
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 32–37,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Incremental Parsing with Minimal Features Using Bi-Directional LSTM

James Cross and Liang Huang

School of Electrical Engineering and Computer Science

Oregon State University

Corvallis, Oregon, USA

{crossj,liang.huang}@oregonstate.edu

Abstract

Recently, neural network approaches for

parsing have largely automated the combi-

nation of individual features, but still rely

on (often a larger number of) atomic fea-

tures created from human linguistic intu-

ition, and potentially omitting important

global context. To further reduce fea-

ture engineering to the bare minimum, we

use bi-directional LSTM sentence repre-

sentations to model a parser state with

only three sentence positions, which au-

tomatically identifies important aspects of

the entire sentence. This model achieves

state-of-the-art results among greedy de-

pendency parsers for English. We also in-

troduce a novel transition system for con-

stituency parsing which does not require

binarization, and together with the above

architecture, achieves state-of-the-art re-

sults among greedy parsers for both En-

glish and Chinese.

1 Introduction

Recently, neural network-based parsers have be-

come popular, with the promise of reducing the

burden of manual feature engineering. For ex-

ample, Chen and Manning (2014) and subsequent

work replace the huge amount of manual fea-

ture combinations in non-neural network efforts

(Nivre et al., 2006; Zhang and Nivre, 2011) by

vector embeddings of the atomic features. How-

ever, this approach has two related limitations.

First, it still depends on a large number of care-

fully designed atomic features. For example, Chen

and Manning (2014) and subsequent work such as

Weiss et al. (2015) use 48 atomic features from

Zhang and Nivre (2011), including select third-

order dependencies. More importantly, this ap-

proach inevitably leaves out some nonlocal in-

formation which could be useful. In particular,

though such a model can exploit similarities be-

tween words and other embedded categories, and

learn interactions among those atomic features, it

cannot exploit any other details of the text.

We aim to reduce the need for manual induction

of atomic features to the bare minimum, by us-

ing bi-directional recurrent neural networks to au-

tomatically learn context-sensitive representations

for each word in the sentence. This approach al-

lows the model to learn arbitrary patterns from the

entire sentence, effectively extending the general-

ization power of embedding individual words to

longer sequences. Since such a feature representa-

tion is less dependent on earlier parser decisions,

it is also more resilient to local mistakes.

With just three positional features we can build

a greedy shift-reduce dependency parser that is on

par with the most accurate parser in the published

literature for English Treebank. This effort is sim-

ilar in motivation to the stack-LSTM of Dyer et al.

(2015), but uses a much simpler architecture.

We also extend this model to predict phrase-

structure trees with a novel shift-promote-adjoin

system tailored to greedy constituency parsing,

and with just two more positional features (defin-

ing tree span) and nonterminal label embeddings

we achieve the most accurate greedy constituency

parser for both English and Chinese.

2 LSTM Position Features

f1;b1

w1;t1

f2;b2

w2;t2

f3;b3

w3;t3

f4;b4

w4;t4

f5;b5

w5;t5

Figure 1: The sentence is modeled with an LSTM

in each direction whose input vectors at each time

step are word and part-of-speech tag embeddings.

32

The central idea behind this approach is exploiting

the power of recurrent neural networks to let the

model decide what apsects of sentence context are

important to making parsing decisions, rather than

relying on fallible linguistic information (which

moreover requires leaving out information which

could be useful). In particular, we model an in-

put sentence using Long Short-Term Memory net-

works (LSTM), which have made a recent resur-

gence after being initially formulated by Hochre-

iter and Schmidhuber (1997).

The input at each time step is simply a vector

representing the word, in this case an embedding

for the word form and one for the part-of-speech

tag. These embeddings are learned from random

initialization together with other network param-

eters in this work. In our initial experiments, we

used one LSTM layer in each direction (forward

and backward), and then concatenate the output

at each time step to represent that sentence posi-

tion: that word in the entire context of the sen-

tence. This network is illustrated in Figure 1.

h1

f2
1

;b2
1

f1
1

;b1
1

w1;t1

h2

f2
2

;b2
2

f1
2

;b1
2

w2;t2

h3

f2
3

;b2
3

f1
3

;b1
3

w3;t3

h4

f2
4

;b2
4

f1
4

;b1
4

w4;t4

h5

f2
5

;b2
5

f1
5

;b1
5

w5;t5

Figure 2: In the 2-Layer architecture, the output

of each LSTM layer is concatenated to create the

positional feature vector.

