
Incremental Page Rank Computation on Evolving Graphs
Prasanna Desikan

Dept. of Computer Science
University of Minnesota
Minneapolis, MN 55455

USA

desikan@cs.umn.edu

Nishith Pathak

Dept. of Computer Science
University of Minnesota
Minneapolis, MN 55455

USA

npathak@cs.umn.edu

Jaideep Srivastava

Dept. of Computer Science
University of Minnesota
Minneapolis, MN 55455

USA

srivasta@cs.umn.edu

Vipin Kumar

Dept. of Computer Science
University of Minnesota
Minneapolis, MN 55455

USA

kumar@cs.umn.edu

ABSTRACT
Link Analysis has been a popular and widely used Web mining

technique, especially in the area of Web search. Various ranking

schemes based on link analysis have been proposed, of which the

PageRank metric has gained the most popularity with the success

of Google. Over the last few years, there has been significant

work in improving the relevance model of PageRank to address

issues such as personalization and topic relevance. In addition, a

variety of ideas have been proposed to address the computational

aspects of PageRank, both in terms of efficient I/O computations

and matrix computations involved in computing the PageRank

score. The key challenge has been to perform computation on

very large Web graphs. In this paper, we propose a method to

incrementally compute PageRank for a large graph that is

evolving. We note that although the Web graph evolves over

time, its rate of change is rather slow. When compared to its size.

We exploit the underlying principle of first order markov model

on which PageRank is based, to incrementally compute PageRank

for the evolving Web graph. Our experimental results show

significant speed up in computational cost, the computation

involves only the (small) portion of Web graph that has

undergone change. Our approach is quite general, and can be used

to incrementally compute (on evolving graphs) any metric that

satisfies the first order Markov property.

Keywords
Link Analysis, Web Search, PageRank, Incremental Algorithms

1. INTRODUCTION
The importance of link analysis on the Web graph has gained

significant prominence after the advent of Google [1]. The key

observation is that a hyperlink from a source page to a destination

page serves as an endorsement of the destination page by the

(author of the) source page on some topic. This idea has been

exploited by various researchers and has resulted in a variety of

hyperlink based ranking metrics for ranking of Web Pages.

Kleinberg’s Hubs and Authority [2] and Google’s Pagerank [3]

are the most popular among such metrics. A variety of

modifications and improvements to these approaches have been

developed in recent years[6,7,8,9,10].

Link analysis techniques have adopted different knowledge

models for the measures developed for various applications on the

Web [15]. Kleinberg’s Hubs and Authority is based on the

observation that the Web graph has a number of bipartite cores

[2], while Google’s PageRank is based on the observation that a

user’s browsing of the Web can be approximated as a first order

markov model [3]. Giles, et al [5] have used network flow models

to identify web communities. Thus, a variety of models have been

used to measure different properties of the Web Graph at a given

time instance. Success of Google has signified the importance of

Pagerank as a ranking metric. This has also led to a variety of

modifications and improvisations of the basic PageRank metric.

These have either focused on changing the underlying model or

on reducing the computation cost.

Another important dimension of Web mining is the evolution of

the Web graph [4]. The Web is changing over time, and so is the

users’ interaction on (and with) the Web, suggesting the need to

study and develop models for the evolving Web Content, Web

Structure and Web Usage. The study of such evolution of the

Web would require computing the various existing measures for

the Web graph at different time instances. A straightforward

approach would be to compute these measures for the whole Web

Graph at each time instance. However, given the size of the Web

graph, this is becoming increasingly infeasible. Furthermore,, if

the percent of nodes that change during a typical time interval

when the Web is crawled by search engines is not high, a large

portion of the computation cost may be wasted on re-computing

the scores for the unchanged portion. Hence, there is a need for

computing metrics incrementally, to save on the computation

costs.

Techniques for incremental computations, to study changes in

graph structure over time, would depend on the underlying

knowledge model that defines a metric [15]. For example, the

computation of hub and authority scores is based on mutual

reinforcement of nodes, and hence a change in the indegree or

outdegree of a node may affect its score. Mutual reinforcement

makes hub and authority scores a second order model. However,

for PageRank whose random surfer model is based on the first

order markov property, the change in out degree of the node does

not affect the score of the node. Hence, the level of penetration of

change in scores due to a change in the degree of a node is not as

high in PageRank as in hub and authority scores.

