
Incremental Preprocessing Methods for use in BMC ?

S. Kupferschmid, M. Lewis, T. Schubert, and B. Becker

Albert-Ludwigs-Universität, Freiburg, Germany
{skupfers,lewis,schubert,becker}@informatik.uni-freiburg.de

Abstract. Traditional incremental SAT solvers have achieved great success in
the domain of Bounded Model Checking (BMC). However, modern solvers de-
pend on advanced preprocessing procedures to obtain high levels of performance.
Unfortunately, many preprocessing techniques such as a variable and (blocked)
clause elimination cannot be directly used in an incremental manner. This work
focuses on extending these techniques and Craig interpolation so that they can
be used effectively together in incremental SAT solving (in the context of BMC).
The techniques introduced here doubled the performance of our BMC solver on
both SAT and UNSAT problems. For UNSAT problems, preprocessing had the
added advantage that Craig interpolation was able to find the fixed point sooner,
reducing the number of incremental SAT iterations. Furthermore, our ideas seem
to perform better as the benchmarks become larger, and/or deeper, which is ex-
actly when they are needed. Lastly, our methods can be extended to other SAT
based BMC tools to achieve similar speedups.

Key words: BMC, Preprocessing, SAT, Model Checking, Craig Interpolation

1 Introduction

Bounded Model Checking (BMC) has become an important technique used to find er-
rors in sequential circuits [4]. BMC accomplishes this by iteratively unfolding a circuit
k times for k = 0, 1, . . ., adding the negated property, and then finally converting the
BMC instance into a SAT formula for a SAT solver. If the SAT solver finds the k-th
problem instance satisfiable, a path of length k violating the property has been found.

The use of incremental SAT solvers has been shown to be very effective on BMC
type problems [2, 4, 11, 18]. Regrettably, one of the most powerful new techniques used
in modern SAT solvers is currently not used in BMC tools as it does not inherently sup-
port incremental solving, mainly modern preprocessing [7]. Since the introduction of
SatELite, and widespread use of MiniSAT, all state-of-the-art DPLL (i.e. search) based
SAT solvers include powerful preprocessors. These preprocessors reduce the overall
size of a formula, and provide a significant performance increase on almost all types of
industrial benchmarks. Preprocessing accomplishes this by performing variable elimi-
nation, block clause removal, and others techniques. These techniques, however, intro-
duce complications in incremental SAT solving where new variables and clauses can be
added and/or removed from the problem after each iteration.
? This work was partly supported by the German Research Council (DFG) as part of

the Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information.

cin

b
‘1’

Register

a

clk

Full Adder

a′

b′ s

cout

Fig. 1. Example BMC problem: counter circuit.

This problem manifests itself for instance if a latch variable from the circuit is elim-
inated during the preprocessors variable elimination routine. Now while this latch vari-
able might not be needed in the current iteration of the BMC problem, it might be
required in future iterations or unrollings.

Here, we present a technique that allows preprocessing to be used during incremen-
tal solving of BMC problems. We do this by introducing the idea of “Don’t Touch”
variables that restrict which variables and clauses the preprocessor is allowed to elim-
inate. We show that these variables can be easily calculated and are relatively few in
number. Furthermore, we demonstrate that our new preprocessing technique results in
a significant speedup on a wide breadth of incremental BMC benchmarks.

The rest of this paper is structured as follows. Section 2 will introduce the concepts
and related work with regards to BMC using SAT, and preprocessing. Section 3 will
introduce our tool, and cover how preprocessing can be used alongside incremental SAT
solving. Our results showing the advantage of using preprocessing will be discussed in
Section 4. Finally, Section 5 will conclude the paper.

2 Preliminaries

This section will give a a quick overview of Bounded Model Checking, and the use of
incremental SAT solvers in this field. It will then discuss the preprocessing part of a
SAT solver in more detail, and highlight the complications that arise when considering
incremental SAT solving. Finally, it will discuss some related work.

2.1 Bounded Model Checking with Incremental SAT

BMC is the extension of Equivalence Checking (EC) over a finite time domain. Here,
EC refers to functional equivalence, meaning that two circuits do not need to be exactly
identical, but they must perform the same function (e.g. A carry select adder and ripple
carry adder are functionally equivalent). In the EDA domain, most EC type problems
either compare an unoptimized circuit to an optimized circuit to insure that they func-
tion the same, or compare the circuit to a specification. In BMC, the same can be done
by iteratively unrolling a sequential circuit. Furthermore, it is common in BMC to prove
safety or liveness properties (i.e. that a state is always or never reached).

