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ABSTRACT 

 
We present an incremental network programming mechanism which reprograms wireless sensors quickly by 

transmitting the incremental changes using the Rsync algorithm; we generate the difference of the two pro-

gram images allowing us to distribute only the key changes. Unlike previous approaches, our design does not 

assume any prior knowledge of the program code structure and can be applied to any hardware platform. To 

meet the resource constraints of wireless sensors, we tuned the Rsync algorithm which was originally made 

for updating binary files among powerful host machines. The sensor node processes the delivery and the de-

coding of the difference script separately making it easy to extend for multi-hop network programming. We 

are able to get a speed-up of 9.1 for changing a constant and 2.1 to 2.5 for changing a few lines in the source 

code. 

 

Keywords: Network Programming, Incremental, Wireless Sensor Networks, Difference Generation,  

Rsync Algorithm 

 

1.  Introduction 

 
Typically, wireless sensors are designed for low power 

consumption and small size and don’t have enough 

computing power and storage to support a rich pro-

gramming development environment. Thus, the program 

code is developed on a more powerful host machine and 

is loaded onto a sensor node afterwards. The program 

code is usually loaded onto a sensor node through the 

parallel or serial port of the host machine; this is called 

in-system programming. In-system programming (ISP) is 

the most common way of programming sensor nodes 

because most microcontrollers support program loading 

through the parallel or serial port. However, ISP can only 

load the program code to one sensor node at a time. The 

programming time increases proportional to the number 

of wireless sensors to be deployed. During the develop-

ment cycle of wireless sensor software, the source code 

can be modified for bug fixes or to add additional func-

tionalities. With ISP, the cost of a software update is 

high; it involves all the efforts of collecting the sensor 

nodes placed at different locations and possibly disas-

sembling and reassembling the enclosures. Network pro-

gramming reduces these efforts by delivering the pro-

gram code to each of the sensor nodes through the wire-

less links. 

Network programming has been used since the intro-

duction of TinyOS 1.1 release [1,2]. This implementation, 

XNP (Crossbow Network Programming), provides the 

basic capability of network programming; it delivers the 

program code to the sensor nodes remotely. However, it 

has some limitations: First, XNP does not scale to a large 

sensor network. XNP disseminates the program code 

only to the nodes that can be reached directly by the host 

machine. Therefore, the nodes outside the single hop 

boundary cannot be programmed. Second, XNP has a 

lower bandwidth compared than ISP. An experiment in 

[1] shows the programming time of XNP and ISP. In the 

experiment, we used a simple test application ‘Xnp- 

Count’ which has basic functionalities: network progr- 

amming, counting numbers using LEDs and transmitting 

the number in radio packets. The version of ‘XnpCount’ 

we used was 37,000 bytes in size and required 841 XNP 

packets to transfer the entire program. The programming 

time of XNP was more than 4 times longer than that of 

ISP (Figure 1). When XNP updates the program code 

with another version, it sends the entire program code 

rather than the difference. This incurs the same program- 
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Figure 1. Programming time of crossbow network progra- 

mming (XNP) and in-system programming (ISP). 

 

ming time even when the difference is small. If the sen-

sor nodes could build the program code image incre-

mentally using the previous code image, the overall pro-

gramming time can be reduced. 

We present an incremental network programming 

mechanism which sends the new version of the program 

by transmitting the difference of the two program images. 

Unlike previous approaches, we generate the program 

code difference by comparing the program code in block 

level without any prior knowledge of the program code 

structure. This gives a general solution that can be ap-

plied to any hardware platform. We used the Rsync algo-

rithm [3] to generate the difference. The Rsync algorithm 

finds the shared code blocks between the two program 

images and allows us to distribute only the key changes 

of the program. Originally, the Rsync algorithm was 

made for computationally powerful machines exchang-

ing the update of binary files over a low-bandwidth 

communication link. We tuned the Rsync algorithm for 

wireless sensor network programming. First, we made 

the host program process expensive operations like 

building the hash table in favor of the sensor node. In 

order to rebuild the program image the sensor node sim-

ply reads or writes code blocks to flash memory. 

Second, we structured the difference to avoid unnec-

essary flash memory accesses. In rebuilding the program 

image, the sensor node processes the script dissemination 

and the decoding in separate steps. This makes it easy to 

use dissemination protocols and to extend for multi-hop 

network programming. We are able to get a speed-up of 

9.1 for changing a constant and 2.1 to 2.5 for changing a 

few lines in the source code over the non-incremental 

delivery. 

The rest of the paper is organized as follows. Section 2 

describes the in-system programming and the network 

programming as a background. Section 3 discusses the 

related work on wireless sensor network programming. 

Section 4 outlines incremental network programming 

and explains our first implementation. In Section 5, we 

use the Rsync algorithm to generate the program and 

Section 6, we discuss the extension to the script delivery 

which makes program delivery more reliable and faster. 

Finally, we conclude this thesis with Section 7. 

 

show how this implementation improves performance. In 

.  Background 

.1.  In-System Programming 

he program development for wireless sensors starts 

rmat) is loaded 

on

2

 
2

 
T

with writing the source code. For the Berkeley sensor 

platform, the source code is written in the nesC pro-

gramming language. Once the source code is success-

fully compiled, the binary code is generated (main.exe). 

The binary code is further converted to the Motorola 

SREC format (main.srec) and is then available for load-

ing. The Motorola SREC format is an ASCII representa-

tion of binary code and each line of an SREC file con-

tains the data bytes of the binary code with additional 

house keeping information (Figure 2).  

With ISP, the binary code (SREC fo

to a sensor node through the direct connection (e.g. 

parallel port) from the host machine. The host program-

ming tool (uisp) sends a special sequence of bytes that 

places the microcontroller of the sensor node in pro-

gramming mode. While the microcontroller is in pro-

gramming mode, the data bytes sent by the host pro-

gramming tool are written directly to the program mem-

ory of the microcontroller (Figure 3(a)). 

 

S01800006275696C642F6D696361322F6D61696E2E737265632D

S11300000C9426020C9443020C9443020C941C039B

S11300100C9443020C9443020C9443020C94430248

S11300200C9443020C9443020C9443020C94430238

.

.

.

S11348A0802D9DB30895E199FECF9FBB8EBB6DBB58

S10F48B00FB6F894E29AE19A0FBE089546

S10B48BC01007D012DCF4340F2

S9030000FC

SREC file example

S Type

Start Record

Offset CheksumLength Data

Data Record 1

Data Record 2

Data Record n

End Record

SREC record format SREC file format

1Byte Size 1 2 4 2n 2

n = Length - 3

 

Figure 2. Format of SREC file and its records with an ex-

ample. 

 

 

(a) Process of in-system programming 
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(b) Process of network programming 

Figure 3.  network 

.2.  Network Programming 

etwork programming takes a different approach to 

k programming module 

st

cond step, the boot loader copies the program 

co

at the sensor 

no

elated Work 

.1.  Wireless Sensor Network Programming 

NP [1,2] is the network programming implementation 

multihop network programming 

m

 a multihop network programming pro-

to

rs, et al. [8] developed an algorithm that updates 

bi

, et al. [9,10] implemented a version of incre-

m

Steps for in-system programming and

programming. 

 

2

 
N

loading the program code. Rather than writing the pro-

gram code directly to program memory, network pro-

gramming loads the program code in two steps. First, it 

delivers the program code to the sensor nodes. Second, it 

makes the sensor nodes move the downloaded code to 

program memory (Figure 3(b)). 

In the first step, the networ

ores the program code in external storage. Since the 

network programming module runs in user level as a part 

of the main application code, it does not have the privi-

lege to write the program code into program memory. In 

the case of XNP, the network programming module 

writes the program code to the external flash memory 

outside program memory. The external flash memory of 

a MICA2/MICA2DOT mote is 512KB in size and is big 

enough for any application code (the maximum size of 

128KB). During program delivery, part of the code may 

be missing due to the packet loss. The network pro-

gramming module requests for any missing records of 

the program code to make sure that there are no missing 

records.  

