences in DB, the
support of each item embedded in DB, db the increment database, minSupp the
minimum support threshold and k the size of the maximal sequences in LP5.
Output: The set LY of all frequent sequences in U = DBUdb

Method:

//First Iteration

L? 0

foreach i € db do

if (supportppjap(i) > minSupp) then LY « L2 {i};
enddo

Prune out from LP2 sequences no more verifying the minimum support;

2-candExt < generate candidate 2-sequences by joining L% with L{?;
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// find sequences occurring in db

Scan db for 2-candExt;

Generate from LPB| the set of frequent sub-sequences;

Scan U to validate candidate 2-candExt and frequent sub-sequences occurring be-
fore

items of Lﬁ’b ;

freqSeed <+ frequent sub-sequences occurring before items of Lﬁ’b and appended
with the item;

2-freqExt < frequent sequences from 2-candExt;

// j'" Iteration

=2

While (j-freqExt!=0) do

candlInc < generate candidates from fregSeed and j- freqExt;

JH

j-candExt <— Generate candidate

j-sequences from j- freqExt;

// find sequences occurring in db

Scan db for j-candExt;

if (j-candExt!=0 OR candInc!=0)then

Scan U for j-candExt and candlInc;

endif

J-freqgExt < frequent j-sequences;

freqlnc < freqlnc + candidates from candInc verifying the support on U;
enddo

LY « LPB J {maximal frequent sequences in freqSeed \J freqinc ] freqExt};
end Algorithm ISE

To prove that ISE provides the set of frequent sequences embedded in U, we first
show in the following two lemmas that every new frequent sequence can be written
as the composition of two sub-sequences. The former is a frequent sequence in the
original database while the latter occurs at least once in the updated data.
Lemmal Let F be a frequent sequence on U such that F does not appear in LPB.
Then F is such that its last itemset occurs at least once in db.

Pr oof:

e case |F| = 1: Since F ¢ LPB, F contains an itemset occurring at least once in db,
thus F' ends with a single itemset occurring at least once in db.

e case |[F| > 1: F can be written as < < A > < B > > with A and B sequences
such that 0 < |A| < |F|,0 < |B| < |F|, |A|+ |B| = |F| with B ¢ db. Let M be the
set of all data sequences containing B. Let M4p be the set of all data sequences
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containing F. We know that if |Mp| = n and |Map| = m then minSupp < m <n
(according to Property 1). Furthermore Msp € DB (since B ¢ db and transactions
are ordered by time) then < < A > < B > > is frequent on DB, this implies
F € LPB which contradicts assumption F ¢ LPB. Thus, if a frequent sequence F
does not appear in LPB, F ends with an itemset occurring at least once in db O

Lemma 2 Let F be a frequent sequence on U such that F does not appear in LPB.
F can thus be written as < < D > < § > >, where D and S are two sequences,
ID| >0, |S| > 1, such that S is the maximal sub-sequence occurring at least once
in db and D is included in (or is) a frequent sequence from LPP.

Pr oof:

e case |S| = |F|: thus |[D| =0 and D € LP5,

e case | < |S| < |F|: thatis, D =< (i1)(i2)..(ij—1) > and § =< (ij)..(i;) > where
S is the maximal sub-sequence ending F' and occurring at least once in db (from
Lemma 1 we know that |S| > 1). Let Mp be the set of all data sequences con-
taining D. Let M be the set of all data sequences containing F'. We know that if
IMp| = n and |Mp| = m then minSupp < m < n (according to Property 1). Fur-
thermore, Mp € DB (since by assumption ;| ¢ db and transactions are ordered
chronologically). Thus D € LP8 O

Considering a new frequent sequence, we show that it can be written as two sub-
sequences such that the latter is generated as a candidate extension by ISE.

Lemma 3 Let F be a frequent sequence on U such that F does not appear in LPB.
F can be written as < < D > < S > > where D and S are two sequences verifying
|D| > 0 and |S| > 1, S is the maximal sub-sequence occurring at least once in db,
D is included in (or is) a frequent sequence from LPB and S is included in candExt.

