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ABSTRACT 
Link Analysis has been a popular and widely used Web mining 

technique, especially in the area of Web search. Various ranking 

schemes based on link analysis have been proposed, of which the 

PageRank metric has gained the most popularity with the success 

of Google. Over the last few years, there has been significant 

work in improving the relevance model of PageRank to address 

issues such as personalization and topic relevance. In addition, a 

variety of ideas have been proposed to address the computational 

aspects of PageRank, both in terms of efficient I/O computations 

and matrix computations involved in computing the PageRank 

score. The key challenge has been to perform computation on 

very large Web graphs. In this paper, we propose a method to 

incrementally compute PageRank for a large graph that is 

evolving. We note that although the Web graph evolves over 

time, its rate of change is rather slow. When compared to its size. 

We exploit the underlying principle of first order markov model 

on which PageRank is based, to incrementally compute PageRank 

for the evolving Web graph. Our experimental results show 

significant speed up in computational cost, the computation 

involves only the (small) portion of Web graph that has 

undergone change. Our approach is quite general, and can be used 

to incrementally compute (on evolving graphs) any metric that 

satisfies the first order Markov property.  

Keywords 
Link Analysis, Web Search, PageRank, Incremental Algorithms 

1. INTRODUCTION 
The importance of link analysis on the Web graph has gained 

significant prominence after the advent of Google [1]. The key 

observation is that a hyperlink from a source page to a destination 

page serves as an endorsement of the destination page by the 

(author of the) source page on some topic. This idea has been 

exploited by various researchers and has resulted in a variety of 

hyperlink based ranking metrics for ranking of Web Pages. 

Kleinberg’s Hubs and Authority [2] and Google’s Pagerank [3] 

are the most popular among such metrics. A variety of 

modifications and improvements to these approaches have been 

developed in recent years[6,7,8,9,10]. 

Link analysis techniques have adopted different knowledge 

models for the measures developed for various applications on the 

Web [15]. Kleinberg’s Hubs and Authority is based on the 

observation that the Web graph has a number of bipartite cores 

[2], while Google’s PageRank is based on the observation that a 

user’s browsing of the Web can be approximated as a first order 

markov model [3]. Giles, et al [5] have used network flow models 

to identify web communities. Thus, a variety of models have been 

used to measure different properties of the Web Graph at a given 

time instance. Success of Google has signified the importance of 

Pagerank as a ranking metric. This has also led to a variety of 

modifications and improvisations of the basic PageRank metric. 

These have either focused on changing the underlying model or 

on reducing the computation cost. 

Another important dimension of Web mining is the evolution of 

the Web graph [4].  The Web is changing over time, and so is the 

users’ interaction on (and with) the Web, suggesting the need to 

study and develop models for the evolving Web Content, Web 

Structure and Web Usage. The study of such evolution of the 

Web would require computing the various existing measures for 

the Web graph at different time instances. A straightforward 

approach would be to compute these measures for the whole Web 

Graph at each time instance. However, given the size of the Web 

graph, this is becoming increasingly infeasible. Furthermore,, if 

the percent of nodes that change during a typical time interval 

when the Web is crawled by search engines is not high, a large 

portion of the computation cost may be wasted on re-computing 

the scores for the unchanged portion.  Hence, there is a need for 

computing metrics incrementally, to save on the computation 

costs. 

Techniques for incremental computations, to study changes in 

graph structure over time, would depend on the underlying 

knowledge model that defines a metric [15]. For example, the 

computation of hub and authority scores is based on mutual 

reinforcement of nodes, and hence a change in the indegree or 

outdegree of a node may affect its score. Mutual reinforcement 

makes hub and authority scores a second order model. However, 

for PageRank whose random surfer model is based on the first 

order markov property, the change in out degree of the node does 

not affect the score of the node. Hence, the level of penetration of 

change in scores due to a change in the degree of a node is not as 

high in PageRank as in hub and authority scores.  

