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Nonnegative matrix factorization (NMF) is a promising approach for local feature extraction in
face recognition tasks. However, there are two major drawbacks in almost all existing NMF-
based methods. One shortcoming is that the computational cost is expensive for large matrix
decomposition. The other is that it must conduct repetitive learning, when the training samples
or classes are updated. To overcome these two limitations, this paper proposes a novel incremental
nonnegative matrix factorization (INMF) for face representation and recognition. The proposed
INMF approach is based on a novel constraint criterion and our previous block strategy. It thus
has some good properties, such as low computational complexity, sparse coefficient matrix. Also,
the coefficient column vectors between different classes are orthogonal. In particular, it can be
applied to incremental learning. Two face databases, namely FERET and CMU PIE face databases,
are selected for evaluation. Compared with PCA and some state-of-the-art NMF-based methods,
our INMF approach gives the best performance.
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1. Introduction

Face recognition has been one of the most challenging problems in computer science and
information technology since 1990 [1, 2]. The approaches of face recognition can be mainly
categorized into two groups, namely geometric feature-based and appearance-based [3].
The geometric features are based on the short range phenomena of face images such
as eyes, eyebrows, nose, and mouth. The facial local features are learnt to form a face
geometric feature vector for face recognition. The appearance-based approach relies on the
global facial features, which generate an entire facial feature vector for face classification.
Nonnegative matrix factorization (NMF) [4, 5] belongs to geometric feature-based category,
while principle component analysis (PCA) [6] is based on the whole facial features. Both
NMF and PCA are unsupervised learning methods for face recognition. The basic ideas of
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these two approaches are to find the basis images using different criterions. All face images
can be reconstructed by the basis images. The basis images of PCA are called eigenfaces,
which are the eigenvectors corresponding to large eigenvalues of total scatter matrix. NMF
aims to perform nonnegative matrix decomposition on the training image matrix V such that
V ≈ WH, where W and H are the basis image matrix and the coefficient matrix, respectively.
The local image features are learnt and contained inW as column vectors. Follow the success
of applying NMF in learning the parts of objects [4], many researchers have conducted in-
depth investigation on NMF and different NMF-based approaches have been developed [7–
19]. Li et al. proposed a local NMF method [7] by adding some spatial constraints. Wild
et al. [8] utilized spherical K-means clustering to produce a structured initialization for
NMF. Buciu and Pitas [9] presented a DNMF method for learning facial expressions in a
supervised manner. However, DNMF does not guarantee convergence to a stationary limit
point. Kotsia et al. [15] thus presented a modified DNMF method using projected gradients.
Some similar supervised methods incorporated into NMF were developed to enhance the
classification power of NMF [11–13, 19]. Hoyer [10] added sparseness constraints to NMF
to find solutions with desired degrees of sparseness. Lin [16, 17] modified traditional NMF
updates using projected gradient method and discussed their convergences. Recently, Zhang
et al. [18] proposed a topology structure preservation constraint in NMF to improve the NMF
performance.

However, to the best of our knowledge, almost all existing NMF-based approaches
encounter two major problems, namely time-consuming problem and incremental learning
problem. In most cases, the training image matrix V is very large and it leads to expensive
computational cost for NMF-based schemes. Also, when the training samples or classes
are updated, NMF must implement repetitive learning. These drawbacks greatly restrict
the practical applications of NMF-based methods to face recognition. To avoid the above
two problems, this paper, motivated by our previous work on incremental learning [19],
proposes a supervised incremental NMF (INMF) approach under a novel constraint NMF
criterion, which aims to cluster within class samples tightly and augment the between-
class distance simultaneously. Our incremental strategy utilizes the supervised local features,
which are considered as the short-range phenomena of face images, for face classifications.
Two public available face databases, namely FERET and CMUPIE face databases, are selected
for evaluation. Experimental results show that our INMFmethod outperforms PCA [6], NMF
[4], and BNMF [19] approaches in both nonincremental learning and incremental learning of
face recognition.

The rest of this paper is organized as follows: Section 2 briefly reviews the related
works. Theoretical analysis and INMF algorithm design are given in Section 3. Experimental
results are reported in Section 4. Finally, Section 5 draws the conclusions.

2. Related work

This section briefly introduces PCA [6], NMF [4], and BNMF [19] methods. Details are as
follows.