It is also common to stack multiple such LSTM

layers, where the output of the forward and back-

ward networks at one layer are concatenated to

form the input to the next. We found that parsing

performance could be improved by using two bi-

directional LSTM layers in this manner, and con-

catenating the output of both layers as the posi-

tional feature representation, which becomes the

input to the fully-connected layer. This architec-

input: w0 . . . wn−1

axiom 〈ǫ, 0〉: ∅

shift
〈S, j〉 : A

〈S|j, j + 1〉 : A
j < n

rex

〈S|s1|s0, j〉 : A

〈S|s0, j〉 : A ∪ {s1
xs0}

goal 〈s0, n〉: A

Figure 3: The arc-standard dependency parsing

system (Nivre, 2008) (rey omitted). Stack S is

a list of heads, j is the start index of the queue,

and s0 and s1 are the top two head indices on S.

dependency constituency

positional s1, s0, q0 s1, s0, q0, s1.left, s0.left

labels - s0.{left, right, root, head}
s1.{left, right, root, head}

Table 1: Feature templates. Note that, remarkably,

even though we do labeled dependency parsing,

we do not include arc label as features.

ture is shown in Figure 2.

Intuitively, this represents the sentence position

by the word in the context of the sentence up to

that point and the sentence after that point in the

first layer, as well as modeling the “higher-order”

interactions between parts of the sentence in the

second layer. In Section 5 we report results us-

ing only one LSTM layer (“Bi-LSTM”) as well as

with two layers where output from each layer is

used as part of the positional feature (“2-Layer Bi-

LSTM”).

3 Shift-Reduce Dependency Parsing

We use the arc-standard system for dependency

parsing (see Figure 4). By exploiting the LSTM

architecture to encode context, we found that we

were able to achieve competitive results using only

three sentence-position features to model parser

state: the head word of each of the top two trees

on the stack (s0 and s1), and the next word on the

queue (q0); see Table 1.

The usefulness of the head words on the stack

is clear enough, since those are the two words that

are linked by a dependency when taking a reduce

action. The next incoming word on the queue is

also important because the top tree on the stack

should not be reduced if it still has children which

have not yet been shifted. That feature thus allows

33

input: w0 . . . wn−1

axiom 〈ǫ, 0〉: ∅

shift
〈S, j〉

〈S | j, j + 1〉
j < n

pro(X)
〈S | t, j〉

〈S | X(t), j〉

adjx
〈S | t | X(t1...tk), j〉

〈S | X(t, t1...tk), j〉

goal 〈s0, n〉

Figure 4: Our shift-promote-adjoin system for

constituency parsing (adjy omitted).

the model to learn to delay a right-reduce until the

top tree on the stack is fully formed, shifting in-

stead.

3.1 Hierarchical Classification

The structure of our network model after com-

puting positional features is fairly straightforward

and similar to previous neural-network parsing ap-

proaches such as Chen and Manning (2014) and

Weiss et al. (2015). It consists of a multilayer

perceptron using a single ReLU hidden layer fol-

lowed by a linear classifier over the action space,

with the training objective being negative log soft-

max.

We found that performance could be improved,

however, by factoring out the decision over struc-

tural actions (i.e., shift, left-reduce, or right-

reduce) and the decision of which arc label to as-

sign upon a reduce. We therefore use separate

classifiers for those decisions, each with its own

fully-connected hidden and output layers but shar-

ing the underlying recurrent architecture. This

structure was used for the results reported in Sec-

tion 5, and it is referred to as “Hierarchical Ac-

tions” when compared against a single action clas-

sifier in Table 3.

4 Shift-Promote-Adjoin

Constituency Parsing

To further demonstrate the advantage of our idea

of minimal features with bidirectional sentence

representations, we extend our work from depen-

dency parsing to constituency parsing. However,

the latter is significantly more challenging than the

former under the shift-reduce paradigm because:

S

VP

NP

5sports
NNS

6

3like
VBP

4 7

NP

1I
PRP

2

9 8

1shift (I) 6pro (NP)
2pro (NP) 7adjy
3shift (like) 8pro (S)
4pro (VP) 9adjx
5shift (sports)

Figure 5: Shift-Promote-Adjoin parsing example.

Upward and downward arrows indicate promote

and (sister-)adjunction actions, respectively.

• we also need to predict the nonterminal labels

• the tree is not binarized (with many unary

rules and more than binary branching rules)

While most previous work binarizes the con-

stituency tree in a preprocessing step (Zhu et

al., 2013; Wang and Xue, 2014; Mi and Huang,

2015), we propose a novel “Shift-Promote-

Adjoin” paradigm which does not require any bi-

nariziation or transformation of constituency trees

(see Figure 5). Note in particular that, in our

case only the Promote action produces a new tree

node (with a non-terminal label), while the Ad-

join action is the linguistically-motivated “sister-

adjunction” operation, i.e., attachment (Chiang,

2000; Henderson, 2003). By comparison, in pre-

vious work, both Unary-X and Reduce-L/R-X ac-

tions produce new labeled nodes (some of which

are auxiliary nodes due to binarization). Thus our

paradigm has two advantages:

• it dramatically reduces the number of possi-

ble actions, from 3X + 1 or more in previ-

ous work to 3 + X , where X is the number

of nonterminal labels, which we argue would

simplify learning;

• it does not require binarization (Zhu et al.,

2013; Wang and Xue, 2014) or compression

of unary chains (Mi and Huang, 2015)

There is, however, a more closely-related “shift-

project-attach” paradigm by Henderson (2003).