In this paper, we describe an approach to compute PageRank in 

an incremental fashion. We exploit the underlying first order 

markov model1 property of the metric, to partition the graph

                                                                 
1 The property that the PageRank score of a page depends only on the 

PageRank scores of the pages pointing to it. 
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into two portions such one of them is unchanged since the last 

computation, and it has only outgoing edges to the other partition. 

Since there are no coming edges from the other partition, the 

distribution of PageRank values of the nodes in this partition will 

not be affected by the nodes in the other partition. The other 

partition is the rest of the graph, which has undergone changes 

since the last time the metric was computed. Figure 1 gives an 

overview of our approach and explains the difference between 

related work and the work in this paper. This paper is organized 

as follows. In Section 2, we give an introduction to the basic 

PageRank metric and the various issues involved in its 

computation. Section 3 gives an overview of our approach to 

incrementally compute PageRank for evolving Web graphs. We 

describe the Incremental PageRank Algorithm in Section 4 and 

present our experimental results in Section 6. Section 7 discusses 

the related work and places our work in context. Finally, in 

Section 8 we conclude the and provide directions for future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Overview of the Proposed Approach. 

2. PAGERANK 
PageRank is a metric for ranking hypertext documents that 

determines their quality. It was originally developed by Page et 

al. [3] for the popular search engine, Google [1]. The key idea is 

that a page has high rank if it is pointed to by many highly ranked 

pages. Thus, the rank of a page depends upon the ranks of the 

pages pointing to it. The rank of a page p can thus be written as: 

 

 

Here, n is the number of nodes in the graph and OutDegree(q) is 

the number of hyperlinks on page q. Intuitively, the approach can 

be viewed as a stochastic analysis of a random walk on the Web 

graph.  The first term in the right hand side of the equation 

corresponds to the probability that a random Web surfer arrives at 

a page p from somewhere, i.e. (s)he could arrive at the page by 

typing the URL or from a bookmark, or may have a particular 

page as his/her homepage. d would then be the probability that a 

random surfer chooses a URL directly – i.e. typing it, using the 

bookmark list, or by default – rather than traversing a link. 

Finally, 1/n is the uniform probability that a person chooses page 

p from the complete set of n pages on the Web.   The second term 

in the right hand side of the equation corresponds to a factor 

contributed by arriving at a page by traversing a link. 1- d is the 

probability that a person arrives at the page p by traversing a link. 

The summation corresponds to the sum of the rank contributions 

made by all the pages that point to the page p. The rank 

contribution is the PageRank of the page multiplied by the 

probability that a particular link on the page is traversed. So for 

any page q pointing to page p, the probability that the link 

pointing to page p is traversed would be 1/OutDegree(q), 

assuming all links on the page is chosen with uniform probability. 

Figure 2 illustrates an example of computing PageRank of a page 

P from the pages, P1, P2, P3 pointing to it. 

There are other computational challenges that arise in PageRank. 

Apart from the issue of scalability, the other important 

computational issues are the convergence of PageRank iteration 

and the handling of dangling nodes. The convergence of 

PageRank is guaranteed only if the Web graph is strongly 

connected and is aperiodic. To ensure the condition of strong 

connectedness, the dampening factor is introduced, which assigns 

a uniform probability to jumping to any page. In a graph theoretic 

sense it is equivalent of adding an edge between every pair of 

vertices with a transition probability of d/n. The aperiodic 

property is also guaranteed for the Web graph. 

