
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

145,000 180M

TOP 1%154

5,900

16

Incremental Motion Planning With Las Vegas

Algorithms

Jouandeau Nicolas, Touati Youcef and Ali Cherif Arab
University Paris8

France

1. Introduction

Las Vegas algorithm is a powerful paradigm for a class of decision problems that has at least
a theoretical exponential resolving time. Motion planning problems are one of those and are
out to be solved only by high computational systems due to such a complexity (Schwartz &
Sharir, 1983). As Las Vegas algorithms have a randomized way to meet problem solutions
(Latombe 1991), the complexity is reduced to polynomial runtime. In this chapter, we
present a new single shot random algorithm for motion planning problems. This algorithm
named RSRT for Rapidly-exploring Sorted Random Tree is based on inherent relation
analysis between Rapidly-exploring Random Tree components, named RRT components
(LaValle, 2004). RRT is an improvement of previous probabilistic motion planning
algorithms to address problems that involve wide configuration spaces. As the main goal of
the discipline is to develop practical and efficient solvers that automatically produce motion,
RRT methods successfully reduce the complexity in exploring the space partially and
producing non-deterministic solutions close to optimal ones. In the classical RRT algorithm,
space is explored by repeating successively three phases: generation of a random
configuration in the whole space (including free and non-free space); selection of a nearest
configuration; and generation of a new configuration obtained by numerical integration
over a fixed time step. Then the motion planning process is discretized into steps from the
initial configuration to other configurations in the space. In such a way, RRT algorithms are
the motion planners last generation that generally addresses a large set of motion planning
problems. Mobile, geometrical or functional constraints, input methods and collision
detection are unspecified. As it is possible to measure solutions provided by RRT, RSRT or
other improvements in spaces with arbitrary dimension, experiments are realized on a wide
set of path planning problems involving various mobiles in static and dynamic
environments. We experiment the RSRT and other RRT algorithms using various
configurations spaces to produce a massive experiment analysis: from free flying to
constraint mobiles, from single to articulated mobiles, from wide to narrow spaces, from
simple to complex distance metric evaluations, from special to randomly generated spaces.
These experiments show practical performances of each improvement, and results reflect
their classical behavior on each type of motion planning problems.

www.intechopen.com

New Developments in Robotics, Automation and Control

274

2. RRT Sampling Based-planning

2.1 Principle

In its original formulation (LaValle, 1998), RRT method is described as a tree G = (V,E) ,
where V is the set of vertices and E the set of edges in the research space. From an initial
configuration qinit, the objective is to generate a sequence of commands, leading a mobile M,
to explore all the configurations space C. The RRT method can solve this problem by
searching solution which spans a tree, where the configuration qinit, describes the root node.
One can note that nodes and arcs represent respectively eligible configurations of M and
commands which are applied to move between the configurations. RRT method is a random
incremental search of configurations which permits a uniform exploration of the space. The
RRT implementation consists on a three phases: generate a configuration qrand, select a
configuration qprox inside the current tree, and integrate a new configuration qnew from qprox
towards qrand.
During the first phase, a random function is implemented to select an element of a
configurations space. The second phase consists of choosing qprox of G, which is the nearest
element of qrand. This phase is based on a metric ρ. Finally, a new configuration qnew from
qprox towards qrand is generated and the objective is to implement a control which leads to
bring qprox closer to qrand. The new configuration qnew is generated by integrating from qprox,
during a predefined time interval.

2.2 Graph construction of RRT method

Firstly, the RRT method is developed to solve planning problem in mobile robotic. In the
original algorithm, the possible constraints associated to M are not mentioned. During the
formulation of G, changes to be made for adding new constraints are minors, and the
precision depends mainly on the chosen local planning method. The graph elementary
construction in RRT method is described according to algorithm ALG. 1.

consRrt (qinit , k , Δt , C)
 init (qinit , G)
 for i in 1 to k
 qrand = randConfig (C)
 qprox = nearestConfig (qrand , G)
 qnew = newConfig (qprox , qrand , Δt)
 addConfig (qnew , G)
 addEdge (qprox , qnew , G)
 return G

nearestConfig (qrand , G)
 d = inf
 foreach q in G
 if ρ (q , qrand) < d
 qprox = q
 d = ρ (q , qrand)
 return qprox