In this paper, we describe an approach to compute PageRank in

an incremental fashion. We exploit the underlying first order

markov model1 property of the metric, to partition the graph

1 The property that the PageRank score of a page depends only on the

PageRank scores of the pages pointing to it.

Copyright is held by the author/owner(s).

WWW 2005, May 10--14, 2005, Chiba, Japan.

into two portions such one of them is unchanged since the last

computation, and it has only outgoing edges to the other partition.

Since there are no coming edges from the other partition, the

distribution of PageRank values of the nodes in this partition will

not be affected by the nodes in the other partition. The other

partition is the rest of the graph, which has undergone changes

since the last time the metric was computed. Figure 1 gives an

overview of our approach and explains the difference between

related work and the work in this paper. This paper is organized

as follows. In Section 2, we give an introduction to the basic

PageRank metric and the various issues involved in its

computation. Section 3 gives an overview of our approach to

incrementally compute PageRank for evolving Web graphs. We

describe the Incremental PageRank Algorithm in Section 4 and

present our experimental results in Section 6. Section 7 discusses

the related work and places our work in context. Finally, in

Section 8 we conclude the and provide directions for future work.

Figure 1. Overview of the Proposed Approach.

2. PAGERANK
PageRank is a metric for ranking hypertext documents that

determines their quality. It was originally developed by Page et

al. [3] for the popular search engine, Google [1]. The key idea is

that a page has high rank if it is pointed to by many highly ranked

pages. Thus, the rank of a page depends upon the ranks of the

pages pointing to it. The rank of a page p can thus be written as:

Here, n is the number of nodes in the graph and OutDegree(q) is

the number of hyperlinks on page q. Intuitively, the approach can

be viewed as a stochastic analysis of a random walk on the Web

graph. The first term in the right hand side of the equation

corresponds to the probability that a random Web surfer arrives at

a page p from somewhere, i.e. (s)he could arrive at the page by

typing the URL or from a bookmark, or may have a particular

page as his/her homepage. d would then be the probability that a

random surfer chooses a URL directly – i.e. typing it, using the

bookmark list, or by default – rather than traversing a link.

Finally, 1/n is the uniform probability that a person chooses page

p from the complete set of n pages on the Web. The second term

in the right hand side of the equation corresponds to a factor

contributed by arriving at a page by traversing a link. 1- d is the

probability that a person arrives at the page p by traversing a link.

The summation corresponds to the sum of the rank contributions

made by all the pages that point to the page p. The rank

contribution is the PageRank of the page multiplied by the

probability that a particular link on the page is traversed. So for

any page q pointing to page p, the probability that the link

pointing to page p is traversed would be 1/OutDegree(q),

assuming all links on the page is chosen with uniform probability.

Figure 2 illustrates an example of computing PageRank of a page

P from the pages, P1, P2, P3 pointing to it.

There are other computational challenges that arise in PageRank.

Apart from the issue of scalability, the other important

computational issues are the convergence of PageRank iteration

and the handling of dangling nodes. The convergence of

PageRank is guaranteed only if the Web graph is strongly

connected and is aperiodic. To ensure the condition of strong

connectedness, the dampening factor is introduced, which assigns

a uniform probability to jumping to any page. In a graph theoretic

sense it is equivalent of adding an edge between every pair of

vertices with a transition probability of d/n. The aperiodic

property is also guaranteed for the Web graph.

Another important issue in computation of PageRank is the

handling of dangling nodes. Dangling nodes are nodes with no

outgoing edge. These nodes tend to act as rank sink, as there is no

way for rank to be distributed among the other nodes. The

suggestion made initially to address this problem, was to

iteratively remove all the nodes that have an outdegree of zero,

− + =

G p q

q PR
p

) , (
) (

)
) 1 ∑

∈
⋅

q OutDegree
d

n
d PR

(
() ((1)

G1

Link Analysis

PageRank

G2

Link Analysis

PageRank

Diff(G1,G2)

G2
’ G2

’’

Scale

Merge

Partition(G2)

Incremental Approach (this paper)

Link Analysis

and compute the PageRank on the remaining nodes [3]. The

reasoning here was that dangling nodes do not affect the

PageRank of other nodes. Another suggested approach was to

remove the dangling nodes while computation initially and add

them back during the final iterations of the computation [7]. Other

popular approaches to handling dangling nodes, is to add self

loops to dangling nodes[11,20] and to add links to all nodes in the

graph, G from each of the dangling node to distribute the

PageRank of the dangling node uniformly among all nodes[3].