2.1. PCA

Principal component analysis (PCA), also called eigenface method, is a popular statistic
appearance-based linear method for dimensionality reduction in face recognition. The
theory used in PCA is based on Karhunen-Loeve transform. It performs the eigenvalue
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decomposition on the total scatter matrix St and then selects the large principal components
(eigenfaces) to account for most distributions. All face images can be expressed by the linear
combinations of these basis images (eigenfaces). However, PCA is not able to exploit all of
the feature classification information and how to choose the principal component elements is
still a problem. Therefore, PCA cannot give satisfactory performance in pattern recognition
tasks.

2.2. NMF

NMF aims to find nonnegative matrices W and H such that

Vm×n
NMF≈ Wm×rHr×n, (2.1)

where matrix V is also a nonnegative matrix generated by total n training images. Each
column of W is called basis image, while H is the coefficient matrix. The basis number r is
usually chosen less than n for dimensionality reduction. The divergence between V and WH
is defined as

F =
∑

ij

(
Vij log

Vij

(WH)ij
− Vij + (WH)ij

)
. (2.2)

NMF (2.1) is equivalent to the following optimization problem:

min
W,H

F, s.t. W ≥ 0, H ≥ 0,
∑

i

Wik = 1, ∀ k. (2.3)

The minimization problem (2.3) can be solved using the following iterative formulae,
which converge to a local minimum:

Wij ←− Wij

∑

k

Vik

(WH)ik
Hjk, Wij ←−

Wij∑
kWkj

, Hij ←− Hij

∑

k

Wki

Vkj

(WH)kj
. (2.4)

2.3. BNMF

The basic idea of BNMF is to perform NMF on c small matrices V (i) ∈ R
m×n0 (i = 1, 2, . . . , c),

namely

(
V (i))

m×n0

NMF≈
(
W (i))

m×r0
(
H(i))

r0×n0
, i = 1, 2, . . . , c, (2.5)

where V (i) contains n0 training images of the ith class, and c is the number of classes. BNMF
is yielded from (2.5) as follows:

Vm×n
BNMF≈ Wm×rHr×n, (2.6)

where r = cr0, Vm×n = [ V (1) V (2) ··· V (c) ], Wm×r = [W (1) W (2) ··· W (c) ], Hr×n = diag(H(1),H(2), . . . ,
H(c)), and n(= cn0) is the total number of training images.
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3. Proposed INMF

To overcome the drawbacks of existing NMF-based methods, this section proposes a novel
incremental NMF (INMF) approach, which is based on a new constraint NMF criterion and
our previous block technique [19]. Details are discussed below.

3.1. Constraint NMF criterion

The objective of our INMF is to impose supervised class information on NMF such that
between-class distances increase, while the within-class distances simultaneously decrease.

To this end, we define the within-class scatter matrix S
(i)
w of the ith coefficient matrix H(i) ∈

R
r0×n0 as

S
(i)
w =

1

n0

n0∑

j=1

(
H

(i)
j −U(i))(H(i)

j −U(i))T , (3.1)

whereU(i) = (1/n0)
∑n0

j=1H
(i)
j is the mean column vector of the ith class. The within-class sam-

ples of the kth class will cluster tightly as tr(S
(k)
w ) becomes small.

Assume Ũ(i) is an enlarging vector ofU(i), that is, Ũ(i) = (1+ t)U(i) with t > 0. Then we
have

∥∥U(i) −U(j)
∥∥ < (1 + t)

∥∥U(i) −U(j)
∥∥ =

∥∥Ũ(i) − Ũ(j)
∥∥. (3.2)

Inequality (3.2) implies that between-class distances are increased as the mean vectors of
classes in H are enlarged.

Based on above analysis, we define a constraint divergence criterion function for the
kth class as follows:

F(k) =
∑

ij

⎛
⎝V

(k)
ij log

V
(k)
ij

(WH)
(k)
ij

− V
(k)
ij + (WH)

(k)
ij

⎞
⎠ + α tr

(
S
(k)
w

)
− β

∥∥U(k)
∥∥2

2
, (3.3)

where parameters α, β > 0 and k = 1, 2, . . . , c.
Our entire INMF criterion function is then designed as below:

F =
c∑

k=1

F(k) =
∑

ijk

⎛
⎝V

(k)
ij log

V
(k)
ij

(WH)
(k)
ij

− V
(k)
ij + (WH)

