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Markov Decision Processes

Markov Decision Process: definition

M = 〈S,A, app, P r,R〉:

I S and A: finite sets of states
and actions

I app(s): set of all actions
applicable in s

I Pr(s, a, s′): probability of the

state transition s
a−→ s′ such

that a ∈ app(s)

I R(s, a, s′): reward of the state

transition s
a−→ s′ such that

a ∈ app(s)
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Markov Decision Process (cont.)

MDP planning problem

P = (M, s0, G, ρ):

I M = (S,A, app, P r,R): an MDP

I s0 ∈ S: the initial state

I G ⊆ S: set of goal states

I 0 < ρ 6 1: probability threshold

Solution π to an MDP planning problem

I π: partial function Sπ → A for some set Sπ ⊆ S
I Ω(s0, π): probability of reaching from s0 a state s 6∈ π
I π is solution of P = (M, s0, G, ρ) iff Ω(s0, π) < ρ
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Forward heuristic search methods for MDPs

I

I

s4s4

s2

s30

a6
p = 0.7
r = −3

a6
p = 0.2
r = 0 a6

p = 0.1
r = 5

G

a4
p = 0.6
r = 1

a4
p = 0.4
r = −1

Known initial state I

tip-nodes: non-expanded instantiated states

I G 4 / 19



Motivations RFF Results Conclusion

Forward heuristic search methods for MDPs
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Forward heuristic search methods for MDPs
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Forward heuristic search methods for MDPs
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Forward heuristic search methods for MDPs
(cont.)

I Use of a heuristic to choose the best non-expanded
instantiated states to expand next

I Heuristic: means to guide the search towards the goals or the
highest rewards with cheap computations

I Forward heuristic search algorithms:

. (L)RTDP [Barto et al. 1995, Bonet & Geffner 2003]

. LAO∗ [Hansen & Zilberstein 2001]

. FPG [Buffet & Aberdeen 2007]

. . . .

I Why not using a deterministic (classical) planner as a
heuristic to expand states in the graph?
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Overview of RFF

Main idea

I Call a deterministic planner from many probabilistic reachable states

I Aggregate plans into a policy with a bounded probability of reaching its
fringe at execution: Ω(s0, π) 6 ρ

Main steps

1 Determinize the MDP planning problem

2 Generate a beam of unconditional plans with a deterministic planner

3 Aggregate all generated plans in a coherent partial policy π for the MDP

4 Compute the probability Ω(s0, π) to reach the fringe of the partial policy
π starting in s0 and successively applying π

5 If Ω(s0, π) > ρ, then:

1 Generate new intermediate goals for the deterministic planner
2 Goto 2.
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RFF: illustration of the algorithm

I

G

Initial input: initial state(s) I + goal state(s) G + expansion func-
tion S ×A → Pr(2S×R)
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RFF: illustration of the algorithm

I

G

Generate an initial trajectory plan from I to G with a deterministic
planner (FF) ⇒ initial policy
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RFF: illustration of the algorithm

I

G

Select and expand tip-nodes by considering all probabilistic effects
of each state in the graph ⇒ new tip-nodes
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RFF: illustration of the algorithm

I

G

Policy reinforcement (optional): shortest stochastic path from I to
G on expanded nodes by considering tip-nodes as dead-ends
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RFF: illustration of the algorithm

I

G

Estimate the probability of reaching any tip-node with Monte-Carlo
sampling: Ptn = 10

21 ≈ 0.476
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RFF: illustration of the algorithm

I

G

If Ptn > ρ: generate new trajectory plans from reachable tip-nodes
with the deterministic planner, and merge them in the policy graph
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Computing the probability of reaching any
tip-node

Fixed-point approximate computation

Let T be the current set of tip-nodes in the graph.
Probability PTN of reaching any tip-node in T starting in I and
successively applying π:

PTN = lim
t→+∞

Pt(T |I) with

{
P0(T |s) = δT (s)
Pt(T |s) =

∑
s′∈s.successors

P (s′|s, π(s))Pt−1(T |s′)

Costly ⇒ statistic approximation with Monte-Carlo sampling

Statistic estimation with Monte-Carlo sampling

PTN =
Number of particles reaching a tip-node

Number of thrown particles

=
∑

n:reachable tip-nodes

Number of particles arrived in n

Number of thrown particles
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Deterministic relaxations of effects

How to transform probabilistic effects into deterministic ones?

Strategy Pros/Cons (+/–) Illustration

Most
Probable

Effect

+ few actions, find most
probable paths
– may not find any path

0.8

0.1
0.1 ⇒ ã1

1 effect
=

1 action

+ non-zero probability of
reaching G if paths to G
exist
– lot of actions, perhaps
unlikely paths

0.8

0.1
0.1 ⇒ ã1

ã2

ã3
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Goal states of the deterministic planner

How are the MDP goal states and the deterministic relaxed
problem’s goals related?