(1)
(2)

(3)
(4)

(5)

ALG. 1. Original RRT algorithm formulation

www.intechopen.com

Incremental Motion Planning With Las Vegas Algorithms

275

We remark that the algorithm implements three functions. The first one, randConfig,
ensures a uniform partition of random samples in C, and guaranties uniform exploration
(Yershova & LaValle, 2004 and Lindemann et al., 2004). Function nearestConfig selects the
nearest configuration qrand of G. This relation proximity is defined by a distance metric ρ, as
it is illustrated in (ALG. 1. (5)). In the case of probabilistic methods PRM and RRT, the
nearest neighbour search with arbitrary dimension can be optimised (Yershova & LaValle,
2007 and Yershova & LaValle, 2002). Reducing of the search time of a nearest neighbour
permits to use a complex distance metric. A new configuration qnew can be defined by
newConfig from qprox towards qrand. Knowing that M is subject to holonomic constraints, a
control inputs can be applied to move from qprox towards qrand with displacements
amplitudes Δt. Functions addConfig and addEdge add respectively qnew to the list of nodes
of G and arcs between qprox and qnew .

2.3 Cardinality and layer

For each new configuration qnew in the generation phase, RRT method adds a configuration
by propagating qprox of G. In this case, no restriction on qnew is imposed according to
configurations set G. So, qnew can be similar to qexist, which can make possible to span a
graph with or without cycle. For example, let’s define Card as a cardinal of set, thus, if Card
(V) = Card (E) + 1, then we can conclude that the graph is non-cyclic. To avoid stacking of
identical movements, each nodes qprox can’t be extended towards qrand for creating qnew, if it
doesn’t already have a similar descendent.
If qprox is extended towards qrand, a new arc between qprox and qnew is inserted in E.
If Card (V) ≤ Card (E), we can conclude that the graph contains at least one cycle. Thus, is
qnew deleted and a new arc is inserted in E between qprox and qexist.
Creating cycles leads to decrease an expansion number of G in unexplored zones. However,
it permits to list possible solutions in the case of halt. Knowing that this scenario is more
topologic than geometric, RRT method is better without cycle [LAV98]. Fig 1 shows the
expansion of G respectively after 100, 500 and 1500 samples. Random samples have been
uniformly spread in the square. qinit is initially in the center of the square. The mobile is a
simple point (without geometric shape) with holonomic constraints.

(a) (b) (c)

Fig. 1. Expansion of G in a free square (a after 100, b after 500 and c after 1500 samples)

www.intechopen.com

New Developments in Robotics, Automation and Control

276

2.4 Natural expansion

The random distributions of samples which performs expansions, directs naturally the
growth of G towards the wider regions of space. This can be verified by constructing
Voronoï diagram which associates, for each new node of C, one Voronoï cell. For each
iteration of RRT method, the localization probability of the next random sample is more
important towards the largest cells of Voronoï diagram, which is defined by a previous
random samples set.
Let’s Ck be a distribution of k random samples in the configurations space C. the
distribution Ck converges in term of probability to C under condition of the uniformity of a
random samples partition in C (LaValle & Kuffner, 2000).
Knowing that Delaunay triangulation is a dual of Voronoï diagram, an example of a graph
expansion associated to RRT method is presented in Fig. 2. Graphs presented in (a), (b) and
(c) illustrate respectively the results of 25, 275 and 775 expansions including those of
Delaunay triangulations illustrated in (a’), (b’) and (c’). The space is two dimensional
squares without obstacles. For each iteration, adding a new item leads to construct a new
triangulation. In Fig. 2, initial configuration is represented by a circle in the center of the
space.