(k)
ij

⎞
⎠ +

∑

k

(
α tr

(
S
(k)
w

)
− β

∥∥U(k)
∥∥2

2

)
. (3.4)

Based on criterion (3.4), the following constraint NMF (CNMF) update rules (3.5)–
(3.7) will be derived in the next subsection. We can show that the iterative formulae (3.5)–
(3.7) converge to a local minimum as well:

W
(k)
ij ←− W

(k)
ij

∑

l

V
(k)
il

(WH)
(k)
il

H
(k)
jl

, (3.5)

W
(k)
ij ←−

W
(k)
ij

∑
lW

(k)
lj

, (3.6)

H
(k)
ij ←− −b +

√
b2 − 4ad

2a
, (3.7)
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where a = 2α − β/n2
k
, b = −(2α + β/nk)U

(k)
i + 1, d = −H(k)

ij

∑
lV

(k)
lj

W
(k)
li

/(W (k)H(k))lj , andU
(k)
i

is the ith entry of vector U(k), k = 1, 2, . . . , c.
So, our entire INMF is performed as follows:

[
V (1) V (2) · · · V (c)

] INMF≈
[
W (1) W (2) · · · W (c)

]

⎡
⎢⎢⎢⎣

H(1)

H(2)

. . .

H(c)

⎤
⎥⎥⎥⎦ , (3.8)

where

(
V (i))

m×n0

CNMF≈
(
W (i))

m×r0
(
H(i))

r0×n0
, i = 1, 2, . . . , c. (3.9)

3.2. Convergence of proposed constraint NMF

This subsection reports how to derive the iterative formulae (3.5)–(3.7) and discusses their
convergences under constraint NMF criterion (3.3).

Definition 3.1 (see [5]). J(Q, Q̃) is called an auxiliary function for E(Q), if J(Q, Q̃) satisfies

J(Q, Q̃) ≥ E(Q), J(Q,Q) = E(Q), (3.10)

where Q, Q̃ are matrices with the same size.

Lemma 3.2 (see [5]). If J(Q, Q̃) is an auxiliary function for E(Q), then E(Q) is a nonincreasing
function under the update rule

Qi+1 = arg min
Q

J
(
Q,Qi). (3.11)

To obtain iterative rule (3.7) and prove its convergence, one first constructs an auxiliary function for
F with fixed W.

Theorem 3.3. If F(k)(H(k)) is the value of criterion function (3.3) with fixed W (k), then G(k)

(H(k), H̃(k)) is an auxiliary function for F(k)(H(k)), where

G(k)(H(k), H̃(k)) =
∑

ij

(
V

(k)
ij logV

(k)
ij − V

(k)
ij +

(
W (k)H(k))

ij

)

−
∑

ijl

V
(k)
ij

W
(k)
il

H̃
(k)
lj

∑
lW

(k)
il

H̃
(k)
lj

⎛
⎝log

(
W

(k)
il

H
(k)
lj

)
− log

W
(k)
il

H̃
(k)
lj

∑
lW

(k)
il

H̃
(k)
lj

⎞
⎠

+ α tr
(
S
(k)
w

)
− β

∥∥U(k)
∥∥2

2
.

(3.12)

Proof. It can be directly verified that G(k)(H(k),H(k)) = F(k)(H(k)). So we just need show

the inequality G(k)(H(k), H̃(k)) ≥ F(k)(H(k)). To this end, we will use the convex function

y = logx. For all i, j, and
∑

lσijl = 1, it holds that

− log

(∑

l

W
(k)
il

H
(k)
lj

)
≤ −

∑

l

σijl log
W

(k)
il

H
(k)
lj

σijl
. (3.13)
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Substituting σijl = W
(k)
il

H̃
(k)
lj

/
∑

lW
(k)
il

H̃
(k)
lj

into the above inequality, we have

− log

(∑

l

W
(k)
il

H
(k)
lj

)
≤ −

∑

l

W
(k)
il

H̃
(k)
lj

∑
lW

(k)
il

H̃
(k)
lj

⎛
⎝logW

(k)
il

H
(k)
lj

− log
W

(k)
il

H̃
(k)
lj

∑
lW

(k)
il

H̃
(k)
lj

⎞
⎠ . (3.14)

Therefore, G(k)(H(k), H̃(k)) ≥ F(k)(H(k)). This concludes the theorem immediately.

