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Abstract. This article presents a technique for Stream Reasoning, con-
sisting in incremental maintenance of materializations of ontological
entailments in the presence of streaming information. Previous work, de-
livered in the context of deductive databases, describes the use of logic
programming for the incremental maintenance of such entailments. Our
contribution is a new technique that exploits the nature of streaming
data in order to efficiently maintain materialized views of RDF triples,
which can be used by a reasoner.

By adding expiration time information to each RDF triple, we show
that it is possible to compute a new complete and correct materialization
whenever a new window of streaming data arrives, by dropping explicit
statements and entailments that are no longer valid, and then computing
when the RDF triples inserted within the window will expire. We provide
experimental evidence that our approach significantly reduces the time
required to compute a new materialization at each window change, and
opens up for several further optimizations.

1 Introduction

Streaming data is an important class of information sources. Examples of data
streams are Web logs, feeds, click streams, sensor data, stock quotations, loca-
tions of mobile users, and so on. Streaming data is received continuously and
in real-time, either implicitly ordered by arrival time, or explicitly associated
with timestamps. A new class of database systems, called data stream manage-
ment systems (DSMS), is capable of performing queries over streams [1], but
such systems cannot perform complex reasoning tasks. Reasoners, on the other
hand, can perform complex reasoning tasks, but they do not provide support to
manage rapidly changing worlds.

Recently, we have made the first steps into a new research direction: Stream
Reasoning [2] is a new multi-disciplinary approach that can provide the abstrac-
tions, foundations, methods, and tools required to integrate data streams, the
Semantic Web, and reasoning systems. Central to the notion of stream reason-
ing is a paradigmatic change from persistent knowledge bases and user-invoked
reasoning tasks to transient streams and continuous reasoning tasks.
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Fig. 1. Mobile Scenario

The first step for enabling Stream Reasoning is the development of languages
and systems for querying RDF data also in the form of data streams. Stream-
ing SPARQL [3], Continuous SPARQL (C-SPARQL) [4,5], and Time-Annotated
SPARQL [6] are three recent independent proposals for extending SPARQL to
handle both static RDF graphs and transient streams of RDF triples. This paper
builds on our previous works on C-SPARQL.

In Fig. 1, we show a Stream Reasoner. It takes several streams of rapidly
changing information and several static sources of background knowledge as
input. In the context of a mobile scenario, examples of sources of streaming
data can be the positions of users, the traffic in the streets, and the availability
of parking lots, whereas examples of background knowledge can be the city
layout, the public transportation schedules, and the descriptions of points of
interest and of events in a given area. Several reasoning tasks, expressed in
the form of C-SPARQL queries, are registered into the stream reasoner, and
the system continuously generates new answers. These answers can be in the
standard SPARQL output form (i.e., variable bindings and graphs) or in the form
of streams. In our mobile scenario, for instance, we can register two C-SPARQL
queries: one continuously monitors the status of the public transportation system
and returns the delays as variable bindings, the other one monitors the sensors for
traffic detection and generates a stream of aggregate information for each major
road. Current implementations of the proposed SPARQL extensions, however,
assume only a simple entailment (see Section 2 of [7]). They do not try to handle
reasoning on streaming information, e.g., providing strategical suggestions about
how to perform goals.

In existing work on logical reasoning, the knowledge base is always assumed
to be static (or slowly evolving). There is work on changing beliefs on the basis of



new observations [8], but the solutions proposed in this area are far too complex
to be applicable to gigantic data streams of the kind we image in a mobile
context. However, the nature of data streams is different from arbitrary changes,
because change occurs in a “regular” way at the points where the streaming data
is observed.

In this article, we present a technique for stream reasoning that incrementally
maintains a materialization of ontological entailments in the presence of stream-
ing information. We elaborate on previous papers [9,10] that extend to logic
programming results from incremental maintenance of materialized views in de-
ductive databases [11]. Our contribution is a new technique that takes the order
in which streaming information arrives at the Stream Reasoner into explicit con-
sideration. By adding expiration time information to each RDF statement, we
show that it is possible to compute a new complete and correct materialization
by (a) dropping explicit statements and entailments that are no longer valid,
and (b) evaluating a maintenance program that propagates insertions of explicit
RDF statements as changes to the stored implicit entailments.

