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INCREMENTAL MODELING OF T-STUB CONNECTIONS

MINAS E. LEMONIS AND CHARIS J. GANTES

An incremental model for predicting the mechanical characteristics of T -stub steel connections is pre-

sented in this paper. The response is calculated analytically on the basis of a simple beam representation

for the flange and a deformational spring for the bolt. Contact phenomena in the flange are taken into

account, and by means of an incremental procedure it becomes possible to follow the development of

these phenomena throughout the loading history. Material nonlinearity is also accounted for, both in

the flange and the bolt, assuming a bilinear constitutive model. We propose several refinements of the

model, which enhance its effectiveness with respect to intricate characteristics of T -stub behavior, such

as bolt-flange interaction and three-dimensional geometry. The performance of the model is validated

by comparison to experimental results found in the literature and by a parametric study performed in

parallel with three-dimensional finite element analyses.

1. Introduction

Advanced analysis of steel structures requires extensive information regarding the behavior of both the

members and the joints. For the members, well established methodologies exist to account for nonlin-

earities in response. However, for joints, a similar level of methods is not available to predict response

characteristics, and in particular the moment-rotation curve. This shortcoming is mainly due to the com-

plex nature of joints, which are assemblages of multiple parts. Material and geometrical nonlinearities,

contact phenomena, geometrical complexity and multiple typologies which govern the behavior of joints

are an obstacle towards a systematic, theoretical, yet pragmatic treatment of this subject. To subdivide

the problem, one can identify joint components with simplified behavior, and then reproduce the total

response as an assembly of the partial responses of the individual components. In this context, various

mechanical spring assemblies have been proposed for stiffness and strength calculations [Huber and

Tschemmernegg 1998; CEN 2003], while a similar process has been suggested for other characteris-

tics, such as rotational capacity and full moment-rotation curve [Kuhlmann and Kuhnemund 2000; Beg

et al. 2004]. Generally, components of tensile, compressive and shear deformability can be identified in

structural joints. The tensile components of common bolted joints, which provide the major source of

deformability, have the form of equivalent T -stub connections [Yee and Melchers 1986; Weynand et al.

1995; Shi et al. 1996], as shown in Figure 1a.

Numerous research works are dedicated to the analytical estimation of strength and stiffness of T -stub

connections. [Zoetemeijer 1974; Agerskov 1976; Yee and Melchers 1986], among others, contributed

to a basis for the currently established and codified T -stub model [CEN 2003]. Regarding the complete
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Figure 1. (a) T -stub components in a bolted beam-to-column joint and (b) T -stub defi-

nitions and the analytical model (b).

force-displacement curve, available methodologies include the bilinear model of [Jaspart 1991], the

quadrilinear model of [Faella et al. 2000], the incremental model of [Swanson and Leon 2001] and the

finite element beam model of [Girão Coelho et al. 2004]. An alternative approach for prediction of T -stub

response is the advanced finite element modeling. Further contributions have been devoted to this subject

which employ 2D plane elements [Mistakidis et al. 1997] or 3D brick elements [Sherbourne and Bahaari

1996; Bursi and Jaspart 1997; Wanzek and Gebbeken 1999]. The performance of such models is generally

very good, since geometrical characteristics and nonlinearities are adequately modeled. However, the

merit of these models for practical design purposes is limited, due to the special software requirements

they pose, their high computational cost and the large amount of output data they produce.

In this paper we propose an incremental analytical model for the prediction of the complete force-

displacement curve of the T -stub connection. The proposed model is designed for implmentation in a

computer program rather than hand calculation and assumes the following as relevant objectives: credible

results, ease of programming, and minimum dependency on special software. To achieve credible results,

our model is designed for implementation in a computer program rather than hand calculation. Published

methodologies for prediction of the whole force-displacement curve generally require computer imple-

mentation [Faella et al. 2000; Swanson and Leon 2001; Girão Coelho et al. 2004]. In fact, T -stub

behavior is so complicated that implementing a simplified method suitable for hand calculation would

unavoidably compromise the credibility of the model. This becomes an even greater problem for the

whole joint, since multiple components must be analyzed.
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Figure 2. (a) Flange material modeling and (b) corresponding moment-outer fiber strain diagram.

2. Model description

T -stub connections are fairly complex to analyze. Their geometry is three-dimensional, and includes

contact phenomena as well as interaction between the flanges and the bolts. Some compromises are taken

into consideration to circumvent these difficulties. We first adopted a two-dimensional representation of

the problem. This is opposed to the actual geometry which is three-dimensional due to the bolts and

the holes at the flanges. As shown in Figure 1b, the analysis is based on classical beam theory, with

the flanges modeled as beams and the bolts as springs of equivalent stiffness located at the axes of the

physical bolts. Taking advantage of symmetry, we model only one half of the T -stub. The initially

unknown distance of the flange edge, where the symmetry condition is enforced, from the bolt axis, is

L1. The area extending from the bolt spring to the free end is considered as potential contact area where

partial separation might occur. The separation length measured from the bolt axis is L2. Displacement

w is identical to the vertical deflection of the flange mid-thickness at the symmetry plane which passes

along the web.