Figure 2. Illustrative example of PageRank.

3. PROPOSED APPROACH
In the proposed approach, we exploit the underlying first order

Markov Model on which the computation of PageRank is based.

It should be noted that PageRank of a page depends only on the

pages that point to it and is independent of the outdegree of the

page. The principle idea of our approach is to find a partition such

that there are no incoming links from a partition, Q (includes all

changed nodes) to a partition, P. In such a case the PageRank of

the partition, Q is computed separately and later scaled and

merged with the rest of the graph to get the actual PageRanks of

vertices in Q. The scaling is done with respect to the number of

vertices in partition, P-`n(P) to the total number of nodes in the

whole graph, G –n(P UQ)=V. The PageRank of the partition Q is

computed, taking the border vertices that belong to the partition P

and have edges pointing to the vertices in partition Q. The

PageRank values of partition P are obtained by simple scaling.

This basic idea of partitioning the Web graph, and computing the

PageRanks for individual partitions and merging works extremely

well when incrementally computing PageRank for a Web graph

that has evolved over time. Given, the Web graphs at two

consecutive time instances, we first determine the portion of the

graph that has changed. A vertex is declared to be changed when

a new edge added or deleted between the vertex and any other

vertex belonging to the graph or if the weight of a node or an edge

weight adjoined to that node has changed. Once the changed

portion is defined, for each page we determine iteratively all the

pages that will be affected by its PageRank. In this process, we

include pages that remain unchanged but whose; PageRank gets

affected due to the pages that have changed. in partition Q. The

rest of the unchanged graph is in partition P.

The whole concept is illustrated in Figure 3. Let the graph at the

new time be G(V,E), and

 =
b
v Vertex on the border of the left partition from which there

are only outgoing edges to the right partition.

unchanged remainswhich partition left on the vertex =
ul
v

The set of unchanged vertices can be represented as,

{ }V
u
v

u
v

u
V ∈∀= , where

u
v is a vertex which has not

changed.

 =
ur
v Vertex on the right partition which remains unchanged,

but whose PageRank is affected by vertices in the changed

component.

 =
cr
v Vertex on the right partition which has changed, or has

been a new addition.

Therefore, the set of changed vertices can be represented as,

{ }V
cr
v

cr
v

c
V ∈∀= ,

In order to compute PageRank incrementally, for every vertex

in
c
V , which is a set of changed vertices, perform a BFS to find

out all vertices reachable from this set. The PageRank of these

vertices will be affected by vertices in
cr
V . These set of vertices

can be denoted by the set,

{ }V
ur
v

ur
v

ur
V ∈∀= ,

Similarly, the set of vertices
b
v can be denoted as,

{ }V
b
v

b
v

b
V ∈∀= ,

Hence the set of vertices whose PageRank has to be computed in

the incremental approach corresponds to the partition Q described

above, and can be denoted as,

b
V

ur
V

c
V

Q
V UU=

Let an edge set,
Q
E , be defined as set of edges,

{ }
Q
Vyx

yx
e

Q
E ∈= ,|

,
, where

yx
e
,
represents a directed

edge from vertex x to vertex y.

The set of partitioning edges can be defined as,

{ }
Q
Vy

P
Vx

yx
e

Part
E ∈∈= ,|

,
,

P1

P2

P3

P

)1(

1

POutDeg

)2(

1

POutDeg

)3(

1

POutDeg

N
d

P1

P2

P3

P

)1(

1

POutDeg

)2(

1

POutDeg

)3(

1

POutDeg

N
d
d/N









++−+=

)3(

)3(

)2(

)2(

)1(

)1(
)1()(

POutDeg

PPR

POutDeg

PPR

POutDeg

PPR
dNdPPR

Figure 3. Incremental Computation of PageRank.

The vertices in partition P can be defined as,

b
V

Q
VV

P
V +−=

And the edges that correspond to this partition can be defined as,

{ }
P
Vyx

yx
e

P
E ∈= ,|

,
, where

yx
e
,
represents a directed

edge from vertex x to vertex y.

Thus, the given graph ()EVG , can be partitioned into two

graphs namely, ()
P
E

P
V

P
G , and 







Q
E

Q
V

Q
G , .