Another important issue in computation of PageRank is the 

handling of dangling nodes. Dangling nodes are nodes with no 

outgoing edge. These nodes tend to act as rank sink, as there is no 

way for rank to be distributed among the other nodes. The 

suggestion made initially to address this problem, was to 

iteratively remove all the nodes that have an outdegree of zero, 
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and compute the PageRank on the remaining nodes [3]. The 

reasoning here was that dangling nodes do not affect the 

PageRank of other nodes.  Another suggested approach was to 

remove the dangling nodes while computation initially and add 

them back during the final iterations of the computation [7]. Other 

popular approaches to handling dangling nodes, is to add self 

loops to dangling nodes[11,20] and to add links to all nodes in the 

graph, G from each of the dangling node to distribute the 

PageRank of the dangling node uniformly among all nodes[3]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Illustrative example of PageRank. 

3. PROPOSED APPROACH  
In the proposed approach, we exploit the underlying first order 

Markov Model on which the computation of PageRank is based. 

It should be noted that PageRank of a page depends only on the 

pages that point to it and is independent of the outdegree of the 

page. The principle idea of our approach is to find a partition such 

that there are no incoming links from a partition, Q (includes all 

changed nodes) to a partition, P. In such a case the PageRank of 

the partition, Q is computed separately and later scaled and 

merged with the rest of the graph to get the actual PageRanks of 

vertices in Q. The scaling is done with respect to the number of 

vertices in partition, P-`n(P) to the total number of nodes in the 

whole graph, G –n(P UQ)=V. The PageRank of the partition Q is 

computed, taking the border vertices that belong to the partition P 

and have edges pointing to the vertices in partition Q. The 

PageRank values of partition P are obtained by simple scaling. 

This basic idea of partitioning the Web graph, and computing the 

PageRanks for individual partitions and merging works extremely 

well when incrementally computing PageRank for a Web graph 

that has evolved over time. Given, the Web graphs at two 

consecutive time instances, we first determine the portion of the 

graph that has changed. A vertex is declared to be changed when 

a new edge added or deleted between the vertex and any other 

vertex belonging to the graph or if the weight of a node or an edge 

weight adjoined to that node has changed. Once the changed 

portion is defined, for each page we determine iteratively all the 

pages that will be affected by its PageRank. In this process, we 

include pages that remain unchanged but whose; PageRank gets 

affected due to the pages that have changed. in partition Q.  The 

rest of the unchanged graph is in partition P. 

The whole concept is illustrated in Figure 3. Let  the graph at the 

new time be G(V,E), and 
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In order to compute PageRank incrementally, for every vertex 

in
c
V , which is a set of changed vertices, perform a BFS to find 

out all vertices reachable from this set. The PageRank of these 

vertices will be affected by vertices in
cr
V . These set of vertices 

can be denoted by the set, 
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Hence the set of vertices whose PageRank has to be computed in 

the incremental approach corresponds to the partition Q described 

above, and can be denoted as, 
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Figure 3. Incremental Computation of PageRank.

The vertices in partition P can be defined as, 

b
V

Q
VV

P
V +−=  

And the edges that correspond to this partition can be defined as, 

{ }
P
Vyx

yx
e

P
E ∈= ,|

,
, where 

yx
e
,
represents a directed 

edge from vertex x to vertex y.  

Thus, the given graph ( )EVG , can be partitioned into two 

graphs namely, ( )
P
E

P
V

P
G ,  and 







Q
E

Q
V

Q
G ,  . 

Now, since we know that the graph ( )
P
E

P
V

P
G ,  has remained 

unchanged from the previous time instance and the PageRank of 

vertices in this partition is not affected by the partition, 


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

Q
E

Q
V

Q
G , . Now a change in a node induces a change in 

the distribution of PageRank values for all its children and since 

all the nodes that are influenced by changes are already separated 

in the partition Q. The distribution of PageRank values for the 

nodes in partition GP is going to be the same as it was for the 

corresponding nodes in the previous time instance G’. Thus the 

PageRank of the vertices in partition P could be calculated by 

simply scaling the scores from the previous time instance. And 

the scaling factor will be 
( )