Strategy Pros/Cons (+/–) Illustration

FF goals
=

RFF goals

+ higher probability of
reaching RFF goals, eas-
ier implementation
– explore more states,
larger FF computation
times

FF goals
= k states

with
highest
value

explored
by RFF

+ explore less states,
smaller FF computation
times
– lower probability of
reaching RFF goals, com-
plex goals generation
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Theoretical results

Theorem 1: RFF termination

For every MDP planning problem P = (M, s0, G, ρ), RFF terminates
in finite time (number of iterations).

Theorem 2: probability of success

Let P = (M, s0, G, ρ) be an MDP planning problem. If there are
no unsolvable states in M , then the probability of success of any
solution found by RFF is higher than 1− ρ.
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Theoretical results (cont.)

MPO = Most Probable Outcome (effects determinization)
AO = All Outcomes (effects determinization)

Theorem 3: soundness of RFFMPO

For every MDP planning problem P = (M, s0, G, ρ), every solution
that RFFMPO finds is correct.

Theorem 4: soundness of RFFAO

For every MDP planning problem P = (M, s0, G, ρ), every solution
that RFFAO finds is correct.

Theorem 5: completeness of RFFAO

For every MDP planning problem P = (M, s0, G, ρ), if a solution
exists, it is found by RFFAO, otherwise RFFAO returns failure.
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Experimental results: RFF won the IPPC 2008

Team Planners Members Algorithm

1 FSP∗-(RBH/RDH) Florent Teichteil forward heuristic search
Guillaume Infantes graph-based, optimal

(ONERA)
RFF-(BG/PG) Ugur Kuter domain determinization

(University of Maryland) graph-based, plans fusion
4 LPPFF Rajesh Kalyanam devide-and-conquer

Robert Givan domain determinization
(Purdue University) deterministic subgoals

6 SEH Jia-Hong Wu domain determinization
Rajesh Kalyanam stochastic enforced hill-climbing

(Purdue University) local MDPs to escape basins
9 HMDPP Emil Keyder domain determinization

(Universitat Pompeu Fabra) self-loop relaxation heuristic
Hector Geffner pattern database heuristic
(ICREA & UPF) lexicographic heuristic choice

11 FF-Replan Sungwook Yoon domain determinization
(Palo Alto Research Center) plan & repair

Official results available in the competition booklet
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Varying the probabilistic threshold ρ

I Number of calls to RFF increases with ρ (= upper bound
on the probability to replan)

I Percentage of problems solved: no general impact

I Quality of solutions: no general impact

I Total time (all calls to RFF per problem + simulation): no
general impact

Explanation
If the policy fails, we have to recompute a policy (= call to RFF)
from the failure state ; and the failure probability of policies in-
creases with ρ.
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RFF with different method for relaxations of
MDPs: Most Probable Outcome (MPO),

and All Outcomes (AO)

I Percentage of problems solved: MPO > AO

I Quality of solutions: MPO > AO

I Total time (all calls to RFF per problem + simulation): no
general impact

Explanation
The action makespan of the deterministic domain is larger with
AO than with MPO. Policies generated with MPO are more
likely to fail than the ones generated with AO, but MPO solves
far more problem instances than AO.
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RFF using the goal-selection strategies
ProblemGoals (PG), Random Goals

(RG), and Best Goals (BG)

I Percentage of problems solved: RG is the best for
blocksworld and boxworld, no general impact on other
domains

I Quality of solutions: PG is the best for
(ex-)blocksworld, no general impact on other domains

I Total time: RG is the best for boxworld and PG is the
best for (ex-)blocksworld, no general impact on other
domains

Explanation
The goal-selection strategy impacts the way states are explored, so
that its consequences in terms of solution quality highly depends
on the domain.
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Conclusions

I RFF is a new MDP planner that uses a deterministic
subplanner to generate policies that are robust to effect
uncertainties. RFF:
. determinizes the given MDP model into a classical planning

problem;
. generates partial policies off-line by producing solution plans to

the classical planning problem and incrementally aggregating
them into a policy;

. uses sequential Monte-Carlo (MC) simulations of the partial
policies before execution, in order to assess the probability of
replanning for a policy.

I RFF generates policies whose probability of success is
below a given threshold

I the deterministic planner can be viewed as a heuristic to
explore new states in the graph

I special use-case: RFF(ρ = 1) ≡ FF-replan [Yoon et al. 2007]
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Future work

I Use different deterministic planners and compare how they
affect the aggregated policy

I Use different plan aggregation techniques (between merged
policy optimization and action rewrite)

I Use different goal selection strategies

I Use different determinization strategies

I “Agressive” parallelization of calls to the deterministic planner
using multi-core processors

I Is optimality achievable?

I Extensions:

. Hybrid MDPs (discrete and continuous variables)

. temporal planning: SMDPs and GSMDPs

. partial observability: POMDPs
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Questions?
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