The rest of the paper is organized as follows. Section 2 presents a wrap up of
the background information needed to understand this paper. In particular, it
presents the state of the art in incremental maintenance of materializations of
ontologies represented as logic programs. Section 3 presents our major contri-
bution in the form of Datalog rules computing the incremental materialization
of ontologies for window-based changes of ontological entailments. In Section 4
we present our implementation experience. Section 5 provides experimental evi-
dence that our approach significantly reduces the time required to compute the
new materialization. Finally, we close the paper by sketching future works in
Section 6.

2 Background

2.1 Stream Reasoning

A first step toward stream reasoning has been to combine the power of existing
data-stream management systems and the Semantic Web [12]. The key idea is
to keep streaming data in relational format as long as possible and to bring
it to the semantic level as aggregated events [5]. Existing data models, access
protocols, and query languages for data-stream management systems and the
Semantic Web are not sufficient to do so and, thus, they must be combined.

C-SPARQL [4,5] introduces the notion of RDF streams as the natural exten-
sion of the RDF data model to this scenario, and then extend SPARQL to query
RDF streams. An RDF stream is defined as an ordered sequence of pairs, where
each pair is constituted by an RDF triple and its timestamp 7.

((subj;, pred;, obj;) , ;)
((subjit1,prediy1,0bjit1) ; Tiv1)



Fig. 2 shows an example of a C-SPARQL query that continuously queries a
RDF stream as well as a static RDF graph. The RDF stream describes the users
sitting in trains and trains moving from a station to another one. The RDF
graph describes where the stations are located, e.g., a station is in a city, which
is in a region.

REGISTER QUERY TotalAmountPerBroker COMPUTE EVERY 1sec AS
PREFIX ex: <http://example/>
SELECT DISTINCT 7user 7type 7x
FROM <http://mobileservice.org/meansOfTransportation.rdf>
FROM STREAM <http://mobileservice.org/positions.trdf>
[RANGE 10sec STEP 1sec]
WHERE {

7user ex:isIn ?x .

7user a ex:Commuter .

?x a 7type .

7user ex:remainingTravelTime 7t .

FILTER (7t >= "PT30M"xsd:duration )
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Fig. 2. An example of C-SPARQL query that continuously queries a RDF stream as
well as a static RDF graph

At line 1, the recrster clause instructs the C-SPARQL engine to register a
continuous query. The cowpute EVERY clause states the frequency of every new com-
putation. In line 5, the rrom streaM clause defines the RDF stream of positions
used in the query. Next, line 6 defines the window of observation of the RDF
stream. Streams, by their very nature, are volatile and consumed on the fly. The
C-SPARQL engine, therefore, observes them through a window that contains the
stream’s most recent elements and that changes over time. In the example, the
window comprises RDF triples produced in the last 10 seconds and the window
slides every second. The wuere clause is standard SPARQL as it includes a set
of matching patterns, which restricts users to be commuters and a riLter clause,
which restricts the answers to users whose remaining traveling time is at least
30 minutes. This example shows that, at the time of the presentation in the
window, it is possible to compute the time when triples both of the window and
of ontological entailments will cease to be valid.

2.2 Expressing Ontology Languages as Rules

Using rules is a best practice (see Section 2.1 of [9]) in implementing the logical
entailment supported by ontology languages such as RDF-S [13] and OWL2-
RL [14]. For example, Fig. 3 presents the set of rule used by the Jena Generic
Rule Engine [15] to compute RDF-S closure. The first rule (rdfs2) states that
if there is a triple <?x 7p 7y> and the domain of the property 7p is the class