Since BMC problems are normally formulated with respect to digital circuits, we
need some way of representing each logic gate, and then the entire circuit, in conjunc-
tive normal form (CNF) which is required by the SAT solver. This is done by doing

a Tseitin transformation [21]. A Tseitin transformation takes a gate and transforms it
into a conjunction of clauses. Each clause represents part of the relationship between
the inputs of a gate, and what is expected at the output of the gate. Figure 1 shows the
circuit diagram of a one bit Full Adder which is very common in most VLSI designs.
By including l, m, and n as intermediate variables (outputs of the first XOR and two
AND gates), we can produce the following CNF representation of the circuit:

FAcnf = (¬l ∨ a ∨ b) ∧ (¬l ∨ ¬a ∨ ¬b) ∧ (l ∨ ¬a ∨ b) ∧ (l ∨ a ∨ ¬b)∧
(¬s ∨ l ∨ cin) ∧ (¬s ∨ ¬l ∨ ¬cin) ∧ (s ∨ ¬l ∨ cin) ∧ (s ∨ l ∨ ¬cin)∧

(¬m ∨ cin) ∧ (¬m ∨ l) ∧ (m ∨ ¬cin ∨ ¬l)∧
(¬n ∨ a) ∧ (¬n ∨ b) ∧ (n ∨ ¬a ∨ ¬b)∧

(cout ∨ ¬m) ∧ (cout ∨ ¬n) ∧ (¬cout ∨m ∨ n)

In the definition of FAcnf , each line represents one of the five gates in the circuit,
and just as a gate consists of a conjunction of clauses, the CNF for the entire circuit
consists of the conjunction of clauses that represent each gate.

To generate a BMC problem from Figure 1 which is a synchronous 2-bit counter,
we can use FAcnf as the transfer function Tk−1,k describing the circuits transition
from one clock period to the next. This is done by adding the constraints that a′ = s
and b′ = cout, which are the next state variables. If we assume the initial state of the
registers is (0, 0), represented by ¬a0 and ¬b0, and the property we want to verify is
that the counter at time step k does not equal 3 (encoded into CNF form as (ak)∧ (bk)),
we will produce the following equation:

I0 = (¬a0) ∧ (¬b0)
Tk−1,k = FAk

cnf

¬Pk = (ak) ∧ (bk)

BMCk = I0 ∧ T0,1 ∧ . . . ∧ Tk−1,k ∧ ¬Pk

BMCk = (¬a0) ∧ (¬b0) ∧ FA1
cnf ∧ ... ∧ FAk

cnf ∧ (ak) ∧ (bk)

In order to find a solution to BMCk, we need ak and bk to be 1. If we evaluate
BMC1 and BMC2, both will be unsatisfiable. However, if we check BMC3, we will
see that such a solution exists. In essence, BMC works by incrementally checking every
value of k until a solution is found, an upper bound on k is reached, or a fixed point is
detected. Several methods for finding fixed points exist. For instance, k-induction uses
induction to prove that all reachable states will never violate a given property [17]. It
does this by first proving that for every unrolling depth ≤ k the property can not be
violated. Next the induction step will check whether its possible to show that all states
reachable in≤ k+1 steps starting from the property P0 only lead to states that satisfies
Pk+1. If so, the property is valid for every unroll depth of the circuit. For a more detailed
account, confer [17].

Another approach is based on Craig interpolation [5] that can prove invariants [14].
Craig interpolants in BMC are used as an over-approximated forward image of reach-
able states in a transition system. If the computed over-approximated forward image
reaches a fixed point, that is no new states are reachable, and the given invariant still
holds, no counterexample is possible for any unrolling depth. The definition of a Craig
interpolant is as follows:

Theorem 1 (Craig). Given two propositional formulas A and B with the property that
A∧B is unsatisfiable, then there exists a Craig interpolant C for A and B. This Craig
interpolant has the following properties:

– C contains only variables which occur in A and B (AB-common variables).
– |= A⇒ C and |= C ⇒ ¬B

To use Craig interpolation we define Ik to be the initial state, Pk the invariant to
disprove, and Ti,i+1 the transition relation from a state at time step i to a state at time
step i+1. After showing that I0∧¬P0 is unsatisfiable (that is initially the property is not
violated), the procedure first solves the BMC formula Φ = A∧B, where A := R0∧T0,1,
B := ¬P1 and initially R0 := I0. If Φ is unsatisfiable then a Craig interpolant C1

for the formulas A and B is computed1. By A ⇒ C1, the interpolant C1 is an over-
approximation of the states reachable in one step from R0. If this over-approximation
shifted to the zeroth instantiation of the variables (as described by C0) is a subset of the
so far reachable states, that is C0 ⇒ R0, then further transitions can only lead to states
already characterized by R0. As a consequence, the target states are unreachable and
the verification procedure terminates. Otherwise, we expand the set of reachable states
by adding reachable states given by the shifted interpolant, that is R0 := R0 ∨C0. The
procedure is iterated until the above termination criterion holds. The construction of a
Craig interpolant can be done on-the-fly by the underlying SAT solver during conflict
analysis. A more detailed description can be found in [14].