2.1. Material nonlinearity. Both the flanges and the bolts feature a bilinear material law with strain

hardening, shown in Figure 2a with E and ET denoting the elasticity modulus and the hardening modulus

respectively, εy , εu the yield and ultimate strain and fy , fu the yield and ultimate stress. Figure 2b shows

the bending moment M – the outer fiber strain ε diagram for a rectangular cross section with this type of

material. Point 1 of the diagram denotes the end of the elastic region, when the outer fibers of the cross

section reach their yield strain εy . Beyond this point, and as larger parts of the cross section enter the

plastic region, the curve gradually softens, up to the point of fracture, denoted by point 3 in the diagram.

It is assumed that fracture occurs when the outer fibers of the cross section reach their ultimate strain

εu . Thus, the ultimate moment resistance can be expressed as

Mu =
bt2

f

12

(

3(E − ET )εy + 2ET εu −
(E − ET )ε3

y

ε2
u

)

, (1)
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where b is the width of the flange, and the other symbols are shown in Figures 1b and 2a. When εu ≫ εy ,

a hypothesis valid for steel, Equation (1) is simplified to become

Mu =
bt2

f

12
( fy + 2 fu). (2)

We introduce an additional simplification regarding nonlinearity of the M − ε curve. This curve is

approximated by a bilinear representation, with the linear segments lying tangential to the original curve

at points 1 and 3. The intersection of the two segments at point 2 in Figure 2b is proven to take place for

a moment equal to

M2 =
bt2

f

4
fy . (3)

The bilinear simplification of the M −ε curve allows one to distinguish the flange beam in parts where the

bending moments have surpassed M2 (and subsequently modulus ET characterizes the material response),

from the remaining parts, which remain elastic.

For the bolt, the bilinear material law results in a bilinear force versus elongation curve, since bolts

are only subjected to tensile loading, so that calculation of the respective characteristics of the curve is

straightforward.

2.2. Contact phenomena. A complex aspect of the T -stub behavior involves the contact of the flange

surfaces. In existing methods [Jaspart 1991; Faella et al. 2000; Swanson and Leon 2001], the location of

prying actions is predetermined and remains constant through the whole loading history. In our model,

we make no assumption regarding the location of the prying actions. Instead, the part of the flange

extending from the bolt location to the free end is considered as the potential contact area where partial

separation might occur. A unique separation point appears somewhere within this area and the beam

length beyond this point remains in complete contact with its base as shown in Figure 1b. Assuming

that the base is infinitely rigid, this part of the beam remains straight, with zero curvature and, thus, zero

moment. Due to continuity of the flange, the same conditions should apply locally to the separation point

through the deformed part as well. Hence, both the rotation and the moment of the flange on both sides

of the separation point should be zero. The calculation process takes advantage of these conditions to

find the location of the separation point, as described later in this section.

The separation length L2 changes during the loading progress, while additional parts of the flange

or the bolt enter the plastic region, and we implement this behavior in the proposed incremental model.

The conditions of zero moment and rotation apply throughout the response. Figure 3 shows the model

used for the calculations, with the state of the total response in step i of the incremental process. The

label A shows the edge near the web, located at a distance L1 from the bolt axis, while B shows the bolt

axis position, where the bolt spring is connected to the flange. Point C i indicates the separation point at

the current step i , with the current separation length L i
2. Figure 3 also shows the incremental response

between steps i and i+1, where the new separation point is indicated by C i+1 and the new separation

length is L i+1
2 . For calculation of the new separation length L i+1

2 , a moment constraint is applied to the

separation point C i+1 which allows for expression of the respective moment reaction as a function of

the unknown L i+1
2 . However, as mentioned earlier, the separation point C i+1 must fulfill zero moment

conditions. Therefore, we obtain an appropriate length L i+1
2 which causes the total moment to edge
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Figure 3. Incremental treatment of contact phenomena.

C i+1 to be zero. Note that the constraint symbol used in Figure 3 at the separation point represents a full

moment support, but it differs from the conventional clamping symbol to signify the zero actual moment

at this point. The enforcement of zero moment at the new separation point C i+1, in the total response of

step i + 1, is given by

MC i+1 = M i (x = L1 + L i+1
2 ) + d MC i+1 = 0 ⇒ (4)

M i
B L i

2 − M i
B L i+1

2 + d MC i+1 L i
2 = 0. (5)

The total moment M i
B is known from the previous step but the incremental moment d MC i+1 is a function

of the new separation length L i+1
2 . Further elaboration of Equation (5) will be given in Section 2.4, where

the required quantities of the response will be available analytically.

2.3. Flange length L1. The modeled flange features a constant cross section. However, near the web,

the real flange cross section gradually increases in height. The critical position for strength calculations,

according to prEN 1993-1-8 [CEN 2003], lies at a distance 0.2r from the start of the flange-to-web fitting.

