
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Hearnden, David, Lawley, Michael, & Raymond, Kerry
(2006)
Incremental Model Transformation for the Evolution of Model-Driven Sys-
tems.
Lecture Notes in Computer Science, 4199, Article number: MoDELS
2006321-335.

This file was downloaded from: https://eprints.qut.edu.au/225037/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1007/11880240_23

https://eprints.qut.edu.au/view/person/Lawley,_Michael.html
https://eprints.qut.edu.au/view/person/Raymond,_Kerry.html
https://eprints.qut.edu.au/225037/
https://doi.org/10.1007/11880240_23

This is the author version published as:

This is the accepted version of this article. To be published as :
This is the author’s version published as:

Catalogue from Homo Faber 2007

QUT Digital Repository:
http://eprints.qut.edu.au/

Hearnden, David, Lawley, Michael, & Raymond, Kerry (2006)
Incremental Model Transformation for the Evolution of Model
Driven Systems. In: 9th International Conference, MoDELS 2006,
October 1‐6, 2006, Genova, Italy.

Copyright 2006 Springer

Incremental Model Transformation for the

Evolution of Model-Driven Systems

David Hearnden1, Michael Lawley2, and Kerry Raymond2

1 School of ITEE, University of Queensland, Australia,
hearnden@itee.uq.edu.au

2 Queensland University of Technology, Australia,
{m.lawley,k.raymond}@qut.edu.au

Abstract. Model transformations are an integral part of model-driven
development. Incremental updates are a key execution scenario for trans-
formations in model-based systems, and are especially important for the
evolution of such systems. This paper presents a strategy for the incre-
mental maintenance of declarative, rule-based transformation executions.
The strategy involves recording dependencies of the transformation exe-
cution on information from source models and from the transformation
definition. Changes to the source models or the transformation itself can
then be directly mapped to their effects on transformation execution,
allowing changes to target models to be computed efficiently. This par-
ticular approach has many benefits. It supports changes to both source
models and transformation definitions, it can be applied to incomplete
transformation executions, and a priori knowledge of volatility can be
used to further increase the efficiency of change propagation.

1 Introduction

In model-driven systems, the evolution and synchronisation of source and target
models often relies on the automated maintenance of transformation relation-
ships. Large models or complex transformation specifications can cause transfor-
mation execution time to become quite significant, impeding this process. Live
transformation execution is an incremental update technique designed to address
these issues.

1.1 Incremental Updates

In broad terms there are two approaches to incremental updates. The first ap-
proach involves re-running the entire transformation, producing new output
models that must then be merged with the previous output models. Updating
models in situ is a special case of this approach, where the merge is performed
implicitly. In this approach the context from the original transformation is lost,
which is why a merge strategy is necessary in order to recreate that context. The
feasibility of model merging for incremental transformations is heavily dependent
on the traceability features of the transformation language.

The second approach involves preserving the transformation context from the
original transformation, thus obviating a merge strategy to recreate it. A live

transformation does not terminate, rather it continuously maintains a transfor-
mation context such that the effects of changes to source inputs can be readily
identified, and the necessary recomputation performed.

Figure 1 illustrates these two approaches. In Figure 1(a), each successive
update to S requires a complete re-transformation t producing new versions of
T . If in-situ updates are desired, then a merge is required. In Figure 1(b), the
transformation t is continuous, starting from an initial transformation from S

producing T . Each successive source update ∆S is mapped directly to a target
update ∆T . The transformation t does not terminate as such, but rather goes
through phases of activity when S is changed.

(a) Re-transformation (b) Live transformation

Fig. 1. Incremental Update Strategies

The advantage of the second approach is that it is far more efficient, especially
for small changes, and is thus more suitable for the rapid update of transforma-
tion outputs. On average, the amount of computation necessary is proportional
to the size of the input changes and the output changes. This is particularly
important for model-driven tools in an incremental development methodology,
where models are constantly evolving and constant synchronisation is neces-
sary for consistency. Another advantage of the second approach is that it is a
more direct solution for finding the changes to outputs required in response to
changes to inputs, as opposed to finding the actual outputs themselves. For a
model evolution tool, this may be an important distinction. Consider the task of
selecting, from a set of possible source changes under consideration, the change
that produces the smallest consequent change on the target models.