With respect to incremental SAT solving, this is implemented by first sending the
problem BMC0 to the SAT solver. This ensures that the initial state does not violate
the property we are checking. Then, in incremental fashion, the clauses representing the
property P0 are removed from the SAT solver, and clauses for T0,1 and P1 are added to
the solver. The reason why we do not generate separate problems for each value of k, is
that modern solvers are intelligent and learn new information as they solve the problem.
By incrementally adding clauses to the solver, and rerunning the same solver, we can
retain all this learnt information. This is the main idea of an incremental SAT solver
and one of the reasons it is so effective today. For a more detailed overview of a modern
SAT solver please refer to [9].

2.2 Modern SAT Based Preprocessing

Preprocessing encompasses a wide range of techniques used to simplify the CNF for-
mula before starting the incremental SAT solver. Earlier clause database minimization
algorithms like NiVER [19] had been shown to significantly reduce the size of the prob-
lem, however they are too computationally time consuming for larger benchmarks. Re-
cently, with the introduction of MiniSAT, a new efficient form of preprocessing for SAT
was introduced [7]. MiniSAT took the ideas introduced by the QBF solver Quantor [1],
called subsumption and variable elimination through resolution [16], and streamlined
them for use in SAT.

MiniSAT’s preprocessor consists of two main parts: subsumption, and variable elim-
ination through resolution. Subsumption allows us to remove, or strengthen clauses that

1 Note, that C1 only contains AB-common variables.

look similar. For instance, if we have the two clauses (x1 ∨ x2) and (x1 ∨ x2 ∨ x3),
we say that (x1 ∨ x2) subsumes (x1 ∨ x2 ∨ x3). We can therefore remove the larger
clause from the problem. The second part of the algorithm, called variable elimination,
removes variables through resolution. The basic idea is that if we want to remove the
variable x1, we resolve all the clauses containing x1 with those containing ¬x1. This
produces many new clauses, but none contain the variable x1. We have to be careful
when choosing what variables to eliminate, however, as it can produce many additional
clauses, and the size of the database can explode.

More recently, [12] introduced a way to further eliminate so called blocked clauses.
Blocked clauses are defined as clauses that contain at least one blocked literal. A literal
blocks a clause if every resolvent on that variable with other clauses containing its
inverse, results in a tautology. In [12], they showed that this method works well in
combination with variable elimination and subsumption.

2.3 Issues Associated with Combined BMC and Preprocessing Approaches

The preprocessor we use in in this paper uses the three techniques introduced in Section
2.2 (variable elimination, subsumption, and blocked clauses elimination) to minimize
the size of the problem. However, when dealing with incremental SAT solving, these
preprocessing techniques introduce many issues. Some of the issues associated with
incremental SAT and preprocessing were discussed in [7] when MiniSAT introduced
subsumption and variable elimination in their preprocecssor. In [7], they demonstrated
that subsumption can be directly used in incremental SAT. However, they also showed
that variable elimination introduces problems when variables are eliminated, but are
then reintroduced later as new clauses for later unrollings are added.

For instance, latch variables can be eliminated from the transfer function T0,1, when
solving the problem BMC1. However, this can cause problems when adding T1,2 and
solving BMC2, as the variables that connect T0,1 to T1,2 are no longer properly rep-
resented. Similar issues appear with block clauses elimination, as clauses that were
blocked, might become unblocked when new clauses are added.

In [7] they performed a small case study on one benchmark (vis.prodcell from [20])
with their incremental solver TIP [8] combined with their preprocessor SatELite. In
their combination, SatELite was used to preprocess the entire formula for each incre-
mental step. This method, however, is unfeasible on larger benchmarks that contain
millions of clauses and variables as it takes too much time. Even on smaller bench-
marks, the accumulated time spent preprocessing can be significant. In our method we
achieve similar compaction, and only call the preprocessing routine once. This allows
us to solve many large benchmarks that other solvers are unable to handle. Further-
more, we use Craig interpolation for proving safety properties (TIP uses k-induction).
When using Craig interpolation, preprocessing cannot be run between stages unless the
preprocessor itself can modify and generate Craig interpolants during preprocessing.

3 Incremental BMC with MiraXT and Craig

In this section we now present our ideas and implementation. Our tool starts by reading
in a BMC problem specified in the AIGER format. It then uses MiraXT’s [13] prepro-

cessor to simplify the transition Tk−1,k as much as possible to produce T pre
k−1,k. Once

preprocessing has finished, we then start our incremental BMC solver that replaces
Tk−1,k in the BMC equation with T pre

k−1,k. In our implementation, assumptions are used
to activate or deactivate clauses. To find a fixed point of reachable states we apply Craig
interpolation presented in [14]. The Craig interpolants are cacluated with the help of the
AIG package which uses MiniSAT as backend solver [15]. This combinations allows
us to solve both satisfiable and unsatifiables problems. The novel aspects of our solver
will now be discussed in the following subsections.