In the se

de from external flash memory to program memory. 

The boot loader is a program that resides in the high 

memory area (which we call the boot loader section) of 

an ATmega128 microcontroller and has the privileges to 

write data bytes to the user application section of pro-

gram memory [4]. The boot loader starts execution when 

it is called by the network programming module. After it 

copies the program code from the external flash memory 

to program memory, it restarts the system. 

In the paragraphs above, we assumed th

des can update the current program image through 

network programming. However, a sensor node cannot 

be network programmed until it has the network pro-

gramming module and the boot loader. Thus, we need to 

load the initial program code and the boot loader with 

ISP. 

3.  R

 
3

 
X

for TinyOS that was introduced with 1.1 releases version. 

XNP supports basic network programming broadcasting 

the program code to multiple nodes in a single hop. 

However, it doesn’t consider a large sensor network and 

incremental update.  

MOAP [5] is a 

echanism and their main contributions are its code dis-

semination and buffer management. For code dissemina-

tion, they used the Ripple dissemination protocol which 

disseminates the program code packets to a selective 

number of nodes without flooding the network with 

packets. For buffer management, they used a sliding 

window scheme which maintains a window of program 

code and allows lost packets within the window to be 

retransmitted. The sliding window uses a small footprint 

so that packets can be processed efficiently in on-chip 

RAM. MOAP was tested on the EmStar simulator and 

MICA2 motes. 

Deluge [6] is

col that disseminates program code in an epidemic 

fashion to propagate program code while regulating the 

excess traffic. In order to increase the transmission rate, 

Deluge used optimization techniques like adjusting the 

packet transmit rate and spatial multiplexing. Unlike 

MOAP, Deluge uses a fixed sized page as a unit of 

buffer management and retransmission. Deluge was 

tested with the TOSSIM simulator [7] and MICA2 

motes. 

Reije

nary images incrementally. With the algorithm, the 

host program generates an edit script to describe the dif-

ference between the two program code images. The sen-

sor nodes build the program image after interpreting the 

edit script. The edit script consists of not only simple 

operations like copy and insert but also more complex 

operations (address repair and address patch) that modify 

the program code at the instruction level. This helps 

minimizing the edit script size. As an evaluation, this 

paper considers only the reduced script size on the host 

side. Since operations like address repair and address 

patch incur memory intensive EEPROM scanning, the 

experiments should have demonstrated the overall pro-

gramming time in a sensor simulator or in a real sensor 

node.  

Kapur

ental network programming based on the algorithm of 

Reijers, et al [8]. Their implementation is composed of 

two parts: the diff encoder on the host side and the diff 

decoder on the sensor node side. The diff encoder gener-

ates the difference for the two versions of code at the 
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ogram-

m

xamples above disseminated the program 

co

até. In Maté, 

ea

.2.  Remote Code Update outside Wireless  

 
utside the sensor network community, there have been 

neral form of unstruc-

tu

two 

fil

echanism patented by Metricom Inc. [15] dis-

se

.  Design and Implementation 

o design an incremental network programming mecha-

instruction level using copy, insert and repair operations. 

The difference script is delivered to the sensor node us-

ing MOAP [5] which was developed for reliable code 

dissemination. Then, the sensor node rebuilds the pro-

gram code after decoding the downloaded script. 

These two works on incremental network pr

ing minimized the script transmission at the cost of 

program modification at the instruction level. In contrast, 

the implementation in this paper put less computational 

complexity on the sensor nodes. The difference genera-

tion, which is costly, is handled by the host program. The 

sensor nodes simply write the data blocks based on the 

script commands and this can be applied to less powerful 

sensor nodes. 

While the e

de in native binary code, Maté [11] distributes the 

program code in virtual machine instructions which are 

packed in radio packets. While XNP transmits the binary 

code that contains both the network programming mod-

ule and the application, Maté only transmits the applica-

tion code. This allows Maté to distribute the code 

quickly. One drawback of Maté is that it runs the pro-

gram code only in virtual machine instructions and a 

regular sensor application needs to be converted to vir-

tual machine instructions before execution. 

Trickle [12] is an improvement over M

ch sensor node floods the network with packets to dis-

tribute the code and this can lead to network congestion 

but the algorithm can be used for a large sensor network. 

Trickle addresses this problem by using a “polite gossip” 

policy. Each sensor node periodically broadcasts a code 

summary to its local neighbors and stays quiet if it has 

recently heard a summary identical to its own summary. 

The sensor node broadcasts an update only when it hears 

from an older summary than its own. 

 

3

Sensor Community 

O

efforts to update program code incrementally. Emmerich 

et al. [13] demonstrated updating XML code in an in-

cremental fashion. Specifying the update in XML is eas-

ier than a binary image because XML is a structured 

markup language and it allows specifying the update 

without changing the structure of the rest of the code. In 

contrast, inserting or replacing code blocks in binary 

code affects the rest of the code. 

The cases of synchronizing ge

red files can be found with Rsync and LBFS. Rsync [3] 

is a mechanism to efficiently synchronize two files con-

nected over a low-bandwidth, bidirectional link. To find 

matching blocks between the two files, we can divide the 

first file into fixed sized blocks of B bytes and calculate 

the hash for each block. Then, we scan the second file 

and form a B byte window at each byte. After that we 

compare the hash for the window with hash values of all 

the blocks in the first file. This does not work that well. 

If the hash is expensive to calculate, finding the match-

ing blocks will take long time. If the hash can be com-

puted cheaply but with possible false matches, we may 

not find the correct block. The key idea of Rsync is to 

use two levels of hashes, rolling checksum (fast hash) 

and hash (strong hash) to make the computation over-

head manageable while finding the matching blocks with 

high probability. Rsync calculates the rolling checksum 

of the B byte window of the second file at each byte and 

computes the hash only when the rolling checksums of 

the two blocks match. Since the hash is computed only 

for the possible matches, the cost of calculating the hash 

is manageable and we can filter out the false match. 

LBFS [14], another mechanism to synchronize 

es in a low-bandwidth, bidirectional link, takes a 

slightly different approach. Rather than divides a file into 

fixed blocks, LBFS divides each file into a number of 

variable sized blocks and computes the hash over each 

block. To find matching blocks between the two files, 

LBFS just compares these hashes (SHA-1 hash). The key 

idea of LBFS is in dividing a file into variable sized 

blocks. LBFS scans a file and forms a 48-byte window at 

each byte and calculates a 13-bit fingerprint. If the fin-

gerprint matches a specific pattern, that position becomes 

the breakpoint of the block. This scheme has a property 

that modifying a block in a file does not change the hash 

values of the other blocks. When we are going to send a 

new version, we can just compare the hash values of 

each variable block and send only the non-matching 

blocks. 

The m

minates the program code over multihop networks in 

an efficient way using an epidemic protocol. When a 

node V has a new version of code, it tells its neighbors 

that a new version of code is available. On hearing the 

advertisement from V, one of V’s neighbor, P, checks 

whether it has the newly advertised version. If it doesn’t 

have the version, P requests V transmit the version of 

code. After that, V starts sending program code and fin-

ishes when it doesn’t hear any requests. With this 

scheme, a sensor node can distribute the program code 

without causing much network traffic. 

 

4

 
T
nism, we need to consider some factors that affect per-
formance. Compared to other sensor applications, net-
work programming keeps a large amount of data in the 
sensor nodes contributing to long programming time. 
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 much functionality is to 

be

hat it can be 

un

Since programming time is proportional to data size, 
reducing the amount of transmission data will improve 
programming time. External flash memory which is used 
for program storage also limits performance. The 
downloaded code is stored in the external flash memory 
because there is not enough space in on-chip memory. 
However, this external flash memory is much slower 
than the on-chip SRAM. For better performance, access 
to external memory should be made only when it is ne- 
cessary. Caching frequently accessed data can help re-
ducing flash memory accesses. 