[rdfs2: (?x ?p 7y), (7p rdfs:domain ?c) -> (?x rdf:type 7c)]
[rdfs3: (7x 7p ?7y), (7p rdfs:range 7c) -> (7y rdf:type 7c)]
[rdfsba: (7a rdfs:subProperty0f 7b), (?b rdfs:subProperty0f 7c)
-> (7a rdfs:subProperty0f 7c)]
[rdfs5b: (7a rdf:type rdf:Property) -> (7a rdfs:subProperty0f ?a)]
[rdfs6: (?7a 7p 7b), (?p rdfs:subProperty0f 7q) -> (7a 7q 7b)]
[rdfs7: (7a rdf:type rdfs:Class) -> (7a rdfs:subClass0f 7a)]
[rdfs8: (7a rdfs:subClassOf ?b), (?b rdfs:subClass0f 7?c)
-> (7a rdfs:subClass0f 7c)]
[rdfs9: (7x rdfs:subClass0f ?7y), (7a rdf:type ?x) -> (7a rdf:type 7y)]
[rdfs10: (?x rdf:type rdfs:ContainerMembershipProperty)
-> (7x rdfs:subProperty0f rdfs:member)]
[rdf1and4: (?x 7p ?y) -> (7p rdf:type rdf:Property),
(?x rdf:type rdfs:Resource),
(?7y rdf:type rdfs:Resource)]
[rdfs7b: (?a rdf:type rdfs:Class) -> (7a rdfs:subClass0f rdfs:Resource)]

Fig. 3. Rules Implementing RDF-S in Jena Generic Rule Engine

7¢ (represented by the triple <?p rdfs:domain 7c>) then the resource 7x is of
type 7c (represented by the triple <?x rdf:type 7c>).

In the rest of the paper, we adopt logic programming terminology. We refer
to a set of rules as a logic program (or simply program) and we assume that any
RDF graph can be stored in the extension of a single ternary predicate P. Under
this assumption, the rule rdfs2 can be represented in Datalog as follows.

P(xz,rdf : type,c):-P(p,rdf s : domain,C), P(s,p,y)

2.3 Incremental Maintenance of Materializations

Maintenance of a materialization when facts change, i.e., facts are added or
removed from the knowledge base, is a well studied problem. The state of the art
approach implemented in systems such as KAON! is a declarative variant [9] of
the delete and re-derive (DRed) algorithm proposed in [16]. DRed incrementally
maintains a materialization in three steps.

1. Overestimate the deletions by computing all the direct consequences of a
deletion.

2. Prune the overestimated deletions for which the deleted fact can be re-
derived from other facts.

3. Insert all derivation which are consequences of added facts.

More formally, a logic program is composed by a set of rules R that we can
represent as H :- By,..., B,, where H is the predicate that forms the head of
the rule and By, ..., B, are the predicates that form the body of the rule. If we

! The Datalog engine is part of the KAON suite, see http://kaon.semanticweb.org



call the set of predicates in a logic program P, then we can formally assert that
H, B; € P. A maintenance program, which implements the declarative version
of the DRed algorithm, can be automatically derived from the original program
with a fixed set of rewriting functions (see Table 2) that uses seven maintenance
predicates (see Table 1) [9].

Table 1. The maintenance predicates (derived from [9])

Name Content of the extension

P the current materialization

PPel the deletions

PI™ the explicit insertion

PTed the triples marked for deletion which have alternative derivations
PNe? the materialization after the execution of the maintenance program
P%  the net insertions required to maintain the materialization

P~ the net deletions required to maintain the materialization

Given a materialized predicate P and the set of extensional insertions P/™* to
and deletions PP¢* from P, the goal of the rewriting functions is the definition
of two maintenance predicates P and P~, such that the extensions of P™ and
P~ contain the net insertions and deletions, respectively, that are needed to
incrementally maintain the materialization of P.

Table 2. Rewriting functions (derived from [9])

Predicate

Name|Generator Parameter| Rewriting Result

oNew |pep PNew . p pot PP

sy lPeP pNew . pRed

New |peP pNew . plns

ot |PeP PT - PI"¢ notP

o PeP P~ - PPe notP™™® not PEed

Rule

Name|Generator Parameter|Rewriting Result

ofed |H - By,...,Bn HEed . ppPel pNew —  plew

6Pt |H - By,...,B, {HP* - By,...,Bi—1,BP Bii1,...,B.}
oms |H - By,...,B, {g!rs o pNew . BNew Bl BNew ... BNewy

We can divide the rewriting functions shown in Table 2 in two groups. One
group of functions apply to predicates, while the other group of functions apply to
rules. The former functions use the predicates defined in Table 1 to introduce the
rules that will store the materialization after the execution of the maintenance
program in the extension of the predicate PN, The latter functions introduce
the rules that populate the extensions of the predicates PP¢, Pfed and pIns.