3.1 Using Preprocessing in an Incremental Solver

As mentioned in Section 2.3, it is possible to preprocess the entire formula for each time
step k. This method not only consumes a lot of time as k increases, but on larger bench-
marks it can be completely infeasible. To deal with these shortcoming we preprocess
the transition relation Tk−1,k to produce T pre

k−1,k in such a way that insures it globally
sound. This allows us to reuse T pre

k−1,k for every unrolling. This is done by preventing
the elimination of certain variables and clauses from the transfer function.

To accomplish this in practice, when an input problem is read and then encoded
into CNF form, we keep track of which CNF variables represent the repective latches
and gates in the original circuit. Because of the way a BMC problem is constructed (as
described in Section 2.1), we want to insure that the connection from Tk−1,k to Tk,k+1

stays intact. To do this, we assign all latch variables as “Don’t Touch” variables. A don’t
touch variable is a variable we are no longer allowed to eliminate. Furthermore, these
variables cannot represent blocked literals. These restrictions prevent the preprocessing
routine from destroying the global soundness of T pre

k−1,k.
Note, that it can also happen that other variables need to be added to the “Don’t

Touch” lists. For instance, in some of the BMC benchmarks discussed in Section 4,
the properties depend on variables that are not represented by latch variables. In these
cases, the variables that the property is checking must also be marked to insure that the
property can be correctly tested. However, as will be shown, it is normally the case that
only a small portion of the variables (5% on average) are marked as “Don’t Touch”.

Our method results in transfer function with 55% fewer clauses, and a variable
reduction of almost 70%. We have experimented further by allowing the preprocessing
of multiple transistion functions that can be inserted in place of the multiple copies
of the minimized single transition, however, the additional compression was minimal.
With respect to the method briefly mentioned in [7], preprocessing a block of roughly 40
transistion relations (Tk−1,k) would be required to see a similar further reduction in the
number of clauses when compared to our method. Additionally, because preprocessing
was applied after every round in [7], it accounted for a minimum of 30% of the total
time. Using our method, the preprocessing time is significantly less (normally < 1%).

Consequently, because T pre
k−1,k is constant, it becomes easier to apply many other

BMC techniques. Remember, if the problem is being preprocessed continually after
every time step, it becomes a complex problem determining which variables in each
time step are equivalent. This is important not only for Craig interpolation which will
be discussed next, but also for ideas such as Strichman learning [18]. Strichman learning
is the idea of copying clauses learnt from Tk−1,k with the solver and transposing them

to Tk,k+1 in the next stage. Similar ideas can be implemented with variable activities
and search heuristics inside the solver. We plan to explore these ideas in the future.

3.2 Preprocessing and Craig Interpolation

In this section we focus on the problems that arise when we compute Craig interpolants
and apply preprocessing. The Craig interpolants our solver produces use the proof-
based construction applying the rules McMillan presented in [14] during the conflict
analysis procedure of our solver. In other words we require a resolution proof of the
original (un-preprocessed) CNF to generate a correct Craig interpolant. It is easy to
see that simplification via subsumption and block clauses elimination has no impact on
the construction of a correct Craig interpolant as these rules lead to a equi-satisfiable
CNF with the property that a resolution tree in this simplified CNF is also a correct
and complete resolution tree for the original CNF. For variable elimination by means
of resolution, this is not the case. Fortunately, variables that are not marked as don’t
touch variables have no influence on the construction of Craig interpolants. This is
because a resolution proof of a simplified CNF by means of variable elimination can
be modified by adding those resolution steps performed during variable elimination to
achieve a correct resolution proof for the original (not simplified) problem. To do this,
we must distinguish between the the set of clauses we want to over-approximate and
those which we do not (i.e. we differentiate between the T pre

k,k+1 in part A and those in
part B). Therefore consider:

A︷ ︸︸ ︷
. . . ∧ Tk,k+1 ∧

B︷ ︸︸ ︷
Tk+1,k+2 ∧ . . .

We are interested in Craig interpolant C that is implied by A and unsatisfiable in
conjunction withB. Before we compute such a C we start our preprocessing routine on
Tk,k+1 with don’t touch variables and achieve a simplified transition relation T pre

k,k+1.
The don’t touch variables prevent the preprocessing from doing resolution steps on
variables that are located in A and in B (AB-common). So only resolution steps on
variables that can either be found in A (A-local) or in B (B-local) are applied. In both
situations (A- and B-local) the partial Craig interpolants for clauses derived via vari-
able elimination and then applying the corresponding construction rules are identical to
those of the original simplified problem clauses. Since we are only applying simplifica-
tion techniques that are globally sound, our incremental BMC solver still creates Craig
interpolants that are correct when applied to the simplified formula. In other words, our
preprocessing technique is independent of the construction of the Craig interpolants.