However, using this length for stiffness calculations leads to overestimation of the response because the

deformability of the remaining part of the fitting is ignored. Therefore, in our proposed model, we take
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(b) definition of the plastified zone in the same region.

into account the total fitting length up to the web face. Because the real fitting has a variable cross

section, an equivalent length Lc of constant cross section as shown in Figure 4a, is used so that the

flexural stiffness of the two is equal as follows:

∫ r

0

1

E I (x)
dx =

∫ Lc

0

1

E I
dx ⇒ (6)

∫ r

0

1

(t f (x))3
dx =

∫ Lc

0

1

t3
f

dx . (7)

The function t f (x) of the cross section height at a distance x from the start of the circular fitting, as

shown in Figure 4a, is

t f (x) = t f + r −
√

r2 − x2. (8)

The analytical integration of the left side of (7) is not readily available. Instead the trapezoidal rule can

be applied as

Int =
∫ r

0

1

t f (x)3
dx =

r

2k

(

1

t3
f

+
1

(t f + r)3
+ 2

k−1
∑

j=1

1

t3
f, j

)

, (9)

where t f, j = t f
(

x = j r
k

)

and k the number of trapezoids to be used for the approximation. Typically,

values of k equal to 4 or 5 provide sufficient accuracy. The equivalent fitting length should then be

derived from (7) as

Lc = t3
f Int . (10)

Figure 4b illustrates the relevant process of obtaining the plastified flange zone at the flange-to-web

fitting, which will be investigated in the following section.
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2.4. Model response. The model is solved using the force method. As mentioned earlier, the incre-

mental model features a moment constraint at C . Neglecting longitudinal forces, it is twice statically

indeterminate. In Figure 5, the proposed incremental model is depicted in its more general form, with

plastified parts in the flange-to-web fitting of length L i
p A and at the bolt area of lengths L i

pB,1, L i
pB,2

where superscript i indicates the loading step. The resulting quantities of its response were obtained

analytically and are summarized in Table 1. From this table, the incremental prying force d R, bolt force

d Fb as well as moments d MC i+1 , d MA and d MB , which correspond to points C i+1, A and B respectively,

can be calculated for a given value of the applied incremental force d F . Then, the incremental displace-

ment dw of the T -stub can be calculated from the partial displacements dw j=0···2. Section 4.3 provides

details regarding the displacement dws . No special physical meaning is attributed to the parameters

s j=0···2, p j=0···3, q j=0···4, G1, G2 and λ listed in Table 1. These parameters are used to calculate the

aforementioned incremental quantities of the model response, to reduce the complexity of the algebraic

expressions.

Purely elastic response as well as special cases such as plastification near the flange-to-web fitting can

be derived from the expressions of Table 1 by substituting the respective plastification lengths with zero.

This facilitates implementation of the model in computer code by avoiding multiple programming paths.

The plastification length L i
p A is not adjacent to A but allows for a flange length L i

0 to remain elastic.

This compensates for its increased moment resistance. The exact value of length L i
p A and its position is

obtained by solving

|M i (x)| = M2(x), (11)

where M i (x), the total bending moment in the flange during loading step i at distance x from the start

of the fitting, is defined as

M i (x) = M i
A + 0.5F i (Lc − x). (12)

The moment resistance M2(x) is calculated from Equation (3), where instead of the constant cross section

height t f , we use

t f (x) =

{

t f + r −
√

r2 − x2, x > 0,

t f , x ≤ 0.
(13)

If plastification occurs, solution of Equation (11) provides two roots as shown in Figure 4b for the

definition of the length L i
p A. Because part of the distance between the two roots obtained by (11) is

located at the flange-to-web fitting, where the flange height is variable, a correction similar to the one
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d R =
3d F

2

s2(L i+1
2 )2 + s1L i+1

2 + s0

q4(L i+1
2 )4 + q3(L i+1

2 )3 + q2(L i+1
2 )2 + q1L i+1

2 + q0

d MC i+1 = −
d F

2

p3(L i+1
2 )3 + p2(L i+1

2 )2 + p1L i+1
2 + p0

q4(L i+1
2 )4 + q3(L i+1

2 )3 + q2(L i+1
2 )2 + q1L i+1

2 + q0

d Fb =
d F

2
+ d R

d MA = −
d F

2
L1 + d RL i+1

2 + d MC i+1, d MB = d RL i+1
2 + d MC i+1

dw = dw0 + d Rdw1 + d MC i+1dw2

(

+dws
)

dw0 = d F
6E I

(

L3
1 + λ

(

(

L i
p A

)3 +
(

L i
pB,1

)3 + 3L i
p A

(

L1 − L i
0

)(

L1 − L i
0 − L i

p A

)

)

+ 3E I
ci

b

)

dw1 = − 1

2EI

(

L2
1L i+1

2 + λL i+1
2 G1 − 2E I

ci
b

)

, dw2 = − 1

2EI
(L2

1 + λG1), dws = 0.5
d F L1

G A

s2 = ci
b

(

L2
1 + λG1

)

s1 = −4E I

s0 = −4E I
(

L1 + λG2

)

+ ci
bλ

(

L i
pB,2

)2(
L2

1 + λG1

)

p3 = ci
b

(

L2
1 + λG1

)

p2 = −6E I

p1 = −12E I
(

L1 + λG2

)

