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Imperfect data stream leads to tree size explosion and detrimental accuracy problems. Over�tting problem and the imbalanced
class distribution reduce the performance of the original decision-tree algorithm for stream mining. In this paper, we propose
an incremental optimization mechanism to solve these problems. �e mechanism is called Optimized Very Fast Decision Tree
(OVFDT) that possesses an optimized node-splitting control mechanism. Accuracy, tree size, and the learning time are the
signi�cant factors inuencing the algorithm’s performance. Naturally a bigger tree size takes longer computation time. OVFDT
is a pioneer model equipped with an incremental optimization mechanism that seeks for a balance between accuracy and tree size
for data stream mining. It operates incrementally by a test-then-train approach. �ree types of functional tree leaves improve the
accuracy with which the tree model makes a prediction for a new data stream in the testing phase. �e optimized node-splitting
mechanism controls the tree model growth in the training phase. �e experiment shows that OVFDT obtains an optimal tree
structure in both numeric and nominal datasets.

1. Introduction

Decision-tree learning is one of the most signi�cant clas-
sifying techniques in data mining and has been applied to
many areas, including business intelligence, healthcare, and
biomedicine. �e traditional approach to build a decision-
tree, designed by the Greedy Search, loads a full set of data
intomemory and partitions the data into a hierarchy of nodes
and leaves. �e tree cannot be changed when new data are
acquired, unless the whole model is rebuilt by reloading the
complete set of historical data together with the new data.
�is approach is unsuitable for unbounded input data such
as data streams, in which new data continuously ow in at
high speed. To this end, the incremental approach is proposed
to build a decision-tree dynamically that the tree grows with
new data input.

A new generation of algorithms has been developed
for incremental decision-tree, a pioneer of which using a
Hoe�ding bound (HB) in node splitting is so called Very Fast
Decision-tree (VFDT) [1]. It builds a decision-tree simply by
keeping track of the statistics of the attributes of the incoming
data. When su�cient statistics have accumulated at each

leaf, a node-splitting algorithm determines whether there is
enough statistical evidence in favor of a node-split, which
expands the tree by replacing the leaf with a new decision
node. �is decision-tree learns by incrementally updating
the model while scanning the data stream on the y. �is
powerful concept is in contrast to a traditional decision-tree
that requires the reading of a full dataset for tree induction.
�e obvious advantage is its real-time data mining capability,
which frees it from the need to store up all of the data to
retrain the decision-tree because the moving data streams
are in�nite. A research work [2] proofs the feasibility of
classi�cation algorithms for analyzing biosignals in the forms
of in�nite data streams, and it also provides a comparison of
traditional decision-tree C4.5 and incremental decision-tree
VFDT in practical.

On one hand, the challenge for data stream mining is
associated with the imbalanced class distribution. �e term
“imbalanced data” refers to irregular class distributions in a
dataset. For example, a large percentage of training samples
may be biased toward class A, leaving few samples that
describe class�. Both noise and imbalanced class distribution
signi�cantly impair the accuracy of a decision-tree classi�er
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through confusion and misclassi�cation prompted by the
inappropriate data.�e size of the decision-treewill also grow
excessively large under noisy data. To tackle these problems,
some researchers applied data manipulation techniques to
handle the imbalanced class distribution problems, including
undersampling, resampling, a recognition-based induction
scheme [3], and a feature subset selection approach [4]. On
the other hand, despite the di�erence in their tree-building
processes, both traditional and incremental decision-trees
su�er from a phenomenon called over�tting when the input
data are infected with noise. �e noise confuses the tree-
building process with conicting instances. Consequently,
the tree size becomes very large and eventually describes
noise rather than the underlying relationship.

With traditional decision-trees, the underperforming
branches created by noise and biases are commonly pruned
by cross-validating them with separate sets of training and
testing data. Pruning algorithms [5] help keep the size of
the decision-tree in check; however the majority are post-
pruning techniques that remove relevant tree paths a�er a
whole model has been built from a stationary dataset. Post-
pruning of a decision-tree in high-speed data streammining,
however, may not be possible (or desirable) because of the
nature of incremental access to the constantly incoming data
streams.

In this paper, we devise a new version of VFDT, so called
Optimized VFDT (OVFDT), which can provide an incre-
mental optimization on prediction accuracy and decision-
tree model size. �e motivations of OVFDT are.

(1) To handle the imbalanced class distribution problem,
OVFDT proposes three types of functional tree leaf
that improve the classi�cation accuracy;

(2) To deal with the noisy data in data streams, OVFDT
uses an adaptive tie-breaking threshold instead of a
user prede�ned.We do not knowwhat the best setting
is unless all possibilities have been tried. However
it is an obstacle for real-world application. By run-
ning simulation experiments, the optimized value of
adaptive tie is proved to be ideal for constraining the
optimal tree growth.

(3) To prevent the over-�tting problem,OVFDT contains
an incremental optimizationmechanism in the node-
splitting test that obtains an optimal decision-tree
amongst prediction accuracy and model size.

�e rest of this paper is structured as follows: Section 2
introduces a research background of decision-tree learning
for data streams, the e�ect of tiethreshold in tree building.
Section 3 presents the details of OVFDT algorithm, in terms
of a test-then-train approach. Experiments are described in
Section 4. Section 5 concludes.