4 Experimental Results

To evaluate our methods, we used the entire 2008 Hardware Model Checking Compe-
tition benchmark set [10]. This includes the public and Intel Benchmarks. In total, this
set contains 645 mixed (sat/unsat) instances that are solvable at different depths. The
test machine used for all the results stated here had a Quadcore Intel Q9450 proces-
sor @ 2.66GHz. The machine contained 8GB of RAM and was running a 64 bit linux

Benchmark Basic Solver Solver with Preprocessor
Family #Sat #Unsat #Vars. #Cla. Time #Don’t #Vars. #Cla. Time
139* (99) 90 9 1,078,504 2,993,535 29.84 77,280 596,407 1,466,401 44.25
ab* (5) 5 0 5,227 13,215 39.23 800 3,184 5,385 16.56
bc57 (7) 7 0 16,048 40,724 2,892.79 2,568 9,888 17,051 463.45
bj* (44) 17 20 546,133 780,626 26.69 2,642 117,758 364,473 22.22
br* (5) 5 0 7,291 18,280 0.15 1,236 4,586 7,903 0.18
cmu* (4) 0 2 3,260 6,211 5.82 126 1,059 2,772 1.37
count* (2) 2 0 258 590 0.02 64 192 255 0.02
cs* (4) 4 0 23,946 65,698 2.32 2,168 12,422 29,286 1.46
dm* (20) 20 0 45,081 109,574 1.21 7,582 24,067 35,941 0.88
eijk* (28) 0 10 30,732 14,989 82.94 966 4,341 8,275 97.80
intel*(60) 5 16 2,418,808 1,682,281 3,131.30 73,869 422,899 789,911 2,063.18
irst* (3) 3 0 5,248 12,171 2,123.84 1,068 2,255 2,907 1,344.94
ken* (16) 2 14 39,551 113,003 0.68 1,634 10,597 24,200 0.76
mutex* (2) 2 0 418 1,026 0.01 80 276 462 0.02
nec* (13) 2 10 352,378 915,713 84.33 69,012 227,053 451,209 27.31
nus* (32) 8 18 70,248 155,705 241.26 6,028 30,954 64,018 46.15
pc* (5) 5 0 11,921 30,579 0.20 1,490 7,054 12,800 0.24
pd* (235) 28 157 647,556 1,326,910 449.23 31,357 171,826 478,380 174.62
prod* (19) 19 0 25,933 65,419 95.93 4,274 17,063 29,558 34.11
ring* (2) 2 0 418 962 0.05 100 296 380 0.03
short* (2) 2 0 222 492 0.01 56 164 200 0.01
srg* (3) 3 0 1,281 3,006 0.04 282 882 1,197 0.03
texas* (19) 9 10 107,207 308,411 27.52 6,190 35,563 98,435 9.51
vis* (16) 5 9 25,041 64,654 109.69 1,174 9,403 24,063 191.62
Total (645) 245 275 5,462,710 8,723,774 9,345.07 292,046 1,710,189 3,915,462 4,540.71

Table 1. Preprocessing and Solver Performance.

2.6.24 SMP enabled Linux kernel. Lastly, for all benchmarks a timeout (TO) value of
900 seconds was used for each instance. In our current setup, our tool runs in two seper-
ate stages (one stage with Craig interpolation enabled, and one without). The first stage
gets approximately 1/3 of the total time, with the second getting the remainder2.

The first two tables (Tables 1 and 2) show how preprocessing reduces the size of the
transfer function, and hence the entire problem, allowing the solver to achieve signifi-
cant speedup. Table 1 gives an overview of the additional power preprocessing provides
when related to each benchmark family. Table 2 takes a more in-depth look at specific
benchmark instances. In the first few columns of Table 1 labelled Benchmark, the family
name (and number of benchmarks in the family), followed by how many Sat or Unsat
instances in the family were solved is shown. The next group of columns labelled Basic
Solver is our solver without the use of a preprocessor, followed by Solver with Pre-
processor which is with preprocessing enabled. For both solvers, the sum of all the
variables (#Vars.) and clauses (#Cla.) for all the transfer functions in each benchmark
family is shown. For Solver with Preprocessor, the number of don’t touch variables
(#Don’t) is also given. Finally, the time required by each solver to solve all of the in-
stances in the benchmark family is specified. Note, this table only includes benchmarks
solved by both solvers (all other benchmark instances were removed). This allows for a
more direct comparison showing the advantage of preprocessing.

