
Int. J. Communications, Network and System Sciences, 2009, 5, 433-452
doi:10.4236/ijcns.2009.25048 Published Online August 2009 (http://www.SciRP.org/journal/ijcns/).

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

Incremental Network Programming for Wireless Sensors

Jaein JEONG , David CULLER

Computer Science Division, University of California, Berkeley, California, USA

Email: {jaein,culler}@eecs.berkeley.edu

Received April 4, 2009; revised May 12, 2009; accepted July 5, 2009

ABSTRACT

We present an incremental network programming mechanism which reprograms wireless sensors quickly by

transmitting the incremental changes using the Rsync algorithm; we generate the difference of the two pro-

gram images allowing us to distribute only the key changes. Unlike previous approaches, our design does not

assume any prior knowledge of the program code structure and can be applied to any hardware platform. To

meet the resource constraints of wireless sensors, we tuned the Rsync algorithm which was originally made

for updating binary files among powerful host machines. The sensor node processes the delivery and the de-

coding of the difference script separately making it easy to extend for multi-hop network programming. We

are able to get a speed-up of 9.1 for changing a constant and 2.1 to 2.5 for changing a few lines in the source

code.

Keywords: Network Programming, Incremental, Wireless Sensor Networks, Difference Generation,

Rsync Algorithm

1. Introduction

Typically, wireless sensors are designed for low power

consumption and small size and don’t have enough

computing power and storage to support a rich pro-

gramming development environment. Thus, the program

code is developed on a more powerful host machine and

is loaded onto a sensor node afterwards. The program

code is usually loaded onto a sensor node through the

parallel or serial port of the host machine; this is called

in-system programming. In-system programming (ISP) is

the most common way of programming sensor nodes

because most microcontrollers support program loading

through the parallel or serial port. However, ISP can only

load the program code to one sensor node at a time. The

programming time increases proportional to the number

of wireless sensors to be deployed. During the develop-

ment cycle of wireless sensor software, the source code

can be modified for bug fixes or to add additional func-

tionalities. With ISP, the cost of a software update is

high; it involves all the efforts of collecting the sensor

nodes placed at different locations and possibly disas-

sembling and reassembling the enclosures. Network pro-

gramming reduces these efforts by delivering the pro-

gram code to each of the sensor nodes through the wire-

less links.

Network programming has been used since the intro-

duction of TinyOS 1.1 release [1,2]. This implementation,

XNP (Crossbow Network Programming), provides the

basic capability of network programming; it delivers the

program code to the sensor nodes remotely. However, it

has some limitations: First, XNP does not scale to a large

sensor network. XNP disseminates the program code

only to the nodes that can be reached directly by the host

machine. Therefore, the nodes outside the single hop

boundary cannot be programmed. Second, XNP has a

lower bandwidth compared than ISP. An experiment in

[1] shows the programming time of XNP and ISP. In the

experiment, we used a simple test application ‘Xnp-

Count’ which has basic functionalities: network progr-

amming, counting numbers using LEDs and transmitting

the number in radio packets. The version of ‘XnpCount’

we used was 37,000 bytes in size and required 841 XNP

packets to transfer the entire program. The programming

time of XNP was more than 4 times longer than that of

ISP (Figure 1). When XNP updates the program code

with another version, it sends the entire program code

rather than the difference. This incurs the same program-

J. JEONG ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

434

XNP (4 motes) XNP (8 motes) XNP (16 motes) ISP
0

50

100

150

200

s
e

c

Programming time of XNP and ISP

Download

Retransmission

106 106 106

30

24
72 63

Figure 1. Programming time of crossbow network progra-

mming (XNP) and in-system programming (ISP).

ming time even when the difference is small. If the sen-

sor nodes could build the program code image incre-

mentally using the previous code image, the overall pro-

gramming time can be reduced.

We present an incremental network programming

mechanism which sends the new version of the program

by transmitting the difference of the two program images.

Unlike previous approaches, we generate the program

code difference by comparing the program code in block

level without any prior knowledge of the program code

structure. This gives a general solution that can be ap-

plied to any hardware platform. We used the Rsync algo-

rithm [3] to generate the difference. The Rsync algorithm

finds the shared code blocks between the two program

images and allows us to distribute only the key changes

of the program. Originally, the Rsync algorithm was

made for computationally powerful machines exchang-

ing the update of binary files over a low-bandwidth

communication link. We tuned the Rsync algorithm for

wireless sensor network programming. First, we made

the host program process expensive operations like

building the hash table in favor of the sensor node. In

order to rebuild the program image the sensor node sim-

ply reads or writes code blocks to flash memory.

Second, we structured the difference to avoid unnec-

essary flash memory accesses. In rebuilding the program

image, the sensor node processes the script dissemination

and the decoding in separate steps. This makes it easy to

use dissemination protocols and to extend for multi-hop

network programming. We are able to get a speed-up of

9.1 for changing a constant and 2.1 to 2.5 for changing a

few lines in the source code over the non-incremental

delivery.

The rest of the paper is organized as follows. Section 2

describes the in-system programming and the network

programming as a background. Section 3 discusses the

related work on wireless sensor network programming.

Section 4 outlines incremental network programming

and explains our first implementation. In Section 5, we

use the Rsync algorithm to generate the program and

Section 6, we discuss the extension to the script delivery

which makes program delivery more reliable and faster.

Finally, we conclude this thesis with Section 7.

show how this implementation improves performance. In

. Background

.1. In-System Programming

he program development for wireless sensors starts

rmat) is loaded

on

2

2

T

with writing the source code. For the Berkeley sensor

platform, the source code is written in the nesC pro-

gramming language. Once the source code is success-

fully compiled, the binary code is generated (main.exe).

The binary code is further converted to the Motorola

SREC format (main.srec) and is then available for load-

ing. The Motorola SREC format is an ASCII representa-

tion of binary code and each line of an SREC file con-

tains the data bytes of the binary code with additional

house keeping information (Figure 2).

With ISP, the binary code (SREC fo

to a sensor node through the direct connection (e.g.

parallel port) from the host machine. The host program-

ming tool (uisp) sends a special sequence of bytes that

places the microcontroller of the sensor node in pro-

gramming mode. While the microcontroller is in pro-

gramming mode, the data bytes sent by the host pro-

gramming tool are written directly to the program mem-

ory of the microcontroller (Figure 3(a)).

S01800006275696C642F6D696361322F6D61696E2E737265632D

S11300000C9426020C9443020C9443020C941C039B

S11300100C9443020C9443020C9443020C94430248

S11300200C9443020C9443020C9443020C94430238

.

.

.

S11348A0802D9DB30895E199FECF9FBB8EBB6DBB58

S10F48B00FB6F894E29AE19A0FBE089546

S10B48BC01007D012DCF4340F2

S9030000FC

SREC file example

S Type

Start Record

Offset CheksumLength Data

Data Record 1

Data Record 2

Data Record n

End Record

SREC record format SREC file format

1Byte Size 1 2 4 2n 2

n = Length - 3

Figure 2. Format of SREC file and its records with an ex-

ample.

(a) Process of in-system programming

INCREMENTAL NETWORK PROGRAMMING FOR WIRELESS SENSORS

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

435

(b) Process of network programming

Figure 3. network

.2. Network Programming

etwork programming takes a different approach to

k programming module

st

cond step, the boot loader copies the program

co

at the sensor

no

elated Work

.1. Wireless Sensor Network Programming

NP [1,2] is the network programming implementation

multihop network programming

m

 a multihop network programming pro-

to

rs, et al. [8] developed an algorithm that updates

bi

, et al. [9,10] implemented a version of incre-

m

Steps for in-system programming and

programming.

2

N

loading the program code. Rather than writing the pro-

gram code directly to program memory, network pro-

gramming loads the program code in two steps. First, it

delivers the program code to the sensor nodes. Second, it

makes the sensor nodes move the downloaded code to

program memory (Figure 3(b)).

In the first step, the networ

ores the program code in external storage. Since the

network programming module runs in user level as a part

of the main application code, it does not have the privi-

lege to write the program code into program memory. In

the case of XNP, the network programming module

writes the program code to the external flash memory

outside program memory. The external flash memory of

a MICA2/MICA2DOT mote is 512KB in size and is big

enough for any application code (the maximum size of

128KB). During program delivery, part of the code may

be missing due to the packet loss. The network pro-

gramming module requests for any missing records of

the program code to make sure that there are no missing

records.