+ 3ci
bλ

(

L i
pB,2

)2(
L2

1 + λG1

)

p0 = −6E I
(

L2
1 + λ

(

G1 −
(

L i
pB,2

)2)) − 2ci
bλ

(

L i
pB,2

)3(
L2

1 + λG1

)

q4 = ci
b

q3 = 4ci
b

(

L1 + λG2

)

q2 = −6ci
bλ

(

L i
pB,2

)2

q1 = 12E I + 4ci
bλ

(

L i
pB,2

)3

q0 = 12E I
(

L1 + λG2

)

+ 4ci
bλ

(

L i
pB,2

)3(
L1 + λ

(

G2 −
3L i

pB,2

4

))

G1 = 2
(

L1 − L i
0

)

L i
p A +

(

L i
pB,1

)2 −
(

L i
p A

)2

G2 = L i
p A + L i

pB,1 + L i
pB,2 λ = E−ET

ET

Table 1. Analytical expressions for the incremental response from step i to i + 1.
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mentioned in Section 2.3 is required, to correspond to the constant cross section height t f used for the

flange in the model. The only difference is in the computation of the integral in Equation (9), in which

the minimum of two roots should be used as lower boundary and the maximum one as upper boundary.

A similar procedure can be used for determining the plastified lengths L i
pB,1 and L i

pB,2. In this case

however, the flange cross section remains constant, so the computations for the two lengths are more

straightforward.

Substituting d MC i+1 from Table 1 into Equation Equation (5), the separation length L i+1
2 in the new

step can be calculated from the following fifth order polynomial equation:

m5(L i+1
2 )5 + m4(L i+1

2 )4 + m3(L i+1
2 )3 + m2(L i+1

2 )2 + m1L i+1
2 + m0 = 0, (14)

where the factors m j=0···5 are:

m5 = −M i
Bq4

m4 = M i
B L i

2q4 − M i
Bq3

m3 = M i
B L i

2q3 − M i
Bq2 − 0.5d F L i

2 p3

m2 = M i
B L i

2q2 − M i
Bq1 − 0.5d F L i

2 p2

m1 = M i
B L i

2q1 − M i
Bq0 − 0.5d F L i

2 p1

m0 = M i
B L i

2q0 − 0.5d F L i
2 p0

(15)

and the factors q j=0···4, p j=0···3 are the same as in Table 1.

Equation (14) is best solved using a Newton–Raphson scheme since the derivative is easily available.

If the obtained solution from (14) exceeds the physical length n of the T -stub, then no partial contact

occurs in the flange and instead a simple support at the flange edge should be applied. In that case, the

incremental model is once statically indeterminate and its response differs from the one given in Table 1.

The required quantities of the response, with simple support conditions at the flange edge are presented

in Table 2. For a given value of the applied incremental force d F , we calculate the incremental forces d R
and d Fb, moments, d MA and d MB , and subsequently, from the same table, the incremental displacement

dw. As with Table 1, no special physical meaning is attributed to the parameters s j=0···1, q j=0···3, G1,

G2 and λ. Length L i+1
2 in Table 2 is equal to distance n from bolt axis to flange edge. However, the

notation is retained for reasons of uniformity and continuity of the expressions.

Once simple support conditions apply to the edge, the flange rotation ϕC at this location becomes

nonzero. The occurrence of partial contact again, at a later load increment, for example in case of subse-

quent plastification in the flange, should be allowed only after the negation of this previously accumulated

rotation ϕC , together with a solution of (14) for a length L i+1
2 less than the physical length n.

3. Solution process

The objective of the solution process is to generate the load F vs. displacement w curve. The scheme

of the incremental process is shown in Figure 6. At each cycle of the process, an incremental loading

is determined and the incremental response and the new separation length are calculated. Then, the

incremental response of the current load increment is appended to the last total response. At this point the
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d R =
3d F

4

s1L i+1
2 + s0

q3(L i+1
2 )3 + q2(L i+1

2 )2 + q1L i+1
2 + q0

d Fb = d F
2

+ d R

d MA = −d F
2

L1 + d RL i+1
2 , d MB = d RL i+1

2

dw = dw0 + d Rdw1

(

+dws
)

dw0 = d F
6E I

(

L3
1 + λ

(

(

L i
p A

)3 +
(

L i
pB,1

)3 + 3L i
p A

(

L1 − L i
0

)(

L1 − L i
0 − L i

p A

)

)

+ 3E I
ci

b

)

dw1 = − 1

2E I

(

L2
1L i+1

2 + λL i+1
2 G1 − 2E I

ci
b

)

dws = 0.5
d F L1

G A

s1 = ci
b

(

L2
1 + λG1

)

s0 = −2E I

q3 = ci
b

q2 = 3ci
b

(

L1 + λG2

)

q1 = −3ci
bλ

(

L i
pB,2

)2

q0 = 3E I + ci
bλ

(

L i
pB,2

)3

G1 = 2
(

L1 − L i
0

)

L i
p A +

(

L i
pB,1

)2 −
(

L i
p A

)2

G2 = L i
p A + L i

pB,1 + L i
pB,2 λ = E−ET

ET

L i+1
2 = the distance n from bolt axis to flange edge

Table 2. Analytical expressions for the incremental response with simple support con-

ditions at the flange edge from step i to i + 1.

total bending moments of the flange and the total bolt force are known and therefore decisions regarding

the plastification or failure of flange regions or the bolt can be made. The new flange plastification

lengths and the bolt stiffness are computed before a new cycle starts. The process continues until failure

is detected either in the flange or in the bolt.