2 To ensure a fair comparison, MiraXT is only used in single thread mode.

Benchmark Transistion Relation Solve Time
Name Depth S/U #Don’t #V Orig. #V Simp. #C Orig. #C Simp. woPre wPre Sp

139442p0 6 Unsat 462 4,069 2,465 10,775 4,890 0.08 0.11 0.68
139442p0neg 4 Sat 462 4,102 2,507 10,874 4,962 0.08 0.11 0.71
139464p0 6 Unsat 1,134 21,497 11,593 60,917 30,202 0.51 0.91 0.56
139464p0neg 4 Sat 1,134 21,594 11,717 61,208 30,419 0.70 1.16 0.61
bc57sensorsp2 104 Sat 380 2,369 1,465 6,007 2,524 325.57 93.86 3.47
bc57sensorsp2neg 104 Sat 380 2,369 1,467 6,007 2,524 745.72 45.17 16.51
bc57sensorsp3 104 Sat 380 2,328 1,430 5,884 2,439 747.44 65.62 11.39
bj08aut5 4 Unsat 6 387 216 1,146 561 0.01 0.01 0.67
intel003 22(32) Unsat 132 1,060 653 2,711 1,150 0.32 0.13 2.50
intel006 38(40) Unsat 530 3,611 2,441 8,907 4,060 9.19 6.32 1.45
intel009 113 Sat 8,322 91,644 56,819 244,587 116,605 TO 573.78 >1.57
intel020 68(72) Unsat 586 6,181 4,041 16,445 7,982 20.17 6.62 3.05
intel023 74(106) Unsat 597 6,174 4,041 16,387 7,920 325.84 17.65 18.47
intel024 86(88) Unsat 595 6,157 4,037 16,343 7,907 131.68 33.01 3.99
intel041 35 Sat 14,292 125,377 81,416 324,013 152,173 385.77 376.26 1.03
intel042 47 Sat 13,888 122,375 79,405 316,488 148,448 TO 423.18 >2.13
intel043 83 Sat 11,052 104,349 67,644 272,697 128,065 TO 624.94 >1.44
intel048 — — 26,689 261,275 167,397 685,929 337,346 TO TO —
neclaftp1002 24 Unsat 15,760 79,164 50,826 205,876 100,521 2.98 3.26 0.91
neclaftp3002 16 Sat 5,652 33,166 21,314 88,098 43,506 40.15 7.21 5.57
nusmvtcasp5 24 Sat 344 3,143 1,492 8,304 3,045 20.15 4.39 4.59
pdtpmsmiim 152(-) Unsat 399 1,259 1,110 2,844 1,590 TO 219.51 >4.10
pdtviseisenberg1 50(-) Unsat 58 2,682 906 7,923 3,479 TO 281.76 >3.19
pdtviseisenberg2 54(-) Unsat 58 2,682 906 7,923 3,479 TO 329.03 >2.74
pdtvismiim1 6(8) Unsat 160 1,088 472 2,833 866 0.03 0.02 1.75
pdtvisns2p2 34(-) Unsat 142 2,671 848 7,689 2,526 TO 215.16 >4.18
pdtvissfeistel 30 Unsat 722 10,041 3,074 28,475 9,329 46.69 4.51 10.36
texasPImainp05 26(40) Unsat 473 8,473 3,067 24,435 8,339 21.41 0.32 66.08
texasPImainp08 10 Sat 473 8,473 3,067 24,435 8,339 0.76 0.22 3.38
vis4arbitp1 36(38) Unsat 46 371 182 985 331 67.19 90.13 0.75
visbakery 59 Sat 46 780 262 2,230 756 TO 634.02 >1.42

Table 2. Instance Specific Preprocessing Results.

The results in Table 1 first show that both the number of variables and clauses are re-
duced significantly using preprocessing. On average, variables were reduced by almost
70% when compared to the basic Tseitin transformation. Additionally, the number of
clauses was reduced by over 55%. This was accomplished as the number of don’t touch
variables was on average only about 5% of the Teistin variables, thereby not overly re-
stricting the preprocessor. Using an efficient implementation, our preprocessor was able
to preprocess each benchmark instance on average in 0.163 seconds. For most bench-
marks, this time is insignificant. Even on the largest Intel benchmark, which contains
261,275 variables and 685,929 clauses, preprocessing time was only 5.8 seconds. In
total, the reduction of the transfer function reduced the solve time by half. However,
our technique does more than just reduce the solving time.