Now, since we know that the graph ()
P
E

P
V

P
G , has remained

unchanged from the previous time instance and the PageRank of

vertices in this partition is not affected by the partition,








Q
E

Q
V

Q
G , . Now a change in a node induces a change in

the distribution of PageRank values for all its children and since

all the nodes that are influenced by changes are already separated

in the partition Q. The distribution of PageRank values for the

nodes in partition GP is going to be the same as it was for the

corresponding nodes in the previous time instance G’. Thus the

PageRank of the vertices in partition P could be calculated by

simply scaling the scores from the previous time instance. And

the scaling factor will be
()

()Gn
Gn ′

, where G′ is the graph at

the previous time instance. And the PageRank for the partition,








Q
E

Q
V

Q
G , can be computed using the regular PageRank

Algorithm and scaled for the size of the graph, G. Since the

percent change in the structure of the Web is not high, the

computation of the changed portion will be a smaller graph

compared to the whole Web. And the existence of such partitions

is also suggested by the bow-tie model of the Web [12], where

about 27% of Web contributes to the influx. It should also be

noted that while computing PageRanks for the changed portion, in

order to maintain the stochastic property of the incremental

matrix, we have to scale the PageRanks of nodes in Vb such that

they correspond to the number of nodes for which the PageRank

is actually computed. Also taken into account is the outdegree of

these border nodes that have edges in partition P, since the way

they distribute their PageRanks to nodes in partition Q, will

depend on their outdegree.

4. INCREMENTAL ALORITHM
In this section, we will describe the incremental algorithm to

compute PageRank. The initial step is to read the graph at a new

instance and determine the vertices that have changed. This does

not require additional time as it can be computed as we read the

new graph. Thus, after reading the graph, we can assume that we

are given two sets of vertices – one containing the vertices which

ulv

bv

urv

crv

Vertex on the border of left

partition from which there are

outgoing edges to the right

partition

Vertex on left partition, which

remains unchanged

Vertex on right partition, which

remains unchanged but whose

PageRank gets affected by

vertices in changed partition

Vertex on right partition, which

has changed or has been added.

Partition

The distribution of

PageRanks of the vertices in

the left remains unchanged,

since their structure has not

changed and there are no

incoming links from the right

partition.

The distribution of

PageRanks of the vertices

changes and also depends

on the PageRanks of the

border nodes of the left

partition.

Vertices whose edges have

not changed

Vertices whose edges have

not changed

have changed from a previous time instance and the other

containing vertices that have remain unchanged. Hence, the input

to the algorithm is the graph G, and the two lists Vc and Vu.. The

outline of the algorithm is shown in Figure 3. We will describe

each step briefly:

Step 1 - Initialize a list VQ

Step 2 - A change in a vertex induces a change in the PageRank

distribution of all its children. All such changed vertices are in the

queue Vc. In this step, the list of “changed vertices” is extended to

a partition to include all descendents of the initial list of “changed

vertices”. All these vertices are pushed into the list Q2.

Step 3 – For the remaining vertices are there is no change in their

PageRank distribution. The New PageRank is simply obtained by

scaling the previous PageRank scores. The scaling factor is

simply:

()
()Gn

Gn ′
=Order of graph at previous time instance/Order of

the graph at the present time instance.

Also all those vertices from this set of unchanged vertices that

point to a changed vertex, will influence the PageRank value of

that changed vertex, hence these too must be included in the list

VQ as their PageRank scores will be required for computing the

PageRank scores for the changed vertices.

Step 4 – Now original PageRank computation algorithm along

with steps taken to ensure stochastic property of transition matrix

is performed on the nodes that are in Q2 and colored violet (i.e.

nodes which have changed) to get the new PageRank values for

these changed nodes.

Thus, we end up localizing the changed partition to a certain sub-

graph of the web which consists of all changed nodes and then

basic PageRank algorithm is performed only on this changed sub-

graph. The PageRank value for the rest of the nodes is simply a

matter of scaling the previous values.

Figure 4. Incremental PageRank Algorithm.