2. Background

2.1. Decision-Tree in Data Stream Mining. A decision-tree
classi�cation problem is de�ned as follows:� is the number
of examples in a dataset with a form (X, y), where� is a vector
of � attributes and � is a discrete class label. � is the index of

class label. Suppose a class label with the kth discrete value
is ��. Attribute �� is the �th attribute in X and is assigned a
value of 	�1, 	�2, . . . , 	��, where 1 ≤ � ≤ �, and � is the number
of di�erent values ��. �e classi�cation goal is to produce
a decision-tree model from � examples, which predicts the
classes of � in future examples with high accuracy. In data
stream mining, the example size is very large or unlimited,� → ∞.

VFDT [1] constructs an incremental decision-tree by
using constant memory and constant time-per-sample. It is
a pioneering predictive technique that utilizes the Hoe�ding
bound. �e tree is built by recursively replacing leaves with
decision nodes. Su�cient statistics ���� of attribute �� with a
value of 	�� are stored in each leaf with a class label assigning
to a value ��. A heuristic evaluation function H(⋅) is used
to determine split attributes for converting leaves to nodes.
Nodes contain the split attributes, and leaves contain only
the class labels. �e leaf represents a class according to the
sample label. When a sample enters, it traverses the tree from
the root to a leaf, evaluating the relevant attributes at every
node. Once the sample reaches a leaf, the su�cient statistics
are updated. At this time, the system evaluates each possible
condition based on the attribute values; if the statistics are
su�cient to support one test over the others, then a leaf is
converted to a decision node.�e decision node contains the
number of possible values for the chosen attribute according
to the installed split test. �e main elements of VFDT
include, �rst, a tree-initializing process that initially contains
only a single leaf and, second, a tree-growing process that
contains a splitting check using a heuristic functionH(⋅) and a
Hoe�ding bound (HB). VFDT uses information gain asH(⋅).

�e formula of HB is shown in (1). HB controls over
errors in the attribute-splitting distribution selection, where� is the range of classes’ distribution and � is the number of
instances that have fallen into a leaf.� is oneminus the desired
probability of choosing the correct attribute at any given
node. To evaluate a splitting value for attribute��, it chooses
the best two values. Suppose 	�� is the best value of H(⋅),
where 	�� = argmax�(	��); suppose 	�� is the second best
value, where 	�� = argmax�(	��), ∀� ̸= �; suppose Δ�(��) is
the di�erence of the best two values for attribute ��, whereΔ�(��) = Δ�(	��) − Δ�(	��). HB is used to compute high
con�dence intervals for the true mean �true of attribute 	��
to class �� that � − HB ≤ �true < � + HB, where � =(1/�)∑�� ��. If, a�er observing �min examples, the inequality� + HB < 1 holds, then �true < 1, meaning that the best
attribute 	�� observed over a portion of the stream is truly the
best attribute over the entire stream. �us, a splitting value	�� of attribute �� can be found without full attribute values
even when we do not know all values of��. In other words, it
does not train a model from full data, and the tree is growing
incrementally when more data come. Consider,

HB = √�2 ln (1/�)2� . (1)

In the past decade, several research papers have proposed
di�erent methodologies to improve the accuracy of VFDT.
HOT [6] proposes an algorithm producing some optional
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tree branches at the same time, replacing those rules with
lower accuracy by optional ones. �e classi�cation accuracy
has been improved signi�cantly, while learning speed is
slowed because of the construction of optional tree branches.
Some of options are inactive branches consuming com-
puter resource. Functional tree leaf is originally proposed
to integrate into incremental decision-tree in VFDTc [7].
Consequently, the Naı̈ve Bayes classi�er on the tree leaf has
improved classi�cation accuracy. �e functional tree leaf is
able to handle both continuous and discrete values in data
streams, but no direct evidence shows it can handle such
imperfections like noise and bias in data streams. FlexDT
[8] proposes a Sigmoid function to handle noisy data and
missing values. �e Sigmoid function is used to decide what
true node-splitting value, but sacri�cing algorithm speed.
For this reason, the lightweight algorithm with fast learning
speed is favored for data streams environment. CBDT [9]
is a forest of trees algorithm that maintains a number of
trees, each of which is rooted on di�erent attributes and
grows independently. It is sensitive to the concept dri� in
data streams according to the sliding-window mechanism.
VFDR [10] is a decision rule learner using HB. Likewise
VFDT, VFDR proposes a rule expending mechanism that
constructs the decision rules (ordered or unordered) from
data stream on the y. VFDT handles streaming data that
tree structure keeps on updating when new data arrive. It
only requires reading some samples satisfying the statistical
bound (referring to the HB) to construct a decision-tree.
Since it cannot analyze over the whole training dataset in
one time, normal optimization methods using full dataset
to search for an optima between the accuracy and tree size
do not work well here. Our previous work has provided a
solution for sustainable prediction accuracy and regulates
the growth of the decision-tree to a reasonable extent, even
in the presence of noise. Moderated Very Fast Decision-tree
(MVFDT) [11] is a novel extension of the VFDT model that
includes optimizing the tree-growing process via adaptive tie-
breaking threshold instead of a user prede�ned value inVFDT.

�ere are two popular platforms for implementing
stream-mining decision-tree algorithms. Very Fast Machine
Learning (VFML) [12] is a C-based tool for mining time-
changing high-speed data streams. Massive Online Analysis
(MOA) [13] is Java-based so�ware for massive data analysis,
which is a well-known open source project extended from
WEKA data mining. In both platforms, the parameters of
VFDT must be precon�gured. For di�erent tree induction
tasks, the parameter setup is distinguished.