( )Gn
Gn ′

, where G′  is the graph at 

the previous time instance. And the PageRank for the partition, 








Q
E

Q
V

Q
G ,  can be computed using the regular PageRank 

Algorithm and scaled for the size of the graph, G. Since the 

percent change in the structure of the Web is not high, the 

computation of the changed portion will be a smaller graph 

compared to the whole Web. And the existence of such partitions 

is also suggested by the bow-tie model of the Web [12], where 

about 27% of Web contributes to the influx. It should also be 

noted that while computing PageRanks for the changed portion, in 

order to maintain the stochastic property of the incremental 

matrix, we have to scale the PageRanks of nodes in Vb  such that 

they correspond to the number of nodes for which the PageRank 

is actually computed. Also taken into account is the outdegree of 

these border nodes that have edges in partition P, since the way 

they distribute their PageRanks to nodes in partition Q, will 

depend on their outdegree.  

4. INCREMENTAL ALORITHM 
In this section, we will describe the incremental algorithm to 

compute PageRank. The initial step is to read the graph at a new 

instance and determine the vertices that have changed. This does 

not require additional time as it can be computed as we read the 

new graph. Thus, after reading the graph, we can assume that we 

are given two sets of vertices – one containing the vertices which 
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have changed from a previous time instance and the other 

containing vertices that have remain unchanged.  Hence, the input 

to the algorithm is the graph G, and the two lists Vc and Vu.. The 

outline of the algorithm is shown in Figure 3.  We will describe 

each step briefly: 

Step 1 - Initialize a list VQ 

Step 2 - A change in a vertex induces a change in the PageRank 

distribution of all its children. All such changed vertices are in the 

queue Vc. In this step, the list of “changed vertices” is extended to 

a partition to include all descendents of the initial list of “changed 

vertices”. All these vertices are pushed into the list Q2. 

Step 3 – For the remaining vertices are there is no change in their 

PageRank distribution. The New PageRank is simply obtained by 

scaling the previous PageRank scores. The scaling factor is 

simply: 

( )
( )Gn

Gn ′
=Order of graph at previous time instance/Order of 

the graph at the present time instance. 

Also all those vertices from this set of unchanged vertices that 

point to a changed vertex, will influence the PageRank value of 

that changed vertex, hence these too must be included in the list 

VQ as their PageRank scores will be required for computing the 

PageRank scores for the changed vertices. 

Step 4 – Now original PageRank computation algorithm along 

with steps taken to ensure stochastic property of transition matrix 

is performed on the nodes that are in Q2 and colored violet (i.e. 

nodes which have changed) to get the new PageRank values for 

these changed nodes. 

Thus, we end up localizing the changed partition to a certain sub-

graph of the web which consists of all changed nodes and then 

basic PageRank algorithm is performed only on this changed sub-

graph. The PageRank value for the rest of the nodes is simply a 

matter of scaling the previous values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Incremental PageRank Algorithm. 

Step 2 has a cost of E’, where
PartQ EEE −=′ ,  is the number 

of edges in the partition Q. Now the PageRank values for the 

partition P are obtained by scaling the PageRank values with 

respect to ranks in the previous time instance. This step requires a 

cost of V’’, where V’’ is number of vertices in partition P. Now 

using these scaled values and the naïve approach PageRank for 

the vertices in partition Q is calculated. This step (including that 

required to scale the border nodes) requires a cost of nE + E’ +Vb, 

where n is number of iterations required for PageRank values to 

converge and E’ is again number of edges in partition Q. Thus, 

the total cost for incremental PageRank can be summed up to be 

O(2E’+V’’+nE+Vb). 

5. EXPERIMENTAL RESULTS  
To test our theoretical approach on real datasets, we needed 

graphs at two different time instances to compute the incremental 

version. We performed the experiments on two different web 

sites- the Computer Science website and the Institute of 

Technology website at the University of Minnesota. We 

performed the experiments at different time intervals to study the 

change and effect of the incremental computation. For the 

Computer Science website our analysis was done at a time 

interval of two days, eight days and ten days. We also performed 

the analysis for a time interval of two days for the Institute of 

technology web site. 