The cost of the second approach is that the execution context must be con-
stantly maintained. Unless there are a large number of large transformations

being maintained, this is unlikely to be a significant problem, and section 3.1
discusses how the space cost can be scalably traded for computation time should
the context become too large.

1.2 Transformation Languages

We restrict our analysis to logic-based transformation languages; these languages
turn out to be the most suitable for live transformation.

Of the declarative paradigms, logic languages have an advantage over func-
tional languages because program data has a direct and clear effect on program
computation. There is a single inference rule (resolution), that provides suffi-
cient power for computational completeness. With resolution, program data has
a direct influence on the evaluation process. One could say that logic languages
have data-driven evaluation.

While functional languages are also typically classed as declarative, they are
less suitable for live transformations than logic languages because the effect of
program data is less clear. Reduction operations for functional evaluation are
driven by the state of the expression being reduced, so the effect of program
data is not direct.

There have been a variety of languages and techniques proposed in response
to the MOF 2.0 Query / View / Transformation Request For Proposals [1], the
majority of which have emphasised declarative definitions for transformations.
The current adopted QVT specification [2] is a hybrid of declarative and im-
perative languages, with the declarative level being sufficiently powerful to be
executable. The DSTC’s submission to the QVT RFP [3] presents a transfor-
mation language that is completely declarative and can be executed with an
open-source tool, Tefkat [4] [5].

The incremental update techniques presented here have been investigated in
the context of Tefkat; however because of their foundational nature they should
be applicable to any declarative rule-based transformation language, such as the
QVT specification.

1.3 Related Work

Incremental update techniques have been extensively researched for deductive
databases. The specific problem they address is the maintenance of materialised
views in response to changes to base relations. The solution that has been most
influential [6] involves transforming the deductive rules that define a view into
delta-rules that define how additions and deletions to queried data could be
transformed to additions and deletions to the view. There have been several
variations on this theme (e.g. [7]), however as discussed in [8] they follow the
same basic strategy.

The live transformation approach presented in this paper adopts a fundamen-
tally different strategy by addressing the incremental update problem in terms
of the execution context of a canonical logic engine. Instead of deriving a new

transformation to perform the incremental updates, this approach tries to isolate
the effects of updates on the dynamic computation structures used for logical
evaluation. This should theoretically enable more efficient update propagation
as it is a more direct approach, however the price paid is that an implementation
must be tightly integrated with the internal structures of a particular transfor-
mation engine rather than only being dependent on language semantics. Recent
developments in incremental evaluation of tabled logic programs [9] [10] are also
adopting an engine-oriented approach.

1.4 Overview of Paper

Section 2 describes SLD resolution, the theoretical basis for the evaluation of
logic languages. Sections 2.3 and 2.4 respectively present the extensions re-
quired to preserve dependency information and the algorithms used to respond
to changes to input models. Section 3 discusses optimisations that can be per-
formed to further increase update efficiency, as well as how the strategy described
in section 2 can be extended to allow incremental updates in response to changes
to transformation definitions as well as input models. Finally, section 4 illustrates
an example of live transformation execution.

2 Live Propagation

In this section we consider extending a transformation engine based on the stan-
dard mechanism for the interpretation of logic languages: SLD resolution. The
evaluation of a declarative rule-based transformations is driven by a search for
solutions to a goal. This search can be conceptualised as a tree, and this tree can
be used to represent the trace of a transformation execution. As mentioned previ-
ously, because resolution is data-driven, the dependencies of program execution
on input models (and also the transformation itself) have a clear manifestation,
and can be recorded for later analysis. Our strategy involves recording these de-
pendencies on source model information so that changes to the tree can be made
efficiently in response to changes to source models or the transformation defi-
nition, as opposed to rebuilding the tree from scratch with a re-transformation.
Changes to the search tree can then be readily mapped to consequent changes
in target models.