MOA is an open source project with a user friendly
graphic interface. It also provides several ways to evaluate
algorithm’s performance. Hence, some VFDT-extended algo-
rithms have been built in this platform. For example, the
VFDTalgorithms embedded inMOA(released onNovember
2011) are Ensemble Hoe�ding Tree [14] is an online bagging
method with some ensemble VFDT classi�ers. Adaptive Size
Hoe�ding Tree (ASHT) [15] is derived from VFDT adding
a maximum number of split nodes. ASHT has a maximum
number of split nodes. A�er one node splits, if the number
of split nodes is higher than the maximum value, then it
deletes some nodes to reduce its size. Besides, it is designed

for handling concept-dri� data streams. AdaHOT [15] is also
derived from HOT. Each leaf stored an estimation of current
error. �e weight of node in voting process was proportional
to the square of inverse of error. AdaHOT combines HOT
with a voting mechanism on each node. It also extends the
advantages using optional trees to replace the tree branches
of bad performance. Based on an assumption “there has been
no change in the average value inside the window,” ADWIN
[16] proposes a solution to detect changes by a variable-length
window of recently seen instances. In this paper, the OVFDT
algorithm is developed on the fundamental ofMOAplatform.

2.2. Relationship amongst Accuracy, Tree Size, and Time.
When data contains noisy values, it may confuse the result
of heuristic function. �e di�erence of the best two heuristic
evaluations for attribute��, whereΔ�(��) = �(	��)−�(	��),
may be negligible. To solve this problem, a �xed tie-breaking�, which is a user prede�ned threshold for incremental learn-
ing decision-tree, is proposed as prepruning mechanism to
control the tree growth speed [17]. �is threshold constrains

the node-splitting condition that Δ�(��) ≤ HB < �. An
e�cient � guarantees a minimum tree growth in case of tree-
size explosion problem. � must be set before a new learning
starts; however, so far there has not been a unique � suitable
for all problems. In other words, there is not a single default
value that works well in all tasks so far. �e choice of �
hence depends on the data and their nature. It is said that the
excessive invocation of tie breaking brings the performance
of decision-tree learning declining signi�cantly on complex
and noise data, even with the additional condition by the
parameter �.

In addition to the tie-breaking threshold �, �min is the
number of instances a leaf should observe between split
attempts. In other words, � is a user-de�ned value to control
the tree growing speed, and �min is a user-de�ned value to
control the interval time to check node splitting. �e former
is used to constrain tree size and the latter is used to constrain
the learning speed. In order to optimize accuracy, tree size,
and speed for decision-tree learning, �rst of all, an example
is given to demonstrate the relationship amongst these three
factors for data streams.

In this example, we use VFDT, which is a classical
incremental decision-tree using HB in node splitting, to
evaluate synthetic datasets added with bias classes. We use
MOA to generate two typical datasets: LED24 is a nominal
dataset, and Waveform21 is a numeric dataset. Both datasets
share the origins with the sample generators donated by
UCI machine learning repository. LED24 uses 24 nominal
attributes to classify 10 di�erent classes, andWaveform21 uses
21 numeric attributes to classify 3 di�erent classes. �e data
stream problem is simulated by large numbers of instances
as many as one million. �e accuracy, tree size, and time are
recorded with changing the prede�ned values of � and �min.
From Table 1, we can see the following.

(i) In general, the bigger tree size brings a higher accu-
racy, even caused by the over-�tting problem, but
taking more learning time.
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Table 1: (a) Comparison of VFDT using di�erent � and �
min

, (b) comparison of VFDT using di�erent �
min

.

(a)

� 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

LED24 (�
min
= 200)

Accuracy (%) 75.88 76.97 77.14 77.42 77.47 77.50 77.56 77.56 77.56 77.56

No. leaf 143.00 522.00 1124.00 1857.00 2618.00 3723.00 3743.00 3743.00 3743.00 3743.00

Time (sec) 8.70 9.91 10.92 11.51 11.92 12.78 12.32 12.32 12.43 12.45

Waveform21 (�
min
= 200)

Accuracy 85.00 86.53 86.61 86.72 86.72 86.72 86.72 86.72 86.72 86.72

No. leaf 506.00 1565.00 2492.00 2623.00 2623.00 2623.00 2623.00 2623.00 2623.00 2623.00

Time 17.80 18.50 18.89 18.69 18.77 18.72 18.53 18.72 18.74 18.72

(b)

�
min

200 300 400 500 600 700 800 900 1000

LED24 (� = 0.7)
Accuracy 77.5611 77.5867 77.4565 77.3472 77.2557 77.1417 77.1412 77.0847 76.9887

No. leaf 3743 2405 1826 1383 1244 1057 935 804 689

Time 11.66887 10.93567 10.40527 10.07766 9.469261 9.42246 9.032458 9.172859 8.642455

Waveform21 (� = 0.4)
Accuracy 86.7218 86.5226 86.3028 85.9499 85.9119 85.6378 85.6707 85.7318 85.2165

No. leaf 2623 1800 1363 1103 940 806 703 644 572

Time 18.31452 17.70611 17.34731 17.03531 16.84811 16.58291 16.61411 16.61411 16.2709

(ii) � is proposed to control the tree size growing. A bigger� brings a faster tree size growth, but longer compu-
tation time. But because the memory is limited, the
tree size does not increase, while � reaches a threshold
(� = 0.7 for LED24; � = 0.4 for Waveform21).

(iii) �min is proposed to control the learning time. A bigger�min brings a faster learning speed, but smaller tree
size and lower accuracy.