Fig. 2. Triangulation analysis due to samples

www.intechopen.com

Incremental Motion Planning With Las Vegas Algorithms

277

The evolution of new configurations of G along iterations is illustrated in Fig 3. X-axis
represents the configuration number contained in the graph and Y-axis represents the
percentage of the entire surface S. The surface graph represents the average, minimal, and
maximal surface variations. In this case, the average surface is the average triangles surfaces.
The standard deviation graph represents the average, minimal and maximal standard
deviations. The initial configuration divides the space into four triangles with 0.25 in term of
surface and zero in standard deviation. The average area of triangles decreases linearly
according to the number of configurations.
In Figures 2, 3 and 4, positions in (a), (b) and (c) are placed around area average and
standard deviations curves. Maximum and minimum variations can increase or decrease
according to their relative positioning to the decreasing average value. Due to the
logarithmic scale, position of minimal variations vis-à-vis average values shows the almost-
equality between average value and minimum value. On the other hand, position of
maximal variations shows triangles much larger than the average value before a density
threshold (8.15 times larger before 353 configurations). From 353 configurations, the ratio
between the higher triangle and the average value progresses in stair-steps. Two stair-steps
p0 and p1 are placed on average and standard deviations curves as it’s illustrated in Fig 3.
This ratio tends to be stabilized around 2 from p1. The initial configuration position has no
influence on statistics relative to its expansion.

Fig. 3. Evolution of average, min and max of triangles areas during sampling

www.intechopen.com

New Developments in Robotics, Automation and Control

278

Fig. 4. Evolution of standard deviation, min and max of deviation areas during sampling

2.5 End condition
A query of a mobile trajectory planning can be formulated according to a pair of
configuration-objective, which is instantiated on qobj or on a set of configurations Cobj.
Restricting the search to a single configuration-objective can penalize the mobiles which are
subjected to dynamics or non-holonomics constraints. To improve the convergence towards
the objective, RRT resolutions implement a configuration qobj, whose components are not
fixed. Thus, the planning problem consists to find a path connecting qinit to an element of
Cobj. From qinit, graph G seeks to achieve a configuration qobj. This can be done by a
successive adding of new configuration qnew in the tree G. Variable k defines the number of
iterations required to solve the problem. In the case of k is not sufficient it is possible to
continue conducting research on new k iterations from the previously generated tree. The

construction of G is achieved when qobj ∩ G=∅.

3. Related Works

In the previous section, C is presented without obstacle in an arbitrary space dimension. At
each iteration, a local planner is used to connect each couples (qnew , qobj) in C. The distance
between two configurations in T is defined by the time-step Δt. The local planner is
composed by temporal and geometrical integration constraints. The resulting solution
accuracy is mainly due to the chosen local planner. k defines the maximum depth of the
search. If no solution is found after k iterations, the search can be restarted with the previous
T without re-executing the init function. This principle can be enhanced with a bidirectional
search, shortened Bi-RRT (LaValle & Kuffner, 1999). Its principle is based on the
simultaneous construction of two trees (called Tinit and Tobj that grows respectively from qinit

www.intechopen.com

Incremental Motion Planning With Las Vegas Algorithms

279

and qobj. The two trees are developped towards each other while no connection is
established between them. This bidirectional search is justified because the meeting
configuration of the two trees is nearly the half-course of the initial configuration space.
Therefore, the resulting resolution time complexity is reduced (Russell & Norvig, 2003).
RRT-Connect is a variation of Bi-RRT that consequently increase the Bi-RRT convergence
towards a solution (Kuffner & LaValle, 2000) thanks to the enhancement of the two trees
convergence. This has been settled :

• to ensure a fast resolution for “simple” problems (in a space without obstacle, the
RRT growth should be faster (ALG.2. (1)) than in a space with many obstacles)

• to maintain the probabilistic convergence property. Using heuristics modify the
probability convergence towards the goal and also should modify its evolving
distribution. Modifying the random sampling can create local minima that could
slow down the algorithm convergence

connectRrt (q , Δt , T)
 r = ADVANCED
 while r equals ADVANCED
 r = expandT (q , Δt , T)
 return r

(1)

ALG. 2. Connecting a configuration q to T with RRT-Connect.