2.1 SLD resolution

SLD resolution is a deduction rule used for the execution of logic programs. It is
a restriction of the general resolution principle [11] (the S stands for Selection,
L for Linear, and D for Definite clauses).

Given a goal G consisting of a set of atomic literals and a ruleset R consisting
of a set of rules and/or facts, two choices are made. A literal a from G and a
rule r from R are selected such that a unifies with r (there exists a variable
substitution θ such that aθ = hθ, where h is the head of rule r). The atom a in

G is then replaced with the body of rule r, then the most general unifier (mgu)
of a and h is applied, giving a new goal G′. The process continues until the goal
is empty (2), and the composition of all the unifiers, Θ, is then a solution for
the goal G. In other words, GΘ is a fact that can be deduced from the ruleset
R. SLD resolution is sound and complete, so no wrong solutions are produced
and all solutions can be deduced.

f1 : class(c1)
f2 : class(c2)
f3 : class(c3)
f4 : super(c3, c1)
f5 : owns(c1, p1)
f6 : owns(c3, p2)

r1 : owns(C, P)←
super(C,C′), owns(C′, P)
(a) Facts and rules.

class(C), owns(C, P)
⇒ class(C), owns(C, P) [f3, {C 7→ c3}]

⇒ owns(c3, P) [r1, {C 7→ c3}]

⇒ super(c3, C
′), owns(C′, P) [f4, {C

′ 7→ c1}]

⇒ owns(c1, P) [f5, {P 7→ p1}]

⇒ 2

(b) SLD resolution (one solution).

Fig. 2. Resolving a goal against a rule set.

Consider the ruleset in Figure 2(a). Facts f1 to f3 describe three classes, c1,
c2 and c3, where c3 is a subtype of c1 (f4). c1 directly owns property p1 and c3

directly owns property p2 (facts f5 and f6), and rule r1 describes the transitive
ownership of inherited contents, thus c3 indirectly owns p1 too. Figure 2(b)
illustrates the resolution of a goal, class(C), owns(C, P), that is a query for
classes and their contents. In the first resolution, the selected literal (underlined)
is class(C) and the selected fact is f3. These unify to produce a mgu {C 7→ c3},
and replacing class(C) with the (empty) body of f3 followed by the application of
the mgu results in the new goal owns(c3, P). Three more resolutions are applied,
resulting in an empty goal (2), indicating that a solution has been found. The
composition of the unifiers (taking care to distinguish copies of C) results in the
unifier {C 7→ c3, P 7→ p1}, representing one particular solution to the goal (class
c3 has property p1). Note that in this example just one solution to the goal is
found; there are others. By selecting different facts and rules, resolution can be
used to find any solution to a goal.

2.2 SLD Trees

In SLD resolution, there are two non-deterministic choices that must be made at
each resolution step: a literal must be selected, and a matching rule found. If we
remove the second choice and instead resolve against every rule that matches the
selected literal, then the resulting structure is an SLD tree. SLD trees represent
all resolution paths, and therefore contain all solutions to a goal. The leaves of
the tree are either success nodes (2) indicating a solution, or failure nodes that
have non-empty goals but can not be resolved further (×).

An SLD tree for the previous example is shown in Figure 3. The nodes and
edges have been labelled (ni,ei) only for future reference. Note that SLD trees
are not unique; they depend on the selection rule that is used to select a literal
from the goal.

n1 : class(C), owns(C, P)

{C 7→c1}

e1
ooo

o

ooooooooooooo

{C 7→c2}

e4

{C 7→c3}

e6

OOO
O

OOOOOOOOOOOOO

n2 : owns(c1, P)

{C 7→c1}

e2
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

{P 7→p1}

e3

n5 : owns(c2, P)

{C 7→c2}

e5

n7 : owns(c3, P)

{C 7→c3}

e7
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

{P 7→p2}

e11

n4 : 2 n6 : super(c2, C
′),

owns(C′, P)
×

n12 : 2

n3 : super(c1, C
′),

owns(C′, P)
×

n8 : super(c3, C
′),

owns(C′, P)

{C′ 7→c1}

e8

n9 : owns(c1, P)