A proposed solution [18] to overcome this detrimental e�ect
is an improved tie-breaking mechanism, which not only
considers the best (	��) and the second best (	��) splitting
candidates in terms of heuristic function, but also uses the
worst candidate (	�	). At the same time, an extra parameter is
imported, �, which determines how many times smaller the
gap should be before it is considered as a tie. �e attribute
splitting condition becomes as the following: when � ×(�(	��) − �(	��)) < (�(	��) − �(	�	)), the attribution 	��
will be split as a node. Obviously, this approach uses two
extra elements, � and 	�	, which bring extra computation to
the original algorithm. However, the only way to detect the
best tie-breaking threshold for a certain task is trying all the
possibilities in VFDT. It is impractical for real-world appli-
cations. In this paper, we propose the adaptive tie-breaking
threshold using the incremental optimization methodology.
�e breakthrough of ourwork is the optimized node-splitting
control, which will be speci�ed in the following sections.

3. Proposed Methodology

3.1. Motivation and Overview. OVFDT, which inherits the
use of HB, implements on a test-then-train approach

Data
stream

Decision
treeTesting Training

OVFDT Node-splitting estimation

 

algorithm

New leaf creation

Figure 1: A test-then-train OVFDT workow.

(Figure 1) for classifying continuously arriving data streams,
even for in�nite data streams. �e whole test-then-train
process is synchronized such, that when the data stream
arrives, one segment at a time, the decision-tree is being
tested �rst for prediction output, and training (which is
also known as updating) of the decision-tree then occurs
incrementally. �e description of testing process will be
explained in Section 3.3 in details, and the training process
will be explained in Section 3.4. Ideally, the node-splitting
test updates tree model in order to improve the accuracy,
while a bigger tree model takes longer computation time.�e
situation to do the node-splitting check is when the number
of instances in a leaf � is greater than the prede�ned value �min.

Imperfect data streams, including noisy data and bias
class distribution, decline the performance of VFDT. Figure 2
shows the results of accuracy, tree size, and computation time
using VFDT the same dataset structure added with imperfect
values. �e ideal stream is free from noise and has a uniform
proportion of class samples, which is rare in real world.
Comparing ideal data streams with imperfect data streams,
we conclude Lemma 1.
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Figure 2: VFDT performance for: (a) ideal data, (b) data with noise, (c) data with noise and bias. �-axis presents the accuracy and �-axis
the number of samples.

Lemma 1. Imperfections in data streams worsen the perfor-
mance of VFDT. �e tree size and the computation time are
increased, but the accuracy is declined. In other words, the
optimization goal is to increase the accuracy but not enlarge
the tree size, within an acceptable computation time. Naturally
a bigger tree size takes longer computation time. For this reason,
the computation time is dependent on the tree size.

In the decision-tree model, each path from the root to
a leaf is considered as a way to present a rule. To ensure
a high accuracy, there must be su�cient number of rules,
which is the number of leaves in the tree model. Suppose
the Hoe�ding Tree (HT) is the decision-tree algorithm

using Hoe�ding bound (HB) as the node-splitting test. Let
Accu (HT
th) be the accuracy function for the decision-tree
structure HT at the mth node-splitting estimation, and let
Size (HT
th) be the tree size; then

Accu (HT
th) = � (Size (HT
th)) , (2)

where�(⋅) is amapping function of tree size to accuracy.Most
incremental optimization functions can be expressed as the
sum of several subobjective functions:

Φ (	) = �∑

=1
Φ
 (	) , (3)
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where Φ
 : " ⊂ R
� → R is a continuously di�erentiable

function whose domain " is a nonempty, convex, and closed
set. We consider the following optimization problems:

maximize Φ (	) subject to 	 ∈ ". (4)

Based on Lemma 1, we propose a solution to optimize the
decision-tree structure by improving the original VFDT that:

Φ
 (	) = Accu (HT
th) − Accu (HT
th)
Size (HT
th) − Size (HT
th) . (5)

�e tree model is updated when a node splitting appears.
Original VFDT considers the HB as the only index to split
node. However, it is not enough. In terms of the above
optimization goal, OVFDT proposes an optimized node-
splitting control during the tree-building process.

3.2. OVFDT Test-�en-Train Process. Data streams are open-
ended problems that traditional sampling strategies are not
viable in the nonstopping streams scenario. OVFDT is an
improved version of the original VFDT and its extensions
using HB to decide the node splitting. �e most signi�cant
contribution is OVFDT that can obtain an optimal tree
structure by balancing the accuracy and tree size. It is useful
for data mining especially in the events of the tree size explo-
sion, when the decision-tree is subject to imperfect streams
including noisy data and imbalanced class distribution.

HT algorithms run a test-then-train approach to build
a decision-tree mode. When new stream arrives, it will be
sorted from the root to a predicted leaf. Comparing the
predictive class with the true class of this data stream, we
can maintain an error matrix for every tree leaf in the
testing process. In terms of the stored statistics matrix, the
decision-tree model is being updated in the training process.
Table 2 presents the di�erences between OVFDT and HT
algorithms (including the original VFDT and its extensions).
Pseudocode 1 shows the input parameters, and the output of
OVFDT, and the approach presented as pseudocode.