4. Model refinements

4.1. Bolt head size. In real T -stubs, the bolt acts on the flange through its head within an extended

region of contact between flange and bolt head. However, in our model bolt action is concentrated at a
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Figure 6. Solution process.

single point of the flange. As shown in Figure 7a, the solution derived from a concentrated bolt action

overestimates the flange bending moment at the bolt location. Assuming a uniform distribution of the

bolt force within a zone of length equal to the bolt head diameter dh , the variation of the moment at the

bolt location, compared to the case of concentrated action, is given by

1MB =
Fbdh

8
. (16)

This variation is taken into account when a decision regarding plastification or failure of the flange at the

bolt location is taken.

Note that no special consideration made of the influence of the hole and the reduced cross section

of the flange on the moment capacity of the flange. In theory, the beneficial action of the uniform

distribution of the bolt force could be compensated by the unfavorable effect of the reduced flange cross
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Figure 7. Influence of bolt head size (a) and definitions for the bolt bending treatment (b).

section. However, the behavior of the flange in the area near the bolt departs from simple bending, it is

characterized by a complex three dimensional stress state, and it is affected by the interaction with the

bolt head. Designation of a reduced moment capacity for the flange at the bolt area, based on its net

cross section, lead to significant underestimate of the strength of the complete T -stub. Therefore, we do

not propose such reduction to the flange moment capacity.

4.2. Bolt bending. The bolt shank of a real T -stub is subjected to combined tension and bending, whereas

in the proposed model only axial tension is considered. This potentially leads to a considerable overesti-

mation of the maximum axial load the bolt can carry. In T -stubs with strong flanges where the bolts are

critical for the ultimate load capacity, a slight overestimation of the bolt resistance can lead to significant

overestimation of the ultimate T -stub displacement.

To prevent this error we assume a revised criterion for the realization of the ultimate bolt state, which

refers to the more stressed fiber of the bolt shank shown in Figure 7b, as

εu > εt + εb, (17)

where εu is the ultimate strain of the bolt material, εt the strain attributed to tensile action and εb the

strain attributed to bending action. The value of εt can be obtained from

εt =
wb

Lb
, (18)

where Lb is the modeled shank length and wb the elongation of the bolt shank, which can be calculated

throughout the incremental process using the current bolt stiffness and the incremental axial bolt force

d Fb. For εb, we assume that the total rotation of the bolt shank axis ϕb, is equal to the flange rotation

at this position (Figure 7b) available analytically at each incremental step. Because the bending of the
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shank is induced through rotation of its edges, constant bending moments along its length is assumed,

and thus strain εb is related to rotation ϕb through

εb =
db/2

Lb
ϕb. (19)

Note that for wide T -stubs the deformation of the flange is not uniform along its width. Near the bolts the

flange deflection and rotation is reduced compared to a uniform deformation, as assumed in the model.

In such cases the criterion in Equation (17) can lead to early failure. We tested our proposed model for

T -stub configurations with b/m ratios up to 2.0 ∼ 2.5, and obtained acceptable results, as shown in the

following sections. For even wider T -stubs, further study is necessary to make a meaningful estimation

of the bolt rotation.

4.3. Shear deformations. The expressions in Tables 1 and 2 account for the work in the flange due

to bending actions only. This assumption is normally valid for long beams where work due to shear

deformation may be neglected. For T -stubs, the dimensions of the flanges do not justify this simplifi-

cation. Expressions similar to the ones in Tables 1 and 2 can be derived with the shear work included.

However, such expressions are more complicated and are not presented in this paper. Instead, a simple

circumvention is possible, in which we account for the shear work in the calculations of the resulting

displacements only. Thus, the following quantity may be added to the displacements dw in Tables 1

and 2:

dws =
∫ L1

0

0.5d F · 1̄

G A
dx =

d F L1

2G A
. (20)

4.4. Three-dimensional stress and strain state. In our model the flange is treated as a simple Bernoulli

beam. Hence, any secondary stresses are neglected, such as the normal σyy and σzz with y and z axes as

defined in Figure 8. However, this assumption for the stress state is accurate enough only near the two side

edges and for fairly thin flanges. Towards the middle areas of the width b, lateral strain εzz is suppressed,

resembling plane strain conditions. Assuming that εzz = 0 and that σyy also remains practically zero due

x

z

y

b

Figure 8. Flange cross sectional axis definitions.
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to the flange being adequately thin, the three dimensional elastic stress-strain equations lead to

σxx =
E

1 − v2
εxx , (21)

σzz =
νE

1 − v2
εxx . (22)

Equation (21) suggests adoption of an equivalent modulus of elasticity for the flange

E∗ =
E

1 − ν2
. (23)

For Poisson’s ratio ν equal to 0.3, an equivalent modulus E∗ becomes approximately 10% larger than

E . The interaction of normal stress σxx and the nonzero secondary σzz applied in the von Mises yield

criterion leads to an equivalent yield stress:

f ∗
y =

fy√
1 − v + ν2

. (24)

For ν = 0.3, (24) leads to an approximately 13% increase of the equivalent yield stress of the flange.