Proof: Thanks to Lemma 2, we only have to show that S occurs in candExt.

e case S is a one transaction sequence, reduced to a single item: S is thus found at
the first scan on db and added to 1-candExt.

e case S contains more than one item: candExt is built up ’a la GSP’ from all fre-
quent items in db and is thus a superset of all frequent sequences on U occurring
indb J

The following Theorem guarantees the correctness of the ISE approach.

Theorem 1 Let F be a frequent sequence on U such that F does not appear in LPB

and |F| < k+ 1. Then F is generated as a candidate by ISE.
Proof: From Lemma 2 let us consider different possibilities for S.

e case S = F: Thus § will be generated in candExt (Lemma 3) and added to
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fregExt.

e cases S # F:

- case S is a one transaction sequence, reduced to a single item i: Thus < < D >
< (i) > > will be considered in the association made by fregSeed.

- case S contains more than one item: Let us consider i, the first item from the
first itemset of S. i1, is frequent on db, thus < < D > < (i1,) > > is generated
in fregSeed. According to Lemma 3, S occurs in freqgExt and will be used by
ISE to build < < D > < § > > in candInc U]

3.3 Optimizations

In order to speed up the performance of the ISE algorithm we consider two opti-
mization techniques for generating candidates.

As the speed of algorithms for mining association rules, as well as sequential pat-
terns, depends very much on the size of the candidate set, we first improve perfor-
mance by using information on items embedded in L%, i.e. frequent items in db.
The optimization is based on the following lemma:

Lemmad Let us consider two sequences (s € freqSeed,s' € freqExt) such that
an item i € Lfb is the last item of s and the first item of s'. If there exists an item
j€ Lﬁlb such that j is in s’ and j is not associated to s in freqSeed, the sequence
obtained by appending s' to s is not frequent.

Proof: If s is not followed by j in freqSeed, then < s j > is not frequent. Hence
< s s’ > is not frequent since there exists an infrequent sub-sequence of < s s’ >.

Using this lemma, at the j”‘ iteration, with j > 2, we can reduce the number of
candidates significantly by avoiding the generation of < s s’ > as a candidate. In
our experiments, the number of candidates was reduced by nearly 40%. The only
additional cost is to find out whether there is a frequent sub-sequence matching the
first one for each item occurring in the second sequence. As we are provided with
an array that stores the items occurring after the sequence for each frequent sub-
sequence, the additional cost of this optimization is relatively low.

In order to illustrate this optimization, let us consider the following example.

Example 6 Let us consider the frequent sequence s € 2- freqExt such as s =<(50
70)>. We have found in freqSeed the following frequent sequence <(10) (30)
(50)>. According to the previous generation phase, we would generate <(10) (30)
(50 70)>. Nevertheless, the sequence <(10) (30)> is never followed by 70. So,
we can conclude that <(10) (30) (70)> is not frequent. This sequence is a sub-
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|D| | Number of customers (size of Database)

|C| | Average number of transactions per Customer

|T| | Average number of items per Transaction

IS| | Average length of maximal potentially large Sequences

IT| | Average size of Itemsets in maximal potentially large sequences

Ns | Number of maximal potentially large Sequences

N; | Number of maximal potentially large Itemsets

N | Number of items

I~ | Average number of itemsets removed from sequences in U to build db

D" | Percentage of updated transactions in U

C”% | Percentage of customers removed from U in order to build db

Table 2
Parameters

sequence of <(10) (30) (50 70)>, thus before generating we know that <(10) (30)
(50 70)> is not frequent. Hence, this last sequence is not generated.

The main concern of the second optimization is to avoid generating candidate
sequences that have already been found to be frequent in a previous phase. In
fact, when generating a new candidate by appending a sequence of fregExt to
a sequence of freqSeed we first test if this candidate was not already discov-
ered frequent. In this case the candidate is no longer considered. To illustrate,
consider <(30) (40)> to be a frequent sequence in 2-freqExt. Let us now as-
sume that <(10 20) (30) (40)> and<(10 20) (30)> are frequent in fregSeed.
From the last sequence the generation would provide the following candidate <
(10 20) (30) (40) > which was already found frequent. This optimization reduces
the number of candidates before U is scanned at negligible cost.

