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1. Introduction      
 

Las Vegas algorithm is a powerful paradigm for a class of decision problems that has at least 
a theoretical exponential resolving time. Motion planning problems are one of those and are 
out to be solved only by high computational systems due to such a complexity (Schwartz & 
Sharir, 1983). As Las Vegas algorithms have a randomized way to meet problem solutions 
(Latombe 1991), the complexity is reduced to polynomial runtime.  In this chapter, we 
present a new single shot random algorithm for motion planning problems. This algorithm 
named RSRT for Rapidly-exploring Sorted Random Tree is based on inherent relation 
analysis between Rapidly-exploring Random Tree components, named RRT components 
(LaValle, 2004). RRT is an improvement of previous probabilistic motion planning 
algorithms to address problems that involve wide configuration spaces. As the main goal of 
the discipline is to develop practical and efficient solvers that automatically produce motion, 
RRT methods successfully reduce the complexity in exploring the space partially and 
producing non-deterministic solutions close to optimal ones. In the classical RRT algorithm, 
space is explored by repeating successively three phases: generation of a random 
configuration in the whole space (including free and non-free space); selection of a nearest 
configuration; and generation of a new configuration obtained by numerical integration 
over a fixed time step. Then the motion planning process is discretized into steps from the 
initial configuration to other configurations in the space. In such a way, RRT algorithms are 
the motion planners last generation that generally addresses a large set of motion planning 
problems. Mobile, geometrical or functional constraints, input methods and collision 
detection are unspecified. As it is possible to measure solutions provided by RRT, RSRT or 
other improvements in spaces with arbitrary dimension, experiments are realized on a wide 
set of path planning problems involving various mobiles in static and dynamic 
environments. We experiment the RSRT and other RRT algorithms using various 
configurations spaces to produce a massive experiment analysis: from free flying to 
constraint mobiles, from single to articulated mobiles, from wide to narrow spaces, from 
simple to complex distance metric evaluations, from special to randomly generated spaces. 
These experiments show practical performances of each improvement, and results reflect 
their classical behavior on each type of motion planning problems. 
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2. RRT Sampling Based-planning 
 

2.1 Principle 

In its original formulation (LaValle, 1998), RRT method is described as a tree G = (V,E) , 
where V is the set of vertices and E the set of edges in the research space. From an initial 
configuration qinit, the objective is to generate a sequence of commands, leading a mobile M, 
to explore all the configurations space C. The RRT method can solve this problem by 
searching solution which spans a tree, where the configuration qinit, describes the root node. 
One can note that nodes and arcs represent respectively eligible configurations of M and 
commands which are applied to move between the configurations. RRT method is a random 
incremental search of configurations which permits a uniform exploration of the space. The 
RRT implementation consists on a three phases: generate a configuration qrand, select a 
configuration qprox inside the current tree, and integrate a new configuration qnew from qprox 
towards qrand. 
During the first phase, a random function is implemented to select an element of a 
configurations space. The second phase consists of choosing qprox of G, which is the nearest 
element of qrand. This phase is based on a metric ρ. Finally, a new configuration qnew from 
qprox towards qrand is generated and the objective is to implement a control which leads to 
bring qprox closer to qrand. The new configuration qnew is generated by integrating from qprox, 
during a predefined time interval.  

 
2.2 Graph construction of RRT method 

Firstly, the RRT method is developed to solve planning problem in mobile robotic. In the 
original algorithm, the possible constraints associated to M are not mentioned. During the 
formulation of G, changes to be made for adding new constraints are minors, and the 
precision depends mainly on the chosen local planning method. The graph elementary 
construction in RRT method is described according to algorithm ALG. 1. 
 

consRrt (qinit , k , Δt , C )  
     init (qinit , G ) 
     for i in 1 to k 
            qrand = randConfig ( C ) 
            qprox = nearestConfig (qrand , G ) 
            qnew = newConfig (qprox , qrand , Δt )  
            addConfig (qnew , G ) 
            addEdge (qprox , qnew , G ) 
     return G 
 
nearestConfig (qrand , G ) 
     d = inf 
     foreach q in G 
            if ρ ( q , qrand ) < d 
                 qprox = q 
                 d = ρ ( q , qrand ) 
     return qprox 