To provide a better picture of where the speedup is coming from, Table 2 takes
a closer look at specific benchmark instances. In this table, the first columns labelled
Benchmark give the instance name, solution or fixed point depth (Depth), and if the
instance was satisfiable (S/U). For the depth column, if the problem is unsatisfiable, the
depth at which the fixed point was found using Craig interpolation does not need to be

Our Solver ABC TIP
Bench. # #S #U Total Time #S #U Total Time #S #U Total Time
139* 99 90 9 99 44.25 90 9 99 1,208.66 90 9 99 1,345.00
ab* 5 5 0 5 16.56 5 0 5 8.22 5 0 5 13.14
bc57 7 7 0 7 463.45 7 0 7 513.65 7 0 7 309.29
bj* 44 17 20 37 6,322.22 17 25 42 2,159.47 17 24 41 3,138.61
br* 5 5 0 5 0.18 5 0 5 1.23 5 0 5 0.88
cmu* 4 0 2 2 1,801.37 0 2 2 1,807.23 0 1 1 2,701.89
count* 2 2 0 2 0.02 2 0 2 0.05 2 0 2 0.06
cs* 4 4 0 4 1.46 4 0 4 13.58 4 0 4 3.65
dm* 20 20 0 20 0.88 20 0 20 42.05 20 0 20 11.78
eijk* 28 0 12 12 14,763.48 0 28 28 65.14 0 24 24 3,605.04
intel* 60 12 16 28 34,877.55 0 6 6 48,633.19 5 2 7 48,368.96
irst* 3 3 0 3 1,344.94 0 0 0 2,700.00 3 0 3 421.42
ken* 16 2 14 16 0.76 2 14 16 13.38 2 14 16 2.56
mutex* 2 2 0 2 0.02 2 0 2 0.06 2 0 2 0.03
nec* 13 2 10 12 927.31 2 4 6 6,310.14 2 10 12 2,979.94
nus* 32 8 18 26 5,446.15 8 15 23 8,182.97 8 14 22 10,233.06
pc* 5 5 0 5 0.24 5 0 5 5.86 5 0 5 1.31
pd* 235 28 161 189 42,620.07 28 191 219 15,059.02 28 178 206 27,581.31
prod* 19 19 0 19 34.11 19 0 19 858.40 19 0 19 23.73
ring* 2 2 0 2 0.03 2 0 2 0.11 2 0 2 0.02
short* 2 2 0 2 0.01 2 0 2 0.05 2 0 2 0.01
srg* 3 3 0 3 0.03 3 0 3 0.18 3 0 3 0.08
texas* 19 9 10 19 9.51 9 10 19 3.79 9 10 19 1.75
vis* 16 6 10 16 1,055.64 6 10 16 36.40 6 8 14 2,099.85
Total 645 253 282 535 109,730.24 238 314 552 87,622.84 246 294 540 102,843.37

Table 3. Overall Comparison to Other Solvers.

the same for both solvers due to preprocessing. If the depths were different, the depth for
the basic solver is given in brackets. In the majority of cases, the use of preprocessing
reduced the depth at which the fixed point was found. In one case by over 30 iterations.
This alone has a dramatic effect on the performance of the solver.

In the next part of Table 2 labelled Transistion Relation, the number of variables
and clauses in the original transfer function and simplified preprocessed version are
given (#V Orig., #C Orig., #V Simp., and #C Simp.). Again, the number of don’t touch
variables is also provided (#Don’t). Finally, the last part of this table, gives the solve
time without the preprocessor (woPre) and with the preprocessor (wPre). The last col-
umn of Table 2 then presents the speedup preprocessing provides on each instance. As
can be seen, on just about every large or very deep benchmark, preprocessing provides
a significant advantage. Only on benchmarks that are very small and easily solved,
does the time for preprocessing negatively effect the speedup. Furthermore, speedup
was obtained on both satisfiable and unsatisfiable instances. On many of the larger
benchmarks, the calculated speedup was also limited by the fact that the solver without
preprocessing was unable to solve the formula in 900 seconds (TO = Timeout).

Table 3 compares our solver to TIP [8] and ABC [3]. These are two of the best
solvers from the 2008 Hardware Model Checking Competition. As can be seen, our
solver performs quite well to other state of the art solvers. Our solver is the fastest on
15 of the 24 families of benchmarks, and solves the most satisfiable instances. Further-
more, if we compare TIP (which is thought to use the preprocessing method introduced

Benchmark S/U #Vars. #Cla. Our Solver ABC TIP
intel048 — 261,275 685,929 TO TO TO
intel013 — 193,730 506,572 TO TO TO
intel039 Sat 127,308 328,436 370.83 TO TO
intel040 Sat 125,386 322,616 379.48 TO TO
intel041 Sat 125,377 324,013 376.26 TO TO
intel038 Sat 122,600 317,149 371.68 TO TO
intel042 Sat 122,375 316,488 423.18 TO TO
intel028 — 107,502 280,941 TO TO TO
intel043 Sat 104,349 272,697 624.94 TO TO
intel036 Sat 98,327 262,244 590.42 TO TO
bjrb07amba10andenv — 98,148 294,138 TO TO TO
intel009 Sat 91,644 244,587 573.78 TO TO
intel030 Sat 91,631 244,556 612.22 TO TO
intel037 Unsat 87,376 228,882 2.07 TO TO
intel012 — 86,016 225,085 TO TO TO
neclaftp1001 Unsat 79,164 205,876 3.44 TO 753.21
neclaftp1002 Unsat 79,164 205,876 3.26 TO 759.23
intel027 — 78,321 206,092 TO TO TO
intel033 Sat 76,328 204,095 607.56 TO TO
intel035 Sat 75,620 202,019 582.27 TO TO
bjrb07amba9andenv — 73,003 218,731 TO TO TO
intel014 — 62,017 161,737 TO TO TO
neclaftp2001 Unsat 48,831 126,273 1.46 TO 59.78
neclaftp2002 Unsat 48,831 126,273 1.53 TO 61.97