Step 2 has a cost of E’, where
PartQ EEE −=′ , is the number

of edges in the partition Q. Now the PageRank values for the

partition P are obtained by scaling the PageRank values with

respect to ranks in the previous time instance. This step requires a

cost of V’’, where V’’ is number of vertices in partition P. Now

using these scaled values and the naïve approach PageRank for

the vertices in partition Q is calculated. This step (including that

required to scale the border nodes) requires a cost of nE + E’ +Vb,

where n is number of iterations required for PageRank values to

converge and E’ is again number of edges in partition Q. Thus,

the total cost for incremental PageRank can be summed up to be

O(2E’+V’’+nE+Vb).

5. EXPERIMENTAL RESULTS
To test our theoretical approach on real datasets, we needed

graphs at two different time instances to compute the incremental

version. We performed the experiments on two different web

sites- the Computer Science website and the Institute of

Technology website at the University of Minnesota. We

performed the experiments at different time intervals to study the

change and effect of the incremental computation. For the

Computer Science website our analysis was done at a time

interval of two days, eight days and ten days. We also performed

the analysis for a time interval of two days for the Institute of

technology web site.

In our experiments we also simulated the focused crawling, by not

considering the Web pages that have very low PageRank into our

graph construction and PageRank Computation. This was to

emulate the real world scenario where not all pages are crawled.

We wanted to analyze, how the incremental approach performs

when pages with low PageRank are not crawled.

We used the following approximate measure to compare the

computational costs of our method versus the naïve method.

Number of Times Faster = Num of Iterations(PR)/(1 + (fraction

of changed portion)*Number of iterations(IPR))

The intuition behind the measure was how fast the convergence

threshold will be reached computing PageRank incrementally

versus computing PageRank in a naïve method for the whole

graph. The convergence threshold that was chosen on our

experiments was 1x10-8

The experimental results are presented in Figure 5. These results

are from actual experiments conducted on the Computer Science

and Institute of Technology websites. For the Computer Science

website, in the first time interval of eight days, there seemed to be

a significant change in the structure of the Website – about 60%

of the pages had changed their link structure. We found out such a

sea change occurred because a whole subgraph that contained the

documentation for Matlab help was removed. The incremental

approach still however, performed 1.86 as much faster as the

naïve PageRank. Similarly, for a period of ten days the

incremental approach performed around 1.75 times faster. For a

period of two days the improvement was 8.65 times faster. These

results are for the case of an unfocussed crawl. The results for

focused crawl for the CS Website were better. In the first case,

when the time interval was eight days, the improvement was 1.9

times and when the time interval was 10 days, the improvement

was 1.76 times. For a period of two days the improvement with

IPR(G,Vu,Vc) :-

Step 1 – Initialize the list VQ

Step 2 – Pop a Vertex N from Vc

2.1 For all the children of N

if children of N list Vu

remove them from Vu

push them in Vc

2.2. Push N in VQ and repeat step 2 till

queue Vc is empty

Step 3 – For each element in list Vu

3.1 Take the element and scale the

previous pagerank value to get new

pagerank value.

3.2 Look up whether any of the children, of the

element of Vu belong to VQ, if so remove this

element of Vu, copy it in Vb .

Step 4 – Scale Border Nodes in Vb for stochastic

property

Perform Original PageRank(VQ Vb)
U

∈

focused crawling was 9.88 times. Thus, it suggests that focused

crawling can also improve the computational costs of the

incremental algorithm.

Computer Science Website

Focussed Crawl

July19 vs July 27th

percentage of change = 53.1429% L1 -norm : 4.38609e-05 NumTimes faster= 1.900538

10 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

July 27th vs July 29th

percentage of change = 5.25071% L1-norm : 1.60988e-07 NumTimes faster= 9.885481

6 iteration(s) for inc_pagerank

13 iteration(s) for actual pagerank

July19th vs 29th

percentage of change = 58.3493% L1-norm : 4.38692e-05 NumTimes faster= 1.755669

10 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

Unfocussed Crawl

July19 vs July 27th

percentage of change = 60.2997% norm : 1.70552e-07 NumTimes faster= 1.867123

9 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

July 27th vs July 29th

percentage of change = 5.56966% norm : 1.51747e-07 NumTimes faster= 8.659162

9 iteration(s) for inc_pagerank

13 iteration(s) for actual pagerank

July 19th vs July 29th

percentage of change = 65.0586% norm : 1.60377e-07 NumTimes faster= 1.749526

9 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

Institute of Technology Website

Unfocussed/Focussed Crawl

July 30th vs Aug 1st

percentage of change = 0% norm : 8.15708e-07 NumTimes faster= 11

0 iteration(s) for inc_pagerank

11 iteration(s) for actual pagerank

Figure 5. Comparison of results for Incremental PageRank Algorithm versus Naïve PageRank Algorithm for the following

departments at the University: (a) Computer Science Website, (b) Institute of Technology Website.