Another consideration is how

 processed in the sensor nodes. More sophisticated 

algorithms could reduce overall programming time by 

reducing network traffic, but at the cost of higher com-

plexity computation and memory accesses. 

Finally, the design should be simple so t

derstood and diagnosed without difficulty. 

 

 

(a) Generating difference 

 

 

(b) Memory allocation 

 

 

(c) Program image rebuild 

Figure 4. Step ogrammin

4.

s a starting point, we can design a version of incre-

.1.1.  Difference Generation  

, the host program 

idea is that we can reduce the number of message 

tra

.1.2.  Operations  

essage types used for incremental 

START_DOWNLOAD_IN 

load: Two operations CMD_DOWNLOADING 

he formats of query, reply and 

_LINE 

s for incremental network pr g. 

and CMD_GET_PREV_LINE messages request the 

SREC record at the specified line. In response, the sensor 

node sends CMD_REPLY_LINE message.  

1.  Design: Fixed Block Comparison 

 

A

mental network programming by extending XNP. This 

consists of two main parts: 1) difference generation and 

code delivery, 2) storage organization and image rebuild. 

 

4

To generate the program difference

compares each fixed sized block of the new program 

image with the corresponding block of the previous im-

age. We set the block size as the page size of the external 

flash memory (256 bytes). The host program sends the 

difference as messages while it compares the two pro-

gram versions. If the two corresponding blocks match, 

the host program sends a CMD_COPY_BLOCK me- 

ssage. The message makes the network programming 

module in the sensor node copy the block of the previous 

image to the current image. When the two blocks don’t 

match, the host program falls back to the normal 

download; it sends a number of CMD_DOWNLOAD-

ING messages for the SREC records of the block (Figure 

4(a)). 

The 

nsmissions by sending a CMD_COPY_BLOCK me- 

ssage instead of multiple CMD_DOWNLOADING me- 

ssages when most of the blocks are the same between the 

two program images. 

 

4

Table 1 shows the m

network programming. Based on XNP messages, we 

made the following extensions for incremental network 

programming as in Figure 5. 

 Start Download: CMD_

CR message notifies the beginning of network program- 

ming in incremental mode. This message specifies not 

just the program ID of the current program but also the 

program ID of the previous program to ensure that the 

sensor node has the same program image as the host 

program. 

 Down

and CMD_COPY_BLOCK are used to transmit the pro-

gram image difference.  

 Query and Reboot: T

reboot messages are the same as XNP messages. 

 Debugging Messages: CMD_GET_CURRENT
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Table 1. Message types for incremental network programming. 

Message

    

 ID Description 

CMD_START D Start network programming in   _DOWNLOA  normal mode

CMD_DOWNLOADING Deposit an SREC record  

CMD_QUERY_COMPLETE he capsules  

 

E 

ATUS 

 ssage from the host  

   

_INCR 

nt  

_LINE 

Signals that it received all t

CMD_DOWNLOAD_STATUS Request/response with download status  

CMD_DOWNLOAD_COMPLET End of SREC record download  

CMD_ISP_EXEC Execute the boot loader  

CMD_GET_PIDST Get Program ID  

CMD_GET_CIDMISSING Retransmission me

CMD_REQ_CIDMISSING Request retransmission for a missing cap

CMD_START_DOWNLOAD Start network programming incrementally 

CMD_COPY_BLOCK Copy SREC records from previous to curre

CMD_GET_CURRENT Read the current SREC record  

CMD_GET_PREV_LINE Read the previous SREC record 

CMD_REPLY_LINE Reply to SREC record request 

 

4.1.3.  Storage Organization 

th

n advantage that it 

m

4.1.4.  Image Rebuild 

rd way. The XNP stores the program image in a contiguous memory 

chunk in the external flash memory. Fixed Block Com-

parison scheme extends this by allocating two memory 

chunks, one for the previous program image and the 

other for the scratch space where the current image will 

be built (Figure 4(b)). 

The two memory chunks have the same structure and 

ey are swapped once the newly built program is loaded 

onto program memory. The current program image is 

now considered the previous image and the space for the 

previous image is available for the next version of pro-

gram image. For the two memory chunks, two base ad-

dress variables are maintained in the flash memory. By 

changing the address values in these variables, the two 

memory chunks can be swapped. 

This memory organization has a

provides the same view of the memory as XNP and 

minimizes the effort of rewriting the boot loader code.  

The boot loader code of XNP reads the program code 

assuming that it is located at a fixed location in external 

flash memory. We modified the boot loader so that it 

reads the program code from the base address passed by 

an inter-process call argument. Thus, the boot loader can 

read the program code from any memory chunk depend-

ing on the base address value passed by the network pro-

gram module. 

However, this scheme does not use the external flash 

emory space economically. It allocates 256 KB of 

space regardless of the program code size (128 KB of 

space both for the current and the previous image). This 

accounts for 50% of the flash memory space of a MICA2 

mote and leaves less space for data logging. 

The program image is built in a straightforwa

 

 

Figure 5. Message format for incremental network

prgramming. 
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mage by writing the SREC records based

ines 

of

plementation 

tion and Code Delivery 

age 

 image, generates the dif-

nctions 

ansmissions 

he serial for-

 user selects the download command after load-

in

.2.2.  Handling the Message  

le for a sensor node is 

network programming module of the sensor node builds 

the program i  
on a list of download and copy messages (Figure 4(c)). 

The download message makes the sensor node deposit 

the data bytes from the message into the program image. warder 

If theThe format of a download message is the same as an 

XNP download message. The capsule ID field specifies 

the location (line number) in the current program image 

and the data represents the data bytes to be written. 

The copy message is for incremental network pro-

gramming making the sensor node copy the SREC l

 a block in the previous program image to the current 

program image. The capsule ID field specifies the loca-

tion of the first SREC record to be copied and the block 

size field specifies the number of SREC records to be 

copied. 

 

4.2.  Im

 

4.2.1.  Difference Genera

The host program, which is in charge of program im

loading, difference generation and code delivery, is com- 

posed of the following classes: 

 xnp: GUI, main module 

 xnpUtil: loads the program

ference and provides utility fu

 xnpQry: processes queries and retr

 

 xnpXmitCode: processes code delivery 

 xnpMsg: defines the message structure 

 MoteMsgIF: abstracts the interface to t

g the current and the previous program images, the xnp 

class spawns the xnpXmitCode class. xnpXmitCode co- 

mpares each pair of blocks in the current and previous 

images by calling xnpUtil.CompareBlocks. Depending 

on the result, it either sends a copy message (CMD_ 

COPY_BLOCK) or sends a download message (CMD_ 

DOWNLOADING) for each line of the current block. 

Figure 6 illustrates this process. 

 

4

The network programming modu

composed of the following components: XnpM.nc (im-

plementation), XnpC.nc (configuration), Xnp.nc (inter-

face), Xnp.h, XnpConst.h (constant definition). The im-

plementation module has an event driven structure (Fig-

ure 7). When a XNP message arrives, ReceiveMsg. re-

ceive() sets the next state variable (cNextState) as the 

appropriate value and posts the NPX_STATEMACH- 

INE() task. This message loop structure readily processes 

 

Figure 6. Host program for incremental network programming. 

 

Set cNextState based on

message command.

ReceiveMsg.receive()
Arriving

XNP message
Based on cNextState
execute functions.

Set cNextState to

the next value.

NPX_STATEMACHINE()

post NPX_STATEMACHINE()

 

Figure 7. Network programming module message handling.  
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n incoming message without interrupting the message 

age based on the pre-

nt Setup 

e of this design choice, we 

task void NPX_ISP() { 

... 

nverted prog id 

r21");

 

a

currently being processed. 