4 Experiments

In this section, we present the performance results of our ISE algorithm and the
GSP algorithm. All experiments were performed on a PC Station with a CPU clock
rate of 450 MHz, 64MB of main memory, a Linux System and a 9GB disk drive
(IDE).
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Name —C— | —I— N —D— | Size (Mo)

C9-14-N1K-D50K 9 1,000 | 50,000 12

C9-14-N2K-D100K 9 2,000 | 100,000 30

C12-12-N2K-D100K 12 2,000 | 100,000 30

C12-14-N1K-D50K 12 1,000 | 50,000 18

C13-I3-N20K-D500K 13 20,000 | 500,000 230

C15-14-N30K-D600K 15 30,000 | 600,000 320

N N S I N S e

C20-14-N2K-D800OK 20
Table 3
Parameter values for synthetic datasets

2,000 | 800,000 460

4.1 Datasets

We used synthetic datasets to study the algorithm performance. The synthetic datasets
were first generated using the same techniques as introduced in [10] . The gener-
ation of DB and db was performed as follows. As we wanted to model real life
updates very accurately, as in [12], we first generated all the transactions from the
same statistical pattern, then databases of size |U |=|DB + db| were generated.

In order to assess the relative performance of ISE when new transactions were ap-
pended to customers already existing in DB, we removed itemsets from the database
U using the user defined parameter /. The number of transactions which were
modified was provided by the parameter D% standing for the percentage of trans-
actions modified. The transactions embedding removed itemsets were randomly
chosen according to D%. Finally, removed transactions were stored in the incre-
ment database db while remaining transactions were stored in the database DB. In
the same way, in order to investigate the behavior of ISE when new customers were
added, the number of customers removed from U was provided by the parameter
c”.

Table 2 lists the parameters used in the data generation method and Table 3 shows
the databases used and their properties. For experiments we first investigated the
behavior of ISE when new transactions were added. For these experiments, /~ was
set to 4 and D% was set to 90%. Finally, to study the performance of our algorithm
with new customers, C% was set to 10% and 5%.

! The synthetic data generation program is available at the following URL
(http://www.almaden.ibm.com/cs/quest).
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4.2 Comparison of ISE with GSP

In this section, we compare the naive approach, i.e. using GSP for mining the up-
dated database from scratch, and our incremental algorithm. We also test how it
scales up as the number of transactions increases. Finally, we carried out exper-
iments to analyze the performance of the ISE algorithm according to the size of

updates.
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Fig. 8. Execution times

4.2.1 Naive vs. ISE algorithm

Figure 8 shows experiments conducted on the different datasets using different
minimum support ranges to get meaningful response times. Note the minsupport
thresholds are adjusted to be as low as possible while retaining reasonable execu-
tion times. The label “Incremental Mining” corresponds to the ISE algorithm while
“GSP” stands for GSP used for mining the updated database from scratch. “Mining
from scratch” corresponds to ISE for mining sequential patterns, i.e. assuming that
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no previous mining has been performed.

Figure 8 clearly indicates that the performance gap between the two algorithms in-
creases with decreasing minimum support. We can observe that ISE is 3.5 to 4 times
faster than running GSP from scratch. It can also be noticed that ISE outperforms
GSP for small support as well as large support value: ISE is still 2.5 to 3 times
faster for large support. The same results are found even if the number of itemsets
is large. For instance, the last graph in Figure 8 reports an experiment conducted
for investigating the effect of the number of itemsets on the performance. When the
support is lower the GSP algorithm provides the worst performance.

In Section 4.3.1, we shall investigate the correlation between execution times and
the number of candidates.