Obviously, the function G(H, H̃) =
∑

kG
(k)(H(k), H̃(k)) is also an auxiliary function for

the entire constraint NMF criterion F(H) =
∑

kF
(k)(H(k)). Lemma 3.2 indicates that F(H) is

nonincreasing under the update rule (3.11). Let ∂G(H, H̃)/∂H
(k)
ij = 0 and we have

∂G(H, H̃)

∂H
(k)
ij

=
∂G(k)

(
H(k), H̃(k)

)

∂H
(k)
ij

= −
∑

l

V
(k)
lj

W
(k)
li

H̃
(k)
ij

∑
lW

(k)
li

H̃
(k)
ij

1

H
(k)
ij

+
∑

l

W
(k)
li

+ 2α
(
H

(k)
ij −U

(k)
i

)
− β

nk

(
1

nk
H

(k)
ij +U

(k)
i

)

= 0.

(3.15)

From the above equation, it directly induces the iterative formula (3.7), and lemma 3.2
demonstrates that (3.7) converges to a local minimum. For update rule (3.5)-(3.6), the proof
is similar to that of update rule (3.7) using the following auxiliary function with fixed H:

G(W,W̃) =
∑

k

G(k)(W (k), W̃ (k))

=
∑

ijk

(
V

(k)
ij logV

(k)
ij − V

(k)
ij +

(
W (k)H(k))

ij

)

−
∑

ijkl

V
(k)
ij

W̃
(k)
il

H
(k)
lj

∑
lW̃

(k)
il

H
(k)
lj

⎛
⎝log

(
W

(k)
il

H
(k)
lj

)
− log

W̃
(k)
il

H
(k)
lj

∑
lW̃

(k)
il

H
(k)
lj

⎞
⎠

+
∑

k

(
α tr

(
S
(k)
w

)
− β

∥∥U(k)
∥∥2

2

)
.

(3.16)

3.3. Incremental learning

From the above analysis, our incremental learning algorithm is designed as follows:
(i) Sample incremental learning. As a new training sample x0 of the ith class is added to

training set, we denote that Ṽ (i) = [V (i), x0]. Thus the training image matrix becomes

Ṽ =
[
V (1) · · · Ṽ (i) · · · V (c)

]
. (3.17)
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In this case, it only needs to perform CNMF on matrix Ṽ (i), that is, Ṽ (i) CNMF≈ W̃ (i)H̃(i).

The rest decompositions such as V (k) CNMF≈ W (k)H(k)(k /= i) need not implement repetitive
computation. So, sample incremental learning can be performed as follows:

Ṽ
INMF≈ W̃H̃ =

[
W (1) · · · W̃ (i) · · · W (c)

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H(1)

. . .

H̃(i)

. . .

H(c)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (3.18)

(ii) Class incremental learning. As a new class, denoted by matrix V (c+1), is added to the
current training set, it forms a new training image matrix as

Ṽ =
[
V (1) · · · V (c) | V (c+1)

]
. (3.19)

The incremental learning settings are similar to the first item (i) that all decompositions

V (k) CNMF≈ W (k)H(k) (k = 1, 2, . . . , c) need not compute again. We only need perform CNMF

on the matrix V (c+1), that is, V (c+1) CNMF≈ W (c+1)H(c+1). Hence, class incremental learning can
be implemented as below:

Ṽ
INMF≈ W̃H̃ =

[
W (1) · · · W (c) | W (c+1)

]

⎡
⎢⎢⎢⎣

H(1)

. . .

H(c)

H(c+1)

⎤
⎥⎥⎥⎦ . (3.20)

3.4. INMF algorithm design

Based on the above discussions, this subsection will give a detail design on our
INMF algorithm for face recognition. The algorithm involves two stages, namely training
stage and testing stage. Details are as follows.

Training stage

Step 1. Perform CNMF (3.9) on matrices (V (i))m×n0
, i = 1, 2, . . . , c, namely,

(
V (i))

m×n0

CNMF≈
(
W (i))

m×r0
(
H(i))

r0×n0
, i = 1, 2, . . . , c. (3.21)

Step 2. INMF is obtained as

Vm×n
INMF≈ Wm×rHr×n, (3.22)

where r = cr0, n = cn0, and

Wm×r =
[
W (1) W (2) · · · W (c)

]
, Hr×n = diag

(
H(1),H(2), . . . ,H(c)). (3.23)

If there is a new training sample or class added to current training set, then the
incremental learning algorithm presented in Section 3.4 is applied to this stage.