One of the difficult parts was handling split phase op-

erations like external flash reads and writes. To read an 

SREC record from external flash, EEPROMRead.read() 

is called. But this function returns before actually reading 

the record. The event handler EEPROMRead.readDone() 

is called when the record is actually read. And we spec-

ify the next state in the event handler. This makes us use 

multiple intermediate states to process an incoming 

message. Table 11 and 12 in the Appendix show which 

states were used to handle each message type. 

To estimate the cost of message handling, we counted 

the source code lines for the two most important mes-

sages, CMD_DOWNLOADING, and CMD_COPY_BL- 

OCK. The number of lines are 136 and 153 respectively. 

Table 13 shows the cost at each step of the message loop. 

 

.2.3.  Calling the Boot Loader 4

XnpM builds the new program im

vious version and the difference. In order to transfer the 

new image to program memory, we modified the XnpM 

module and the boot loader. The part of the XnpM code 

that executes the boot loader is shown in Figure 8. 

wEEProgStart is passed as the starting address of the 

new program image in the external flash memory. Here, 

0x1F800 is the starting address of the boot loader in the 

Atmega128 microcontroller memory map. The boot 

loader uses the address passed as a parameter to access 

the new image. 

 

.3.  Experime4

 
o evaluate the performancT

will count the number of block or packet transmissions 

of the test set. We considered the following five cases as 

a test scenario: 

 

wPID = ˜wProgramID; //i

__ __volatile__ __asm

("movw r20,%0" "\n\t"::"r" (wPID):"r20","

wPID = wEEProgStart; 

__asm__ __volatile__ 

"r" (wPID):"r22","r23");("movw r22,%0" "\n\t"::

wPID = wProgramID; //the prog id 

__asm__ __volatile__ 

r24","r25");("movw r24,%0" "\n\t"::"r" (wPID):"

//call bootloader - it may never return... 

__asm__ __volatile__ 

00("call 0x1F800" "\n\t"::);//bootloader at 0xFC

... 

} 

Figure 8. Passing the starting address of the new program 

image to the boot loader. 

4.3.1.  Case 1 (Changing Constants)  

This is the case with the minimum amount of change. 

 is an application 

 lines of code to the XnpCount program. 

lication. 

r-

but these two ap-

We modified the constant in XnpBlink that represents 

the blinking rate of the LED. XnpBlink

written for demonstrating network programming. It ac-

cepts network programming and blinks the red LED. The 

following code segment shows the modification to this 

program. 

 

4.3.2.  Case 2 (Modifying Implementation File)  

This is a more general case of program modification. We 

added a few

XnpCount is a simple network programmable app

It counts a number, displays the number in its LEDs and 

broadcasts the number in radio packets. The following 

code segment shows the modification to this program. 

 

4.3.3.  Case 3 (Major Change)  

In this case, we used two programs, XnpCount and 

XnpBlink as input to generate the difference. The diffe

ence is larger than the first two cases, 

plications still share a large portion of the source level 

code (Table 2). 

 
Table 2. Code size of test applications. 

 
XnpBlink XnpCount

# of source code lines for net-

work pro
2049 

gramming modules 
2049 

# of source code lines for ap-

plication specific modules 
157 198 

# SREC lines 1139 1166 

 
ontrol.start() { 

epeating timer that fires every 

// This period can be changed with different 

value. 

command result_t StdC

// Start a r

1000ms. 

return call Timer.start(TIMER_REPEAT, 1000);

} 

(a) Case 1: Changing constants. 

 
event result_t Xnp.NPX_DOWNLOAD_DONE( 

uint16_t wProgramID, 

uint8_t bR

if (bRet == TRUE) 

  call CntControl.start(); 

else // can be deleted 

  call CntControl.stop(); // can be deleted 

return SUCCESS; 

} 

et,uint16_t wEENofP){ 

(b) Case 2: Modifying implementation file. 
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 /* IntToLeds,*/ 

tM, XnpC; 

 

configuration XnpCount { 

} 

implementation { 

  components Main, Counter,

  IntToRfm, TimerC, XnpCoun

  ... 

  // Main.StdControl -> IntToLeds.StdControl;

 Counter.IntOutput;  // IntToLeds <-

... 

 

  

}

(c ion file (commenting out 

IntToLe

 

pC; 

// Main.StdControl -> IntToRfm.StdControl;

) Case 4: Modifying configurat

ds). 

configuration XnpCount { 

} 

implementation { 

   components Main, Counter, IntToLeds,

ntToRfm,*/ TimerC, XnpCountM, Xn  /* I

...   

  

  // Counter.IntOutput -> IntToRfm; 

  ... 

} 

(d ion file (commenting out 

IntToRfm). 

 

4. - 

W nt program 

so at we do not use the IntToLeds module. IntToLeds 

 sho his program. 

o- 

down

nd tcopy to send a copy message, then the trans- 

r Fixed Block Comparison, T, can be 

llows: 

) Case 5: Modifying configurat

Figure 9. Test scenarios. 

3.4.  Case 4 (Modifying Configuration Filecom

menting out IntToLeds) 

ented out a few lines in the XnpCoue comm

 th

is a simple module that takes an integer input and dis-

plays it on the LEDs of the sensor node. The following 

code segment ws the modification to t

 

4.3.5.  Case 5 (Modifying Configuration Filecom- 

menting out IntToRfm) 

We commented out a few lines in XnpCount program so 

that we do not use the IntToRfm module. IntToRfm 

takes an integer input and transmits it over radio. Since 

commenting out IntToRfm forces the radio stack com-

ponents not to be used, we expect a larger change in the 

rogram image than commenting out the IntToLeds mp

dule. 

 

4.4.  Results 

 
To evaluate the performance of Fixed Block Comparison, 

we estimated the transmission time for each scenario. 

The host program calculates the estimated transmission 

time by counting how many download and copy mes-

sages it has sent. If it takes t  to send a download 

essage am

mission time fo

alculated as foc

copycopydowndown tNtLT   

where Ldown is the number of SREC lines sent by 

download messages and Ncopy is the number of copy 

messages. As a baseline for comparison, we can also 

calculate the transmission time for non-incremental de-

livery as follows: 

downcopydowndownxnp tLtLT   

where Lcopy is the number of SREC lines to e copied by 

ess

values. Table 4 shows the estimation 

and measurement data. 

 

 b

a copy m age. We found values for tdown and tcopy after 

a number of trials. We set them as 120 ms and 300 ms 

respectively. Table 3 shows the parameters used for es-

timating the performance. 

Next, we measured the transmission time by reading 

the system clock 

Table 3. Parameters for performance evaluation. 

Parameter Description 

tdown Time to send a download message 

t  Time to send copy a copy message 

Ldown 
Number of SREC lines sent by download 

message 

Number o
Lcopy 

f SREC lines transferred by copy 

N

T 
Transmission time of Fixed Block Compari-

message 

Number of copy copy messages 

son 

Transmission time of non-incremental deliv-
Txnp ery 

 
Table ission time for each case. 

Case

 4. Transm

  1 Case 2 Case 3 Case 4 Case 5

By 8.9K 9.7KB 49.6KBtes 4 B 50.1KB 50.1KB 4

#-SR

ECs
1139 1167 1167 1156 1155 

Ldo 19 

Lcopy 1120 256 32 32 32 

Ncopy 2 

wn 911 1135 1124 1123 

70 16 2 2 

Esti ation

s

m  

T 23.3 114.1s 136.8s 135.5s 135.4s 

Txnp 136.7s 138.7s 140.0s 138.7s 138.6s 

Speed

Txnp / T

-up

 
7  5.8 1.22 1.02 1.02 1.02 

M

T .1s .4s 1 .0s 147.1s 146.8s

easurement 

25 124 49

Txnp 149.9s 153.0s 153.0s 150.5s 150.5s

Speed-up

Tx T np / 
5.97 1.23 1.03 1.02 1.02 
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ev ode ing in blocks,  and  

Case 1 Case 2 Case 3 

Table 5. L

 

el of c  shar  lines  bytes.