4.2.2 Performance in scaled-up databases

Relative Time
1 ¢t J
10 | 15% - A&

100 250

0 1000
Number of transactions (’000s)
Fig. 9. Scale-up: Number of total transactions

We examined how ISE behaves as the number of total transactions is increased. We
would expect the algorithm to have almost linear scale-up. This is confirmed by
figure 9 which shows that ISE scales up linearly as the number of transactions is
increased ten-fold, from 0.1 million to 1 million. Experiments were performed on
the C12-14-N1K-D50K dataset with three levels of minimum support (2%, 1.5%
and 1%). During our evaluation, the size of the increment database was always
proportional (D% = 90% and I~ = 4) to the number of new added transactions.
The execution times are normalized with respect to the time for the 0.1 million
dataset.

4.2.3 Varying the size of added transactions

We carried out some experiments to analyze the performance of the ISE algorithm
according to the size of updates. We used the databases C13-13-N20K-D500K and
C12-12-N2K-D100K for experiments with a threshold of respectively 0.6% and
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Fig. 10. Size of updates

0.4%. From these databases, we investigated the performance of ISE the number of
itemsets removed from the generated database was varied, together with the number
of clients. Deleted transactions were stored in the increment database db while the
remaining transactions were stored in the DB database. We first ran GSP to mine
LPB and then ran ISE on the updated database. Figure 10 shows the result of this
experiment when considering the time for ISE.

For the first one, we can observe that ISE is very efficient from 1 to 6 itemsets
removed. The frequent sequences in LU are obtained in less than 110 seconds. As
the number of removed transactions increases, the amount of time taken by ISE
increases. For instance, when 10 itemsets are deleted from the original database,
ISE takes 180 seconds for 30% of transactions to 215 seconds if the items were
deleted from all the transactions. The main reason is that the changes to the original
database are so numerous that the results obtained during an earlier mining are not
helpful. Interestingly, we also noticed that the time taken by the algorithm does not
depend very much on the number of transactions updated.

Let us consider the second surface, the algorithm takes more and more time as the
number of itemsets removed grows. Nevertheless, when 3 itemsets are removed
from the generated database, ISE takes only 30 seconds to discover the set of all
sequential patterns.

4.2.4  Varying the number of added customers

We assume, since it is realistic and suited to real applications, that the average size
of the added sequences is less than or equal to the average size of the sequences em-
bedded in the original database. Intuitively, an obvious approach would be to study
the behavior of ISE when the number of new customers added to the database is in-
creased. In fact, this nave idea could not be a significant indicator. This is because
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Time (s)

1800

when the number of new customers increases, then the number of occurrences of
a sequence must also be increased to satisfy the minimum support constraint. Ob-
viously, as at the beginning of the ISE algorithm, we prune out from LP? frequent
sequences that no longer satisfy the support, so the more of cutomers are added, the
more of previous frequent sequences are pruned out. The main consequence is that
the number of frequent sequences decreases, together with the execution times.

A much more interesting approach for evaluating ISE performance is to carry out
experiments comparing execution times of GSP vs. ISE on different datasets while
varying the minimum support. Figure 11 shows experiments conducted on two
datasets C9-14-N2K-D100K and C20-14-N2K-D800OK where 10% and 5% of cus-
tomers have been added respectively. We can observe that ISE is very efficient and
even when customers are added it is nearly twice as fast as applying GSP from
scratch.

C9-14-N2K-D100K C20-14-N2K-D800OK
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Fig. 11. Execution times when 10% and 5% of customers are added to the original database

4.3 ISE for Mining Sequential Patterns

In this section we investigate the performance of ISE for mining sequential patterns.

We designed some experiments to analyze the performance of ISE when mining
sequential patterns using the same datasets as in Section 4.2.1. Nevertheless we
performed the following operation on each dataset. First we removed 6 items to
60[122]% of transactions in order to provide the increment database. Second we ran
GSP to mine the k-frequent sequences in DB. Finally we ran ISE. In other words,
the graphs in Figure 8 show two behaviors. The graph labeled “GSP” indicates
the time response of GSP on U, whereas the “ISE” graph shows GSP on DB plus
ISE on db. We observe that ISE is from 1.7 to 3 times faster than GSP for mining
sequential patterns. The main reason for the gain in performance is the reduced
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number of candidates. We study this effect in the next section. As expected, we
also observe that using ISE for incremental mining instead of mining from scratch
is still efficient since the incremental mining is nearly twice as faster as mining
from scratch with these data sets.