{C 7→c1}

e9
~~~

~~
~~

~~

{P 7→p1}

e10

@@@

@@
@@

@@
@@

@

n10 : super(c1, C
′),

owns(C′, P )
×

n12 : 2

Fig. 3. An SLD tree

The SLD tree forms the basis of an execution environment for logic programs.
Often the tree is not explicitly created, but rather exists implicitly via a search
strategy. In Tefkat, the SLD trees are explicit. The SLD tree in Prolog, however,
exists as a depth-first search.

2.3 Tagging

Our goal is to provide a live execution environment, where changes to source
models can be efficiently mapped to changes to target models. From a logical
perspective, source models are manifested as a set of facts, and transformations
as a set of rules and facts. As those familiar with logic programming are aware,
a fact is simply a special case of a rule, so there is no real need to distinguish the
two; however if we are only observing changes to source models then we need
only be concerned with facts.



Changes to source models after a transformation has occurred are thus mani-
fested as changes to the fact base used by a logic engine. These facts can influence
the SLD tree in precisely one way: by unifying with the selected literal of a node’s
goal, thus spawning an edge in the tree. Additive changes to source models can
therefore cause new branches and subtrees to be computed. Deletive changes
can cause branches to be pruned. In order to make these incremental changes as
efficient as possible, we tag the facts with references to where they are used in
the tree, so that the effects of source changes can be made directly.

Two types of information are recorded while nodes query the fact base: the
usage of a fact by an edge, and the failure to find a matching fact for a node.
The first requires tagging of facts, the second requires tagging of fact signatures
(name and arity). For this purpose it is convenient to group facts with the same
name and arity into tables. Algorithms Solve and Resolve illustrate how such
recording can be incorporated into a resolution algorithm (lines 9-10 and 14-16).

Resolve(U, R)

1 while U 6= ∅
2 do n← choose(U)
3 U ← U − {n}
4 if goal [n] = 2

5 then solutions ← solutions ∪Solution(n)
6 else g ← goal [n]
7 l← selectLiteral (g)
8 matches ← Find-Matches(R, l)
9 t← getTable(l)

10 tableTags [t]← tableTags [t] ∪ {n}
11 for each (θ, r) ∈ matches

12 do e← Create-Branch(n)
13 unifier [e]← θ

14 if r is a fact
15 then factTags [r]← factTags [r] ∪ {e}
16 fact [e]← r

17 n′ ← childNode [e]
18 goal [n′]← ((g − {l}) ∪ body(r))θ
19 U ← U ∪ {n′}
20 return solutions

Solve(G, R)

1 r← Create-Root

2 goal [r]← G

3 solutions ← ∅
4 return Resolve({r}, R)

While U is non-empty, a node is chosen for expansion and removed from U

(line 2). Success nodes are nodes whose goal has been reduced to 2 and are



Fact Edges

class(c1) {e1}
class(c2) {e4}
class(c3) {e6}
super(c3, c1) {e8}
owns(c1, p1) {e3, e10}
owns(c3, p2) {e11}

(a) Fact tags

Table Nodes

class/1 {n1}
super/2 {n3, n6, n8, n10}
owns/2 {n2, n5, n7, n9}

(b) Table tags

Fig. 4. Dependencies

a Solution algorithm (elided) is used to compute the composition of all the
unifiers used from the root to the success node (line 5). Non-success nodes have
a literal selected from their goal (line 7), which is then matched against the rule
database to produce a set of matching rules/facts paired with the most general
unifier for the match (line 8). The dependency of the node on a table of facts is
then recorded (line 10).

A new branch in the tree is created for each of the matching rules/facts
(line 12), and the matching rule/fact and unifier are recorded on the edge
(line 13). For fact edges, the dependency of the edge on the particular fact
that caused its creation is then recorded (lines 14- 16). The selected literal in
the goal is replaced with the body of the matching rule/fact, the matching uni-
fier applied, and the result is set as the new node’s goal (lines 17-18). The new
node is then added to the set of unexpanded nodes, to be expanded on a future
iteration. After all the nodes have been expanded, Resolve returns the set of
unifiers that represent solutions to the goal (line 20). Lines 9, 10 and 14-16 are
the only extra work required for the dependency recording.

For brevity, the detail of some used algorithms has been elided. Algorithm
Create-Branch(n) simply creates and returns a branch from node n in the
data structure for the resolution tree. Find-Matches(R, l) searches the knowl-