Blocks 97.2% 21.9% 2.7% 

SREC lines 98.3% 40.8% 12.0% 

ytes 1 0.B  00.0% 98.3% 9 5% 

 

1, the re betw  tw rogram - 

ages is small. Most SREC es (1120 out of 1139) are 

tr

is about 5

In Ca where ed a es t urce 

code at le  a qu f the lines 

are y co ssage out o d 

the spe s 1.2. 

In Case 3, only 32 out of 1167 lines are transferred by 

o

 

he binary code with the help of the compiler. 

W

d does not match the previous program 

generate 

e difference and rebuild the program image. The Rsync 

5.

2) Rsync reads the current program image and calcu-

sum for the B byte block at each byte. If it 

nds a matching checksum in the lookup table, Rsync 

d compares it with the 

ock. 

nd needs to be sent 

explicitly for rebuilding. 

In Case diffe nce een the o p  im

lin

ansferred by copy messages and the speed-up (Txnp / T ) 

.9. 

se 2, 

we find 

 we add  few lin o the so

, th

transferred b

ss than arter o SREC 

py me s (256 f 1167) an

ed-up i

c py messages and the speed-up is about 1.03. Although 

XnpBlink and XnpCount share much at the source code 

level, they share little at the binary code level. The main 

reason is that XnpCount uses the radio stack components 

while XnpBlink does not. The radio stack is one of the 

most important modules in TinyOS, and it takes a large 

number of source code lines. 
In Case 4 and 5, where we commented out the Int-

ToLeds and the IntToRfm components in the configura-
tion file XnpCount.nc, we find that only a small number 
of lines are transferred by copy messages and the 
speed-up is very small (1.02 for each case). 

Fixed block comparison was not so effective for in-
cremental network programming. It works well when the 
program structure doesn’t change (Case 1). But, the level 
of sharing was low when we added a few lines of code 
(Case 2), which we think is a more general case of pro-
gram modification. 

We want to see why we have such a small level of bi-

nary code sharing. Does the program code completely 

change after the source modification, or does the pro-

gram code still have much similarity at the byte level?

To investigate further, we compared the program code at 

different levels: blocks (Fixed Block Comparison), 

SREC lines and bytes. 

To compare the program code in SREC lines, we used 

the UNIX diff command. diff takes two ASCII files and 

describes how one file can be transformed to the other. 

To compare the program code at the byte level, we ex-

tracted the data bytes from an SREC file and stored each 

data byte in a line of the temporary file. We then used the 

UNIX diff to find the difference between the two byte 

list files. 

Table 5 shows that Case 2 and Case 3 have a much 

higher level of sharing at the byte level than at the block 

level. For Case 2, most of the binary code was similar at 

the byte level (98.3%) while a small number of blocks 

were shared at the block level (21.9%). This implies that 

modifying the source code shifts the binary program 

code, but the program code bytes are still preserved. We 

can think of two ways to address this problem. 

One approach is to place the shared code at a fixed lo-

cation in t

e can insert compiler directives and inline function 

calls. Then, the compiler recognizes the network pro-

gramming module and determines its location in topo-

logical order. 

Another approach is to utilize code sharing without 

modifying the code. As Table 5 suggests, much of the 

binary code is shared at byte level.  By comparing the 

two binary images with a variable size boundary like 

Rsync [3] and LBFS [14], we can find more chances of 

code sharing. 

 

5.  Optimizing Difference Generation 

 
Fixed Block Comparison, our first design choice for in-

cremental network programming, was not effective in 

reducing data transmission traffic. It worked well only 

when the modified program image had the same struc-

ture as the previous program image. When additional 

lines are inserted into the source code, the program im-

e is shifted anag

image at the fixed sized block boundary. 

In this section, we use the Rsync algorithm to 

th

algorithm was originally made for efficient binary data 

update in a low bandwidth computer network. We expect 

the Rsync algorithm to find more matching blocks than 

the fixed block comparison because it compares the pro-

gram image block at an arbitrary position. 

 

5.1.  Design 

 
1.1.  Difference Generation 

The host program generates the difference using the 

Rsync algorithm as in Figure 10(a). 

1) The Rsync algorithm calculates a checksum pair 

(checksum, hash) for each fixed sized block (e.g. B 

bytes) of the previous program image. And the checksum 

pair is inserted into a lookup table. 

lates the check

fi

calculates the hash for the block an

corresponding entry in the table. If the hash also matches, 

the block is considered a matching bl

3) Rsync moves to the next byte for comparison if the 

block doesn’t have a matching checksum or hash. A re-

gion of bytes that doesn’t have any matching blocks is 

tagged as a non-matching block a
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to the current image. The block 

C line and 

Figure 10(a) illustrates how the Rsync algorithm cap-

tures a matching block. Suppose there is a shift by a 

modification operation in the middle of the program im-

age. Rsync forms a B byte window and calculates the 

hash for it. If the modified bytes are different from any 

blocks in the previous program image, there is a high 

probability that the hash of the modified bytes won’t 

match any hash table entry. Rsync moves the window 

one byte at a time and calculates the checksum for any 

possible match. It doesn’t match until Rsync starts to 

read unmodified blocks. At this moment, Rsync has 

found a matching block. 

 

5.1.2.  Program Code Storage and Rebuild 

As with the case of fixed block comparison, we maintain 

two memory chunks in a sensor node to build the pro-

gram image from the previous program image and the 

difference. The difference consists of a list of matching 

and non-matching blocks. 

The host program sends a CMD_COPY_BLOCK me- 

ssage for each matching block in the difference. After 

hearing the message, the sensor node copies the block 

from the previous image 

size of a copy message is a multiple of a SRE

the sensor node copies each SREC line iteratively. Since 

the block from the previous image can be mapped to any 

location in the current image, the offset address field of 

the SREC record needs be modified (Figure 10(b)). 

For each non-matching block in the difference, the 

host program sends one or more download (CMD_ 

DOWNLOADING) messages. When a non-matching 

block is bigger than a single SREC record (16 bytes), the 

block is divided into multiple fragments and each frag-

ment is sent in a download message. The data bytes of a 

download message can be shorter than a full SREC re-

cord if the non-matching block is not a multiple of 16 

bytes. The host program does not fill the remaining bytes. 

This is to avoid extra flash memory accesses although 

the resulting program image can have a different layout 

from the original program image (Figure 10(c)). 

Unlike fixed block comparison, we use the base and 

current program version to generate the program code 

incrementally. If we rebuild the current program image 

by comparing the last version and the current version, the 

host program and the sensor node may have different 

code leading to an incorrect program build. Instead, we 

compare the base and the current program version. This 

ensures that the sensor node reads the same data bytes as 

the host program. 

 

5.1.3.  Operations 

We modified the format of CMD_COPY_BLOCK to 

specify the starting byte address of each copy block  

(Figure 11). When the Rsync algorithm generates the 

difference, the starting byte address of each block may 

not be a multiple of the SREC record size. We need to 

specify the starting byte address as well as the CID to 

correctly copy SREC records. 

 

 

(a) Generating a difference. 

 

(b) Copying a matching block 

 

 

(c) Downloading a non-matching block. 

Figure 10. Steps for incremental network programming wi- 

th Rsync difference generation.  
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Figure 11. Message format for incremental ne ork programming with Rsync difference generation. 

 

tw

 

Figure 12. Host program for Rsync difference generation. 