For the example in Figure 5 he would use the fol-

lowing actions:

shift(I), project(NP), project(S), shift(like),

project(VP), shift(sports), project(NP), attach,

attach.

34

The differences are twofold: first, our Promote ac-

tion is head-driven, which means we only promote

the head child (e.g., VP to S) whereas his Project

action promotes the first child (e.g., NP to S); and

secondly, as a result, his Attach action is always

right-attach whereas our Adjoin action could be ei-

ther left or right. The advantage of our method is

its close resemblance to shift-reduce dependency

parsing, which means that our constituency parser

is jointly performing both tasks and can produce

both kinds of trees. This also means that we use

head rules to determine the correct order of gold

actions.

We found that in this setting, we did need

slightly more input features. As mentioned, node

labels are necessary to distinguish whether a tree

has been sufficiently promoted, and are helpful in

any case. We used 8 labels: the current and im-

mediate predecessor label of each of the top two

stacks on the tree, as well as the label of the left-

and rightmost adjoined child for each tree. We also

found it helped to add positional features for the

leftmost word in the span for each of those trees,

bringing the total number of positional features to

five. See Table 1 for details.

5 Experimental Results

We report both dependency and constituency pars-

ing results on both English and Chinese.

All experiments were conducted with minimal

hyperparameter tuning. The settings used for

the reported results are summarized in Table 6.

Networks parameters were updated using gradi-

ent backpropagation, including backpropagation

through time for the recurrent components, using

ADADELTA for learning rate scheduling (Zeiler,

2012). We also applied dropout (Hinton et al.,

2012) (with p = 0.5) to the output of each LSTM

layer (separately for each connection in the case of

the two-layer network).

We tested both types of parser on the Penn Tree-

bank (PTB) and Penn Chinese Treebank (CTB-5),

with the standard splits for each of training, de-

velopment, and test sets. Automatically predicted

part of speech tags with 10-way jackknifing were

used as inputs for all tasks except for Chinese de-

pendency parsing, where we used gold tags, fol-

lowing the traditions in literature.

5.1 Dependency Parsing: English & Chinese

Table 2 shows results for English Penn Tree-

bank using Stanford dependencies. Despite the

minimally designed feature representation, rela-

tively few training iterations, and lack of pre-

computed embeddings, the parser performed on

par with state-of-the-art incremental dependency

parsers, and slightly outperformed the state-of-

the-art greedy parser.

The ablation experiments shown in the Table 3

indicate that both forward and backward contexts

for each word are very important to obtain strong

results. Using only word forms and no part-of-

speech input similarly degraded performance.

Parser
Dev Test

UAS LAS UAS LAS

C & M 2014 92.0 89.7 91.8 89.6

Dyer et al. 2015 93.2 90.9 93.1 90.9

Weiss et al. 2015 - - 93.19 91.18

+ Percept./Beam - - 93.99 92.05

Bi-LSTM 93.31 91.01 93.21 91.16

2-Layer Bi-LSTM 93.67 91.48 93.42 91.36

Table 2: Development and test set results for shift-

reduce dependency parser on Penn Treebank using

only (s1, s0, q0) positional features.

Parser UAS LAS

Bi-LSTM Hierarchical† 93.31 91.01

† - Hierarchical Actions 92.94 90.96

† - Backward-LSTM 91.12 88.72

† - Forward-LSTM 91.85 88.39

† - tag embeddings 92.46 89.81

Table 3: Ablation studies on PTB dev set (wsj

22). Forward and backward context, and part-of-

speech input were all critical to strong performace.

Figure 6 compares our parser with that of Chen

and Manning (2014) in terms of arc recall for var-

ious arc lengths. While the two parsers perform

similarly on short arcs, ours significantly outpe-

forms theirs on longer arcs, and more interestingly

our accuracy does not degrade much after length

6. This confirms the benefit of having a global

sentence repesentation in our model.

Table 4 summarizes the Chinese dependency

parsing results. Again, our work is competitive

with the state-of-the-art greedy parsers.

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 >14
Arc Length

0.75

0.80

0.85

0.90

0.95
R

e
ca

ll

Bi-LSTM (this work)
Chen and Manning

Figure 6: Recall on dependency arcs of various

lengths in PTB dev set. The Bi-LSTM parser is

particularly good at predicting longer arcs.