To determine an equivalent modulus E∗
T in the plastic region, we adopt the deformation theory of

plasticity [Chen and Han 1988], which implies a proportional loading history. The plastic strains are a

function of the total stresses

ε p
xx =

ε
p
eff

σeff

(

σxx − 1
2
(σyy + σzz)

)

, (25)

ε p
yy =

ε
p
eff

σeff

(

σyy − 1
2
(σxx + σzz)

)

, (26)

ε p
zz =

ε
p
eff

σeff

(

σzz − 1
2
(σxx + σyy)

)

, (27)

where ε
p
eff and σeff are the effective plastic strain and the effective stress, respectively. Imposing εzz = 0

and σyy = 0, the nonzero plastic strains are

ε p
xx = 3

4

ε
p
eff

σeff

σxx , (28)

ε p
yy = −3

4

ε
p
eff

σeff

σxx , (29)

while for the nonzero total normal stresses

σzz = 1

2
σxx . (30)

The equivalent ultimate stress can be derived from (30) using the von Mises criterion

f ∗
u =

2
√

3

3
fu . (31)
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Finally, the equivalent modulus E∗
T can be defined as the slope of the line in the stress-strain plane leading

from the equivalent yield state to the equivalent ultimate state

E∗
T =

f ∗
u − f ∗

y

εxx,u − εxx,y
, (32)

where εxx,y is the yielding strain obtained from (21) and εxx,u is the ultimate strain obtained from (21)

and (28) as

εxx,u =
2
√

3

3

fu

E
(1 − ν2) +

√
3

2
( fu − fy)

E − ET

E ET
. (33)

4.5. Flange-bolt interaction. In our proposed model, we assume a uniform flange deflection along its

width b. However, in real T -stubs, especially wide ones, this assumption is not appropriate due to the

bolt action which is exerted in a part only of the total width. This discrepancy affects the calculated

displacements of the analytical model. Using an equivalent plate problem, [Faella et al. 2000] proposed

a modified effective width beff for stiffness calculations. The plate features an infinite width which

mainly applies to T -stubs which are considered as components of more complex connections where the

dimensions of the plates are quite large compared to the individual T -stubs. Under these assumptions,

beff is simply derived as

beff = 2.21m. (34)

The length m is shown in Figure 1b and is equal to d − 0.8r . For completeness of the proposed model,

we undertook a similar approach for plates of finite width. In particular, cantilevered plates with varying

values of m/b loaded with a concentrated load in the middle of the free edge, opposite to the clamped

one, were analyzed elastically using 2D plate finite elements. Comparing the numerically calculated

displacements of the plates to those of a simple beam representation, for an equivalent width beff, we

obtained

b

beff

=

{

0.92 + 0.06
(m/b)2 , m/b < 0.87,

1, m/b ≥ 0.87.
(35)

Figure 9 shows a graphical representation of Equation (35) as well as the curve derived from Equation (34)

from [Faella et al. 2000]. Considering that Equation (34) is based on an analysis of infinitely wide plates,

it is expected that for low values of the ratio m/b, the two curves converge. However, for intermediate

values of the ratio m/b, we observe a difference up to 20% in the equivalent width beff.

This equivalent width beff is used to calculate the resulting displacements due to flange deformation

only. Decoupling of the total T -stub displacement w, which is calculated incrementally by means of

Table 1 or 2, to flange and bolt contributions, can be performed at each incremental step since the bolt

elongation is easily obtainable using the current bolt stiffness and the incremental axial force d Fb. The

decoupled flange deflection should then be corrected with the multiplier b/beff from Equation (35), to

better approximate the impact of three-dimensional flange deformation.

5. Model performance

5.1. Comparison with experimental tests. Performance of our proposed model is validated by compar-

ison with results of published experimental tests, as well as by numerical parametric analyses. The
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published tests we used are those for T -stubs T1 and T2 conducted by [Bursi and Jaspart 1997], for

which all the necessary geometrical properties are provided in Table 3. T -stub T1 features a relatively

weak flange which is critical for the response, unlike T -stub T2 which features a stronger flange in which

both the bolts and the flange are critical for the response. With reference to prEN 1993-1-8 [CEN 2003],

those two behaviors correspond to the first and second failure mode, respectively. The bilinear material

approximations applied for the incremental models are shown in Figure 10a and 10b. Engineering values

are adopted since the original undeformed geometrical formulation is used for the calculations. Web

material data are needed because in the experimental setup the displacements were measured at the web.

The web deformability can be easily included in our model through an axially loaded spring of equivalent

stiffness.

In Figures 11a and 11b, the force F vs. displacement w curves for the proposed analytical model and

the experimental tests T1 and T2 are presented. Also, the curves derived by means of 3D finite element

simulation performed with ADINA v.8 [ADINA 2004], as described later in section 5.2, are included in

the same figure. For the finite element analyses, the ultimate state is realized when the von Mises stress

in the critical regions of the flange or at the bolt shank approaches the respective material ultimate value.

Likewise, for our proposed model, the ultimate state is realized when flange moments reach the ultimate

moment Mu or when the criterion (17) regarding combined tension and bending of the bolt is violated.