 

5.2.  Implementation 

 
5.2.1.  Difference Generation 

We used Jarsync [16] for the Rsync algorithm imple-

mentation. The host program calls the following methods 

to generate the difference: Rdiff.makeSignatures() and 

Rdiff.makeDeltas(). makeSignatures() calculates the 

checksum pair for each block in the image file and re-

turns a list of checksum pairs. makeDeltas() compares 

the two image files and returns t

matching blocks and unmatched blocks. Since these Jar-

flat data file as input, the host 

rogram extracts only the data bytes from the SREC 

em in a temporary file 

blocks at consecutive locations are merged into a bigger 

block and this reduces the number of message transmis-

sions. 

 

5.2.2.  Program Code Storage and Rebuild 

The rebuilt program can be different from the original 

file due to the missing packets. If the host program sends 

a query for the missing record (CMD_GET_ CIDMISS-

 the cu  program section 

 Each record contains program 

ID (PID) and the capsule ID (CID, sequence number) 

 

he difference as a list of 
ING), the sensor node scans

of external flash memory.

rrent

sync methods assume a 

p

program image file and stores th

before it calls the Jarsync module. 

The difference returned by makeDeltas() needs post-

processing. The data bytes of an unmatched block can be 

an arbitrary size, but a download message can contain 

only up to 16 bytes. The host program divides an un-

matched block into multiple blocks so that the data bytes 

of each block can fit in an SREC record. List entries for 

matching blocks are also postprocessed. Two matching 

fields. The PID should match the PID advertised at the 

start of incremental network programming (CMD_ 

START_DOWNLOAD_INCR). The CID field should 

match the line number where the record is written to. If

either PID or CID does not match, the sensor node consi- 

ders this a missing record and requests the retransmission 

of the SREC record. The host finds the missing record 

and sends it back. Then, the sensor node can fill the hole. 

When the sensor node requests the retransmission of a 

missing SREC record, it specifies the missing record by 

CID field. Since the rebuilt program image can have a 
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ork Programming MAC Operation 

Table 6. Complexity of incremental network programming. 

Incremental 

Netw

Radio Stack ADC 

Download 
Copy 

(Rsync) 
Send Receive 

D

Get and 

ataReady

136 153 112 88 35 

 

different layout from the original program file, just read-

ing the specified record from the original program file 

does not return the correct data. To address this issue, the 

host program rebuilds the new program with the same 

layout as the program image to be built in a sensor node. 

The host program reads the SREC records of this image 

for retransmission requests. 

 

5.2.3.  Code Complexity 

To estimate the complexity of our implementation, we 

counted the source code lines in the the XnpM.nc file. A 

CMD_DOWNLOADING message costs 136 lines and a 

CMD_COPY_BLOCK message (for Rsync) costs 153 

lines. The details are shown in Table 13. These numbers 

 are comparable to those of other TinyOS modules.

Sending and receiving radio packets are handled in sev-

eral 0R is a co le. 

A 12 lin  a recei on 

tak  i mo A r e we 

anal A  m e w n d-

ing o  from C nel. It es 35 li to get 

a byte of data with ADCM.nc. Table 6 summarizes this. 

orming XnpBlink to Xnp- 

results. 

 

nly a small number of blocks and are not so helpful in 

mming time.  
14 lines out of 1140 lines were transferred 

– 1.06 (measurement). 

Bo

 mo C100

send operation takes 1

dules and C adioIntM.nc re modu

ve operaties and

es 88 lines

yzed the 

n this dule. 

odul

s anothe

hich ha

xample, 

DCM.nc dles the rea

f data an AD chan  tak nes 

 

5.3.  Results 

 
To evaluate the performance of incremental network pro- 

gramming with the Rsync algorithm, we estimated and 

measured the transmission time for three cases: 1) 

changing a constant in XnpBlink, 2) adding a few lines 

n XnpCount and 3) transfi

Count. Table 7 shows the 

In Case 1, most SREC records (1116 lines out of 

1120) were transferred and the speed-up over non-incre-

mental delivery was 6.25 (measurement). This is almost 

the same as the speed-up for Fixed Block Comparison 

(Case 1 in Figure 13). 

In Case 2, 954 lines out of 1154 lines were transferred 

by copy messages and the speed-up over non-incre-

mental delivery was 2.44 (measurement). Whereas Fixed 

Block Comparison has a speed-up of 1.2 (Case 2 in Fig-

ure 13). The improved speed-up was caused by the effi-

cient difference generation of the Rsync algorithm. 

In Case 3, the level of sharing was much smaller and 

the speed-up was 1.04 (measurement). We have some 

number of copy messages (85 messages), but they cover

o

reducing progra
In Case 4, 8

by copy messages and the speed-up over non-incre-
mental delivery was 1.92 (measurement). In contrast, the 
speed-up with Fixed Block Comparison was almost neg-
ligible (1.02). 

In Case 5, 276 lines out of 1140 lines were transferred 

by copy messages and the speed-up over non-incre-

mental delivery was quite small 

th Case 4 and Case 5 commented out a few lines in 

the configuration file. But, in Case 5, commenting out 

the IntToRfm component caused the radio stack to not be 

used and this changed the layout of the program image 

file a great deal. 

 
Table 7. Transmission time with the Rsync algorithm. 

 Case 1 Case 2 Case 3 Case 4 Case 5

Bytes 48.2KB 49.4KB 49.4KB 48.9KB 48.9KB

#-SRECs 1120 1154 1156 1140 1147 

Ldown 4 200 888 326 871 

Lcopy 1116 954 278 814 276 

Ncopy 72 104 85 107 83 

Estimation 

T 22.1s 55.2s 132.1s 71.2s 129.4s

Txnp 134.4s 138.5s 139.9s 136.8s 137.6s

Speed-up

Txnp / T 
6.09 2.51 1.06 1.92 1.06 

Measurement 

T 23.8s 61.0s 142.6s 77.1s 140.3s

Txnp 148.8s 148.9s 148.9s 148.2s 148.0s

Speed-up

Txnp / T 
6.25 2.44 1.04 1.92 1.05 

 

Case 1 Case 2 Case 3 Case 4 Case 5
0

2

4

6

Speed−up over non−incremental delivery
8  

S
p
e
e
d
−

u
p

 

Estimate upd speed−  (Fixed)

Measured speed−up (Fixed)

Estimat uped speed−  (Rsync)

Measured up  speed− (Rsync)

 

Figu  Spe n cr l 

netw rogramming d t d e 

generation. 

re 13.

ork p

ed-up i  program

with an

ming tim

 withou

e for in

Rsync 

ementa

ifferenc



J. JEONG  ET  AL. 

 

Copyright © 2009 SciRes.                                          Int. J. Communications, Network and System Sciences 

446 

ary ng t syn  

sp f 6 ang e c nt a 4 fo

rce code lines. These numbers are larger 

 Fixed Block Comparison, but using the 

Rsync orith ot f it aj  

change. 

results in Table 7, we have some comments. 

First, we can as y 4 C li ere it s 

dow essages in Case 1 when we changed only a 

onstant in the source file. One of the reason is that the 

network programming module includes a timestamp 

value that is given at compile time. This ensures that 

each program image is different each time we compile 

the program. Another reason is that the previous SREC 

file was not aligned in the SREC record boundary at the 

end of the file. When we convert the SREC file to a flat 

file for Rsync, the layout changes.  

Another question is why we sent 72 copy messages 

even though we could send fewer messages. In our de-

sign, the sensor node copies the program image blocks 

after hearing a copy message. To bound the execution

time, we made each copy message handle up to 16 SREC

 request before it receives another re-

uest. 

nterprets a 

est without 

ule 

do

Si
e modified CMD_DOWNLOAD-

IN
s an advantage that we can reuse most of the code 

fo
 

sage so that the network programming module finishes 

processing a copy

In summ , usi

for ch

he R

ing th

c algorithm

onsta

 achieves a

nd 2.eed-up o r add-

qing a few sou

than those of Second, the network programming module i

py request right after it receives the requco alg m is n still ef ective w h a m or code

As for the 

k wh  SRE nes w  transm ted a

nload m

saving the request. In case there is a missing command, 

the network programming module has to check the re-

built program image because it hasn’t stored the script 

commands. Since the network programming mod

es not know whether a missing hole was caused by a 

missing copy message or a number of download mess- 

ages, it sends a retransmission requests for each missing 

record from the current program image. This will take 

c

more time than retransmitting only the missing com-

mand. 