As it makes RRT less incremental, RRT-Connect is more adapted for non-differential
constraints (Cheng, 2001). It iteratively realize expansion by replacing a single iteration
(ALG. 1. (2)) with connectT function which corresponds to a succession of successful single
iterations (ALG. 2. (1)). An expansion towards a configuration q becomes either an extension
or a connection.

connectBiRrt (qinit , qobj , k, Δt , C)
 init (qinit, Ta)
 init (qobj, Tb)
 for i in 1 to k
 qrand = randConfig (C)
 r = expandRrt (qrand , Δt , Ta)
 if r not equals TRAPPED
 if r equals REACHED
 qco = qrand
 else
 qco = qnew
 if connectRrt (qco , Ta , Tb)
 Return solution
 swap (Ta , Tb)
 return TRAPPED

ALG. 3. Expanding two graphs with RRTConnect

www.intechopen.com

New Developments in Robotics, Automation and Control

280

According that two trees are constructed by Bi-RRT, growth is realized inside two trees
named Ta and Tb and a successfull connection of qnew towards qrand in Ta, implies many other
extensions (as many as the free space admits new free configurations, i.e. qnew in Cfree) of
qprox found in Tb towards qnew. This new configuration qnew becomes a convergence
configuration named qco (ALG. 3).
To improve the construction of T to an adequate progression of G in Cfree, previous works
propose :

• to deviate from its initial distribution the random sampling Bi-RRT and RRT-
Connect. Other Variations of RRT-Connect are called RRT-ExtCon, RRT-ConCon
and RRT-ExtExt; they modify the construction strategy of one of the two trees. The
priorities of extension and connection are balanced with new values according to
previous extensions (LaValle, 1998)

• to adapt qprox selection to a collision probability (Cheng & LaValle, 2001)

• to restrict qprox selection in an accessibility vicinity of the previous qprox in the
variation called RC-RRT (Cheng & LaValle, 2002)

• to bias sampling towards free spaces (Lindemann & LaValle, 2004)

• to parallelize growing operations for n distinct graphs in the variation OR parallel
Bi-RRT and to share G with a parallel qnew sampling in the variation
embarrassingly parallel Bi-RRT (Carpin & Pagello, 2002)

• to focus the sampling of special parts of C to control the RRT growth (Cortès &
Siméon, 2004 and Lindemann & LaValle, 2003 and Yershova et al. 2005)

By adding the collision detection in the configuration space, the selection of nearest
neighbor qprox is garanted by a collision detector. The collision detection is expensive in
computing time, the distance metric evaluation ρ is subordinate to the collision detector.

expandRrt(q , Δt , T)
 qprox = closestConfig (q, T)
 dmin = rho (qprox , q)
 success = FALSE
 foreach u in U
 qtmp = integrate (q , u , Δt)
 if isCollisionFree (qtmp , qprox , M , C)
 d = ro (qtmp , qrand)
 if d < dmin
 qnew = qtmp
 success = TRUE
 if success equals TRUE
 insert (qprox , qnew , T)
 if qnew equals q
 return REACHED
 return ADVANCED
 return TRAPPED

(1)

ALG. 4 Expanding according to a collision detector

www.intechopen.com

Incremental Motion Planning With Las Vegas Algorithms

281

As U defines the set of admissible orders available to the mobile M, the size of U mainly
defines the computation times needed to generate, validate and select the closest
configuration with as the best expansion configuration. For each expansion, the function
expandRrt (ALG. 3.) returns three possible values: REACHED if the configuration qnew is
connected to T, ADVANCED if q is only an extension of qnew which is not connected to T,
and TRAPPED if q cannot accept any successor configuration qnew.
The construction of T corresponds to the repetition of such a sequence. The collision
detection discriminates the two possible results of each sequence :

• the insertion of qnew in T (i.e. without obstacle along the path between qprox and
qnew)

• the rejection of each qprox successors (i.e. due to the presence of at least one obstacle
along each successors path rooted at qprox)

The rejection of qnew induces an expansion probability related to its vicinity (and then also to
qprox vicinity); the more the configuration qprox is close to obstacles, the more its expansion
probability is weak. It reminds one of fundamentals RRT paradigm: free spaces are made of
configurations that admit various number of available successors; good configurations
admit many successors and bad configurations admit only few ones. Therefore, the more
good configurations are inserted in T, the better the RRT expansion will be. The problem is
that we do not previously know which good and bad configurations are needed during the
RRT construction, because the solution of the considered problem is not yet known. This
problem is also underlined by the parallel variation (Carpin & Pagello, 2002) called OR Bi-
RRT (i.e. to define the depth of a search in a specific vicinity). For a path planning problem p
with a solution s available after n integrations starting from qinit, the question is to maximize
the probability of finding a solution; According to the concept of ``rational action'', the
response of P3 class to adapt a on-line search can be solved by the definition of a formula
that defines the cost of the search in terms of ``local effects'' and ``propagations'' (Russell,
2002). These problems find a way in the tuning of the behaviour algorithm like CVP did
(Cheng, 2001).