The performance of the proposed model is shown to be quite satisfactory. For T -stub T1 initial

stiffness, ultimate load, ultimate displacement and the overall curve converge to their experimental coun-

terparts. The knee range is sharper in the proposed model as well as in the 3D finite element model. We

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Proposed  model (Eq. 35)

Faella et al (Eq. 34)

b/beff

m/b

Figure 9. Curves for the estimation of the equivalent width beff.

Flange Bolt

b t f r d n db dh Lb

T1 40.0 10.7 15.0 41.45 30.0 12.0 24.0 14.0

T2 40.0 16.0 18.0 40.25 30.0 12.0 24.0 16.0

Table 3. Geometrical characteristics for T -stubs in the parametric study (in mm).
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Figure 10. Bilinear material approximations for T -stubs (a) T1 and (b) T2.
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Figure 11. Force-displacement curves for T -stubs (a) T1 and (b) T2.

attribute this mainly to the bilinear approximation of the moment-curvature relationship for the flange

and to the residual stresses present in the experimental flange. For T -stub T2, [Bursi and Jaspart 1997]

mention that bolt thread stripping was observed and the experimental curve reflects this special failure

type. Nevertheless, the curve of the proposed model lies fairly close to the 3D finite element one, for

which thread detailing is also not modeled. A slight overestimation in the plastic branch can be observed.

This is a result of the bolt bending action, which apart from the ultimate state, is neglected in the proposed

model.

For flange contact, our proposed model for T -stub T2 reproduces simple support conditions at the

flange edge which is validated by the finite element model and the physical test. For T -stub T1 the

variation of the separation length L2 through the loading history for the proposed model is shown in

Figure 12a. After the first plastification in the flange area near the web, the separation length decreases
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Figure 12. Development of flange contact phenomena in the proposed model (a) and in

3D finite element model (shown in dark shaded area) (b) for T -stub T1.
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Figure 13. Bolt force versus external loading for T -stubs (a) T1 and (b) T2.

initially, but later when the bolt enters the plastic region, it increases. This behavior is confirmed by the

results obtained by 3D finite element analysis shown in Figure 12b, where the contact area of the flange

is plotted for various load levels. Note that the limits of the contact area provided by our model for the

same loading levels are indicated with dashed lines.

In Figure 13, the axial force history for the bolt given by our model is compared to the 3D finite

element results for both tests. The proposed model appears to perform very well in this context, especially

considering the simplified method for including the bolt contribution, as compared to the more complex

finite element method.
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TS-1 TS-2 TS-3

Figure 14. Typical finite element models for the parametric study.

5.2. Comparison through parametric finite element modeling. We also carried out a parametric study

of the performance of our proposed model employing 3D finite element modeling with the software

package ADINA v.8 [ADINA 2004]. The reliability of 3D finite element modeling for the T -stub

connection has been confirmed in [Bursi and Jaspart 1997; Wanzek and Gebbeken 1999; Gantes and

Lemonis 2003]. We validate its reliability here as well, through the comparison with the experimental

tests T1 and T2 mentioned earlier. The flange and the bolts were modeled as separate bodies by means

of eight node brick elements. The contact between them was modeled through 2D contact elements,

equipped with constraint functions to enforce all contact conditions to the corresponding surfaces and

a Coulomb friction coefficient equal to 0.25. In contrast, frictionless contact conditions were applied

between the flange and its base which constitutes a symmetry plane of the whole problem. Through

the thickness of the flange, five brick elements were employed, formulated with incompatible modes in

order to circumvent the shear locking effect. Likewise, for the bolt circumference we implemented a

large number of elements (40 or more). The loading was applied by prescribed displacements on the

upper surface of the web with assumptions of large strains and large displacements globally imposed.

Figure 14 shows the finite element plots for three of the models of the parametric study.

Table 4 lists the geometric properties of the T -stubs of the parametric study, while Table 5 lists the

material properties, which remain unchanged for all T -stubs. The geometrical configurations in the para-

metric study include T -stubs with wide range of flange width and of relative strength between flange and

bolts. The former allows investigation of the influence of the T -stub width to the flange-bolt interaction.

We can also demonstrate the impact of the adopted beam representation in the ability of the model and

its refinements to predict accurately the response of the three-dimensional problem.

Figure 15 shows the plots of force F against displacement w for the proposed analytical and the

corresponding finite element models of the parametric study. In all cases the analytical curve closely

matches the numerical one. The characteristic attributes of initial stiffness, ultimate strength and ultimate

displacement are predicted within a fairly narrow margin of error. Performance is better for strength

estimation than for initial stiffness and ultimate displacement. For the ultimate displacement, which is

the most difficult characteristic to compute analytically, the maximum error does not exceed 30% for any
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Flange Bolt

b t f r d n db dh Lb

TS-1 50.0 10.0 18.0 66.75 30.0 20.0 34.0 14.0

TS-2 80.0 10.0 18.0 66.75 30.0 20.0 34.0 14.0

TS-3 120.0 10.0 18.0 66.75 30.0 20.0 34.0 14.0

TS-4 50.0 10.0 18.0 66.75 30.0 12.0 24.0 13.0

TS-5 80.0 10.0 18.0 66.75 30.0 12.0 24.0 13.0

TS-6 120.0 10.0 18.0 66.75 30.0 12.0 24.0 13.0

TS-7 50.0 15.0 18.0 65.50 30.0 20.0 34.0 19.0

TS-8 80.0 15.0 18.0 65.50 30.0 20.0 34.0 19.0

TS-9 120.0 15.0 18.0 65.50 30.0 20.0 34.0 19.0

TS-10 50.0 15.0 18.0 65.50 30.0 12.0 24.0 18.0

TS-11 80.0 15.0 18.0 65.50 30.0 12.0 24.0 18.0

TS-12 120.0 15.0 18.0 65.50 30.0 12.0 24.0 18.0

Table 4. Geometrical characteristics for T -stubs in the parametric study (in mm).