8 Mathematical Problems in Engineering

Recognition stage

Step 3. Calculate the coordinates of a testing sample v̂ in the feature space span{W1,W2,

. . . ,Wr} by ĥ = W+v̂,where W+ is the Moore-Penrose inverse of W.

Step 4. Compute themean column vector vi of class i and its coordinates vector hi = W+vi (i =

1, 2, . . . , c). The testing image v̂ is classified to class k, if d(ĥ, hk) = min1≤ i≤c d(ĥ, hi), where

d(ĥ, hi) denotes the Euclidean distance between vectors ĥ and hi.

3.5. Sparseness of coefficient matrix H

Let h ∈ R
n, define sparseness function with L1 and L2 norms [7] by

fsparse(h) =

√
n − ‖h‖1/‖h‖2√

n − 1
. (3.24)

It can be seen that sparseness function fsparse : R
n→R with range [0, 1].

For INMF method, we have the following theorem for each column hi of H.

Theorem 3.4. Sparseness of each column hi of H in INMF has the following estimation:
√
cr0 −

√
r0√

cr0 − 1
≤ f{sparse}(hi) ≤ 1. (3.25)

Proof. Let

hi = (0, . . . , 0, h
(j)

i1 , . . . , h
(j)

ir0
, 0, . . . , 0)

T
∈ R

r , h̃i = (h
(j)

i1 , · · · , h
(j)

ir0
)
T
∈ R

r0 , (3.26)

where hi belongs to class i in H.
Obviously,

∥∥hi

∥∥
1
=
∥∥h̃i

∥∥
1
,

∥∥hi

∥∥
2
=
∥∥h̃i

∥∥
2
. (3.27)

Moreover,

1 ≤ ‖h̃‖1
‖h̃‖2

≤ √
r0. (3.28)

So, we have
√
r − √

r0√
r − 1

≤
√
r −

∥∥hi

∥∥
1
/
∥∥hi

∥∥
2√

r − 1
≤ 1. (3.29)

It concludes for r = cr0 that √
cr0 −

√
r0√

cr0 − 1
≤ fsparse

(
hi

)
≤ 1. (3.30)

In the experimental section, the parameters are selected as r0 = 4 and c = 120 using
INMF on FERET database. It can be calculated that

0.9522 ≤ fsparse(hi) ≤ 1. (3.31)

While on CMU PIE database, we select r0 = 4 and c = 68 and calculate that

0.9355 ≤ fsparse(hi) ≤ 1. (3.32)

These demonstrate that each column of H in INMF is highly sparse. Apparently, the
coefficient column vectors between different classes in H are automatically orthogonal.
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3.6. Computational complexity

This section discusses the computational complexity of our proposed INMF approach. The
ith iterative procedure of proposed INMF includes two parts, namelyW (i) andH(i). For each
matrix V (i) the iteration for W (i) needs mr0(n0r0 + 2n0 + 2) multiple times. While for H(i), it
needs n0r0(mr0 + 2m + 10) multiple times. Therefore, the total running multiple times of our
INMF are

TINMF =
(
2mn0r

2
0 + 4mn0r0 + 2mr0 + 10n0r0

)
c =

2mnr2

c2
+
4mnr

c
+
10nr

c
+ 2mr. (3.33)

Similar to INMF, we can obtain the running multiple times of NMF approach as TNMF =

2mnr2 + 4mnr + 2mr + 2nr. It can be seen that the computational complexity of our INMF
method is greatly lower than that of NMF.

4. Experimental results

In this section, FERET andCMUPIE databases are selected to evaluate the performance of our
INMF method along with BNMF, NMF, and PCA methods. All images in two databases are
aligned by the centers of eyes and mouth and then normalized with resolution 112 × 92. The
original images with resolution 112 × 92 are reduced to wavelet feature face with resolution
30 × 25 after two-level D4 wavelet decomposition. If there are negative pixels in the wavelet
faces, we will transform them into nonnegative faces with simple translations. The nearest
neighbor classifier using Euclidean distance is exploited here. In the following experiments,
the parameters are set to r = 120 for NMF, r0 = 4 for BNMF and INMF, α = 10−4, β = 10−3 for
INMF. The stopping condition of iterative update is

F(n−1) − F(n)

F(n)
≤ δ, (4.1)

where F(n) is the nth update criterion function defined in (3.3), the threshold δ is set to 10−12.
We stop the iteration if stopping condition (4.1) is met or if exceeding 1000 times iteration.