In the se

de from external flash memory to program memory.

The boot loader is a program that resides in the high

memory area (which we call the boot loader section) of

an ATmega128 microcontroller and has the privileges to

write data bytes to the user application section of pro-

gram memory [4]. The boot loader starts execution when

it is called by the network programming module. After it

copies the program code from the external flash memory

to program memory, it restarts the system.

In the paragraphs above, we assumed th

des can update the current program image through

network programming. However, a sensor node cannot

be network programmed until it has the network pro-

gramming module and the boot loader. Thus, we need to

load the initial program code and the boot loader with

ISP.

3. R

3

X

for TinyOS that was introduced with 1.1 releases version.

XNP supports basic network programming broadcasting

the program code to multiple nodes in a single hop.

However, it doesn’t consider a large sensor network and

incremental update.

MOAP [5] is a

echanism and their main contributions are its code dis-

semination and buffer management. For code dissemina-

tion, they used the Ripple dissemination protocol which

disseminates the program code packets to a selective

number of nodes without flooding the network with

packets. For buffer management, they used a sliding

window scheme which maintains a window of program

code and allows lost packets within the window to be

retransmitted. The sliding window uses a small footprint

so that packets can be processed efficiently in on-chip

RAM. MOAP was tested on the EmStar simulator and

MICA2 motes.

Deluge [6] is

col that disseminates program code in an epidemic

fashion to propagate program code while regulating the

excess traffic. In order to increase the transmission rate,

Deluge used optimization techniques like adjusting the

packet transmit rate and spatial multiplexing. Unlike

MOAP, Deluge uses a fixed sized page as a unit of

buffer management and retransmission. Deluge was

tested with the TOSSIM simulator [7] and MICA2

motes.

Reije

nary images incrementally. With the algorithm, the

host program generates an edit script to describe the dif-

ference between the two program code images. The sen-

sor nodes build the program image after interpreting the

edit script. The edit script consists of not only simple

operations like copy and insert but also more complex

operations (address repair and address patch) that modify

the program code at the instruction level. This helps

minimizing the edit script size. As an evaluation, this

paper considers only the reduced script size on the host

side. Since operations like address repair and address

patch incur memory intensive EEPROM scanning, the

experiments should have demonstrated the overall pro-

gramming time in a sensor simulator or in a real sensor

node.

Kapur

ental network programming based on the algorithm of

Reijers, et al [8]. Their implementation is composed of

two parts: the diff encoder on the host side and the diff

decoder on the sensor node side. The diff encoder gener-

ates the difference for the two versions of code at the

J. JEONG ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

436

ogram-

m

xamples above disseminated the program

co

até. In Maté,

ea

.2. Remote Code Update outside Wireless

utside the sensor network community, there have been

neral form of unstruc-

tu

two

fil

echanism patented by Metricom Inc. [15] dis-

se

. Design and Implementation

o design an incremental network programming mecha-

instruction level using copy, insert and repair operations.

The difference script is delivered to the sensor node us-

ing MOAP [5] which was developed for reliable code

dissemination. Then, the sensor node rebuilds the pro-

gram code after decoding the downloaded script.

These two works on incremental network pr

ing minimized the script transmission at the cost of

program modification at the instruction level. In contrast,

the implementation in this paper put less computational

complexity on the sensor nodes. The difference genera-

tion, which is costly, is handled by the host program. The

sensor nodes simply write the data blocks based on the

script commands and this can be applied to less powerful

sensor nodes.

While the e

de in native binary code, Maté [11] distributes the

program code in virtual machine instructions which are

packed in radio packets. While XNP transmits the binary

code that contains both the network programming mod-

ule and the application, Maté only transmits the applica-

tion code. This allows Maté to distribute the code

quickly. One drawback of Maté is that it runs the pro-

gram code only in virtual machine instructions and a

regular sensor application needs to be converted to vir-

tual machine instructions before execution.

Trickle [12] is an improvement over M

ch sensor node floods the network with packets to dis-

tribute the code and this can lead to network congestion

but the algorithm can be used for a large sensor network.

Trickle addresses this problem by using a “polite gossip”

policy. Each sensor node periodically broadcasts a code

summary to its local neighbors and stays quiet if it has

recently heard a summary identical to its own summary.

The sensor node broadcasts an update only when it hears

from an older summary than its own.

3

Sensor Community

O

efforts to update program code incrementally. Emmerich

et al. [13] demonstrated updating XML code in an in-

cremental fashion. Specifying the update in XML is eas-

ier than a binary image because XML is a structured

markup language and it allows specifying the update

without changing the structure of the rest of the code. In

contrast, inserting or replacing code blocks in binary

code affects the rest of the code.

The cases of synchronizing ge

red files can be found with Rsync and LBFS. Rsync [3]

is a mechanism to efficiently synchronize two files con-

nected over a low-bandwidth, bidirectional link. To find

matching blocks between the two files, we can divide the

first file into fixed sized blocks of B bytes and calculate

the hash for each block. Then, we scan the second file

and form a B byte window at each byte. After that we

compare the hash for the window with hash values of all

the blocks in the first file. This does not work that well.

If the hash is expensive to calculate, finding the match-

ing blocks will take long time. If the hash can be com-

puted cheaply but with possible false matches, we may

not find the correct block. The key idea of Rsync is to

use two levels of hashes, rolling checksum (fast hash)

and hash (strong hash) to make the computation over-

head manageable while finding the matching blocks with

high probability. Rsync calculates the rolling checksum

of the B byte window of the second file at each byte and

computes the hash only when the rolling checksums of

the two blocks match. Since the hash is computed only

for the possible matches, the cost of calculating the hash

is manageable and we can filter out the false match.

LBFS [14], another mechanism to synchronize

es in a low-bandwidth, bidirectional link, takes a

slightly different approach. Rather than divides a file into

fixed blocks, LBFS divides each file into a number of

variable sized blocks and computes the hash over each

block. To find matching blocks between the two files,

LBFS just compares these hashes (SHA-1 hash). The key

idea of LBFS is in dividing a file into variable sized

blocks. LBFS scans a file and forms a 48-byte window at

each byte and calculates a 13-bit fingerprint. If the fin-

gerprint matches a specific pattern, that position becomes

the breakpoint of the block. This scheme has a property

that modifying a block in a file does not change the hash

values of the other blocks. When we are going to send a

new version, we can just compare the hash values of

each variable block and send only the non-matching

blocks.

The m

minates the program code over multihop networks in

an efficient way using an epidemic protocol. When a

node V has a new version of code, it tells its neighbors

that a new version of code is available. On hearing the

advertisement from V, one of V’s neighbor, P, checks

whether it has the newly advertised version. If it doesn’t

have the version, P requests V transmit the version of

code. After that, V starts sending program code and fin-

ishes when it doesn’t hear any requests. With this

scheme, a sensor node can distribute the program code

without causing much network traffic.

4

T
nism, we need to consider some factors that affect per-
formance. Compared to other sensor applications, net-
work programming keeps a large amount of data in the
sensor nodes contributing to long programming time.

INCREMENTAL NETWORK PROGRAMMING FOR WIRELESS SENSORS

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

437

 much functionality is to

be

hat it can be

un

Since programming time is proportional to data size,
reducing the amount of transmission data will improve
programming time. External flash memory which is used
for program storage also limits performance. The
downloaded code is stored in the external flash memory
because there is not enough space in on-chip memory.
However, this external flash memory is much slower
than the on-chip SRAM. For better performance, access
to external memory should be made only when it is ne-
cessary. Caching frequently accessed data can help re-
ducing flash memory accesses.

Another consideration is how

 processed in the sensor nodes. More sophisticated

algorithms could reduce overall programming time by

reducing network traffic, but at the cost of higher com-

plexity computation and memory accesses.

Finally, the design should be simple so t

derstood and diagnosed without difficulty.

(a) Generating difference

(b) Memory allocation

(c) Program image rebuild

Figure 4. Step ogrammin

4.

s a starting point, we can design a version of incre-

.1.1. Difference Generation

, the host program

idea is that we can reduce the number of message

tra

.1.2. Operations

essage types used for incremental

START_DOWNLOAD_IN

load: Two operations CMD_DOWNLOADING

he formats of query, reply and

_LINE

s for incremental network pr g.

and CMD_GET_PREV_LINE messages request the

SREC record at the specified line. In response, the sensor

node sends CMD_REPLY_LINE message.