 
(1) 
(2) 

 
(3) 
(4) 

 
 
 
 
 
 
 

(5) 
 
 
 

ALG. 1. Original RRT algorithm formulation 
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We remark that the algorithm implements three functions. The first one, randConfig, 
ensures a uniform partition of random samples in C, and guaranties uniform exploration 
(Yershova & LaValle, 2004 and Lindemann et al., 2004). Function nearestConfig selects the 
nearest configuration qrand of G. This relation proximity is defined by a distance metric ρ, as 
it is illustrated in (ALG. 1. (5)). In the case of probabilistic methods PRM and RRT, the 
nearest neighbour search with arbitrary dimension can be optimised (Yershova & LaValle, 
2007 and Yershova & LaValle, 2002). Reducing of the search time of a nearest neighbour 
permits to use a complex distance metric. A new configuration qnew can be defined by 
newConfig from qprox towards qrand. Knowing that M is subject to holonomic constraints, a 
control inputs can be applied to move from qprox towards qrand with displacements 
amplitudes Δt. Functions addConfig and addEdge add respectively qnew  to the list of nodes 
of G and arcs between qprox and qnew . 

 
2.3 Cardinality and layer  

For each new configuration qnew in the generation phase, RRT method adds a configuration 
by propagating qprox of G. In this case, no restriction on qnew is imposed according to 
configurations set G. So, qnew can be similar to qexist, which can make possible to span a 
graph with or without cycle. For example, let’s define Card as a cardinal of set, thus, if Card 
( V ) = Card ( E ) + 1, then we can conclude that the graph is non-cyclic. To avoid stacking of 
identical movements, each nodes qprox can’t be extended towards qrand for creating qnew, if it 
doesn’t already have a similar descendent. 
If qprox is extended towards qrand, a new arc between qprox and qnew is inserted in E. 
If Card ( V ) ≤ Card ( E ), we can conclude that the graph contains at least one cycle. Thus, is 
qnew deleted and a new arc is inserted in E between qprox and qexist. 
Creating cycles leads to decrease an expansion number of G in unexplored zones. However, 
it permits to list possible solutions in the case of halt. Knowing that this scenario is more 
topologic than geometric, RRT method is better without cycle [LAV98]. Fig 1 shows the 
expansion of G respectively after 100, 500 and 1500 samples. Random samples have been 
uniformly spread in the square. qinit is initially in the center of the square. The mobile is a 
simple point (without geometric shape) with holonomic constraints.  
 

 

   
(a)   (b)   (c) 

Fig. 1. Expansion of G in a free square (a after 100, b after 500 and c after 1500 samples) 
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2.4 Natural expansion  

The random distributions of samples which performs expansions, directs naturally the 
growth of G towards the wider regions of space. This can be verified by constructing 
Voronoï diagram which associates, for each new node of C, one Voronoï cell. For each 
iteration of RRT method, the localization probability of the next random sample is more 
important towards the largest cells of Voronoï diagram, which is defined by a previous 
random samples set. 
Let’s Ck be a distribution of k random samples in the configurations space C. the 
distribution Ck converges in term of probability to C under condition of the uniformity of a 
random samples partition in C (LaValle & Kuffner, 2000). 
Knowing that Delaunay triangulation is a dual of Voronoï diagram, an example of a graph 
expansion associated to RRT method is presented in Fig. 2. Graphs presented in (a), (b) and 
(c) illustrate respectively the results of 25, 275 and 775 expansions including those of 
Delaunay triangulations illustrated in (a’), (b’) and (c’). The space is two dimensional 
squares without obstacles. For each iteration, adding a new item leads to construct a new 
triangulation. In Fig. 2, initial configuration is represented by a circle in the center of the 
space.  
 