The Institute of technology website typically represented a

website that doesn’t change too often. The change over a period

of two days in the Web Structure was none. Since there was no

change detected, there was no necessity to compute the PageRank

for the graph at the new time instance. And by our measure, it was

11 times faster. Since, there was no change in the graph structure,

the improvements for the case of focused crawling and

unfocussed crawling remain the same.

6. RELATED WORK
Determining the quality of a page has been the primary focus of

Web mining research community and various measures and

metrics have been developed for the same for different

applications. PageRank [3] was developed by Google founders,

for ranking hypertext documents. The overall idea is described in

detail in Section 2. The other popular metric based on link

analysis is hub and authority scores. From a graph theoretic point

(a)

(b)

of view, hubs and authorities can be interpreted as ‘fans’ and

‘centers’ in a bipartite core of a Web graph. The hub and

authority scores computed for each Web page indicate the extent

to which the Web page serves as a ‘hub’ pointing to good

‘authority’ pages or the extent to which the Web page serves as an

‘authority’ on a topic pointed to by good hubs. The hub and

authority scores for a page are not based on a formula for a single

page, but are computed for a set of pages related to a topic using

an iterative procedure, namely HITS algorithm [2]. A detail study

of link analysis techniques can be found in [13, 14, 15, 21, 22].

There have been a number of extensions of the basic PageRank

that have been proposed, such as including the topic information

of page to determine the topic relevance. One approach [17] was

to precalculate different PageRank vectors for a given number of

terms, focusing on the subset of pages that contain the term of

interest. The search results for a query would be ranked according

to scores that were precalculated for the collection of terms that

contain the query words. Another approach for introducing topic

relevance was addressed by Haveliwala et al [9]. In the approach,

PageRank is calculated for all pages according to each category of

the Open directory project. The pages that belong to a particular

category have higher scores for the PageRank values computed

for that category. Ranking of results of a search query is done

according to scores of the category in which the query terms

belong to. Oztekin et al [16], proposed Usage Aware PageRank.

Their modified PageRank metric incorporates usage information.

Weights are assigned to a link based on number of traversals on

that link, and thus modifying the probability that a user traverses a

particular link. Also the probability to arrive at a page directly is

computed using the usage statistics.

There has been a variety of work on improving on the PageRank

computation. I/O efficient techniques for computing PageRank

has been addressed by Haveliwala et al [8] and Yen Yu Chen[10].

The basic of their approach is to partition the link file of the

whole graph into partitions such that destination vector of each

partition fits into the main memory. Kamvar et al in [6] have

suggested quadratic extrapolation techniques to accelerate the

convergence of PageRank. In a different paper [7], they have also

suggested a way of exploiting the block-structure of the Web to

compute Block Ranks for different domains and compute local

PageRanks. Chein et al [19] have also exploited the idea of

evolving graph to compute PageRank. However, their idea is to

collapse the unchanged portion to a single node and compute the

PageRank for the new graph. This leads to approximate PageRank

values.

In out paper, we provide an approach to incrementally compute

PageRanks. We do so by exploiting the underlying first order

Markov model on which PageRank is based and partition the

graph in such a manner so that we compute the exact PageRank

values for a graph at a new time instance. Incremental

computations are very useful to study the evolution of graphs. The

significance of to study the temporal behavior of graph is

addressed in our earlier paper [4].

7. CONCLUSIONS AND FUTURE
DIRECTIONS
In this paper we have provided an approach to compute PageRank

incrementally for evolving graphs. The key observation is that

evolution of the Web graph is slow, with large parts of it

remaining unchanged. By carefully delineating the changed and

unchanged portions, and the dependence across them, it is

possible to develop efficient algorithms for computing the

PageRank metric incrementally. We follow a generic approach

that can be applied to any algorithm that has been developed for

efficient computation of the PageRank metric. Experimental

results show significant speed up in computation of PageRank

using our approach as compared to naive approach. Also, in the

incremental approach, if the partitioned sub-graph that has

changed is small, the whole PageRank computation might perhaps

be performed in main memory.