In our experiments we also simulated the focused crawling, by not 

considering the Web pages that have very low PageRank into our 

graph construction and PageRank Computation. This was to 

emulate the real world scenario where not all pages are crawled. 

We wanted to analyze, how the incremental approach performs 

when pages with low PageRank are not crawled. 

We used the following approximate measure to compare the 

computational costs of our method versus the naïve method. 

 

Number of Times Faster = Num of Iterations(PR)/(1 + (fraction 

of changed portion)*Number of iterations(IPR))  

   

The intuition behind the measure was how fast the convergence 

threshold will be reached computing PageRank incrementally 

versus computing PageRank in a naïve method for the whole 

graph. The convergence threshold that was chosen on our 

experiments was 1x10-8 

The experimental results are presented in Figure 5. These results 

are from actual experiments conducted on the Computer Science 

and Institute of Technology websites. For the Computer Science 

website, in the first time interval of eight days, there seemed to be 

a significant change in the structure of the Website – about 60% 

of the pages had changed their link structure. We found out such a 

sea change occurred because a whole subgraph that contained the 

documentation for Matlab help was removed. The incremental 

approach still however, performed 1.86 as much faster as the 

naïve PageRank. Similarly, for a period of ten days the 

incremental approach performed around 1.75 times faster. For a 

period of two days the improvement was 8.65 times faster. These 

results are for the case of an unfocussed crawl. The results for 

focused crawl for the CS Website were better. In the first case, 

when the time interval was eight days, the improvement was 1.9 

times and when the time interval was 10 days, the improvement 

was 1.76 times. For a period of two days the improvement with 

IPR(G,Vu,Vc) :-

Step 1 – Initialize the list VQ

Step 2 – Pop a Vertex N from  Vc

2.1 For all the children of N 

if children of N    list Vu

remove them from Vu

push them in Vc

2.2. Push N in VQ and repeat step 2 till 

queue Vc is empty 

Step 3 – For each element in list Vu

3.1 Take the element and scale the 

previous pagerank value to get new 

pagerank value.

3.2 Look up whether any of the children, of  the 

element of Vu belong to VQ, if so remove this 

element of Vu, copy  it in Vb . 

Step 4 – Scale Border Nodes in Vb for stochastic 

property

Perform Original PageRank(VQ Vb)
U

∈



focused crawling was 9.88 times. Thus, it suggests that focused 

crawling can also improve the computational costs of the 

incremental algorithm. 

Computer Science Website

Focussed Crawl

July19 vs July 27th

percentage of change = 53.1429% L1 -norm  : 4.38609e-05 NumTimes faster= 1.900538

10 iteration(s) for inc_pagerank 

12 iteration(s) for actual pagerank 

July 27th vs July 29th

percentage of change = 5.25071% L1-norm  : 1.60988e-07 NumTimes faster= 9.885481

6 iteration(s) for inc_pagerank 

13 iteration(s) for actual pagerank 

July19th vs 29th

percentage of change = 58.3493% L1-norm  : 4.38692e-05 NumTimes faster= 1.755669

10 iteration(s) for inc_pagerank 

12 iteration(s) for actual pagerank 

Unfocussed Crawl

July19 vs July 27th

percentage of change = 60.2997% norm  : 1.70552e-07 NumTimes faster= 1.867123

9 iteration(s) for inc_pagerank 

12 iteration(s) for actual pagerank 

July 27th vs July 29th

percentage of change = 5.56966% norm  : 1.51747e-07 NumTimes faster= 8.659162

9 iteration(s) for inc_pagerank 

13 iteration(s) for actual pagerank 

July 19th vs July 29th

percentage of change = 65.0586% norm  : 1.60377e-07 NumTimes faster= 1.749526

9 iteration(s) for inc_pagerank 

12 iteration(s) for actual pagerank 

Institute of Technology Website

Unfocussed/Focussed Crawl

July 30th vs Aug 1st

percentage of change = 0% norm  : 8.15708e-07 NumTimes faster= 11

0 iteration(s) for inc_pagerank

11 iteration(s) for actual pagerank  

 

Figure 5. Comparison of results for Incremental PageRank Algorithm versus Naïve PageRank Algorithm for the following 

departments at the University: (a) Computer Science Website, (b) Institute of Technology Website.