edge base R for rules/facts whose heads unify with l, and returns the set of all
such pairs (θ, r).

The Solve algorithm builds a tree from scratch by creating a root tree node,
setting its goal, and calling Resolve. Figures 4(a) and 4(b) show the fact and
table tags from the edge and node dependencies for the tree in Figure 3.

2.4 Responding to Change

We consider two types of change to the model and transformation definition:
fact addition and fact removal.

Fact Addition The algorithms for responding to model or transformation
change rely on the existing resolution algorithms. Informally, the response to
the addition of new facts is to identify nodes in the tree for which resolution
needs to be resumed. Algorithm Add-Fact describes this procedure.



Add-Fact(f)

1 nodes ← tableTags [getTable(f)]
2 U ← ∅
3 for each n ∈ nodes

4 do l← selectedLiteral [n]
5 θ ← Unify(l, head(f))
6 if θ 6= nil

7 then e← Create-Branch(n)
8 unifier [e]← θ

9 fact [e]← f

10 factTags [f ]← factTags [f ] ∪ {e}
11 n′ ← childNode [e]
12 goal [n′]← (goal [n]− {l})θ
13 U ← U ∪ {n′}
14 return Resolve(U)

Add-Fact uses the table tags to identify all the nodes with a selected literal
of the same name and arity as the added fact f (line 1). The selected literals
of each of these nodes are tested against the added fact, in order to find any
nodes with goals that match (more formally, unify) with the head of f (line 5).
Any nodes found have branches added from them, and they are added to a set
of unexpanded nodes U . Note that lines 7- 13 are equivalent to lines 12- 19 from
Resolve. Finally, resolution is resumed on all those new nodes (line 14).

Add-Fact returns the set of unifiers from the new success nodes found in
response to the addition of a fact. These unifiers represent valid solutions in the
context of the new fact database, however they may not all be new solutions
since other paths in the tree may have already established some of those solutions
prior to the fact addition. Therefore the set of solutions returned by Add-Fact

must be compared with the original solutions in order to identify new solutions.

Fact Removal In response to the removal of a fact f , all the edges in the tree
that were created because of a match with a selected literal must be identified.
The subtrees rooted at these edges must then be removed, which involves re-
moving all the dependency information from that subtree as well as identifying
solutions that may have been removed. Similarly to Add-Fact, Remove-Fact

returns the set of solutions established by success nodes that have now been
removed, however other success nodes in the remaining tree may also estab-
lish some of those solutions, so again they must be compared with the original
solutions in order to identify invalidated solutions.

Remove-Fact(f)

1 edges ← factTags [f ]
2 oldSolutions ← ∅
3 for each e ∈ edges

4 do oldSolutions ← oldSolutions ∪Prune-Edge(e)
5 Delete-Branch(e)



Remove-Fact is straightforward. All the edges dependent on the removed
fact f are deleted from the tree, however a pruning step occurs (line 4) before
the branch removal (line 5). This pruning step removes dependencies recorded
for the subtree, as well as accumulating solutions from success nodes in that
subtree. Mutually recursive algorithms Prune-Edge and Prune-Node define
this procedure.

Prune-Edge(e)

1 f ← fact [e]
2 if f 6= nil

3 then factTags [f ]← factTags [f ]− {e}
4 return Prune-Node(childNode [e])

Prune-Node(n)

1 oldSolutions ← ∅
2 if isSuccess(goal [n])
3 then oldSolutions ← oldSolutions ∪{n}
4 t← getTable(selectedLiteral [n])
5 tableTags [t]← tableTags [t]− {n}
6 for each e ∈ childEdges [n]
7 do oldSolutions ← oldSolutions ∪Prune-Edge(e)
8 return oldSolutions

Prune-Edge simply removes the edge from the potential fact dependency
in which it appears, and then prunes the child node. Prune-Node accumulates
a solution if it encounters a success node (line 3), then removes the node from
the table dependency in which it appears (line 5), and then recursively prunes
its child edges, accumulating their solutions (line 7).

2.5 Negation

So far, we have only analysed SLD resolution, which does not allow negative

literals to appear in rule bodies. In other words, rules that rely on the absence

or the falsity of facts may not be used. SLD resolution can be extended to general

clauses, which do allow negative literals in goals and rule bodies; however extra