Many issues remain to be investigated. In this paper we have

proposed an incremental approach that applies to graph metrics

based on first order Markov model, such as PageRank. An area to

explore is for similar incremental approaches for other link based

metrics. We have provided a method for an efficient incremental

computation of relevance metric for a single node level. However,

to study graph evolution, we would need measures and metrics

defined at the level of a subgraph and a whole graph, and efficient

methods to incrementally compute them

8. ACKNOWLEDGMENTS
We would like to thank Data Mining Research group at the

Department of Computer Science for providing valuable

suggestions. This work was been partially supported by the

ARDA Agency under contract F30602-03-C-0243 and Army

High Performance Computing Research Center contract number

DAAD19-01-2-0014. The content of the work does not

necessarily reflect the position or policy of the government and no

official endorsement should be inferred. Access to computing

facilities was provided by the AHPCRC and the Minnesota

Supercomputing Institute.

9. REFERENCES
[1] http://www.google.com

[2] J.M. Kleinberg, “Authoritative Sources in Hyperlinked
Environment”, 9th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 668-667, 1998

[3] L. Page, S. Brin, R. Motwani and T. Winograd “The
PageRank Citation Ranking: Bringing Order to the

Web” Stanford Digital Library Technologies, January

1998.

[4] P. Desikan and J. Srivastava, "Mining Temporally
Evolving Graphs", WebKDD Workshop, Seattle

(2004).

[5] Gary William Flake, Steve Lawrence, C. Lee Giles .

Efficient Identification of Web Communities. Sixth

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. August 2000,

pp. 150-160.

[6] Sepandar D. Kamvar, Taher H. Haveliwala,

Christopher D. Manning, and Gene H. Golub,

"Extrapolation Methods for Accelerating PageRank

Computations." In Proceedings of the Twelfth

International World Wide Web Conference, May,

2003.

[7] Sepandar D. Kamvar, Taher H. Haveliwala,

Christopher D. Manning, and Gene H. Golub,

"Exploiting the Block Structure of the Web for

Computing PageRank." Preprint, March, 2003

[8] Taher Haveliwala. "Efficient Computation of

PageRank," Stanford University Technical Report,

September 1999.

[9] Taher Haveliwala. "Topic-Sensitive PageRank," In
Proceedings of the Eleventh International World Wide

Web Conference, May 2002

[10] Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques
for computing pagerank. In Proc. of the 11th

International Conf. on Information and Knowledge

Management, pages 549--557, November 2002.

[11] G. Jeh and J. Widom. Scaling personalized web
search. In 12th Int. World Wide Web Conference,

2003.

[12] R. Kumar, P. Raghavan, S. Rajagopalan, D.

Sivakumar, A. Tomkins, and E. Upfal. The Web as a

graph. In ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, pages

1-10, 2000.

[13] Kemal Efe, Vijay Raghavan, C. Henry Chu, Adrienne
L. Broadwater, Levent Bolelli, Seyda Ertekin (2000),

The Shape of the Web and Its Implications for

Searching the Web, International Conference on

Advances in Infrastructure for Electronic Business,

Science, and Education on the Internet- Proceedings at

http://www.ssgrr.it/en/ssgrr2000/proceedings.htm,

Rome. Italy, Jul.-Aug. 2000.

[14] Monika Henzinger, Link Analysis in Web Information
Retrieval, ICDE Bulletin Sept 2000, Vol 23. No.3.

[15] P. Desikan, J. Srivastava, V. Kumar, P.-N. Tan,
“Hyperlink Analysis – Techniques & Applications”,

Army High Performance Computing Center Technical

Report, 2002.

[16] B.U. Oztekin, L. Ertoz and V. Kumar, “Usage Aware
PageRank”, World Wide Web Conference, 2003.

[17] M. Richardson and P. Domingos. The intelligent
surfer: Probabilistic combination of link and content

information in pagerank. In Advances in Neural

Information Processing Systems, 2002.

[18] J. Srivastava, P.Desikan and V.Kumar. "Web Mining -
Concepts, Applications and Research Directions."

Book Chapter in Data Mining: Next Generation

Challenges and Future Directions, MIT/AAAI 2004.

[19] S. Chien, C. Dwork, S. Kumar, and D. Sivakumar.
Towards exploiting link evolution. Unpublished

manuscript, 2001.