  

        
 

         
 

Fig. 2. Triangulation analysis due to samples 
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The evolution of new configurations of G along iterations is illustrated in Fig 3. X-axis 
represents the configuration number contained in the graph and Y-axis represents the 
percentage of the entire surface S. The surface graph represents the average, minimal, and 
maximal surface variations. In this case, the average surface is the average triangles surfaces.  
The standard deviation graph represents the average, minimal and maximal standard 
deviations. The initial configuration divides the space into four triangles with 0.25 in term of 
surface and zero in standard deviation. The average area of triangles decreases linearly 
according to the number of configurations.  
In Figures 2, 3 and 4, positions in (a), (b) and (c) are placed around area average and 
standard deviations curves. Maximum and minimum variations can increase or decrease 
according to their relative positioning to the decreasing average value. Due to the 
logarithmic scale, position of minimal variations vis-à-vis average values shows the almost-
equality between average value and minimum value. On the other hand, position of 
maximal variations shows triangles much larger than the average value before a density 
threshold (8.15 times larger before 353 configurations). From 353 configurations, the ratio 
between the higher triangle and the average value progresses in stair-steps. Two stair-steps 
p0 and p1 are placed on average and standard deviations curves as it’s illustrated in Fig 3. 
This ratio tends to be stabilized around 2 from p1. The initial configuration position has no 
influence on statistics relative to its expansion. 

 

 

Fig. 3. Evolution of average, min and max of triangles areas during sampling 
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Fig. 4. Evolution of standard deviation, min and max of deviation areas during sampling 

 
2.5 End condition 
A query of a mobile trajectory planning can be formulated according to a pair of 
configuration-objective, which is instantiated on qobj or on a set of configurations Cobj. 
Restricting the search to a single configuration-objective can penalize the mobiles which are 
subjected to dynamics or non-holonomics constraints. To improve the convergence towards 
the objective, RRT resolutions implement a configuration qobj, whose components are not 
fixed. Thus, the planning problem consists to find a path connecting qinit to an element of 
Cobj. From qinit, graph G seeks to achieve a configuration qobj. This can be done by a 
successive adding of new configuration qnew in the tree G. Variable k defines the number of 
iterations required to solve the problem. In the case of k is not sufficient it is possible to 
continue conducting research on new k iterations from the previously generated tree. The 

construction of G is achieved when qobj ∩ G=∅. 

 
3. Related Works 
 

In the previous section, C is presented without obstacle in an arbitrary space dimension. At 
each iteration, a local planner is used to connect each couples ( qnew , qobj ) in C. The distance 
between two configurations in T is defined by the time-step Δt. The local planner is 
composed by temporal and geometrical integration constraints. The resulting solution 
accuracy is mainly due to the chosen local planner. k defines the maximum depth of the 
search. If no solution is found after k iterations, the search can be restarted with the previous 
T without re-executing the init function. This principle can be enhanced with a bidirectional 
search, shortened Bi-RRT (LaValle & Kuffner, 1999). Its principle is based on the 
simultaneous construction of two trees (called Tinit and Tobj that grows respectively from qinit 
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and qobj. The two trees are developped towards each other while no connection is 
established between them. This bidirectional search is justified because the meeting 
configuration of the two trees is nearly the half-course of the initial configuration space. 
Therefore, the resulting resolution time complexity is reduced (Russell & Norvig, 2003). 
RRT-Connect is a variation of Bi-RRT that consequently increase the Bi-RRT convergence 
towards a solution (Kuffner & LaValle, 2000) thanks to the enhancement of the two trees 
convergence. This has been settled : 

• to ensure a fast resolution for “simple” problems (in a space without obstacle, the 
RRT growth should be faster (ALG.2. (1)) than in a space with many obstacles) 

• to maintain the probabilistic convergence property. Using heuristics modify the 
probability convergence towards the goal and also should modify its evolving 
distribution. Modifying the random sampling can create local minima that could 
slow down the algorithm convergence 

 
connectRrt (q , Δt , T )  
     r = ADVANCED 
     while r equals ADVANCED 
            r = expandT ( q , Δt , T )  
     return r 

 
 

(1) 
 

 
ALG. 2. Connecting a configuration q to T with RRT-Connect. 