3.3. OVFDT Testing Approach. Suppose � is a vector of �
attributes, and� is the class with � di�erent values included in
the data streams. For decision-tree prediction learning tasks,
the learning goal is to induce a function of �̂� = HT

F
(�),

where �̂� is the predicted class by a Hoe�ding tree (HT)
according to a functional tree leaf strategy F. When a new
data stream (�, ��) arrives, it traverses from the root of
the decision-tree to an existing leaf by the current decision-
tree structure, provided that the root has existed initially.
Otherwise, the heuristic function is used to construct a tree
model with a single root node. When new instance comes, it
will be sorted from the root to a leaf by the current treemodel.
�e classi�er on the leaf can further enhance the prediction
accuracy via the embedded classi�ers. OVFDT contains three
classi�ers ϝ to improve the performance of prediction. �ey

are theMajority Class (ϝMC),Naı̈ve Bayes (ϝNB), andWeighted

Naı̈ve Bayes (ϝWNB).
Suppose �̂�, the predicted class value, and �� is actual

class in data streams with a vector of attribute�. A su�cient

Table 2: �e comparison between VFDT and OVFDT.

Approach VFDT OVFDT

Testing

Sort new data by current
HT
Update the su�cient
statistics
FTL of MC, NB
classi�ers
Assign a predicted class
by FTL

Sort new data by current
HT
Update the su�cient
statistics
FTL of MC, NB, and
WNB classi�ers
Assign a predicted class
by FTL
Update incremental
Sequential error

Training

Check node splitting by
HB
Check node splitting by
�xed �
Tree model HT update

Check node splitting by
HB
Check node splitting
by adaptive �
Check node splitting
by statistical error
Tree model HT update

∗FTL is functional tree leaf; MC is Majority Class, NB is Naı̈ve Bayes, and
WNB is Weighted Naı̈ve Bayes; HT is the decision tree using a Hoe�ding
bound.

statistics matrix stores the number of passed-by samples,
which contain attribute �� with a value 	�� belonging to a
certain �� so far. We call this statistics table Observed Class
Distribution (OCD) matrix. �e size of OCD is � × *, where� is the total number of distinct values for attribute �� and* is the number of distinct class values. Suppose ���� is the
su�cient statistic that reects the number of attribute�� with
a value 	�� belonging to class ��. �erefore, OCD on node��
is de�ned as

OCD�� = [[[
��11 ⋅ ⋅ ⋅ ���1
...

. . .
...��1� ⋅ ⋅ ⋅ ����
]]
]
. (6)

For a certain leaf that attributes�� with a value of 	��,
OCD��� = {���1 ⋅ ⋅ ⋅ ����} . (7)

Majority Class classi�er chooses the class with the maximum

value as the predicted class in a leaf. �us, ϝMC predicts the
class with a value that

argmax � = {���1 . . . ���� . . . ����} . (8)

Naı̈ve Bayes classi�er chooses the class with the maximum
possibility computed byNaı̈ve Bayes as the predictive class in
a leaf. �e formula of Naı̈ve Bayes is

?��� = @ (	�� | ��) ⋅ @ (��)@ (	��) . (9)

OCD of leaf with value 	�� is updated incrementally. �us,ϝNB predicts the class with a value that

argmax � = {?��1 . . . ?��� . . . ?���} . (10)
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INPUT:C: A stream of sample�: A set of symbolic attributes�(⋅): Heuristic function using for node-splitting estimation�: One minus the desired probability of choosing a correct attribute at any given node�
min

: �e minimum number of samples between check node-splitting estimation
F: A functional tree leaf strategy
OUTPUT:
HT: A decision tree
PROCEDURE: OVFDT (C,�,�(⋅), �, �

min
,F)(1) A data stream C arrives(2) IF HT is null, THEN initializeHT(C,�,�(⋅), �, �

min
,F)

ELSE traverseHT(C,�D,F) and update ΔE(3) Label � as the predicted class among the samples seen so far(4) Let �� be the number of samples seen at the leaf �(5) IF the samples seen so far at leaf � do not all belong to the sameclass
and (�� mod �

min
) is zero, THEN doNodeSplitting(ΔE, C,�,�(⋅), �, �

min
)(6) Return HT

Pseudocode 1: Pseudocode of input and the test-then-train approach.

PROCEDURE: traverseHT(C,�D,F)(1) Sort C from the root to a leaf by HT. Update OCD in each node: ����(�)++(2) Switch (F)(3) CaseFMC : predict the class ��� with max ����(�)(4) CaseFNB : predict the class ��� with max NB prob.(5) CaseFWNB : predict the class ��� with max WNB prob.(6) IF ��� equals to the actual class label in C, THEN E�++(7) ELSE E�++(8) ΔE = E� − E�(9) Return ΔE
Pseudocode 2: Pseudocode of testing approach.

Weighted Naı̈ve Bayes classi�er proposes to reduce the e�ect
of imbalanced class distribution. It chooses the class with the
maximum possibility computed by Weighted Naı̈ve Bayes as
the predictive class in a leaf:

?��� = K���@ (	�� | ��) ⋅ @ (��)@ (	��) , where K��� = ����∑��=1 ���� .
(11)

OCD of leaf with value 	�� is updated. �us, ϝWNB predicts
the class with a value that

argmax � = {?��1 . . . ?��� . . . ?���} . (12)

A�er the stream traverses the whole HT, it is assigned to
a predicted class �̂�, which �̂� ← Classi�er (HT,F, �)
according to the functional tree leaf F. Comparing the
predicted class �̂� to the actual class ��, the statistics of
correctly E� and incorrectly E� prediction are updated
immediately. Meanwhile, the su�cient statistics, ����, which
is a count of attribute 	� with value � belonging to class��, are updated in each node. �is series of actions is so

called a testing approach in this paper. Pseudocode 2 gives
the pseudocode of this approach. According to the functional
tree leaf strategy, the current HT sorts a newly arrived sample
(�, ��) from the root to a predicted leaf �̂�. Comparing the
predicted class �̂� to the actual class ��, the sequential-error
statistics of E� and E� prediction are updated immediately.