[20] Eiron, N., McCurley, K., Tomlin, J.: Ranking the Web
frontier. In: Proc. 13th conference on World Wide

Web, ACM Press (2004) 309—318

[21] S.Acharyya and J.Ghosh, “A Maximum Entropy
Framework for Link Analysis on Directed Graphs”, in

LinkKDD2003, pp 3-13, Washington DC, USA, 2003

[22] C. Ding, H. Zha, X. He, P. Husbands and H.D. Simon,
“Link Analysis: Hubs and Authorities on the World

Wide Web” May 2001. LBNL Tech Report 47847.

10. APPENDIX: PROOF OF ALGORITHM’S

SCALABILITY

Consider a Graph),(EVG

Let order of graph G be n

Let weight of a node iv be iw , Vvi ∈∀

Also, Ww
n

i

i =∑
=1

, sum of the weights of all nodes.

PageRank score calculation is analogous to the convergence of a

first order Markov chain.

For calculation of PageRank we perform the operation,

 1+= ii MMT

over a number of iterations. Here, T is the transition matrix and

iM is the PageRank score vector at the end of ith iteration.

We also have initial PageRank score vector,

































=

Ww

Ww

Ww

M

n

.

.

.

.

.

2

1

0

For a node s we have,

∑
=

−+=
1

11 1

1

)(deg
)(

)1()()(
k

i i

i
f

s
f xreeOut

xPR
d

W
w

dsPR

where, fd is the dampening factor.

 1,...,2,111 kixi =∀ are all those nodes that have at

least one outgoing edge to s

For the sake of representation let us assume that all those nodes

that have outgoing edge(s) to a node imx are represented as

)1(+mix .

Now, if l iterations are required for convergence towards the
PageRank score vector then we have,

∑
=

−+=
1

11 1

1

)(deg
)(

)1()()(
k

i i

i
f

s
f xreeOut

xPR
d

W
w

dsPR

∑
∑ ∑

=

= =
⋅

−+

−+=
1

11 1

2

12 1

2

)(deg

)}(/)..}
)(deg

({..)1()({

)1()()(

1

k

i i

k

i

kl

il

i
il

x
f

x
f

f
s

f
xreeOut

xOutdergee
xreeOutW

w
d

W

w
d

d
W

w
dsPR

ili

Notice that the term W can be taken out as common. Thus, we

have,

]
)(deg

)}(deg/)..}
)(deg

({..)1({

)1([
1

)(
1

11 1

2

12 1

21

∑
∑ ∑

=

= =

−+

−+=
k

i i

k

i

kl

il

i
il

x
fxf

ff
xreeOut

xreeOut
xreeOut

w
dwd

dd
W

sPR

il

i

W
sPR

α
=∴)(

where,
=α

]
)(deg

)}(deg/)..}
)(deg

({..)1({

)1([
1

11 1

2

12 1

21

∑
∑ ∑

=

= =

−+

−+
k

i i

k

i

kl

il

i
il

x
fxf

ff
xreeOut

xreeOut
xreeOut

w
dwd

dd

il

i

Now, suppose graph),(EVG changes to),(''' EVG

However the changes that occur are such that there is no change

in the structure and weight of the of the node s as well as no
change in the in the structure and weight of all the ancestors of the

node s ……………… [condition (1)].

Now following along the lines of the previous graph we have, for

the new graph
'G

'

'
')(

W
sPR

α
=

The terms α and
'α depend mainly only on the structure of the

graph and the weights of, node s and its ancestors, from

condition(1) we can see that both of them are identical in the

graphs G and
'G for the node s , assuming that the same

dampening factor is used for both the pagerank calculations.

Thus,
'αα =

)()('' sPRWsPRW ⋅=⋅∴

)()()(
'

' sPR
W

W
sPR =⇒ ………….result(1)

Thus, the new pagerank score of any node x in 'G is simply

obtained by scaling the pagerank of score of the same node x in

G by a factor of)('WW provided that condition(1) holds

for the node x and the same dampening factors are used for both
pagerank calculations.

In most cases all nodes of a graph are equally likely here we have,

1....321 ===== nwwww

)(GnW =∴ ,

where)(Gn is the order of the graph G .

When this graph changes to a graph
'G we have result(1); in

this case as,

)(
)(

)(
)(

'

' xPR
Gn

Gn
xPR =

From the above result it is also trivial to deduce that a change in a

node influences the pagerank values of all its descendents.