1. Design: Fixed Block Comparison

A

mental network programming by extending XNP. This

consists of two main parts: 1) difference generation and

code delivery, 2) storage organization and image rebuild.

4

To generate the program difference

compares each fixed sized block of the new program

image with the corresponding block of the previous im-

age. We set the block size as the page size of the external

flash memory (256 bytes). The host program sends the

difference as messages while it compares the two pro-

gram versions. If the two corresponding blocks match,

the host program sends a CMD_COPY_BLOCK me-

ssage. The message makes the network programming

module in the sensor node copy the block of the previous

image to the current image. When the two blocks don’t

match, the host program falls back to the normal

download; it sends a number of CMD_DOWNLOAD-

ING messages for the SREC records of the block (Figure

4(a)).

The

nsmissions by sending a CMD_COPY_BLOCK me-

ssage instead of multiple CMD_DOWNLOADING me-

ssages when most of the blocks are the same between the

two program images.

4

Table 1 shows the m

network programming. Based on XNP messages, we

made the following extensions for incremental network

programming as in Figure 5.

 Start Download: CMD_

CR message notifies the beginning of network program-

ming in incremental mode. This message specifies not

just the program ID of the current program but also the

program ID of the previous program to ensure that the

sensor node has the same program image as the host

program.

 Down

and CMD_COPY_BLOCK are used to transmit the pro-

gram image difference.

 Query and Reboot: T

reboot messages are the same as XNP messages.

 Debugging Messages: CMD_GET_CURRENT

J. JEONG ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

438

Table 1. Message types for incremental network programming.

Message

 ID Description

CMD_START D Start network programming in _DOWNLOA normal mode

CMD_DOWNLOADING Deposit an SREC record

CMD_QUERY_COMPLETE he capsules

E

ATUS

 ssage from the host

_INCR

nt

_LINE

Signals that it received all t

CMD_DOWNLOAD_STATUS Request/response with download status

CMD_DOWNLOAD_COMPLET End of SREC record download

CMD_ISP_EXEC Execute the boot loader

CMD_GET_PIDST Get Program ID

CMD_GET_CIDMISSING Retransmission me

CMD_REQ_CIDMISSING Request retransmission for a missing cap

CMD_START_DOWNLOAD Start network programming incrementally

CMD_COPY_BLOCK Copy SREC records from previous to curre

CMD_GET_CURRENT Read the current SREC record

CMD_GET_PREV_LINE Read the previous SREC record

CMD_REPLY_LINE Reply to SREC record request

4.1.3. Storage Organization

th

n advantage that it

m

4.1.4. Image Rebuild

rd way. The XNP stores the program image in a contiguous memory

chunk in the external flash memory. Fixed Block Com-

parison scheme extends this by allocating two memory

chunks, one for the previous program image and the

other for the scratch space where the current image will

be built (Figure 4(b)).

The two memory chunks have the same structure and

ey are swapped once the newly built program is loaded

onto program memory. The current program image is

now considered the previous image and the space for the

previous image is available for the next version of pro-

gram image. For the two memory chunks, two base ad-

dress variables are maintained in the flash memory. By

changing the address values in these variables, the two

memory chunks can be swapped.

This memory organization has a

provides the same view of the memory as XNP and

minimizes the effort of rewriting the boot loader code.

The boot loader code of XNP reads the program code

assuming that it is located at a fixed location in external

flash memory. We modified the boot loader so that it

reads the program code from the base address passed by

an inter-process call argument. Thus, the boot loader can

read the program code from any memory chunk depend-

ing on the base address value passed by the network pro-

gram module.

However, this scheme does not use the external flash

emory space economically. It allocates 256 KB of

space regardless of the program code size (128 KB of

space both for the current and the previous image). This

accounts for 50% of the flash memory space of a MICA2

mote and leaves less space for data logging.

The program image is built in a straightforwa

Figure 5. Message format for incremental network

prgramming.

INCREMENTAL NETWORK PROGRAMMING FOR WIRELESS SENSORS

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

439

mage by writing the SREC records based

ines

of

plementation

tion and Code Delivery

age

 image, generates the dif-

nctions

ansmissions

he serial for-

 user selects the download command after load-

in

.2.2. Handling the Message

le for a sensor node is

network programming module of the sensor node builds

the program i
on a list of download and copy messages (Figure 4(c)).

The download message makes the sensor node deposit

the data bytes from the message into the program image. warder

If theThe format of a download message is the same as an

XNP download message. The capsule ID field specifies

the location (line number) in the current program image

and the data represents the data bytes to be written.

The copy message is for incremental network pro-

gramming making the sensor node copy the SREC l

 a block in the previous program image to the current

program image. The capsule ID field specifies the loca-

tion of the first SREC record to be copied and the block

size field specifies the number of SREC records to be

copied.

4.2. Im

4.2.1. Difference Genera

The host program, which is in charge of program im

loading, difference generation and code delivery, is com-

posed of the following classes:

 xnp: GUI, main module

 xnpUtil: loads the program

ference and provides utility fu

 xnpQry: processes queries and retr

 xnpXmitCode: processes code delivery

 xnpMsg: defines the message structure

 MoteMsgIF: abstracts the interface to t

g the current and the previous program images, the xnp

class spawns the xnpXmitCode class. xnpXmitCode co-

mpares each pair of blocks in the current and previous

images by calling xnpUtil.CompareBlocks. Depending

on the result, it either sends a copy message (CMD_

COPY_BLOCK) or sends a download message (CMD_

DOWNLOADING) for each line of the current block.

Figure 6 illustrates this process.

4

The network programming modu

composed of the following components: XnpM.nc (im-

plementation), XnpC.nc (configuration), Xnp.nc (inter-

face), Xnp.h, XnpConst.h (constant definition). The im-

plementation module has an event driven structure (Fig-

ure 7). When a XNP message arrives, ReceiveMsg. re-

ceive() sets the next state variable (cNextState) as the

appropriate value and posts the NPX_STATEMACH-

INE() task. This message loop structure readily processes

Figure 6. Host program for incremental network programming.

Set cNextState based on

message command.

ReceiveMsg.receive()
Arriving

XNP message
Based on cNextState
execute functions.

Set cNextState to

the next value.

NPX_STATEMACHINE()

post NPX_STATEMACHINE()

Figure 7. Network programming module message handling.

J. JEONG ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

440

n incoming message without interrupting the message

age based on the pre-

nt Setup

e of this design choice, we

task void NPX_ISP() {

...

nverted prog id

r21");

a

currently being processed.

One of the difficult parts was handling split phase op-

erations like external flash reads and writes. To read an

SREC record from external flash, EEPROMRead.read()

is called. But this function returns before actually reading

the record. The event handler EEPROMRead.readDone()

is called when the record is actually read. And we spec-

ify the next state in the event handler. This makes us use

multiple intermediate states to process an incoming

message. Table 11 and 12 in the Appendix show which

states were used to handle each message type.

To estimate the cost of message handling, we counted

the source code lines for the two most important mes-

sages, CMD_DOWNLOADING, and CMD_COPY_BL-

OCK. The number of lines are 136 and 153 respectively.

Table 13 shows the cost at each step of the message loop.

.2.3. Calling the Boot Loader 4

XnpM builds the new program im

vious version and the difference. In order to transfer the

new image to program memory, we modified the XnpM

module and the boot loader. The part of the XnpM code

that executes the boot loader is shown in Figure 8.

wEEProgStart is passed as the starting address of the

new program image in the external flash memory. Here,

0x1F800 is the starting address of the boot loader in the

Atmega128 microcontroller memory map. The boot

loader uses the address passed as a parameter to access

the new image.

.3. Experime4

o evaluate the performancT

will count the number of block or packet transmissions

of the test set. We considered the following five cases as

a test scenario:

wPID = ˜wProgramID; //i

__ __volatile__ __asm

("movw r20,%0" "\n\t"::"r" (wPID):"r20","

wPID = wEEProgStart;

__asm__ __volatile__

"r" (wPID):"r22","r23");("movw r22,%0" "\n\t"::

wPID = wProgramID; //the prog id

__asm__ __volatile__

r24","r25");("movw r24,%0" "\n\t"::"r" (wPID):"

//call bootloader - it may never return...