 
As it makes RRT less incremental, RRT-Connect is more adapted for non-differential 
constraints (Cheng, 2001). It iteratively realize expansion by replacing a single iteration 
(ALG. 1. (2)) with connectT function which corresponds to a succession of successful single 
iterations (ALG. 2. (1)). An expansion towards a configuration q becomes either an extension 
or a connection.  
 

connectBiRrt (qinit , qobj , k, Δt , C )  
     init ( qinit, Ta ) 
     init ( qobj, Tb ) 
     for i in 1 to k 
            qrand = randConfig ( C )  
            r = expandRrt (qrand , Δt , Ta ) 
            if r not equals TRAPPED 
                 if r equals REACHED 
                       qco = qrand 
                 else 
                       qco = qnew 
                  if connectRrt (qco , Ta , Tb ) 
                       Return solution 
              swap (Ta , Tb ) 
     return TRAPPED 

 
 
 
 
 
 

ALG. 3. Expanding two graphs with RRTConnect 
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According that two trees are constructed by Bi-RRT, growth is realized inside two trees 
named Ta and Tb and a successfull connection of qnew towards qrand in Ta, implies many other 
extensions (as many as the free space admits new free configurations, i.e. qnew in Cfree) of 
qprox found in Tb towards qnew. This new configuration qnew becomes a convergence 
configuration named qco (ALG. 3). 
To improve the construction of T to an adequate progression of G in Cfree, previous works 
propose :  

• to deviate from its initial distribution the random sampling Bi-RRT and RRT-
Connect. Other Variations of RRT-Connect are called RRT-ExtCon, RRT-ConCon 
and RRT-ExtExt; they modify the construction strategy of one of the two trees. The 
priorities of extension and connection are balanced with new values according to 
previous extensions (LaValle, 1998) 

• to adapt qprox selection to a collision probability (Cheng & LaValle, 2001) 

• to restrict qprox selection in an accessibility vicinity of the previous qprox in the 
variation called RC-RRT (Cheng & LaValle, 2002) 

• to bias sampling towards free spaces (Lindemann & LaValle, 2004) 

• to parallelize growing operations for n distinct graphs in the variation OR parallel 
Bi-RRT and to share G with a parallel qnew sampling in the variation 
embarrassingly parallel Bi-RRT (Carpin & Pagello, 2002) 

• to focus the sampling of special parts of C to control the RRT growth (Cortès & 
Siméon, 2004  and Lindemann & LaValle, 2003 and Yershova et al. 2005) 

 
By adding the collision detection in the configuration space, the selection of nearest 
neighbor qprox is garanted by a collision detector. The collision detection is expensive in 
computing time, the distance metric evaluation ρ is subordinate to the collision detector.  
 

expandRrt(q , Δt , T )  
     qprox = closestConfig ( q, T ) 
     dmin = rho (qprox , q ) 
     success = FALSE 
     foreach u in U 
            qtmp = integrate ( q , u , Δt )  
            if isCollisionFree (qtmp , qprox , M , C)      
                 d = ro (qtmp , qrand ) 
                 if d < dmin 
                       qnew = qtmp 
                       success = TRUE 
     if success equals TRUE 
            insert (qprox , qnew , T ) 
            if qnew equals q 
                  return REACHED 
            return ADVANCED 
     return TRAPPED 

 
 

(1) 
 
 
 

ALG. 4 Expanding according to a collision detector 
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As U defines the set of admissible orders available to the mobile M, the size of U mainly 
defines the computation times needed to generate, validate and select the closest 
configuration with as the best expansion configuration. For each expansion, the function 
expandRrt (ALG. 3.) returns three possible values: REACHED if the configuration qnew is 
connected to T, ADVANCED if q is only an extension of qnew which is not connected to T, 
and TRAPPED if q cannot accept any successor configuration qnew. 
The construction of T corresponds to the repetition of such a sequence. The collision 
detection discriminates the two possible results of each sequence :  

• the insertion of qnew in T (i.e. without obstacle along the path between qprox and 
qnew ) 

• the rejection of each qprox successors (i.e. due to the presence of at least one obstacle 
along each successors path rooted at qprox ) 