of the T -stubs and is much lower for most of them. Table 6 presents the mean value and the standard

deviation of the relative errors in the parametric study for the three characteristic properties. A slight

overestimation of the initial stiffness can be noticed from the results, while for the ultimate strength

and displacement the mean error is very close to zero. Also, the low value of error standard deviation,

observed for all three properties, indicates a consistent performance of the proposed model.

6. Conclusion

A new incremental T -stub model for the prediction of the complete force vs. displacement curve has

been introduced in this paper. The model is designed for implementation in a computer program, and

E ET fy fu

Flange 200000 782 355 510

Bolt 200000 2400 640 800

Table 5. Material properties for T -stubs in the parametric study (in MPa).

Initial stiffness error Strength error Ultimate displacement error

Mean value 0.17 −0.02 0.03

Standard deviation 0.103 0.025 0.147

Table 6. Relative errors for the proposed model in the parametric study.
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Figure 15. Force-displacement curves for the parametric study.
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offers several advantages in this context by avoiding multiple cases and branches. The effectiveness of

the model has been shown to be very satisfactory in evaluations comparing it to both experimental and

numerical results. The solution time for a large number of load increments (500 or more) is negligible.

Overall, the proposed model constitutes a valuable tool for the estimation of T -stub behavior, producing

results comparable to much more complex and costly approaches such as 3D finite element analysis.

7. Notation

A flange cross-sectional area

b T -stub width

beff effective T -stub width used for displacement calculations

cb axial stiffness of the bolt

d distance between web face and bolt axis

db bolt diameter

dh bolt head diameter

d F incremental applied force

d Fb incremental bolt force

d MA incremental bending moment at flange point A

d MB incremental bending moment at flange point B

d MC i+1 incremental bending moment at flange point C i+1

d R incremental prying force

dw incremental transverse T -stub displacement

dw j0···2 parameters for the calculation of incremental displacement

dws incremental transverse T -stub displacement due to shear

E Young modulus

E∗ equivalent Young modulus

ET strain hardening modulus

E∗
T equivalent strain hardening modulus

F applied force

Fb bolt force

fu ultimate stress

f ∗
u equivalent ultimate stress

fy yield stress

f ∗
y equivalent yield stress
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G shear modulus

G1, G2 parameters for the calculation of T -stub incremental response

I moment of inertia

i superscript indicating the loading step number

j index indicating the trapezoid in numerical calculation of Int

Int integral derived from flexural stiffness equivalence in flange-to-web fitting

k number of trapezoids in numerical calculation of Int

L0 flange length from edge A to start of plastification length

L1 flange length from edge A to bolt axis

L2 flange separation length measured from bolt axis to edge C

Lb bolt shank length

Lc equivalent flange-to-web fitting length

L p A plastification length near edge A

L pB,1 plastification length at point B and towards the web

L pB,2 plastification length at point B and towards the flange edge

M flange bending moment

M(x) flange bending moment function of x

M2 flange plastification moment in bilinear representation

M2(x) flange plastification moment function of x

MA bending moment at flange point A

MB bending moment at flange point B

MC i , MC i+1 bending moment at flange point C i and C i+1

Mu flange ultimate moment

My flange yield moment

m distance between bolt axis and an offset of web face by 0.8r

m j0···5 parameters for the calculation of separation length

n distance between bolt axis and flange edge

p j0···3 parameters for the calculation of T -stub incremental response

q j0···4 parameters for the calculation of T -stub incremental response

R prying force

r fillet radius of the flange-to-web fitting

s j0···2 parameters for the calculation of T -stub incremental response
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t f flange thickness

t f (x) flange thickness function of x in flange-to-web fitting

t f, j flange thickness in trapezoid j

w transverse T -stub displacement

wb bolt shank elongation

ε strain

εb strain at tensile fiber of bolt shank due to bending

ε
p
eff effective plastic strain

εt strain at tensile fiber of bolt shank due to tension

εu ultimate strain

εy yield strain

εxx , εyy, εzz normal strains along axes x , y and z

ε
p
xx , ε

p
yy, ε

p
zz normal plastic strains along axes x , y and z

1MB variation of flange bending moment at bending moment due to distributed bolt action

λ parameter for the calculation of T -stub incremental response

v Poisson’s ratio

σ stress

σeff effective stress

σxx , σyy, σzz normal stresses along axes x , y and z

φB flange rotation at bolt axis

φC flange rotation at flange edge
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