__asm__ __volatile__

00("call 0x1F800" "\n\t"::);//bootloader at 0xFC

...

}

Figure 8. Passing the starting address of the new program

image to the boot loader.

4.3.1. Case 1 (Changing Constants)

This is the case with the minimum amount of change.

 is an application

 lines of code to the XnpCount program.

lication.

r-

but these two ap-

We modified the constant in XnpBlink that represents

the blinking rate of the LED. XnpBlink

written for demonstrating network programming. It ac-

cepts network programming and blinks the red LED. The

following code segment shows the modification to this

program.

4.3.2. Case 2 (Modifying Implementation File)

This is a more general case of program modification. We

added a few

XnpCount is a simple network programmable app

It counts a number, displays the number in its LEDs and

broadcasts the number in radio packets. The following

code segment shows the modification to this program.

4.3.3. Case 3 (Major Change)

In this case, we used two programs, XnpCount and

XnpBlink as input to generate the difference. The diffe

ence is larger than the first two cases,

plications still share a large portion of the source level

code (Table 2).

Table 2. Code size of test applications.

XnpBlink XnpCount

of source code lines for net-

work pro
2049

gramming modules
2049

of source code lines for ap-

plication specific modules
157 198

SREC lines 1139 1166

ontrol.start() {

epeating timer that fires every

// This period can be changed with different

value.

command result_t StdC

// Start a r

1000ms.

return call Timer.start(TIMER_REPEAT, 1000);

}

(a) Case 1: Changing constants.

event result_t Xnp.NPX_DOWNLOAD_DONE(

uint16_t wProgramID,

uint8_t bR

if (bRet == TRUE)

 call CntControl.start();

else // can be deleted

 call CntControl.stop(); // can be deleted

return SUCCESS;

}

et,uint16_t wEENofP){

(b) Case 2: Modifying implementation file.

INCREMENTAL NETWORK PROGRAMMING FOR WIRELESS SENSORS

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

441

 /* IntToLeds,*/

tM, XnpC;

configuration XnpCount {

}

implementation {

 components Main, Counter,

 IntToRfm, TimerC, XnpCoun

 ...

 // Main.StdControl -> IntToLeds.StdControl;

 Counter.IntOutput; // IntToLeds <-

...

}

(c ion file (commenting out

IntToLe

pC;

// Main.StdControl -> IntToRfm.StdControl;

) Case 4: Modifying configurat

ds).

configuration XnpCount {

}

implementation {

 components Main, Counter, IntToLeds,

ntToRfm,*/ TimerC, XnpCountM, Xn /* I

...

 // Counter.IntOutput -> IntToRfm;

 ...

}

(d ion file (commenting out

IntToRfm).

4. -

W nt program

so at we do not use the IntToLeds module. IntToLeds

 sho his program.

o-

down

nd tcopy to send a copy message, then the trans-

r Fixed Block Comparison, T, can be

llows:

) Case 5: Modifying configurat

Figure 9. Test scenarios.

3.4. Case 4 (Modifying Configuration Filecom

menting out IntToLeds)

ented out a few lines in the XnpCoue comm

 th

is a simple module that takes an integer input and dis-

plays it on the LEDs of the sensor node. The following

code segment ws the modification to t

4.3.5. Case 5 (Modifying Configuration Filecom-

menting out IntToRfm)

We commented out a few lines in XnpCount program so

that we do not use the IntToRfm module. IntToRfm

takes an integer input and transmits it over radio. Since

commenting out IntToRfm forces the radio stack com-

ponents not to be used, we expect a larger change in the

rogram image than commenting out the IntToLeds mp

dule.

4.4. Results

To evaluate the performance of Fixed Block Comparison,

we estimated the transmission time for each scenario.

The host program calculates the estimated transmission

time by counting how many download and copy mes-

sages it has sent. If it takes t to send a download

essage am

mission time fo

alculated as foc

copycopydowndown tNtLT

where Ldown is the number of SREC lines sent by

download messages and Ncopy is the number of copy

messages. As a baseline for comparison, we can also

calculate the transmission time for non-incremental de-

livery as follows:

downcopydowndownxnp tLtLT

where Lcopy is the number of SREC lines to e copied by

ess

values. Table 4 shows the estimation

and measurement data.

 b

a copy m age. We found values for tdown and tcopy after

a number of trials. We set them as 120 ms and 300 ms

respectively. Table 3 shows the parameters used for es-

timating the performance.

Next, we measured the transmission time by reading

the system clock

Table 3. Parameters for performance evaluation.

Parameter Description

tdown Time to send a download message

t Time to send copy a copy message

Ldown
Number of SREC lines sent by download

message

Number o
Lcopy

f SREC lines transferred by copy

N

T
Transmission time of Fixed Block Compari-

message

Number of copy copy messages

son

Transmission time of non-incremental deliv-
Txnp ery

Table ission time for each case.

Case

 4. Transm

 1 Case 2 Case 3 Case 4 Case 5

By 8.9K 9.7KB 49.6KBtes 4 B 50.1KB 50.1KB 4

#-SR

ECs
1139 1167 1167 1156 1155

Ldo 19

Lcopy 1120 256 32 32 32

Ncopy 2

wn 911 1135 1124 1123

70 16 2 2

Esti ation

s

m

T 23.3 114.1s 136.8s 135.5s 135.4s

Txnp 136.7s 138.7s 140.0s 138.7s 138.6s

Speed

Txnp / T

-up

7 5.8 1.22 1.02 1.02 1.02

M

T .1s .4s 1 .0s 147.1s 146.8s

easurement

25 124 49

Txnp 149.9s 153.0s 153.0s 150.5s 150.5s

Speed-up

Tx T np /
5.97 1.23 1.03 1.02 1.02

J. JEONG ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

442

ev ode ing in blocks, and

Case 1 Case 2 Case 3

Table 5. L

el of c shar lines bytes.

Blocks 97.2% 21.9% 2.7%

SREC lines 98.3% 40.8% 12.0%

ytes 1 0.B 00.0% 98.3% 9 5%

1, the re betw tw rogram -

ages is small. Most SREC es (1120 out of 1139) are

tr

is about 5

In Ca where ed a es t urce

code at le a qu f the lines

are y co ssage out o d

the spe s 1.2.

In Case 3, only 32 out of 1167 lines are transferred by

o

he binary code with the help of the compiler.

W

d does not match the previous program

generate

e difference and rebuild the program image. The Rsync

5.

2) Rsync reads the current program image and calcu-

sum for the B byte block at each byte. If it

nds a matching checksum in the lookup table, Rsync

d compares it with the

ock.

nd needs to be sent

explicitly for rebuilding.

In Case diffe nce een the o p im

lin

ansferred by copy messages and the speed-up (Txnp / T)

.9.

se 2,

we find

 we add few lin o the so

, th

transferred b

ss than arter o SREC

py me s (256 f 1167) an

ed-up i

c py messages and the speed-up is about 1.03. Although

XnpBlink and XnpCount share much at the source code

level, they share little at the binary code level. The main

reason is that XnpCount uses the radio stack components

while XnpBlink does not. The radio stack is one of the

most important modules in TinyOS, and it takes a large

number of source code lines.
In Case 4 and 5, where we commented out the Int-

ToLeds and the IntToRfm components in the configura-
tion file XnpCount.nc, we find that only a small number
of lines are transferred by copy messages and the
speed-up is very small (1.02 for each case).

Fixed block comparison was not so effective for in-
cremental network programming. It works well when the
program structure doesn’t change (Case 1). But, the level
of sharing was low when we added a few lines of code
(Case 2), which we think is a more general case of pro-
gram modification.

We want to see why we have such a small level of bi-

nary code sharing. Does the program code completely

change after the source modification, or does the pro-

gram code still have much similarity at the byte level?

To investigate further, we compared the program code at

different levels: blocks (Fixed Block Comparison),

SREC lines and bytes.

To compare the program code in SREC lines, we used

the UNIX diff command. diff takes two ASCII files and

describes how one file can be transformed to the other.