The Institute of technology website typically represented a 

website that doesn’t change too often. The change over a period 

of two days in the Web Structure was none. Since there was no 

change detected, there was no necessity to compute the PageRank 

for the graph at the new time instance. And by our measure, it was 

11 times faster. Since, there was no change in the graph structure, 

the improvements for the case of focused crawling and 

unfocussed crawling remain the same. 

6. RELATED WORK 
Determining the quality of a page has been the primary focus of 

Web mining research community and various measures and 

metrics have been developed for the same for different 

applications. PageRank [3] was developed by Google founders, 

for ranking hypertext documents.  The overall idea is described in 

detail in Section 2. The other popular metric based on link 

analysis is hub and authority scores. From a graph theoretic point 

(a) 

(b) 



of view, hubs and authorities can be interpreted as ‘fans’ and 

‘centers’ in a bipartite core of a Web graph. The hub and 

authority scores computed for each Web page indicate the extent 

to which the Web page serves as a ‘hub’ pointing to good 

‘authority’ pages or the extent to which the Web page serves as an 

‘authority’ on a topic pointed to by good hubs. The hub and 

authority scores for a page are not based on a formula for a single 

page, but are computed for a set of pages related to a topic using 

an iterative procedure, namely HITS algorithm [2].  A detail study 

of link analysis techniques can be found in [13, 14, 15, 21, 22]. 

There have been a number of extensions of the basic PageRank 

that have been proposed, such as including the topic information 

of page to determine the topic relevance. One approach [17] was 

to precalculate different PageRank vectors for a given number of 

terms, focusing on the subset of pages that contain the term of 

interest. The search results for a query would be ranked according 

to scores that were precalculated for the collection of terms that 

contain the query words. Another approach for introducing topic 

relevance was addressed by Haveliwala et al [9]. In the approach, 

PageRank is calculated for all pages according to each category of 

the Open directory project. The pages that belong to a particular 

category have higher scores for the PageRank values computed 

for that category. Ranking of results of a search query is done 

according to scores of the category in which the query terms 

belong to. Oztekin et al [16], proposed Usage Aware PageRank. 

Their modified PageRank metric incorporates usage information. 

Weights are assigned to a link based on number of traversals on 

that link, and thus modifying the probability that a user traverses a 

particular link. Also the probability to arrive at a page directly is 

computed using the usage statistics. 

There has been a variety of work on improving on the PageRank 

computation. I/O efficient techniques for computing PageRank 

has been addressed by Haveliwala et al [8] and Yen Yu Chen[10]. 

The basic of their approach is to partition the link file of the 

whole graph into partitions such that destination vector of each 

partition fits into the main memory. Kamvar et al in [6] have 

suggested quadratic extrapolation techniques to accelerate the 

convergence of PageRank. In a different paper [7], they have also 

suggested a way of exploiting the block-structure of the Web to 

compute Block Ranks for different domains and compute local 

PageRanks.  Chein et al [19] have also exploited the idea of 

evolving graph to compute PageRank. However, their idea is to 

collapse the unchanged portion to a single node and compute the 

PageRank for the new graph. This leads to approximate PageRank 

values. 

In out paper, we provide an approach to incrementally compute 

PageRanks. We do so by exploiting the underlying first order 

Markov model on which PageRank is based and partition the 

graph in such a manner so that we compute the exact PageRank 

values for a graph at a new time instance. Incremental 

computations are very useful to study the evolution of graphs. The 

significance of to study the temporal behavior of graph is 

addressed in our earlier paper [4]. 