Parser
Dev Test

UAS LAS UAS LAS

C & M 2014 84.0 82.4 83.9 82.4

Dyer et al. 2015 87.2 85.9 87.2 85.7

Bi-LSTM 85.84 85.24 85.53 84.89

2-Layer Bi-LSTM 86.13 85.51 86.35 85.71

Table 4: Development and test set results for shift-

reduce dependency parser on Penn Chinese Tree-

bank (CTB-5) using only (s1, s0, q0) position fea-

tures (trained and tested with gold POS tags).

5.2 Constituency Parsing: English & Chinese

Table 5 compares our constituency parsing re-

sults with state-of-the-art incremental parsers. Al-

though our work are definitely less accurate than

those beam-search parsers, we achieve the highest

accuracy among greedy parsers, for both English

and Chinese.1,2

Parser b
English Chinese

greedy beam greedy beam

Zhu et al. (2013) 16 86.08 90.4 75.99 85.6

Mi & Huang (05) 32 84.95 90.8 75.61 83.9

Vinyals et al. (05) 10 - 90.5 - -

Bi-LSTM - 89.75 - 79.44 -

2-Layer Bi-LSTM - 89.95 - 80.13 -

Table 5: Test F-scores for constituency parsing on

Penn Treebank and CTB-5.

1The greedy accuracies for Mi and Huang (2015) are from
Haitao Mi, and greedy results for Zhu et al. (2013) come from
duplicating experiments with code provided by those authors.

2The parser of Vinyals et al. (2015) does not use an ex-
plicit transition system, but is similar in spirit since generat-
ing a right bracket can be viewed as a reduce action.

Dependency Constituency

Embeddings

Word (dims) 50 100

Tags (dims) 20 100

Nonterminals (dims) - 100

Pretrained No No

Network details

LSTM units (each direction) 200 200

ReLU hidden units 200 / decision 1000

Training

Training epochs 10 10

Minibatch size (sentences) 10 10

Dropout (LSTM output only) 0.5 0.5

L2 penalty (all weights) none 1 × 10−8

ADADELTA ρ 0.99 0.99

ADADELTA ǫ 1 × 10−7 1 × 10−7

Table 6: Hyperparameters and training settings.

6 Related Work

Because recurrent networks are such a natural fit

for modeling languages (given the sequential na-

ture of the latter), bi-directional LSTM networks

are becoming increasingly common in all sorts

of linguistic tasks, for example event detection in

Ghaeini et al. (2016). In fact, we discovered after

submission that Kiperwasser and Goldberg (2016)

have concurrently developed an extremely similar

approach to our dependency parser. Instead of ex-

tending it to constituency parsing, they also apply

the same idea to graph-based dependency parsing.

7 Conclusions

We have presented a simple bi-directional LSTM

sentence representation model for minimal fea-

tures in both incremental dependency and incre-

mental constituency parsing, the latter using a

novel shift-promote-adjoint algorithm. Experi-

ments show that our method are competitive with

the state-of-the-art greedy parsers on both parsing

tasks and on both English and Chinese.

Acknowledgments

We thank the anonymous reviewers for comments.

We also thank Taro Watanabe, Muhua Zhu, and

Yue Zhang for sharing their code, Haitao Mi for

producing greedy results from his parser, and

Ashish Vaswani and Yoav Goldberg for discus-

sions. The authors were supported in part by

DARPA FA8750-13-2-0041 (DEFT), NSF IIS-

1449278, and a Google Faculty Research Award.

36

References

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Empirical Methods in Natural Language
Processing (EMNLP).

David Chiang. 2000. Statistical parsing with an
automatically-extracted tree-adjoining grammar. In
Proc. of ACL.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. arXiv preprint arXiv:1505.08075.

Reza Ghaeini, Xiaoli Z. Fern, Liang Huang, and Prasad
Tadepalli. 2016. Event nugget detection with
forward-backward recurrent neural networks. In
Proc. of ACL.

James Henderson. 2003. Inducing history representa-
tions for broad coverage statistical parsing. In Pro-
ceedings of NAACL.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors.
CoRR, abs/1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. CoRR,
abs/1603.04351.

Haitao Mi and Liang Huang. 2015. Shift-reduce con-
stituency parsing with dynamic programming and
pos tag lattice. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proc. of LREC.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, pages 2755–2763.

Zhiguo Wang and Nianwen Xue. 2014. Joint pos
tagging and transition-based constituent parsing in
chinese with non-local features. In Proceedings of
ACL.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of ACL.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of ACL, pages 188–193.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proceedings of ACL
2013.

37