To compare the program code at the byte level, we ex-

tracted the data bytes from an SREC file and stored each

data byte in a line of the temporary file. We then used the

UNIX diff to find the difference between the two byte

list files.

Table 5 shows that Case 2 and Case 3 have a much

higher level of sharing at the byte level than at the block

level. For Case 2, most of the binary code was similar at

the byte level (98.3%) while a small number of blocks

were shared at the block level (21.9%). This implies that

modifying the source code shifts the binary program

code, but the program code bytes are still preserved. We

can think of two ways to address this problem.

One approach is to place the shared code at a fixed lo-

cation in t

e can insert compiler directives and inline function

calls. Then, the compiler recognizes the network pro-

gramming module and determines its location in topo-

logical order.

Another approach is to utilize code sharing without

modifying the code. As Table 5 suggests, much of the

binary code is shared at byte level. By comparing the

two binary images with a variable size boundary like

Rsync [3] and LBFS [14], we can find more chances of

code sharing.

5. Optimizing Difference Generation

Fixed Block Comparison, our first design choice for in-

cremental network programming, was not effective in

reducing data transmission traffic. It worked well only

when the modified program image had the same struc-

ture as the previous program image. When additional

lines are inserted into the source code, the program im-

e is shifted anag

image at the fixed sized block boundary.

In this section, we use the Rsync algorithm to

th

algorithm was originally made for efficient binary data

update in a low bandwidth computer network. We expect

the Rsync algorithm to find more matching blocks than

the fixed block comparison because it compares the pro-

gram image block at an arbitrary position.

5.1. Design

1.1. Difference Generation

The host program generates the difference using the

Rsync algorithm as in Figure 10(a).

1) The Rsync algorithm calculates a checksum pair

(checksum, hash) for each fixed sized block (e.g. B

bytes) of the previous program image. And the checksum

pair is inserted into a lookup table.

lates the check

fi

calculates the hash for the block an

corresponding entry in the table. If the hash also matches,

the block is considered a matching bl

3) Rsync moves to the next byte for comparison if the

block doesn’t have a matching checksum or hash. A re-

gion of bytes that doesn’t have any matching blocks is

tagged as a non-matching block a

INCREMENTAL NETWORK PROGRAMMING FOR WIRELESS SENSORS

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

443

to the current image. The block

C line and

Figure 10(a) illustrates how the Rsync algorithm cap-

tures a matching block. Suppose there is a shift by a

modification operation in the middle of the program im-

age. Rsync forms a B byte window and calculates the

hash for it. If the modified bytes are different from any

blocks in the previous program image, there is a high

probability that the hash of the modified bytes won’t

match any hash table entry. Rsync moves the window

one byte at a time and calculates the checksum for any

possible match. It doesn’t match until Rsync starts to

read unmodified blocks. At this moment, Rsync has

found a matching block.

5.1.2. Program Code Storage and Rebuild

As with the case of fixed block comparison, we maintain

two memory chunks in a sensor node to build the pro-

gram image from the previous program image and the

difference. The difference consists of a list of matching

and non-matching blocks.

The host program sends a CMD_COPY_BLOCK me-

ssage for each matching block in the difference. After

hearing the message, the sensor node copies the block

from the previous image

size of a copy message is a multiple of a SRE

the sensor node copies each SREC line iteratively. Since

the block from the previous image can be mapped to any

location in the current image, the offset address field of

the SREC record needs be modified (Figure 10(b)).

For each non-matching block in the difference, the

host program sends one or more download (CMD_

DOWNLOADING) messages. When a non-matching

block is bigger than a single SREC record (16 bytes), the

block is divided into multiple fragments and each frag-

ment is sent in a download message. The data bytes of a

download message can be shorter than a full SREC re-

cord if the non-matching block is not a multiple of 16

bytes. The host program does not fill the remaining bytes.

This is to avoid extra flash memory accesses although

the resulting program image can have a different layout

from the original program image (Figure 10(c)).

Unlike fixed block comparison, we use the base and

current program version to generate the program code

incrementally. If we rebuild the current program image

by comparing the last version and the current version, the

host program and the sensor node may have different

code leading to an incorrect program build. Instead, we

compare the base and the current program version. This

ensures that the sensor node reads the same data bytes as

the host program.

5.1.3. Operations

We modified the format of CMD_COPY_BLOCK to

specify the starting byte address of each copy block

(Figure 11). When the Rsync algorithm generates the

difference, the starting byte address of each block may

not be a multiple of the SREC record size. We need to

specify the starting byte address as well as the CID to

correctly copy SREC records.

(a) Generating a difference.

(b) Copying a matching block

(c) Downloading a non-matching block.

Figure 10. Steps for incremental network programming wi-

th Rsync difference generation.

J. JEONG ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

444

Figure 11. Message format for incremental ne ork programming with Rsync difference generation.

tw

Figure 12. Host program for Rsync difference generation.

5.2. Implementation

5.2.1. Difference Generation

We used Jarsync [16] for the Rsync algorithm imple-

mentation. The host program calls the following methods

to generate the difference: Rdiff.makeSignatures() and

Rdiff.makeDeltas(). makeSignatures() calculates the

checksum pair for each block in the image file and re-

turns a list of checksum pairs. makeDeltas() compares

the two image files and returns t

matching blocks and unmatched blocks. Since these Jar-

flat data file as input, the host

rogram extracts only the data bytes from the SREC

em in a temporary file

blocks at consecutive locations are merged into a bigger

block and this reduces the number of message transmis-

sions.

5.2.2. Program Code Storage and Rebuild

The rebuilt program can be different from the original

file due to the missing packets. If the host program sends

a query for the missing record (CMD_GET_ CIDMISS-

 the cu program section

 Each record contains program

ID (PID) and the capsule ID (CID, sequence number)

he difference as a list of
ING), the sensor node scans

of external flash memory.

rrent

sync methods assume a

p

program image file and stores th

before it calls the Jarsync module.

The difference returned by makeDeltas() needs post-

processing. The data bytes of an unmatched block can be

an arbitrary size, but a download message can contain

only up to 16 bytes. The host program divides an un-

matched block into multiple blocks so that the data bytes

of each block can fit in an SREC record. List entries for

matching blocks are also postprocessed. Two matching

fields. The PID should match the PID advertised at the

start of incremental network programming (CMD_

START_DOWNLOAD_INCR). The CID field should

match the line number where the record is written to. If

either PID or CID does not match, the sensor node consi-

ders this a missing record and requests the retransmission

of the SREC record. The host finds the missing record

and sends it back. Then, the sensor node can fill the hole.

When the sensor node requests the retransmission of a

missing SREC record, it specifies the missing record by

CID field. Since the rebuilt program image can have a

INCREMENTAL NETWORK PROGRAMMING FOR WIRELESS SENSORS

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

445

ork Programming MAC Operation

Table 6. Complexity of incremental network programming.

Incremental

Netw

Radio Stack ADC

Download
Copy

(Rsync)
Send Receive

D

Get and

ataReady

136 153 112 88 35

different layout from the original program file, just read-

ing the specified record from the original program file

does not return the correct data. To address this issue, the

host program rebuilds the new program with the same

layout as the program image to be built in a sensor node.

The host program reads the SREC records of this image

for retransmission requests.

5.2.3. Code Complexity

To estimate the complexity of our implementation, we

counted the source code lines in the the XnpM.nc file. A

CMD_DOWNLOADING message costs 136 lines and a

CMD_COPY_BLOCK message (for Rsync) costs 153

lines. The details are shown in Table 13. These numbers

 are comparable to those of other TinyOS modules.

Sending and receiving radio packets are handled in sev-

eral 0R is a co le.

A 12 lin a recei on

tak i mo A r e we

anal A m e w n d-

ing o from C nel. It es 35 li to get

a byte of data with ADCM.nc. Table 6 summarizes this.

orming XnpBlink to Xnp-

results.

nly a small number of blocks and are not so helpful in

mming time.
14 lines out of 1140 lines were transferred

– 1.06 (measurement).