7. CONCLUSIONS AND FUTURE 
DIRECTIONS 
In this paper we have provided an approach to compute PageRank 

incrementally for evolving graphs. The key observation is that 

evolution of the Web graph is slow, with large parts of it 

remaining unchanged. By carefully delineating the changed and 

unchanged portions, and the dependence across them, it is 

possible to develop efficient algorithms for computing the 

PageRank metric incrementally. We follow a generic approach 

that can be applied to any algorithm that has been developed for 

efficient computation of the PageRank metric. Experimental 

results show significant speed up in computation of PageRank 

using our approach as compared to naive approach. Also, in the 

incremental approach, if the partitioned sub-graph that has 

changed is small, the whole PageRank computation might perhaps 

be performed in main memory. 

Many issues remain to be investigated. In this paper we have 

proposed an incremental approach that applies to graph metrics 

based on first order Markov model, such as PageRank. An area to 

explore is for similar incremental approaches for other link based 

metrics. We have provided a method for an efficient incremental 

computation of relevance metric for a single node level. However, 

to study graph evolution, we would need measures and metrics 

defined at the level of a subgraph and a whole graph, and efficient 

methods to incrementally compute them 
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10. APPENDIX: PROOF OF ALGORITHM’S 

SCALABILITY 

Consider a Graph ),( EVG  

Let order of graph G  be n  

Let weight of a node iv   be iw , Vvi ∈∀  

Also, Ww
n

i

i =∑
=1

, sum of the weights of all nodes. 

PageRank score calculation is analogous to the convergence of a 

first order Markov chain. 

For calculation of PageRank we perform the operation, 

 1+= ii MMT  

over a number of iterations. Here, T  is the transition matrix and 

iM  is the PageRank score vector at the end of ith  iteration. 

We also have initial PageRank score vector, 
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For a node s we have,     
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where, fd  is the dampening factor. 

 1,...,2,111 kixi =∀   are all those nodes that have at 

least one outgoing edge to s  

For the sake of representation let us assume that all those nodes 

that have outgoing edge(s) to a node imx  are represented as 

)1( +mix . 

Now, if l  iterations are required for convergence towards the 
PageRank score vector then we have, 
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Notice that the term W  can be taken out as common. Thus, we 

have, 
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Now, suppose graph ),( EVG  changes to ),( ''' EVG  

However the changes that occur are such that there is no change 

in the structure and weight of the of the node s  as well as no 
change in the in the structure and weight of all the ancestors of the 

node s  ……………… [condition (1)]. 

Now following along the lines of the previous graph we have, for 

the new graph 
'G  

'

'
' )(

W
sPR

α
=  

The terms α and 
'α  depend mainly only on the structure of the 

graph and the weights of, node s and its ancestors, from 

condition(1)  we can see that both of them are identical in the 

graphs G  and 
'G for the node s , assuming that the same 

dampening factor is used for both the pagerank calculations. 

Thus, 
'αα =  

)()( '' sPRWsPRW ⋅=⋅∴  

)()()(
'

' sPR
W

W
sPR =⇒ ………….result(1) 

Thus, the new pagerank score of any node x  in 'G  is simply 

obtained by scaling the pagerank of score of the same node x  in 

G  by a factor of )( 'WW  provided that condition(1) holds 

for the node x  and the same dampening factors are used for both 
pagerank calculations. 

In most cases all nodes of a graph are equally likely here we have, 

1....321 ===== nwwww  

)(GnW =∴ , 

where )(Gn  is the order of the graph G . 

When this graph changes to a graph 
'G  we have result(1); in 

this case as, 

)(
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)(
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'
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Gn
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From the above result it is also trivial to deduce that a change in a 

node influences the pagerank values of all its descendents. 

 