To store OCD for OVFDT, ϝMC, ϝNB, and ϝWNB require
memory proportional toM(�⋅N⋅�⋅*), where� is the number
of nodes in tree model and I the number of attributes; J is the
maximum number of values per attribute; K is the number
of classes. OCD of ϝNB and ϝWNB are converted from that

of ϝMC. �erefore, we do not require extra memory. When

required, it can be converted from ϝMC.

3.4. OVFDT Training Approach. Right a�er the testing
approach, the training follows. Node-splitting estimation is
used to initially decide if HT should be updated or not that
depends on the amount of samples received so far that can
potentially be represented by additional underlying rules in
the decision-tree. In principle, the optimized node-splitting
estimation should be applied on every single new sample that
arrives. Of course this will be too exhaustive, and it will slow
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down the tree building process. Instead, a parameter �min is
proposed in VFDT that only do the node-splitting estimation
when �min examples have been observed on a leaf. In the
node-splitting estimation, the tree model should be updated
when a heuristic function H(⋅) chooses the most appropriate
attribute with the highest heuristic function value H(	�) as
a splitting node according to HB and tie-breaking threshold.
�e heuristic function is implemented as an information gain
here.�is situ of node-splitting estimation constitutes the so-
called training phase.

�e node-splitting test is modi�ed to use a dynamic tie-
breaking threshold �, which restricts the attribute splitting
as a decision node. �e � parameter traditionally is pre-
con�gured with a default value de�ned by the user. �e
optimal value is usually not known until all of the possibilities
in an experiment have been tried. An example has been
presented in Section 2.2. Longitudinal testing of di�erent
values in advance is certainly not favorable in real-time
applications. Instead, we assign a dynamic tie threshold, equal
to the dynamic mean of HB at each pass of stream data,
as the splitting threshold, which controls the node splitting
during the tree-building process. Tie breaking that occurs
close to the HB mean can e�ectively narrow the variance
distribution. HB mean is calculated dynamically whenever
new data arrives.

�e estimation of splits and ties is only executed once
for every �min (a user-supplied value) samples that arrive
at a leaf. Instead of a precon�gured tie, OVFDT uses an
adaptive tie that is calculated by incremental computing.
At the �th node-splitting estimation, the HB estimates the
su�cient statistics for a large enough sample size to split
a new node, which corresponds to the leaf �. Let D� be an
adaptive tie corresponding to leaf �,within � estimations seen
so far. Suppose O� is a binary variable that takes the value of
1 if HB relates to leaf � and 0 otherwise. D� is computed by

(13). To constrain HB uctuation, an upper bound DUPPER
�

and a lower bound DLOWER
� are proposed in the adaptive tie

mechanism. �e formulas are presented in

D� = 1�
�∑
�=1
O� ×HB�, (13)

DUPPER
� = argmaxD�, (14)

DLOWER
� = argminD�. (15)

For lightweight operations, we propose an error-based
prepruning mechanism for OVFDT, which stops noninfor-
mative split node before it splits into a new node. �e
prepruning takes into account the node-splitting error both
globally and locally.

According to the optimization goal mentioned in
Section 3.1, besides the HB, we also consider the global and
local accuracy in terms of the sequential error statistics of E�
and E� prediction computed by functional tree leaf. Let ΔE

be the di�erence between E� and E�, and P is the index of
testing approach. �en ΔE
 reects the global accuracy of
the current HT prediction on the newly arrived data streams.
If ΔE
 ≥ 0, the number of correct predictions is no less

than the number of incorrect predictions in the current
tree structure; otherwise, the current tree graph needs to be
updated by node splitting. In this approach, the statistics
of correctly E� and incorrectly E� prediction are updated.
Suppose ΔE
 = E� − E�, which reects the accuracy of
HT. If ΔE declines, it means the global accuracy of current
HT model worsens. Likewise, comparing ΔE
 and ΔE
+1,
the local accuracy is monitored during the node splitting. IfΔE
 is greater than ΔE
+1, it means the current accuracy is
declining locally. In this case, the HT should be updated to
suit the newly arrival data streams.

Lemma 2. Monitor global accuracy. �e model’s accuracy
varies whenever a node splits, and the tree structure is updated.
Overall accuracy of current tree model is monitored during
node splitting by comparing the number of correctly and
incorrectly predicted samples.�enumber of correctly predicted
instances and otherwise is recorded as global performance
indicators so far. �is monitoring allows the global accuracy to
be determined.

Lemma 3. Monitor local accuracy. �e global accuracy can be
tracked by comparing the number of correctly predicted samples
with the number of wrongly ones. Likewise, comparing the
global accuracy measured at current node-splitting estimation
with the previous splitting, the increment in accuracy is tracked
dynamically. �is monitoring allows us to check whether
the current node-splitting is advantageous at each step by
comparing with the previous step.

Figure 3 gives an example why our proposed prepruning
takes into account both the local and the global accuracy in
the incremental pruning. At the �th node-splitting estimation
the di�erence between correctly and incorrectly predicted
classes was ΔE�, and ΔE�+1 was at (i+1)th estimation. (ΔE� −ΔE�+1) was negative that the local accuracy of (i+1)th estima-
tion was worse than its previous one, while both were on a
global increasing trend. Hence, if accuracy is getting worse, it
is necessary to update the HT structure.