Thus, we propose extending the implementation of 

Section 5 as follows: 

1) The sensor node receives all the commands for the 

script. 

2) The sensor node checks for any missing records in 

the script. 

3) The sensor node starts to decode script records in 

response to the script decode message. 

 
6.1.  Design 

 
6.1.1.  Oper

 

 

lines (256 bytes). 

 

6.  Optimizing Difference Delivery 

 
Compared to Fixed Block Comparison, the Rsync algo-
rithm achieves shorter programming time by efficiently 
finding the shared blocks between the two binary code 
files. However, we can find some things to improve: 

ations 
nce the script commands are stored in the storage space 

of the sensor node, w
G message to send script messages as in Figure 14. 

This haFirst, the network programming module transfers only 

a limited number of SREC records for each copy mes-

sage. This is to bound the running time of a copy mes-
 

r handling normal data records to process the script 
commands.

 

Figure 14. Message format for incremental network programming with Rsync difference generation and decode script. 
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(a) Receiving script commands. 

 

 
(b) Decoding script commands. 

Figure 15. Steps for incremental network programming with Rsync difference generation and decode script. 

 

Message CMD_DOWNLOADING (data) has almost 

the same format as a normal data record download mes-

sage except for the script CID and new CID fields. The 

script CID field is the sequence number of t

ithin the script and the new CID field is the location 

where the data record embedded in the command will be 

copied for building the program image. 

Message CMD_DOWNLOADING (copy) is also sto- 

red in a similar way as a normal data record. A copy 

command has the SREC type field. This is for the Mo-

torola SREC type and only several values are allowed by 

the specification (0,1,2,3,5,7,8 and 9). We extended the 

meaning of this field so that the value 10 represents a 

copy record. This allows us to store a copy command in 

the same manner as other data records, but can still in-

terpret the copy command correctly. Finally, message 

CMD_DECODE_SCRIPT makes the network program-

ming module start decoding the downlo

comman

.1.

the worst case. Since the largest program size is 128 KB, 

it may not fit into RAM (4 KB) or the internal flash 

memory (4 KB) when the prog m size is large. Thus, 

ld be stored in the external flash memory. 

We divided the external flash memory into three sec-

tions: the previous program image, the current program 

image and the script sections. 

At first, the host program sends the script as CMD_ 

DOWNLOADING messages. The sensor node stores 

these messages in the script section if it is in the incre-

mental network programming state. This is shown in 

Figure 15(a). When the host program queries any miss-

ing script commands, the sensor node scans the script 

section. When the difference between the two program 

versions is small, the traversal of the script section can 

finish quickly. If the sensor node finds any missing re-

cord, it requests the retransmissi  of the record. Then, 

am sends the record again. 

e host 

rogram 

he command the script shou

w

aded script the host progr

ds. After receiving the decode command from th

program, the sensor node starts rebuilding the p 

6 2.  Storage Organization and Program Rebuild 

As for the storage space for the script commands, we 

need to choose among RAM, internal flash memory and 

external flash memory. RAM would be better than the 

others for its fast access time. However, the size of a 

script can be as large as a list of download messages in 

code. This is shown in Figure 15(b). A download com-

mand is copied from the script section to the current pro-

gram image section after the CID field i

ra

on

s modified to the 

new CID value. As for a copy command, the sensor node 

starts copying SREC records from the previous program 

image to the current program image. A SREC record 
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e evaluation. We measured the transmission 

from the previous section is copied to the current pro-

gram section after the CID and the byte offset fields are 

modified for the new values. 

 

6.2.  Results 

 
Since a sensor node does not rebuild the program image 

until it receives all the script commands, we modified the 

metrics for th

time and the decode time for the three cases. The host 

program saves the time stamp value when it sends a de-

code command and gets the next time stamp value when 

it receives the reply from the sensor node. The decode 

time is calculated as the difference of the two time stamp 

values. Table 8 shows the results. 

 
Table 8. Transmission time for incremental network pro-

gramming with Rsync difference generation and decode 

script. 

 Case 1 Case 2 Case 3 Case 4 Case 5

Bytes 48.9KB 50.1KB 50.1KB 49.7KB 49.7KB

#-SRECs 1139 1167 1167 1156 1156 

#-cmds 7 337 996 419 964 

Estimation 

T 0.9s 45.8s 130.7s 54.5s 125.6s 

Tdecode 16.0s 16.7s 16.9s 16.8s 16.8s 

Txnp 154.0s 158.5s 158.5s 150.7s 150.5s 

Speed-up 

T  / T 
9.10 2.53 1.07 2.11 1.06 

xnp

 

Table 9. Speed-up in programming time for three versions 

of incremental network programming. 

Fixed block comparison 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Bytes 48.9KB 50.1KB 50.1KB 49.7KB 49.6KB

#-SRECs 1139 1167 1167 1156 1155 

L  19 911 1135 1124 1123 

20 256 32 32 32 

down

Lcopy 11

Ncopy 70 16 2 2 2 

T 23.3s 114.1s 136.8s 135.5s 135.4s 

Txnp 136.7s 138.7s 140.0s 138.7s 138.6s 

Speed-up 

Txnp / T 
5.87 1.22 1.02 1.02 1.02 

Rsync 

 Case 1 Case 2 Case 3 Case 4 Case 5

Bytes 48.2KB 49.4KB 49.4KB 48.9KB 48.9KB

#-SRECs 1120 1154 1156 1140 1147 

downL 4 200 888 326 871 

Lcopy 1116 954 278 814 276 

Ncopy 72 104 85 107 83 

T 22.1s  7 1

134.4s 138.5s 139.9s 136.8s 137.6s

Sp -up

T
9  

55.2s 132.1s 1.2s 29.4s

Txnp 

eed

xnp / T
6.0 2.51 1.06 1.92 1.06 

R ith eco

 

sync w  split d de 

Case 1 Case 2 Case 3 Case 4 Case 5

Bytes 48.9KB 50.1KB 50.1KB 49.7KB 49.7KB

#-SRECs 1139  

#-cmds 7 337 996 419 964 

T 0.9s 45.8s 130.7s 54.5s 125.6s

.5s 158.5s 150.7s 150.5s

Speed-up

Txnp

1167 1167 1156 1156 

Tdecode 16.0s 16.7s 16.9s 16.8s 16.8s 

Txnp 154.0s 158

 / T
9.10 2.53 1.07 2.11 1.06 
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m e co ration file, ad a similar resu

Se  Fo e 4 i ssa r th 6 

a speed-up of 2.11 over nonin-

ase 5, most of the SREC re-

cords were it do  o s 

(9 of e s

 1 b -

c ne  pr min em ion d 

B mparison, R and c w lit d e. 

We can  that splittin e scrip n e 

prog  rebu pr e mi e. 

W o od odified at m m, the im-

ple R nd d -

gra  s e ri ag n 

t ha dec he e s. W  

sm ber of source c de li re ad , th o-

ramming time was a little better than the implementa-

on that just uses the Rsync algorithm. For the major 

program change, it didn’t achieve the speed-up, but it 

was still as good as non-incremental delivery. 

We can comment on Case 3. Even though we used the 

Rsync algorithm and split decode, the speed-up over 

non-incremental delivery was negligible. This is because 

the difference between the two program images cannot 

be described with a small number of insert, copy and 

skip operations. 

 

7.  Conclusions 
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Network programming is a way of programming wireless 

sensor nodes by sending the program co

p

nsor nodes with a single transfer, network program-

ming saves the programming efforts for a large sensor 

network. The network programming implementation in 

TinyOS releases 1.1 or later provides the basic capability 

of network programming – delivering the program code 

to the sensor nodes remotely. However, the network pro-

gramming implementation is not optimized when part of 

the program code has changed. It transmits all the code 

bytes even though the new version of program code is 

only slightly different. 