4.3.1 Candidate Sets
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Fig. 12. Candidate sets

In order to explain the correlation between the number of candidates and the exe-
cution times we compared the number of candidate sets generated by GSP and our
algorithm. Results are depicted in Figure 12. As we can see, the number of can-
didates for GSP is nearly twice the number for ISE. Let us have a closer look at
low support. In the first graph, GSP generates more than 7000 candidates while ISE
generates only 4000 candidates. The same result is obtained in the second graph,
where GSP generates more than 14000 candidates while our algorithm generates
8000.

4.3.2 Varying the size of updates

Finally, we carried out some experiments in order to analyze the performance of the
ISE algorithm with respect to the size of updates. Experiments were conducted on
datasets C12-12-N2K-D100K and C13-13-N20K-D500K with a threshold of 0.4%.
Let us consider the first surface in Figure 13. The best results are obtained when 5
itemsets are deleted from the database. All frequent sequences are then obtained in
less than 17 seconds. The algorithm is still very efficient with from 2 to 7 itemsets
deleted but when 5 itemsets are deleted from 10 % of customers, ISE is less effi-
cient.

In the second surface of Figure 13, the performance of ISE is quite similar and best
results are obtained when 9 itemsets are removed from 80% of customers.
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5 Conclusion

In this paper we present the ISE approach for the incremental mining of sequen-
tial patterns in large databases. This method is based on the discovery of frequent
sequences by only considering frequent sequences obtained by an earlier mining
step. By proposing an iterative approach based only on such frequent sequences
we are able to handle large databases without having to maintain negative border
information, which was proved to be very memory consuming [16]. Maintaining
such a border is well adapted to incremental association mining [26,19], where as-
sociation rules are only intended to discover intra-transaction patterns (itemsets).
Nevertheless, in sequence mining, we also have to discover inter-transaction pat-
terns (sequences) and the set of all frequent sequences is an unbounded superset
of the set of frequent itemsets (bounded) [16]. The main consequence is that such
approaches are very limited by the negative border size.

Our performance results show that the ISE method is very efficient since it performs
much better than re-run discovery algorithms when data is updated. We found by
means of empirical evaluations that the proposed approach was so efficient that it
was quicker to extract an increment from the original database then apply ISE to
mine sequential patterns than to use the GSP algorithm. Experiments on incremen-
tal web usage mining were also performed, for further information refer to [27].

There are various avenues for future work on incremental mining. Firstly, while
the incremental approach is applicable to databases, which are frequently updated
when new transactions or new customers are added to an original database, it also
appropriate to many other fields. For example, both electronic commerce and web
usage mining require deletion or modification to be taken into account in order to
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save storage space or because information is no longer of interest or has become
invalid. We are currently investigating how to manage these operations in the ISE
algorithm.

Second, we are currently studying how to improve the overall process of incremen-
tal mining. By means of experimentation, we would like to discover measures that
can suggest to us when ISE should be applied to find out the new frequent sequences
in the updated database. Such an approach has been proposed in another context,
[28], based on a sampling technique in order to estimate the difference between old
and new association rules. We are currently investigating whether other measures
could be found by analyzing the data distribution of the original database.

A recaser

In [16], the authors propose an incremental mining algorithm, based on the SPADE
approach [11], which can update the sequential patterns in a database when new
transactions and new customers are added. It is based on an increment sequence
lattice consisting of all frequent sequences and all sequences in the negative border
of the original database. This negative border is the collection of all sequences that
are not frequent but whose generating sub-sequences are both frequent. Further-
more, the support of each member is also retained in the lattice. The main idea of
this algorithm is that when incremental data arrives the incremental part is scanned
once to incorporate the new information in the lattice. Then new data is combined
with the frequent sequences and negative border in order to determine the portions
of the original database that need to be re-scanned. Even though this approach is
very effective, maintaining the negative border is very memory consuming and not
appropriate for very large databases [16].
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