restrictions are required in order to preserve soundness and completeness.

The easiest extension to SLD resolution to allow negative literals is to use the
closed-world assumption, where all unprovable facts are considered false. This
allows us to treat negation as failure, so to prove a literal ¬p(X) it is sufficient to
show that there is no proof of p(X). To achieve this, a separate tree is created,
and if the tree finitely fails, then p(X) is considered false and hence ¬p(X) true.
However if a solution is found in this separate tree, then a proof of p(X) has
been found, so ¬p(X) is false, and hence the node that spawned the separate
tree fails.

This extension is often referred to as SLDNF (SLD with Negation as Failure).
SLDNF introduces a fundamental change to the structure of the resolution tree.



Instead of a single tree there is now a forest of negation trees plus one positive
tree (the root tree). Nodes with a negative selected literal are ‘connected’ with a
negation tree constructed to prove the positive literal. These connections must
be maintained as part of the forest.

The algorithms from section 2.4 only apply to SLD resolution and are mono-
tonic: Add-Fact can only add more solutions and Remove-Fact can only
invalidate previous solutions. If SLDNF resolution is used instead, then mono-
tonicity is lost, and incremental updates become more complex. The addition of
facts may result in the removal of branches (and hence the removal of solutions),
and the removal of facts may result in the addition of branches (and hence the
addition of solutions). It turns out that the algorithms Add-Fact and Remove-

Fact require only minor modifications in order to achieve this behaviour. The
update phase then iterates between tree pruning and tree expansion until a fixed
point is reached.

3 Discussion

In this section we discuss two ways to further optimise incremental updates, and
how the techniques from section 2.3 can be extended to also allow incremental
changes to transformation definitions.

3.1 Incomplete transformation context

The price for the efficiency of live transformation is the maintenance of the trans-
formation context (the SLDNF trees) and the dependency tables. Previously it
was assumed that the context was complete, i.e. the SLDNF trees and depen-
dency tables were completely preserved. This complete context may be costly for
large and complex transformations where there may be hundreds of thousands
of tree nodes, and hundreds or even thousands of facts and rules.

The live transformation strategy can accommodate an incomplete context
with some extensions to the algorithms presented in section 2.4. Arbitrary sub-
trees can be collapsed into a single ‘collapsed’ node, with all the dependency in-
formation condensed on that node. The space of that subtree is then reclaimed,
but the aggregated tags preserve the dependency information. There is a com-
putational cost only if the dependency information identifies that the collapsed
node has been potentially affected, and then the entire subtree must be recom-
puted. However because collapsing can be performed at any point in a tree, it is
quite a scalable trade-off.

The trick to making effective choices for node collapsing is to recognise that
some facts in a model are more stable than others. For example, a person’s name
is less likely to change than their height or weight. We use the term volatility to
describes the likelihood of change for a fact or rule. It is obviously most beneficial
to collapse subtrees that are non-volatile. With good estimates of fact volatility
(either explicitly provided or obtained via heuristics), an intelligent engine can
reduce the size of the transformation context while still providing the efficiency
for most incremental changes.



3.2 Ordering of volatile literals

The volatility of different facts and rules can be leveraged in an even more fun-
damental way. The structure of the resolution trees is completely determined by
the selection rule that chooses which literal in a node’s goal is to be resolved.
This structure has a significant impact on the efficiency of the initial transforma-
tion and also the efficiency of the incremental updates. If volatile facts are used
towards the root of a resolution tree, then changes to those facts involve pruning
the entire subtree rooted at the usage of those facts and subsequently regrowing
the new subtree. If volatile facts are used towards the leaves of a resolution tree,