4.1. Face databases

In FERET database, we select 120 people, 6 images for each individual. The six images are
extracted from 4 different sets, namely Fa, Fb, Fc, and duplicate. Fa and Fb are sets of images
taken with the same camera at the same day but with different facial expressions. Fc is a set of
images taken with different camera at the same day. Duplicate is a set of images taken around
6–12 months after the day taking the Fa and Fb photos. Details of the characteristics of each
set can be found in [3]. Images from one individual are shown in Figure 1.

CMU PIE database includes totally 68 people. There are 13 pose variations ranging
from full right-profile image to full left-profile image and 43 different lighting conditions, 21
flashes with ambient light on or off. In our experiment, for each person, we select 56 images
including 13 poses with neutral expression and 43 different lighting conditions in frontal
view. Part images of one person are shown in Figure 2.
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Figure 1: Images of one person from FERET database.

Figure 2: Part images of one person from CMU PIE database.

4.2. Basis face images

This section shows the basis images of the training set learnt by PCA, NMF, BNMF, and INMF
approaches. Figure 3 shows 25 basis images of each approach on CMU PIE database. It can
be seen that the bases of all methods are additive except for PCA. PCA extracts the holistic
facial features. INMF learns more local features than NMF and BNMF. Moreover, the greater
number of basis image is, the more localization is learnt in all NMF-based approaches.

4.3. Results on FERET database

This section reports the experimental results with nonincremental learning and incremental
learning on FERET database. All methods use the same training and testing face images.
The experiments are repeated 10 times; and the average accuracies under different training
number, along with the mean running times, are recorded.

4.3.1. Nonincremental learning

We randomly select n (n = 2, 3, 4, 5) images from each person for training, while the rest of (6−
n) images of each individual for testing. The average accuracies of training samples ranging
from 2 to 5 are recorded in Table 1 and plotted in Figure 4(a). The recognition accuracies of
INMF, BNMF, NMF, and PCA are 66.73%, 66.07%, 64.44%, and 34.33%, respectively, with 2
training images. The performance for each method is improved when the number of training
images increases. When the number of training images is equal to 5, the recognition accura-
cies of INMF, BNMF, NMF, and PCA are 83.08%, 81.67%, 80.25%, and 37.58%, respectively.
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(a) (b) (c)

(d)

Figure 3: Comparisons on basis images of PCA, NMF, BNMF, and INMF (from left to right), respectively,
on CMU PIE database results.

In addition, Table 2 gives the comparisons on average time-consuming in three NMF-based
approaches. It can be seen that our INMF method gives the best performance for all cases of
nonincremental learning on FERET database.

4.3.2. Class incremental learning

For 119 people, we randomly select 3 images from each individual for training and then add
a new class to the training set. NMF must conduct repeated learning while BNMF and INMF
need merely perform incremental training on the new added class. The average accuracies
and the mean running times are recorded in Table 3 (plotted in Figure 6(a)) and Table 4,
respectively.

Compared with the NMF and BNMF approaches, the proposed method gives around
5% and 1.5% accuracy improvements, respectively. The running time of INMF is around 2
times and 219 times faster than that of NMF with 119 and 120 individuals for training and
class-incremental learning, respectively. Above all, our INMF gives the best performance on
FERET database.

4.4. Results on CMU PIE database

The experimental setting on CMU PIE database is similar to that of FERET database. It
also includes two parts, namely nonincremental training and incremental learning. The
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Figure 4: Accuracy comparisons on (a) FERET and (b) CMU PIE databases.

Table 1: Accuracy comparisons on FERET database.

Training number PCA NMF BNMF INMF

2 34.33% 64.44% 66.07% 66.73%

3 36.00% 69.72% 72.81% 74.39%

4 34.29% 76.25% 78.04% 78.92%

5 37.58% 80.25% 81.67% 83.08%

experiments are repeated 10 times and the average accuracies under different training
number, along with the mean running times, are recorded for comparisons. Details are as
follows.
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Table 2: Running times (s) on FERET database.