 
The rejection of qnew induces an expansion probability related to its vicinity (and then also to 
qprox vicinity); the more the configuration qprox is close to obstacles, the more its expansion 
probability is weak. It reminds one of fundamentals RRT paradigm: free spaces are made of 
configurations that admit various number of available successors; good configurations 
admit many successors and bad configurations admit only few ones. Therefore, the more 
good configurations are inserted in T, the better the RRT expansion will be. The problem is 
that we do not previously know which good and bad configurations are needed during the 
RRT construction, because the solution of the considered problem is not yet known. This 
problem is also underlined by the parallel variation (Carpin & Pagello, 2002) called OR Bi-
RRT (i.e. to define the depth of a search in a specific vicinity). For a path planning problem p 
with a solution s available after n integrations starting from qinit, the question is to maximize 
the probability of finding a solution; According to the concept of ``rational action'', the 
response of P3 class to adapt a on-line search can be solved by the definition of a formula 
that defines the cost of the search in terms of ``local effects'' and ``propagations'' (Russell, 
2002). These problems find a way in the tuning of the behaviour algorithm like CVP did 
(Cheng, 2001). 

 
3.2 Tunning the RRT algorithm according to relations between components 

In the case of a space made of a single narrow passage, the use of bad configurations (which 
successors generally collide) is necessary to resolve such problem. The weak probability of 
such configurations extension is one of the weakness of the RRT method (Jaillet L. et al. 
2005).  
To bypass this weakness, we propose to reduce research from the closest element (ALG. 4) 
to the first element of Cfree. This is realized by reversing the relation between collision 
detection and distance metric; the solution of each iteration is validated by subordinating 
collision tests to the distance metric; the first success call to the collision detector validates a 
solution. This inversion induces : 

• a reduction of the number of calls to the collision detector proportionally to the 
nature and the dimension of U. Its goal is to connect the collision detector and the 
derivative function that produce each qprox successor 

• an equiprobability expansion of each node independently of their relationship with 
obstacles 

The T construction (we called RSRT) is now based on the following sequence: 
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• the generation of a random configuration qrand in C 

• the selection of qprox the nearest configuration to qrand in T 

• the generation of each successors of qprox. Each successor is associated with its 
distance metric from qrand. It produces a couple called s stored in S 

• the sort of s elements by distance 

• the selection of the first collision-free element of S and breaking the loop as soon as 
this first element is discovered 

 
4. Results 
 

Fig. 6. and 7. present two types of environment that have been chosen to test algorithms. In 
these environments, obstacles are placed. For each type, we have generated series of 
environments that gradually contains more obstacles. This is one element of these series that 
we call a problem. For each problem, we generate 10 different instances, to realise statistics 
on solutions provide (Fig. 5). The number of obstacles is defined by the sequence 2, 4, 8 … 
512 and also until the resulting computing time is less than 60 sec. We have fixed this limit 
to see what could be possible in an embedded system. The two types of environment 
correspond to a simple mobile robot and a small arm with 6-DOF. We used the Proximity 
Query Package (PQP) library to test collisions and the Open Inventor library to visualize 
solutions. For each mobile in each environment, we have applied a uniform inputs set 
dispatched over translation and rotation. 
Considering generic systems, we have apply different mover’s model: 

• that consider the trajectory as a list of position 

• that consider the trajectory as a list of position with a velocity for each DOF 
Each set of instances are associated with different distances metrics (Euclidian, scaled 
Euclidian and Manhattan distances). 
 

 

Fig. 5. Computing resolving times while gradually increasing environment complexity 

Black and blue curves show respectively 
results for moving free-flyer and 6-DOF arm 
with RSRT. Boxes show respectively results 
for classical RRT. Until 296 obstacles, 
classical RRT is not able to provide solution 
for 6-DOF arm. Resolving time of tuned 
RRT (we called RSRT) is 4 times faster for 
hard problems and faster for easier 
problems. Classical RRT seems to be more 
dependent on the input set dimension. 
Tuned RRT computing time seems also to 
be independent of the distance metric used. 
However Manhattan metric is the most 
efficient for 6-DOF arm in any case. 
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Fig. 6. Moving simple mobile and increasing gradually environment complexity 

 
 

  

Fig. 7. Moving articulated mobile and increasing gradually environment complexity 

 
7. Conclusion 
 

We have described a way of tuning RRT algorithm, to solve more efficiently hard problems. 
RSRT algorithm accelerates consequently the required computing time. The result have been 
tested on a wide set of problems that have an appropriate size to be embedded. This 

approach allows RRT to deal with motion planning strategies based on statistical analysis. 
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