Table 4. Solver Comparision on Largest Benchmarks.

in [7] but not published) to our work on satisfiable instance, we are 34% faster and
solve 7 more benchmarks. Comparison on unsatisfiable instances cannot be directly
done because TIP uses k-induction and we use Craig interpolation, however, our Craig
interpolation does not seam to be as powerful as the k-induction used in TIP.

Lastly, Table 4 compares the solvers on the 24 largest benchmarks. These bench-
marks are sorted by the number of variables in the unpreprocessed transition function.
Our solver completely dominates this table solving 16 of the largest 24 benchmarks.
TIP only manages to solve 4, and ABC nothing. Furthermore, even when TIP is able to
solve a specific benchmark, we are an order of magnitude (or 2) faster. This really shows
the promise that our preprocessing holds as it makes large benchmarks manageable.

5 Conclusion

In this paper we have presented new ideas showing how preprocessing can be used ef-
fectively in incremental SAT solving on large BMC benchmarks. We have shown that
our methods provide speedup by allow the solver to find SAT instance faster, and fixed
points sooner (less unrolling). Furthermore, we have shown that our methods lead to un-
matched performance on satisfiable instances. Also, since our techniques can be used
independently of any SAT based BMC tool, it should be straightforward for others to
achieve similar results. In the the future, we plan to improve our Craig interpolation
through strengthening and minimization [6]. This should allow us to be more competi-

tive on unsatisfiable instances. In addition, we plan to extend the solver with ideas such
as Strichman learning [18] which is not possible with other preprocessing techniques.

References

1. A. Biere. Resolve and Expand. In International Conference on Theory and Applications of
Satisfiability Testing, 2004.

2. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic Model Checking using SAT
Procedures instead of BDDs. In IEEE/ACM Design Automation Conference, 1999.

3. R. Brayton, M. Case, A. Hurst, and A. Mishchenko. ABC and ABmC Entering HWMCC’08.
In Hardware Model Checking Competition Solver Description, 2008.

4. E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Model Checking Using Satisfiability
Solving. Journal of Formal Methods in System Design, 2001.

5. W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen theorem. Journal of
Symbolic Logic, 1957.

6. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant Strength. In In-
ternational Conference on Verification, Model Checking, and Abstract Interpretation, 2010.

7. N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and Clause Elim-
ination. In International Conference on Theory and Applications of Satisfiability Testing,
2005.

8. N. Eén and N. Sörensson. Temporal Induction by Incremental SAT Solving. International
Workshop on Bounded Model Checking, 2003.

9. N. Eén and N. Srensson. An Extensible SAT-Solver. In International Conference on Theory
and Applications of Satisfiability Testing, 2003.

10. Hardware Model Checking Competition. 2008. http://fmv.jku.at/hwmcc08/.
11. M. Herbstritt, B. Becker, and C. Scholl. Advanced SAT-Techniques for Bounded Model

Checking of Blackbox Designs. In Microprocessor Test and Verification Workshop, 2006.
12. M. Järvisalo, A. Biere, and M. Heule. Blocked Clause Elimination. In International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems, 2010.
13. M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT Solving. In Asia and South Pacific

Design Automation Conference, 2007.
14. K. L. McMillan. Interpolation and SAT-based model checking. In International Conference

Computer Aided Verification, 2003.
15. F. Pigorsch, C. Scholl, and S. Disch. Advanced unbounded model checking based on aigs,

bdd sweeping, and quantifier scheduling. In Conference on Formal Methods in Computer
Aided Design, 2006.

16. A. Robinson and A. Voronkov. Handbook of Automated Reasoning. 2001.
17. M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Properties Using Induction and

a SAT-Solver. In International Conference on Formal Methods in Computer-Aided Design,
2000.

18. O. Strichman. Accelerating Bounded Model Checking of Safety Properties. Journal of
Formal Methods in System Design, 2004.

19. S. Subbarayan and D. Pradhan. NiVER: Non Increasing Variable Elimination Resolution for
Preprocessing SAT Instances. In International Conference on Theory and Applications of
Satisfiability Testing, 2004.

20. The VIS Group. VIS: A system for verification and synthesis. In International Conference
on Computer Aided Verification, 1996.

21. G. Tseitin. On the Complexity of Derivation in Propositional Calculus. Studies in Construc-
tive Mathematics and Mathematical Logic, 1968.