We extended the network programming implementa-

tion so that it reduces programming time by transmitting 

an incremental update rather than the entire program 

code. The host program generates the difference of the 

two program images using the Rsync algorithm and 

transmits the difference to the sensor nodes.

nsor nodes decode the difference script and build the 

program image based on the previous program version 

and the difference script. We tested our incremental 

network programming implementation with some test 

applications. We have a speed-up of 9.1 for changing a 

constant and 2.1 to 2.5 for changing a few lines of code 

in the source code. 

For future work, we plan to extend our incremental 

network programming for multihop delivery. One way is 

to use an existing multihop network programming mech- 

anism such as Deluge [6] or MOAP [5]. In this case, we 

need to modify the underlying multihop delivery mecha-

nism to be compatible with an incremental program im-

age as well as non-incremental image. Anothe

e a generic multihop routing protocol. Since a generic 

routing protocol just delivers packets without storing the 

program image, our incremental network programmig 

mechanism can be easily extended for multihop delivery 

by replacing a single-hop send command with a multihop 

version. 
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ndix 

 

eiving the incoming message. 

 

ACHINE() state transision. 

Message Command Next State Action 

CMD_START_DOWNLOAD SYS_DL_START post NPX_STATEMACHINE() 

CMD_DOWNLOADING SYS_DL_SRECWRITE post NPX_STATEMACHINE() 

CMD_DOWNLOAD_COMPLETE SYS_DL_END post NPX_STATEMACHINE() 

CMD_ISP_EXEC SYS_ISP_REQ post NPX_STATEMACHINE() 

CMD_GET_CIDMISSING SYS_REQ_CIDMISSING post NPX_STATEMACHINE() 

CMD_START_DOWNLOAD_INCR SYS_DL_START_INCR post NPX_STATEMACHINE() 

CMD_COPY_BLOCK SYS_COPY_BLOCK_PREP post NPX_STATEMACHINE() 

CMD_GET_CURRENT_LINE SYS_GET_CURRENT_LINE_PREP post NPX_STATEMACHINE() 

CMD_GET_PREV_LINE SYS_GET_PREV_LINE_PREP post NPX_STATEMACHINE() 

Table 11. NPX_STATEM

Start Download 

Current State Next State Action 

fNPXStartDownload() signal 

Xnp.NPX_DOW
SYS_DL_START  

NLOAD_REQ() 

Call from main application 

Xnp.NPX_DOWNLOAD_ACK() 
SYS_DL_START1 Post NPX_STATE_MACHINE() 

Call EEPROMWrite.endWrite() 
SYS_DL_START1 SYS_DL_START2 

SYS_DL_START2 

Post NPX_STATEMACHINE() 

Post NPX_STATEMACHINE() SYS_ACK 

Download End 

Current State Next State Action 

SYS_DL_END SYS_DL_END_SIGNAL 
Call EEPROMWrite.endWrite() 

Post NPX_STATEMACHINE() 

SYS_DL_END_SIGNAL SYS_ACK Post NPX_STATEMACHINE() 
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Download 

nt State Next State Action Curre

SYS_DL_SR SYS_EEFLASH_WRI SYS_ACK post NPX_STAT INE() ECWRITE TEPREP or EMACH

SYS_EEFLASH_W  SYS_EEFLASH_WRITE ) 

RITE SYS_E FLASH_WRITEDONE 

NE SYS_A

RITEPREP post NPX_STATEMACHINE(

post NPX_STATEMACHINE() 

Call EEPROMWrite.endWrite() 

SYS_EEFLASH_W E

SYS_EEFLASH_WRITEDO CK 
Post NPX_STATEMACHINE() 

Id

Current State Next State 

le 

Action 

SYS_ACK SYS_IDLE post NPX_STATEMACHINE() 

SYS_IDLE SYS_IDLE post NPX_STATEMACHINE() 

Retransmission 

Current State Next State Action 

SYS_REQ_CIDMISSING SYS_GET_CIDMISSING 
Call EEPROMWrite.endWrite() 

Post NPX_STATEMACHINE() 

SYS_GET_CIDMISSING SY TCID 

SYS_GETNEXTCID SYS_GETNEXTCID or SYS_GETDONE post NPX_STATEMACHINE() 

SYS_GETDONE SYS_IDLE post NPX_STATEMACHINE() 

S_GETNEX post NPX_STATEMACHINE() 

Reprogram 

Current State Next State Action 

SYS_ISP_REQ SYS_ISP_RE post NPX_STAT INE() Q1 EMACH

SYS_ISP_REQ1 SYS_ACK post NPX_ISP() 

SYS_DL_START_INCR  
fNPXStartDownloadIncr() 

signal Xnp.NPX_DOWNLOAD_REQ() 

 

 state transition (added for incremen

wnload 

Table 12. NPX_STATEMACHINE() tal network programming).  

Start Do

Current State Next State Action 

SYS_DL_STA  
f

S EQ() 
RT_INCR 

NPXStartDownloadIncr()  

ignal Xnp.NPX_DOWNLOAD_R

Copy Command 

Current State Next State Action 

SYS_COPY_BLOCK_PREP K_READ 
() 

() 
SYS_COPY_BLOC

Call EEPROMWrite.endWrite

post NPX_STATEMACHINE

SYS_COPY_BLOCK_READ LASH_COPYWRITE 

SYS_EEFLA ITE SYS_EEFLA RITEDONE 
Post NPX_wEE_LineWrite() 

Post NPX_ST CHINE() 

WRITEDONE LOCK_PREP or SYS_ACK () 

SYS_EEF

Call EEPROMRead.read() 

fNPXCopyBlk() 

post NPX_STATEMACHINE() 

SH_COPYWR SH_COPYW
ATEMA

SYS_EEFLASH_COPY SYS_COPY_B Post NPX_STATEMACHINE

D nds 

 Next State 

ebugging Comma

Current State Action 

SYS_GET_P

Call EEPROMRead.read() 

post NPX_STATEMACHINE() 

REV_LINE_PREP SYS_ACK fNPXGetLine() 

SYS_GET_C E_PREP SYS_ACK 

Call EEPROMRead.read() 

fNPXGetLinURRENT_LIN e() 

post NPX_STATEMACHINE() 
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Table 13. Cost  handling. 

CMD_DOWNL

of message

OADING 

Step Source Lines Description 

CMD_DOWNLOADING 29  

SYS_DL_SRECWRITE 

SYS_EEFLASH_WRITEPREP

41 

22 

 

 

SYS_EEFLASH_WRITE 31 

 

 

SYS_EEFLASH_WRITEDONE 

Total 

13 

136 

 

 

C mp

Source Lines Description 

MD_COPY_BLOCK (Fixed Block Co arison) 

Step 

CMD_COPY 46 _BLOCK  

SYS_COPY_BL 16 SREC 

Repeated for each SREC 

Repeated for each SREC 

SYS_EEFLASH_COPYWRITEDONE 22 Repeated for each SREC 

 

OCK_PREP Repeated for each line 

SYS_COPY_BLOCK_READ 

SYS_EEFLASH_COPYWRITE 

40 

29 

line 

line 

line 

Total 153 

CMD_COPY_BLOCK (Rsync) 

Step Source Lines Description 

CMD_COPY_BLOCK 46  

SYS_COPY_BLOCK_PREP line 

AD 44 Repeated for each SREC line 

RITE 29 Repeated for each SREC 

SYS_EEFLASH_COPYWRITEDONE Repeated for each SREC 

  

16 Repeated for each SREC 

SYS_COPY_BLOCK_RE

SYS_EEFLASH_COPYW line 

line 22 

Total 157
 