then the impact of changes to those facts is much less, as the subtrees that are
pruned and regrown are smaller.

By providing an engine with such volatility estimates, perhaps user specified
or even collected from version histories, the selection rule can choose to expand
stable literals first, and volatile literals last, reducing the cost of updates to those
volatile facts.

3.3 Rule/Fact equivalence

As mentioned in section 2.3, as far as logic is concerned facts are simply a special
type of rule. There is very little in the algorithms of section 2.4 that applies to
facts but not rules, and so with some very minor modifications live transforma-
tion can be used for rules as well. This is of great importance for the evolution
of transformation definitions, since changes to the rules in a transformation can
be efficiently propagated to updates on the transformation targets.

4 Live Transformation In Practice

In this section we present some preliminary measurements of the efficiency of
incremental model transformation using live resolution trees.

4.1 Sample Transformation

The sample transformation we use to demonstrate live resolution trees is a sim-
plified version of one of the many transformations from an object-oriented class
metamodel (such as UML) to a relational database schema metamodel. The
complete metamodels have been omitted due to space considerations.

The class metamodel describes classes that own properties which are at-
tributes or references, where attributes are data-valued and references are object-
valued. Classes have zero or more superclasses. The relational schema metamodel
describes tables that own typed columns, one of which is designated as a primary
key.

The transformation maps classes to tables with keys. Properties that are
owned directly or indirectly (through inheritance) are mapped to columns of the
table corresponding to the property’s owning class. For attributes, those columns



are typed by the data type corresponding to the attribute’s data type. For refer-
ences, those columns are typed by the data type corresponding to the type of the
primary key of the table mapped from the type of the reference. In other words,
references are mapped to foreign key columns. Finally, if a class has an attribute
marked as an identity attribute, the column mapped from that class-attribute
pair becomes the key column for the class’s corresponding table. Otherwise, a
primary key column called ID is inserted. This sample transformation is useful
as it is small enough to be easily understood, but complex enough to involve re-
cursion, transitive closure and negation. The main rules for this transformation
are described in Tefkat’s concrete syntax in Figure 5.

The output of a Tefkat transformation is the unique minimal model (least
fixed point) such that all rules are true. A rule is true if and only if, for all
variable bindings for its source terms (FORALL, LINKS, WHERE), the target terms
(MAKE, LINKING) are true. Patterns, such as hasProperty/2, are equivalent to
logical predicates. Tefkat also uses trackings, which are essentially named re-
lations, and are the only elements that may be both queried/checked (with
LINKS) and asserted/enforced (with LINKING). For example, the ClassTable

tracking associates a class with a table, and is asserted in the LINKING clause of
ClassToTable, and is queried by the LINKS clauses of the other four rules.

4.2 Sample Execution

The transformation was run on the Ecore metamodel [12], followed by three up-
dates. The first update was a simple renaming of an attribute of ETypedElement.
The propagated changes involved the renaming of 6 columns, one from each of
the tables generated for the 6 subclasses that inherited that attribute. The sec-
ond update involved the deletion of the ETypedElement.type reference. The 6
affected columns were deleted, as were all of their properties. The final change
was marking EClassifier.instanceClassName as an identity attribute. which
caused the most significant structural change. The automatic key columns added
to the tables for EClassifier and its subclasses were deleted, those tables’ keys
were set to the columns for the instanceClassName attribute, and all columns
generated from EReferences to EClassifier or any of its subclasses (i.e. foreign
keys into the EClassifier table) had their types changed to String, the new
type of EClassifier’s key column.

Table 1 shows the number of resolution nodes added, removed, and touched