Combining the prediction statistics gathered in the test-
ing phase, Pseudocode 3 presents the pseudo code of the
training phase in OVFDT in building an upright tree. �e
optimized node-splitting control is presented in Figure 3 Line
7. In each node-splitting estimation process, HB value that
relates to a leaf � is recorded.�e recorded HB values are used
to compute the adaptive tie, which uses the mean of HB to
each leaf �, instead of a �xed user-de�ned value in VFDT.

4. Evaluation

4.1. Evaluation Platform and Datasets. A Java package with
OVFDT has been implemented with MOA toolkit as a sim-
ulation platform for experiments. �e running environment
is on a Windows 7 PC with Intel Quad 2.8GHz CPU and
8G RAM. In all of the experiments, the parameters of the
algorithms are � = 10−6 and �min = 200, which are default
values suggested by MOA. � is the allowable error in split
decision, and values closer to zero will take longer to decide;�min is the number of instances a leaf should observe between
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PROCEDURE doNodeSplitting (ΔE, C,�,�(⋅), �):(1) FOR each attribute�� ∈ �� − {�0} at the leaf �(2) Compute��(��)(3) Let�� be the attribute with highest��(⋅) and�� the second(4) Compute HB with �(5) Let Δ�� = �� (��) − �� (��)(6) END-FOR(7) IF (Δ�� > ��) or (Δ�� ≤ DLOWER
� and ΔE� < ΔE�−1)

or (Δ�� ≤ DLOWER
� and ΔE� < 0)

or (DLOWER
� < Δ�� ≤ DUPPER

� and ΔE� < ΔE�−1)(8) Replace � by an internal node splits on��(9) Update adaptive tie DLOWER
� and DUPPER

�(10) FOR each branch of splitting(11) Add a new leaf �
 and let�
 = � − {��}(12) Let��(�0) be the��(⋅) obtained by predicting the class in C
according toF at �
(13) FOR each class �� and each value 	�� of each attribute(14) �� ∈ �
 − {�0} and reset OCD: ����(�
) = 0(15) END-FOR(16) END-FOR(17) END-IF(18) Return updated HT

Pseudocode 3: Pseudocode of training approach.
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Figure 3: Incremental pruning.

split attempts. �e main goal of this section is to provide
evidence of the improvement of OVFDT compared with the
original VFDT.

�e experimental datasets, including pure nominal
datasets, pure numeric datasets, and mixed datasets, are
either synthetics generated by the MOA Generator or
extracted from real-world applications that are publicly avail-
able for download from the UCI repository. �e descriptions
of each experimental dataset are listed in Table 3. LED24
dataset is generated by MOA Generator. In the experiment,
we add 10%noisy data to simulate imperfect data streams.�e

LED24 problem uses 24 binary attributes to classify 10 di�er-
ent classes. Waveform21 dataset is also generated by MOA.
�e dataset is donated by David Aha to the UCI repository.
�e goal of the task is to di�erentiate between three di�erent
classes of Waveform. It has 21 numeric attributes which
contained noise. Cover Type is used to predict forest cover
type from cartographic variables, and this data is collected
from real world [19].

�e benchmarking algorithms are VFDT [1], HOT [6]
and ADWIN [16]. VFDT and HOT are the representa-
tive learning methods without sliding-window criteria for
handling concept dri�; AWDIN uses an adaptive window
technique. �e paper [16] claimed that ADWIN performed
as well or only slightly worse than the best window for each
rate of change in CVFDT. �is justi�es why CVFDT was not
being compared in this test.

4.2. Held-Out Evaluation. �e �rst evaluation simulates a
holdout testing approach. �e datasets are divided to two
parts: 70% for training model and 30% for testing model.
In Figures 4 and 5 for LED24 and Waveform21, OVFDT
algorithms have the best accuracy and compact tree size.
For Cover Type data, HOT obtains a higher accuracy but
much bigger model size than the others. OVFDT has the
mechanism of optimizing node splitting so as to balance the
prediction accuracy and the model size consequently.

Besides, we use the receiver operating characteristic
(ROC) as a standard method for analysing and comparing
classi�cation result. It provides a convenient graphical display
of the trade o� between true and false positive classi�cation
rates for two-class problems. In the decision-tree classi�ca-
tion, the ROC is used for more than two classes. In this
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Table 3: Description of experimental datasets.

Name Type No. nom. attr. No. num. attr. No. class Source No. ins.

LED24 Nominal 24 0 10 Synthetic 106

Waveform21 Numeric 0 21 3 Synthetic 106

Cover type Mix 42 12 7 UCI 581012
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case, we apply the multi class ROC analysis to evaluate the
performance of the tree-learning algorithm:

E = [[
[
E11 ⋅ ⋅ ⋅ E1�
...

. . .
...E�1 ⋅ ⋅ ⋅ E��
]]
]
. (16)

Likewise, two-class ROC statistics, for each class from� to � in a multi-class ROC analysis, can be assigned to
the samples with class � as positive; otherwise they are
assigned as negative in Figure 6. True positives (TP) are
examples correctly labeled as positives, calculated by (17).
False positives (FPs) refer to negative examples incorrectly
labeled as positive, calculated by (18). True negatives (TNs)
correspond to negatives correctly labeled as negative, calcu-
lated by (20). Finally, false negatives (FNs) refer to positive
examples incorrectly labeled as negative, calculated by (19).
Each class � can be converted into a two-class problem, with
corresponding values for TP, TN, FP, and FN.