Bo

 mo C100

send operation takes 1

dules and C adioIntM.nc re modu

ve operaties and

es 88 lines

yzed the

n this dule.

odul

s anothe

hich ha

xample,

DCM.nc dles the rea

f data an AD chan tak nes

5.3. Results

To evaluate the performance of incremental network pro-

gramming with the Rsync algorithm, we estimated and

measured the transmission time for three cases: 1)

changing a constant in XnpBlink, 2) adding a few lines

n XnpCount and 3) transfi

Count. Table 7 shows the

In Case 1, most SREC records (1116 lines out of

1120) were transferred and the speed-up over non-incre-

mental delivery was 6.25 (measurement). This is almost

the same as the speed-up for Fixed Block Comparison

(Case 1 in Figure 13).

In Case 2, 954 lines out of 1154 lines were transferred

by copy messages and the speed-up over non-incre-

mental delivery was 2.44 (measurement). Whereas Fixed

Block Comparison has a speed-up of 1.2 (Case 2 in Fig-

ure 13). The improved speed-up was caused by the effi-

cient difference generation of the Rsync algorithm.

In Case 3, the level of sharing was much smaller and

the speed-up was 1.04 (measurement). We have some

number of copy messages (85 messages), but they cover

o

reducing progra
In Case 4, 8

by copy messages and the speed-up over non-incre-
mental delivery was 1.92 (measurement). In contrast, the
speed-up with Fixed Block Comparison was almost neg-
ligible (1.02).

In Case 5, 276 lines out of 1140 lines were transferred

by copy messages and the speed-up over non-incre-

mental delivery was quite small

th Case 4 and Case 5 commented out a few lines in

the configuration file. But, in Case 5, commenting out

the IntToRfm component caused the radio stack to not be

used and this changed the layout of the program image

file a great deal.

Table 7. Transmission time with the Rsync algorithm.

 Case 1 Case 2 Case 3 Case 4 Case 5

Bytes 48.2KB 49.4KB 49.4KB 48.9KB 48.9KB

#-SRECs 1120 1154 1156 1140 1147

Ldown 4 200 888 326 871

Lcopy 1116 954 278 814 276

Ncopy 72 104 85 107 83

Estimation

T 22.1s 55.2s 132.1s 71.2s 129.4s

Txnp 134.4s 138.5s 139.9s 136.8s 137.6s

Speed-up

Txnp / T
6.09 2.51 1.06 1.92 1.06

Measurement

T 23.8s 61.0s 142.6s 77.1s 140.3s

Txnp 148.8s 148.9s 148.9s 148.2s 148.0s

Speed-up

Txnp / T
6.25 2.44 1.04 1.92 1.05

Case 1 Case 2 Case 3 Case 4 Case 5
0

2

4

6

Speed−up over non−incremental delivery
8

S
p
e
e
d
−

u
p

Estimate upd speed− (Fixed)

Measured speed−up (Fixed)

Estimat uped speed− (Rsync)

Measured up speed− (Rsync)

Figu Spe n cr l

netw rogramming d t d e

generation.

re 13.

ork p

ed-up i program

with an

ming tim

 withou

e for in

Rsync

ementa

ifferenc

J. JEONG ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

446

ary ng t syn

sp f 6 ang e c nt a 4 fo

rce code lines. These numbers are larger

 Fixed Block Comparison, but using the

Rsync orith ot f it aj

change.

results in Table 7, we have some comments.

First, we can as y 4 C li ere it s

dow essages in Case 1 when we changed only a

onstant in the source file. One of the reason is that the

network programming module includes a timestamp

value that is given at compile time. This ensures that

each program image is different each time we compile

the program. Another reason is that the previous SREC

file was not aligned in the SREC record boundary at the

end of the file. When we convert the SREC file to a flat

file for Rsync, the layout changes.

Another question is why we sent 72 copy messages

even though we could send fewer messages. In our de-

sign, the sensor node copies the program image blocks

after hearing a copy message. To bound the execution

time, we made each copy message handle up to 16 SREC

 request before it receives another re-

uest.

nterprets a

est without

ule

do

Si
e modified CMD_DOWNLOAD-

IN
s an advantage that we can reuse most of the code

fo

sage so that the network programming module finishes

processing a copy

In summ , usi

for ch

he R

ing th

c algorithm

onsta

 achieves a

nd 2.eed-up o r add-

qing a few sou

than those of Second, the network programming module i

py request right after it receives the requco alg m is n still ef ective w h a m or code

As for the

k wh SRE nes w transm ted a

nload m

saving the request. In case there is a missing command,

the network programming module has to check the re-

built program image because it hasn’t stored the script

commands. Since the network programming mod

es not know whether a missing hole was caused by a

missing copy message or a number of download mess-

ages, it sends a retransmission requests for each missing

record from the current program image. This will take

c

more time than retransmitting only the missing com-

mand.

Thus, we propose extending the implementation of

Section 5 as follows:

1) The sensor node receives all the commands for the

script.

2) The sensor node checks for any missing records in

the script.

3) The sensor node starts to decode script records in

response to the script decode message.

6.1. Design

6.1.1. Oper

lines (256 bytes).

6. Optimizing Difference Delivery

Compared to Fixed Block Comparison, the Rsync algo-
rithm achieves shorter programming time by efficiently
finding the shared blocks between the two binary code
files. However, we can find some things to improve:

ations
nce the script commands are stored in the storage space

of the sensor node, w
G message to send script messages as in Figure 14.

This haFirst, the network programming module transfers only

a limited number of SREC records for each copy mes-

sage. This is to bound the running time of a copy mes-

r handling normal data records to process the script
commands.

Figure 14. Message format for incremental network programming with Rsync difference generation and decode script.

INCREMENTAL NETWORK PROGRAMMING FOR WIRELESS SENSORS

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

447

(a) Receiving script commands.

(b) Decoding script commands.

Figure 15. Steps for incremental network programming with Rsync difference generation and decode script.

Message CMD_DOWNLOADING (data) has almost

the same format as a normal data record download mes-

sage except for the script CID and new CID fields. The

script CID field is the sequence number of t

ithin the script and the new CID field is the location

where the data record embedded in the command will be

copied for building the program image.

Message CMD_DOWNLOADING (copy) is also sto-

red in a similar way as a normal data record. A copy

command has the SREC type field. This is for the Mo-

torola SREC type and only several values are allowed by

the specification (0,1,2,3,5,7,8 and 9). We extended the

meaning of this field so that the value 10 represents a

copy record. This allows us to store a copy command in

the same manner as other data records, but can still in-

terpret the copy command correctly. Finally, message

CMD_DECODE_SCRIPT makes the network program-

ming module start decoding the downlo

comman

.1.

the worst case. Since the largest program size is 128 KB,

it may not fit into RAM (4 KB) or the internal flash

memory (4 KB) when the prog m size is large. Thus,

ld be stored in the external flash memory.

We divided the external flash memory into three sec-

tions: the previous program image, the current program

image and the script sections.

At first, the host program sends the script as CMD_

DOWNLOADING messages. The sensor node stores

these messages in the script section if it is in the incre-

mental network programming state. This is shown in

Figure 15(a). When the host program queries any miss-

ing script commands, the sensor node scans the script

section. When the difference between the two program

versions is small, the traversal of the script section can

finish quickly. If the sensor node finds any missing re-

cord, it requests the retransmissi of the record. Then,

am sends the record again.

e host

rogram

he command the script shou

w

aded script the host progr

ds. After receiving the decode command from th

program, the sensor node starts rebuilding the p

6 2. Storage Organization and Program Rebuild

As for the storage space for the script commands, we

need to choose among RAM, internal flash memory and

external flash memory. RAM would be better than the

others for its fast access time. However, the size of a

script can be as large as a list of download messages in

code. This is shown in Figure 15(b). A download com-

mand is copied from the script section to the current pro-

gram image section after the CID field i

ra

on

s modified to the

new CID value. As for a copy command, the sensor node

starts copying SREC records from the previous program

image to the current program image. A SREC record

J. JEONG ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

448

e evaluation. We measured the transmission

from the previous section is copied to the current pro-

gram section after the CID and the byte offset fields are

modified for the new values.

6.2. Results

Since a sensor node does not rebuild the program image

until it receives all the script commands, we modified the

metrics for th

time and the decode time for the three cases. The host

program saves the time stamp value when it sends a de-

code command and gets the next time stamp value when

it receives the reply from the sensor node. The decode

time is calculated as the difference of the two time stamp

values. Table 8 shows the results.

Table 8. Transmission time for incremental network pro-

gramming with Rsync difference generation and decode

script.