3.2 Tunning the RRT algorithm according to relations between components

In the case of a space made of a single narrow passage, the use of bad configurations (which
successors generally collide) is necessary to resolve such problem. The weak probability of
such configurations extension is one of the weakness of the RRT method (Jaillet L. et al.
2005).
To bypass this weakness, we propose to reduce research from the closest element (ALG. 4)
to the first element of Cfree. This is realized by reversing the relation between collision
detection and distance metric; the solution of each iteration is validated by subordinating
collision tests to the distance metric; the first success call to the collision detector validates a
solution. This inversion induces :

• a reduction of the number of calls to the collision detector proportionally to the
nature and the dimension of U. Its goal is to connect the collision detector and the
derivative function that produce each qprox successor

• an equiprobability expansion of each node independently of their relationship with
obstacles

The T construction (we called RSRT) is now based on the following sequence:

www.intechopen.com

New Developments in Robotics, Automation and Control

282

• the generation of a random configuration qrand in C

• the selection of qprox the nearest configuration to qrand in T

• the generation of each successors of qprox. Each successor is associated with its
distance metric from qrand. It produces a couple called s stored in S

• the sort of s elements by distance

• the selection of the first collision-free element of S and breaking the loop as soon as
this first element is discovered

4. Results

Fig. 6. and 7. present two types of environment that have been chosen to test algorithms. In
these environments, obstacles are placed. For each type, we have generated series of
environments that gradually contains more obstacles. This is one element of these series that
we call a problem. For each problem, we generate 10 different instances, to realise statistics
on solutions provide (Fig. 5). The number of obstacles is defined by the sequence 2, 4, 8 …
512 and also until the resulting computing time is less than 60 sec. We have fixed this limit
to see what could be possible in an embedded system. The two types of environment
correspond to a simple mobile robot and a small arm with 6-DOF. We used the Proximity
Query Package (PQP) library to test collisions and the Open Inventor library to visualize
solutions. For each mobile in each environment, we have applied a uniform inputs set
dispatched over translation and rotation.
Considering generic systems, we have apply different mover’s model:

• that consider the trajectory as a list of position

• that consider the trajectory as a list of position with a velocity for each DOF
Each set of instances are associated with different distances metrics (Euclidian, scaled
Euclidian and Manhattan distances).

Fig. 5. Computing resolving times while gradually increasing environment complexity

Black and blue curves show respectively
results for moving free-flyer and 6-DOF arm
with RSRT. Boxes show respectively results
for classical RRT. Until 296 obstacles,
classical RRT is not able to provide solution
for 6-DOF arm. Resolving time of tuned
RRT (we called RSRT) is 4 times faster for
hard problems and faster for easier
problems. Classical RRT seems to be more
dependent on the input set dimension.
Tuned RRT computing time seems also to
be independent of the distance metric used.
However Manhattan metric is the most
efficient for 6-DOF arm in any case.

www.intechopen.com

Incremental Motion Planning With Las Vegas Algorithms

283

Fig. 6. Moving simple mobile and increasing gradually environment complexity

Fig. 7. Moving articulated mobile and increasing gradually environment complexity

7. Conclusion

We have described a way of tuning RRT algorithm, to solve more efficiently hard problems.
RSRT algorithm accelerates consequently the required computing time. The result have been
tested on a wide set of problems that have an appropriate size to be embedded. This

approach allows RRT to deal with motion planning strategies based on statistical analysis.

www.intechopen.com

New Developments in Robotics, Automation and Control

284

8. References

Carpin, S. & Pagello, E. (2002). On Parallel RRTs for Multi-robot Systems, 8th Conf. of the
Italian Association for Artificial Intelligence (AI*IA)

Cheng, P. & LaValle, S.(2002). Resolution Complete Rapidly-Exploring Random Trees, Int.
Conf. on Robotics and Automation (ICRA)

Cheng, P. (2001) Reducing rrt metric sensitivity for motion planning with differential
constraints, Master's thesis, Iowa State University