Precision-Recall is a well-known analysis method for
ROC evaluation. In pattern recognition, precision refers to
the fraction of retrieved instances that are relevant, whereas
recall is the fraction of relevant instances that are retrieved.
�e values of precision and recall range from 0 to 1. A
precision score of 1 for a class �means that every item labeled
as belonging to class � does, indeed, belong to class �. A recall
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score of 1 means that every item from class � was correctly
labeled as belonging to class �. Precision-Recall scores are
not analyzed in isolation: the S�-measure [20] is a weighted
harmonic mean of the Precision-Recall measure, and theS1-measure evenly weights precision and recall scores, with
a best value of 1 and a worst value of 0. In addition, the
true positive rate (TPR) and false positive rate (FPR) are
commonly used as benchmarks in ROC analysis. According
to the ROC matrix shown in Figure 5, the calculation of
TPR is given in (21). �e calculation of FPR is given in (22).
Precision is calculated by (23). S-measure calculations are in
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Table 4: Precision-Recall results of holdout test.

LED24 Waveform21 Cover Type

Recall Precision S1 Recall Precision S1 Recall Precision S1
VFDT 0.620 0.650 0.635 0.878 0.846 0.862 0.508 0.563 0.534

HOT 0.620 0.650 0.635 0.875 0.846 0.860 0.627 0.725 0.672

ADWIN 0.592 0.665 0.627 0.873 0.843 0.858 0.627 0.725 0.672

OVFDT mc 0.609 0.659 0.633 0.830 0.799 0.814 0.566 0.643 0.602

OVFDT nb 0.621 0.648 0.634 0.866 0.840 0.853 0.624 0.502 0.556

OVFDT wnb 0.619 0.652 0.635 0.886 0.846 0.865 0.627 0.539 0.580
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Figure 7: (a) ROC space of LED24. (b) ROC space of Waveform21. (c) ROC space of Cover Type.

(24).�e experimental result of Precision-Recall test is shown
in Table 4. Consider

TP� = E��, (17)

FP� = ( �∑
�=1
E��) − E��, (18)

FN� = ( �∑
�=1
E��) − E��, (19)

TN� = ( �∑
�=1

�∑
�=1
E��) − TP� − FP� − FN�, (20)

TPR� = Recall� = TP�(TP� + FN�) =
E��∑��=1 E�� , (21)

FPR� = FP�(TN� + FP�) =
(∑��=1 E��) − E��(∑��=1∑��=1 E��) − (∑��=1 E��) ,

(22)
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Figure 8: (a) Test-then-train evaluation of LED24. (b) Test-then-train evaluation of Waveform21. (c) Test-then-train evaluation of Cover
Type.

Precision� = TP�(TP� + FP�) =
E��(∑��=1 E��) , (23)

S1Measure� = 2TP�
TP� + FN� + TP� + FP� =

2E��∑��=1 E�� + ∑��=1 E�� .
(24)

�e pairwise of Precision-Recall results are shown in
Table 4. OVFDT with WNB functional tree leaf has the
best statistical results in Waveform21 data, which contains
numeric attributes only. For the other two data, OVFDT also
has the better TPR that represents that it has higher sensitivity
in this experiment. For the ROC curve, Figure 7 displays the
TPR-FPR analysis in an ROC space. Obviously, the plots of
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OVFDT are higher than the other algorithms in ROC space
that we say the proposed methods outperform others in this
holdout test.

4.3. Test-�en-Train Evaluation. �e second evaluation im-
plements a test-then-train approach that is an incremental
evaluation. When new instances come, they are used to test
the current model tree that we write down the statistical
results of accuracy andmodel size. A�er that, those instances
are used to train andupdate themodel tree. FromFigure 8, we
can see that OVFDT with WNB functional tree leaf obtains
the best accuracy amongst the tested algorithmswhile smaller
tree size relatively. Since the tree induction that uses optional
tree leaves, HOT results much bigger model size than the
other methods. �is incremental evaluation shows OVFDT’s
outperformance on the aspects of accuracy and compact tree
size.

5. Conclusion

Imperfect data stream leads to tree size explosion and
detrimental accuracy problems. In original VFDT, a tie-
breaking threshold that takes a user-de�ned value is proposed
to alleviate this problem by controlling the node-splitting
process that is a way of tree growth. But there is no single
default value that always works well and that user-de�ned
value is static throughout the streammining operation. In this
paper, we propose an Optimized-VFDT (OVFDT) algorithm
that uses an adaptive tie mechanism to automatically search
for an optimized amount of tree node splitting, balancing
the accuracy and the tree size, during the tree-building
process. �e optimized node-splitting mechanism controls
the attribute-splitting estimation incrementally. Balancing
between the accuracy and tree size is important, as stream
mining is supposed to operate in limited memory com-
puting environment, and a reasonable accuracy is needed.
It is a known contradiction that high accuracy requires a
large tree with many decision paths, and too sparse the
decision-tree results in poor accuracy. In the experiment,
we use holdout test and incremental test to evaluate the
proposed model. �e results show that OVFDT achieves a
better performance in terms of high prediction accuracy and
compact tree size than the other VFDTs. �is advantage can
be technically accomplished by means of simple incremental
optimization mechanisms as described in this paper. �ey
are light weighted and suitable for incremental learning. �e
contribution is signi�cant because OVFDT can potentially
be further modi�ed into other variants of VFDT models
in various applications, while the best possible (optimal)
accuracy and minimum tree size can always be guaranteed.
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