 Case 1 Case 2 Case 3 Case 4 Case 5

Bytes 48.9KB 50.1KB 50.1KB 49.7KB 49.7KB

#-SRECs 1139 1167 1167 1156 1156

#-cmds 7 337 996 419 964

Estimation

T 0.9s 45.8s 130.7s 54.5s 125.6s

Tdecode 16.0s 16.7s 16.9s 16.8s 16.8s

Txnp 154.0s 158.5s 158.5s 150.7s 150.5s

Speed-up

T / T
9.10 2.53 1.07 2.11 1.06

xnp

Table 9. Speed-up in programming time for three versions

of incremental network programming.

Fixed block comparison

 Case 1 Case 2 Case 3 Case 4 Case 5

Bytes 48.9KB 50.1KB 50.1KB 49.7KB 49.6KB

#-SRECs 1139 1167 1167 1156 1155

L 19 911 1135 1124 1123

20 256 32 32 32

down

Lcopy 11

Ncopy 70 16 2 2 2

T 23.3s 114.1s 136.8s 135.5s 135.4s

Txnp 136.7s 138.7s 140.0s 138.7s 138.6s

Speed-up

Txnp / T
5.87 1.22 1.02 1.02 1.02

Rsync

 Case 1 Case 2 Case 3 Case 4 Case 5

Bytes 48.2KB 49.4KB 49.4KB 48.9KB 48.9KB

#-SRECs 1120 1154 1156 1140 1147

downL 4 200 888 326 871

Lcopy 1116 954 278 814 276

Ncopy 72 104 85 107 83

T 22.1s 7 1

134.4s 138.5s 139.9s 136.8s 137.6s

Sp -up

T
9

55.2s 132.1s 1.2s 29.4s

Txnp

eed

xnp / T
6.0 2.51 1.06 1.92 1.06

R ith eco

sync w split d de

Case 1 Case 2 Case 3 Case 4 Case 5

Bytes 48.9KB 50.1KB 50.1KB 49.7KB 49.7KB

#-SRECs 1139

#-cmds 7 337 996 419 964

T 0.9s 45.8s 130.7s 54.5s 125.6s

.5s 158.5s 150.7s 150.5s

Speed-up

Txnp

1167 1167 1156 1156

Tdecode 16.0s 16.7s 16.9s 16.8s 16.8s

Txnp 154.0s 158

 / T
9.10 2.53 1.07 2.11 1.06

Case 1 Case 2 Case 3 Case 4 Case 5
0

2

4

6

8

10
Speed− on enta yup over n −increm l deliver

Fixe Comd Block parison

Rsync

Rsyn decodic with ng

S
p
e
e
d
−

u
p

16. Speed-up in programming time for three ver-

sions of incre ne r in

se a

a ad ran on ery l. T

of transmission me a e de tim 6.1 le

non- cremen eliv took 4.0s. This g a

spe of r 2 re s ine re

tran (3 crip age r the lin ro-

gram) a e s up on e

liver as 2. r Case 3, w n rg -

ber rip ge m 1 e

program code) and the speed-up was 1.07. When we

Figure

mental twork p ogramm g.

For Ca 1, only 7 script messages were tr nsmitted

nd this m e the t smissi time v smal he sum

 ti nd th code e is 1 s whi

in

ed-up

tal d

9.10. Fo

ery

 Case

 15

, mo

ives

s wecript l

smitted 37 s t mess s fo 1167 e p

 code

y w

nd th

53. Fo

peed- over n

e sent a

-increm

even la

ntal de-

er num

of sc t messa s (996 essages for the 167 lin

INCREMENTAL NETWORK PROGRAMMING FOR WIRELESS SENSORS

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

449

m e co ration file, ad a similar resu

Se Fo e 4 i ssa r th 6

a speed-up of 2.11 over nonin-

ase 5, most of the SREC re-

cords were it do o s

(9 of e s

 1 b -

c ne pr min em ion d

B mparison, R and c w lit d e.

We can that splittin e scrip n e

prog rebu pr e mi e.

W o od odified at m m, the im-

ple R nd d -

gra s e ri ag n

t ha dec he e s. W

sm ber of source c de li re ad , th o-

ramming time was a little better than the implementa-

on that just uses the Rsync algorithm. For the major

program change, it didn’t achieve the speed-up, but it

was still as good as non-incremental delivery.

We can comment on Case 3. Even though we used the

Rsync algorithm and split decode, the speed-up over

non-incremental delivery was negligible. This is because

the difference between the two program images cannot

be described with a small number of insert, copy and

skip operations.

7. Conclusions

de over radio

ackets. By sending program code packets to multiple

se

 Then, the

se

r way is to

us

ments

003.

er 2003.

odified th nfigu

r Cas

we h

pt me

lt as

e 115ction 5. , 419 scr ges fo

line program code had

cremental delivery. For C

 transm ted as wnload script c mmand

64 out

Figure

 1156) an

6 and Ta

d the spe

le 9 show

d-up wa

 the resu

 1.06.

lts of the three in

remental twork ogram g impl entat s: Fixe

lock Co

 find

sync Rsyn ith sp ecod

g th

oves th

t tran

overall pr

smissio

ogram

 and th

ng timram ild im

hen the s urce c e is m inimu

mentatio

mming t

n with

ime by

sync a

ending f

 split

wer sc

ecode sav

pt mess

ed pro

es eve

hough it s to ode t

o

script m

nes we

ssage

ded

hen a

e prall num

g

ti

Network programming is a way of programming wireless

sensor nodes by sending the program co

p

nsor nodes with a single transfer, network program-

ming saves the programming efforts for a large sensor

network. The network programming implementation in

TinyOS releases 1.1 or later provides the basic capability

of network programming – delivering the program code

to the sensor nodes remotely. However, the network pro-

gramming implementation is not optimized when part of

the program code has changed. It transmits all the code

bytes even though the new version of program code is

only slightly different.

We extended the network programming implementa-

tion so that it reduces programming time by transmitting

an incremental update rather than the entire program

code. The host program generates the difference of the

two program images using the Rsync algorithm and

transmits the difference to the sensor nodes.

nsor nodes decode the difference script and build the

program image based on the previous program version

and the difference script. We tested our incremental

network programming implementation with some test

applications. We have a speed-up of 9.1 for changing a

constant and 2.1 to 2.5 for changing a few lines of code

in the source code.

For future work, we plan to extend our incremental

network programming for multihop delivery. One way is

to use an existing multihop network programming mech-

anism such as Deluge [6] or MOAP [5]. In this case, we

need to modify the underlying multihop delivery mecha-

nism to be compatible with an incremental program im-

age as well as non-incremental image. Anothe

e a generic multihop routing protocol. Since a generic

routing protocol just delivers packets without storing the

program image, our incremental network programmig

mechanism can be easily extended for multihop delivery

by replacing a single-hop send command with a multihop

version.

8. Acknowledge

Thanks to Crossbow Technology for providing the sour-

ce code for the network programming module and the

boot loader. This work is was supported by the Defense

Advanced Research Projects Agency under a contract

F33615-01-C1895 (“NEST”), the National Science

Foundation under grants #0435454 (“NeTS-NR”) and

#0454432 (“CNS-CRI”), a grant from the Keck Founda-

tion, and generous gifts from HP and Intel.

9. References

[1] J. Jeong, S. Kim, and A. Broad, “Network reprogram-

ming,” http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/Net

-workReprogramming.pdf., 2003.

[2] Crossbow Technology. Mote in network programming

user reference, http://webs.cs.berkeley.edu/tos/tinyos-1.x/

doc/Xnp.pdf., 2003.

[3] A. Tridgell, “Efficient algorithms for sorting and syn-

chronization. PhD thesis,” Australian National University,

Canberra, Australia, February 1999.

[4] A. Atmega, 128 microcontroller reference, http://www.

atmel.com/dyn/resources/prod_documents/doc2467.pdf.

[5] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote

code update mechanism for wireless sensor networks,

cens technical report #30,” http://lecs.cs.ucla.edu/ thanos/

moap-TR.pdf., 2

[6] J. W. Hui and D. Culler, “The dynamic behavior of a

data dissemination protocol for network programming at

scale,” pp. 81–94, November 2004.