Cheng, P. & LaValle, S. (2001). Reducing Metric Sensitivity in Randomized Trajectory
Design, Int. Conf. on Intelligent Robots and Systems (IROS)

Cortès, J. & Siméon, T. (2004). Sampling-based motion planning under kinematic loop-
closure constraints, Workshop on the Algorithmic Foundations of Robotics (WAFR)

Jaillet L. et al. (2005). Adaptive Tuning of the Sampling Domain for Dynamic-Domain RRTs,
IEEE International Conference on Intelligent Robots and Systems (IROS)

Kuffner, J. & LaValle, S. (2000). RRT-Connect: An efficient approach to single-query path
planning, Int. Conf. on Robotics and Automation (ICRA)

Latombe, J. (1991). Robot Motion Planning (4th edition), Kluwer Academic
LaValle, S. (2004). Planning Algorithms, [on-line book] http://msl.cs.uiuc.edu/planning/
LaValle, S. & Kuffner, J. (2000). Rapidly-exploring random trees: Progress and prospects,

Workshop on the Algorithmic Foundations of Robotics (WAFR)
LaValle, S. & Kuffner, J. (1999). Randomized kinodynamic planning, Int. Conf. on Robotics

and Automation (ICRA)
LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning, Technical

Report 98-11, Dept. of Computer Science, Iowa State University
Lindemann, S. & LaValle, S. (2004). Incrementally reducing dispersion by increasing

Voronoi bias in RRTs, Int. Conf. on Robotics and Automation (ICRA)
Lindemann, S. et al. (2004). Incremental Grid Sampling Strategies in Robotics, Int.Workshop

on the Algorithmic Foundations of Robotics (WAFR)
Lindemann, S.R. & LaValle, S.M. (2003). Current issues in sampling-based motion planning,

Int. Symp. on Robotics Research (ISRR)
Lozano-Pérez, T. (1983). Spatial Planning: A Configuration Space Approach, Trans. on

Computers
Russell, S. & Norvig, P. (2003). Artificial Intelligence, A Modern Approach (2nd edition),

Prentice Hall
Russell, S. (2002). Rationality and Intelligence, Press O.U., ed.: Common sense, reasoning,

and rationality
Schwartz, J. & Sharir, M. (1983). On the piano movers problem:I, II, III, IV, V, Technical report,

New York University, Courant Institute, Department of Computer Sciences
Yershova, A. & LaValle, S. (2007). Improving Motion Planning Algorithms by Efficient

Nearest Neighbor Searching, IEEE Transactions on Robotics 23(1):151-157
Yershova, A. et al. (2005). Dynamic-domain rrts: Efficient exploration by controlling the

sampling domain, Int. Conf. on Robotics and Automation (ICRA)
Yershova, A. & LaValle, S. (2004). Deterministic sampling methods for spheres and SO(3),

Int. Conf. on Robotics and Automation (ICRA)
Yershova, A. & LaValle, S. (2002). Efficient Nearest Neighbor Searching for Motion

Planning, Int. Conf. on Robotics and Automation (ICRA)

www.intechopen.com

New Developments in Robotics Automation and Control

Edited by Aleksandar Lazinica

ISBN 978-953-7619-20-6

Hard cover, 450 pages

Publisher InTech

Published online 01, October, 2008

Published in print edition October, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book represents the contributions of the top researchers in the field of robotics, automation and control

and will serve as a valuable tool for professionals in these interdisciplinary fields. It consists of 25 chapter that

introduce both basic research and advanced developments covering the topics such as kinematics, dynamic

analysis, accuracy, optimization design, modelling , simulation and control. Without a doubt, the book covers a

great deal of recent research, and as such it works as a valuable source for researchers interested in the

involved subjects.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jouandeau Nicolas, Touati Youcef and Ali Cherif Arab (2008). Incremental Motion Planning With Las Vegas

Algorithms, New Developments in Robotics Automation and Control, Aleksandar Lazinica (Ed.), ISBN: 978-

953-7619-20-6, InTech, Available from:

http://www.intechopen.com/books/new_developments_in_robotics_automation_and_control/incremental_motio

n_planning_with_las_vegas_algorithms

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