Training number NMF(s) BNMF(s) INMF(s)

2 51.14 30.69 21.12

3 74.58 57.02 33.68

4 100.12 75.81 45.34

5 122.61 89.34 56.30

Incremental training number of the 1st class

60

62

64

66

68

70

A
cc
u
ra
cy

(%
)

0 7 14 21

NMF
BNMF
INMF

Figure 5: Comparisons on sample incremental learning.

Table 3: Accuracy comparisons on class incremental learning.

Number of class NMF BNMF INMF

119 69.72% 72.94% 74.59%

120 69.45% 72.88% 74.44%

4.4.1. Nonincremental learning

For each individual, n (n = 7, 14, 21, 28) images are randomly selected for training, while
the rest (56 − n) images for testing. The average recognition rates and mean running times
are tabulated in Table 5 (plotted in Figure 4(b)) and Table 6, respectively. It can be seen that
the recognition accuracies of INMF, BNMF, NMF, and PCA are 68.91%, 68.58%, 66.21%, and
23.94%, respectively with training number 7. When the number of training images is equal
to 28, the recognition accuracies of INMF, BNMF, NMF, and PCA are 77.18%, 76.64%, 71.77%,
and 27.51%, respectively. Compared with the PCA and NMF methods, the proposed method
gives around 49% and 5% accuracy improvements, respectively. The performance of INMF
is slightly better than that of BNMF. However, the computational efficiency of INMF greatly
outperforms BNMF.

4.4.2. Sample incremental learning

We randomly select 7 images from each person for training, and the rest 49 images for testing.
In the sample-incremental learning stage, 7, 14, and 21 images of the first individual are added
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Figure 6: Class incremental learning comparisons on (a) FERET and (b) CUM PIE databases.

to the training set, respectively, while the training images from the rest individuals are kept
unchanged. Table 7 (Figure 5) and Table 8 show the average recognition accuracies and the
mean running times, respectively. Experimental results show that our INMF method gives
the best performance for all cases.

4.4.3. Class incremental learning

For 67 people, we randomly select 7 images from each individual for training and then add a
new class to the training set. NMF should conduct repetitive learning. BNMF and INMF need
merely to perform incremental learning on the new added class. The average recognition rates
and the mean running times are recorded in Table 9 (plotted in Figure 6(b)) and Table 10,
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Table 4: Running times (s) on class incremental learning.

Number of class NMF(s) BNMF(s) INMF(s)

119 72.57 56.12 32.34

120 74.58 0.86 0.34

Table 5: Accuracy comparisons on CMU PIE database.

Training number PCA NMF BNMF INMF

7 23.94% 66.21% 68.58% 68.91%

14 26.24% 69.82% 73.79% 74.07%

21 27.15% 71.33% 75.93% 76.55%

28 27.51% 71.77% 76.64% 77.18%

Table 6: Running times (s) on CMU PIE database.

Training number NMF(s) BNMF(s) INMF(s)

7 79.58 57.35 37.24

14 144.52 114.61 89.50

21 208.20 164.18 124.45

28 267.97 215.94 176.23

Table 7: Accuracy comparisons on sample incremental learning.

Incremental training number NMF BNMF INMF

0 66.21% 68.58% 68.91%

7 66.35% 68.66% 68.97%

14 66.51% 68.71% 69.05%

21 66.68% 68.78% 69.14%

Table 8: Running times on sample incremental learning.

Incremental training number NMF (s) BNMF (s) INMF (s)

0 79.58 57.35 37.24

7 79.77 2.34 1.20

14 80.02 3.12 2.36

21 80.23 4.53 3.21

Table 9: Comparisons on class incremental learning.

Number of class NMF BNMF INMF

67 66.35% 68.73% 69.02%

68 66.21% 68.46% 68.89%

respectively. Experimental results show that INMF outperforms BNMF and NMF in both
recognition rates and computational efficiency.
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Table 10: Running time (s) on class incremental learning.

Number of class NMF(s) BNMF(s) INMF(s)

67 72.45 55.19 34.28

68 79.58 1.36 0.70

5. Conclusions

This paper proposed a novel constraint INMF method to address the time-consuming
problem and incremental learning problem of existing NMF-based approaches for face
recognition. INMF has some good properties, such as low computational complexity;
sparse coefficient matrix; orthogonal coefficient column vectors between different classes in
coefficient matrix H; especially for incremental learning, and so on. Experimental results on
FERET and CMU PIE face database show that INMF outperforms PCA, NMF, and BNMF
approaches in nonincremental learning and incremental learning.
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