in each of the three updates. Node addition and removal are the most significant
measurements since those operations involve modifications to the resolution trees
and tag structures. Touched nodes are those nodes that were identified by the
fact and table tags as being potentially affected, but on closer inspection were
not affected.

The number of nodes is correlated with the execution time and space con-
sumption of the incremental transformation. The results clearly show significant
performance benefits from live transformation for all three updates.



RULE ClassToTable

FORALL Class c { name: n; }
MAKE Table t { name: n; }
LINKING ClassTable WITH class = c, table = t;

PATTERN hasProperty(c, p)

WHERE c.properties = p OR hasProperty(c.super, p);

RULE AttributeTypes

FORALL Class c, Attribute a { name: n; }
WHERE hasProperty(c, a)

AND TypeType LINKS ooType = a.type, rdbType = rdbtype

AND ClassTable LINKS class = c, table = t

MAKE Column col { name : n; table: t; type: rdbtype; }
LINKING AttributeColumn WITH class = c, attribute = a,

column = col, type = rdbtype;

RULE ForeignKeyTypes

FORALL Class c, Reference r { name: n; type: rc; }
WHERE hasProperty(c, r)

AND ClassTable LINKS class = rc, table = ft

AND TableKey LINKS table = ft, key = _, type = fktype

AND ClassTable LINKS class = c, table = t

MAKE Column col { name : n; table: t; type: fktype; };

RULE IdKeyColumn

FORALL Class c, Attribute a

WHERE hasProperty(c, a) AND a.id = true

AND AttributeColumn LINKS class = c, attribute = a,

column = col, type = keytype

AND ClassTable LINKS class = c, table = t

MAKE Key k { table: t; column: col; }
LINKING TableKey WITH key = k, table = t, type = keytype;

RULE AutoKeyColumn

FORALL Class c

WHERE NOT (hasProperty(c, a) AND a.id = true)

AND ClassTable LINKS class = c, table = t

MAKE makeRdbType("Auto", auto),

Column col { name: "ID"; type: auto; table: t;},
Key k { table: t; column: col; }

LINKING TableKey WITH key = k, table = t, type = auto;

Fig. 5. Sample OO to RDB transformation.



Table 1. Number of tree nodes used during live transformation.

.

# Forest Size Added /Removed Touched Total Changed

- 7026 - / - - 7026 (100%) 100%
1 7026 78 / 78 176 332 (4.7%) 2.2%
2 6828 0 / 198 0 198 (2.9%) 2.9%
3 6760 198 / 206 349 753 (11.1%) 6.0%

5 Conclusion

Incremental updates for declarative rule-based model transformations can be
performed efficiently using live transformations. The dependencies of the trans-
formation execution on its inputs can be recorded by tagging resolution trees.
These dependencies can then be used to efficiently propagate source changes to
target changes. With minor extensions, the algorithms presented in this paper
can be used in the presence of negation and tabling, and also for incremental
updates to the transformation definitions. Finally, awareness of model volatility
can be leveraged to further increase update efficiency.

References

1. OMG: MOF 2.0 Query / Views / Transformations RFP. OMG document ad/02-
04-10 (2002)

2. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifica-
tion. OMG document ptc/2005-11-01 (2005)

3. DSTC, IBM, CBOP: MOF Query / View / Transformation Second revised sub-
mission. OMG document ad/2004-01-06 (2004)

4. Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat.
In Bruel, J.M., ed.: MoDELS Satellite Events. Volume 3844 of Lecture Notes in
Computer Science., Springer (2005) 139–150

5. : Tefkat: The EMF transformation engine (2006)
6. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.

In Buneman, P., Jajodia, S., eds.: Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, Washington, D.C., May 26-28, 1993,
ACM Press (1993) 157–166

7. Ceri, S., Widom, J.: Deriving incremental production rules for deductive data.
Information Systems 19(6) (1994) 467–490

8. Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques
and applications. IEEE Quarterly Bulletin on Data Engineering; Special Issue on
Materialized Views and Data Warehousing 18(2) (1995) 3–18

9. Saha, D., Ramakrishnan, C.R.: Symbolic support graph: A space efficient data
structure for incremental tabled evaluation. In: ICLP. (2005) 235–249

10. Saha, D., Ramakrishnan, C.R.: Incremental evaluation of tabled prolog: Beyond
pure logic programs. In: PADL. (2006) 215–229

11. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12(1) (1965) 23–41

12. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education (2003)