[7] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Ac-

curate and scalable simulation of entire tinyos applica-

tions,” The First ACM Conference on Embedded Net-

worked Sensor Systems (Sensys’03), 2003.

[8] N. Reijers and K. Langendoen, “Efficient code distribu-

tion in wireless sensor networks,” in Proceedings of the

2nd ACM International Conference on Wireless Sensor

Networks and Applications (WSNA’03), pp. 60–67, Sep-

temb

J. JEONG ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

450

] R. Kapur, T. Yeh, and U. Lahoti, “Differential wireless

tworks, ucla cs213 project

2] P. Levis, N. Patel, S. Shenker, and D. Culler, “Trickle: A

 code propagation and main-

less sensor networks,” in Proceedings of

’04), pp. 2,

twork file system,” pp. 174–187, October

s in a wireless mesh data communication

Appe

Table 10. Rec

[9 the 1st Conference on Symposium on Networked Sys-

tems Design and Implementation (NSDIreprogramming of sensor ne

report,” 2003. March 2004.

[13] W. Emmerich, C. Mascolo, and A. Finkelstein, in Pro-

ceedings of the 22nd International Conference on Soft-

ware Engineering, June 2000.

[14] A. Muthitacharoen, B. Chen, and D. Mazi´eres, “A low

-bandwidth ne

[10] T. Yeh, H. Yamamoto, and T. Stathopolous, “Over-theair

reprogramming of wireless sensor nodes, ucla ee202a

project report, http://www.cs.ucla.edu/˜tomyeh/ee202a/

project/EE202a_final_writeup.doc., 2003.

[11] P. Levis and D. C. Maté, “A tiny virtual machine for

sensor networks,” Proceedings of the 10th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’02), pp.

85–95, October 2002.

netw

2001.

[15] G. H. Flammer, “Method for distributing program code to

intelligent node

ork,” US Patent 5,903,566, May 1999.

[16] C. M. Jarsync, “A java implementation of the rsync algo-

rithm,” http://jarsync.sourceforge.net/.

[1

self-regulating algorithm for

tenance in wire

ndix

eiving the incoming message.

ACHINE() state transision.

Message Command Next State Action

CMD_START_DOWNLOAD SYS_DL_START post NPX_STATEMACHINE()

CMD_DOWNLOADING SYS_DL_SRECWRITE post NPX_STATEMACHINE()

CMD_DOWNLOAD_COMPLETE SYS_DL_END post NPX_STATEMACHINE()

CMD_ISP_EXEC SYS_ISP_REQ post NPX_STATEMACHINE()

CMD_GET_CIDMISSING SYS_REQ_CIDMISSING post NPX_STATEMACHINE()

CMD_START_DOWNLOAD_INCR SYS_DL_START_INCR post NPX_STATEMACHINE()

CMD_COPY_BLOCK SYS_COPY_BLOCK_PREP post NPX_STATEMACHINE()

CMD_GET_CURRENT_LINE SYS_GET_CURRENT_LINE_PREP post NPX_STATEMACHINE()

CMD_GET_PREV_LINE SYS_GET_PREV_LINE_PREP post NPX_STATEMACHINE()

Table 11. NPX_STATEM

Start Download

Current State Next State Action

fNPXStartDownload() signal

Xnp.NPX_DOW
SYS_DL_START

NLOAD_REQ()

Call from main application

Xnp.NPX_DOWNLOAD_ACK()
SYS_DL_START1 Post NPX_STATE_MACHINE()

Call EEPROMWrite.endWrite()
SYS_DL_START1 SYS_DL_START2

SYS_DL_START2

Post NPX_STATEMACHINE()

Post NPX_STATEMACHINE() SYS_ACK

Download End

Current State Next State Action

SYS_DL_END SYS_DL_END_SIGNAL
Call EEPROMWrite.endWrite()

Post NPX_STATEMACHINE()

SYS_DL_END_SIGNAL SYS_ACK Post NPX_STATEMACHINE()

INCREMENTAL NETWORK PROGRAMMING FOR WIRELESS SENSORS

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

451

Download

nt State Next State Action Curre

SYS_DL_SR SYS_EEFLASH_WRI SYS_ACK post NPX_STAT INE() ECWRITE TEPREP or EMACH

SYS_EEFLASH_W SYS_EEFLASH_WRITE)

RITE SYS_E FLASH_WRITEDONE

NE SYS_A

RITEPREP post NPX_STATEMACHINE(

post NPX_STATEMACHINE()

Call EEPROMWrite.endWrite()

SYS_EEFLASH_W E

SYS_EEFLASH_WRITEDO CK
Post NPX_STATEMACHINE()

Id

Current State Next State

le

Action

SYS_ACK SYS_IDLE post NPX_STATEMACHINE()

SYS_IDLE SYS_IDLE post NPX_STATEMACHINE()

Retransmission

Current State Next State Action

SYS_REQ_CIDMISSING SYS_GET_CIDMISSING
Call EEPROMWrite.endWrite()

Post NPX_STATEMACHINE()

SYS_GET_CIDMISSING SY TCID

SYS_GETNEXTCID SYS_GETNEXTCID or SYS_GETDONE post NPX_STATEMACHINE()

SYS_GETDONE SYS_IDLE post NPX_STATEMACHINE()

S_GETNEX post NPX_STATEMACHINE()

Reprogram

Current State Next State Action

SYS_ISP_REQ SYS_ISP_RE post NPX_STAT INE() Q1 EMACH

SYS_ISP_REQ1 SYS_ACK post NPX_ISP()

SYS_DL_START_INCR
fNPXStartDownloadIncr()

signal Xnp.NPX_DOWNLOAD_REQ()

 state transition (added for incremen

wnload

Table 12. NPX_STATEMACHINE() tal network programming).

Start Do

Current State Next State Action

SYS_DL_STA
f

S EQ()
RT_INCR

NPXStartDownloadIncr()

ignal Xnp.NPX_DOWNLOAD_R

Copy Command

Current State Next State Action

SYS_COPY_BLOCK_PREP K_READ
()

()
SYS_COPY_BLOC

Call EEPROMWrite.endWrite

post NPX_STATEMACHINE

SYS_COPY_BLOCK_READ LASH_COPYWRITE

SYS_EEFLA ITE SYS_EEFLA RITEDONE
Post NPX_wEE_LineWrite()

Post NPX_ST CHINE()

WRITEDONE LOCK_PREP or SYS_ACK ()

SYS_EEF

Call EEPROMRead.read()

fNPXCopyBlk()

post NPX_STATEMACHINE()

SH_COPYWR SH_COPYW
ATEMA

SYS_EEFLASH_COPY SYS_COPY_B Post NPX_STATEMACHINE

D nds

 Next State

ebugging Comma

Current State Action

SYS_GET_P

Call EEPROMRead.read()

post NPX_STATEMACHINE()

REV_LINE_PREP SYS_ACK fNPXGetLine()

SYS_GET_C E_PREP SYS_ACK

Call EEPROMRead.read()

fNPXGetLinURRENT_LIN e()

post NPX_STATEMACHINE()

J. JEONG ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences

452

Table 13. Cost handling.

CMD_DOWNL

of message

OADING

Step Source Lines Description

CMD_DOWNLOADING 29

SYS_DL_SRECWRITE

SYS_EEFLASH_WRITEPREP

41

22

SYS_EEFLASH_WRITE 31

SYS_EEFLASH_WRITEDONE

Total

13

136

C mp

Source Lines Description

MD_COPY_BLOCK (Fixed Block Co arison)

Step

CMD_COPY 46 _BLOCK

SYS_COPY_BL 16 SREC

Repeated for each SREC

Repeated for each SREC

SYS_EEFLASH_COPYWRITEDONE 22 Repeated for each SREC

OCK_PREP Repeated for each line

SYS_COPY_BLOCK_READ

SYS_EEFLASH_COPYWRITE

40

29

line

line

line

Total 153

CMD_COPY_BLOCK (Rsync)

Step Source Lines Description

CMD_COPY_BLOCK 46

SYS_COPY_BLOCK_PREP line

AD 44 Repeated for each SREC line

RITE 29 Repeated for each SREC

SYS_EEFLASH_COPYWRITEDONE Repeated for each SREC

16 Repeated for each SREC

SYS_COPY_BLOCK_RE

SYS_EEFLASH_COPYW line

line 22

Total 157