These three rewriting functions are executed for each rule that has the predicate
P as head. While the function §%¢? rewrites each rule in exactly one maintenance
rule, the two functions 67¢ and /™ rewrite each rule with n bodies B; into n
maintenance rules.

To exemplify how these rewriting functions work in practice, let us return to
the scenario exemplified in Sect. 2.1. To describe that scenario, we introduced
the predicate isIn that captures the respective position of moving objects (e.g.,
somebody is in a train, the train is in station, somebody else is in a car, the car
is in a parking lot, etc.). A simple ontology for a mobility scenario could express
transitivity and be represented using the following Datalog rule.

(R) isIn(x, z) - isIn(x,y),isIn(y, 2)

By applying the rewriting functions presented in Table 2 to the rule (R) and the
predicate ¢sIn, we obtain the maintenance program shown in Table 3. Each row
of the table contains the applied rewriting function and the rewritten mainte-
nance rule.

Table 3. The maintenance program automatically derived from a program containing
only the rule R by applying the rewriting functions show in Table 2

Rule Rewriting Function
isIn™" (x,y) - isIn(x,y), notisInP (z,y) SNV (isIn)
isIn™e" (x,y) - isIn®(x,y) sNew (isIn)
isIn™NeV (z,y) - isIn'™(z,y) oNew (isIn)
isInt(x,y) - isIn"™* (z,y), not isIn(z,y) 5t (isIn)
isIn™(z,y) - isInP(x,y),not isIn"™* (x,y), not isIn™°*(z, y)|6~ (isIn)
isInf*d(x, 2) - isInP (z, 2), isIn™ " (z,y), isIn™ ¥ (y, 2) ofted(R)
isInP(x, 2) - isInP (x,y),isIn(y, z) oP°H(R)
isInP(x, 2) - isIn(z,y), isInP (y, z) oP°(R)
isIn'™ (xz,2) - isIn'™ (z,y),isIn™" (y, 2) 51" (R)
isIn'™ (x,2) - isIn™" (x, ), isIn'™ (y, 2) 5" (R)

3 Maintaining Materialization of RDF Streams

As we explained earlier in this paper, incremental maintenance of materializa-
tions of ontological entailments after knowledge changes is a well studied prob-
lem. However, additions or removals of facts from the knowledge base induced
by data streams are governed by windows, which have a known expiration time.
The intuition behind our approach is straightforward. If we tag each RDF triple
(both explicitly inserted and entailed) with a ezpiration time that represents the
last moment in which it will be in the window, we can compute a new complete
and correct materialization by dropping RDF triples that are no longer in the
window and then evaluate a maintenance program that



TS | Triplesin the Window Entailmentsin the Window

1 A—>B
1]
2 A—B—C A C
[11] [12] oy A
3 R
A—>B—C—D A B C D
11 2 3 M A
1 T an
L - B~y R ST R
- %
A—B—C—D A B E P
[11] 121 (3] O 1 )
12 na_— B~ N (7T I
= B
A B=mE-si| & § € b
2] 3 L T ) Bl
3 e~ E~ua AT Ty
il T~
A cC—D A D
13

Fig. 4. Our approach to incrementally maintain the materialization at work

1. computes the entailments derived by the inserts,

annotates each entailed triple with a expiration time, and

3. eliminates from the current state all copies of derived triples except the one
with the highest timestamp.

[\

Note that this approach supports the immediate deletions of both window facts
and entailed triples which are dropped by inspection to their expiration times.
Instead it requires some extra work for managing insertions as new timestamps
need to be computed. This approach is more effective than overestimating the
deletions and then computing re-derivations, as we will demonstrate in Section 5.

Figure 4 illustrates our approach. Let us assume that we have a stream of
triples in which all the triples use the same predicate isIn introduced in Sec-
tion 2.3. Let us also assume that we register a simple C-SPARQL query that
observes an RDF stream through a sliding window of 10 seconds and computes
the transitive closure of the isIn property.

In the 1%% second of execution, the triple <A isIn B> enters the window.
We tag the triple with the expiration time 11 (i.e., it will be valid until the
11*" second) and no derivation occurs. The transitive closure only contains that
triple. In the 2"? second the triple <B isIn C> enters the window. We can tag it
with the expiration time 12 and we can materialize the entailed triple <A isIn
C>. As the triple <A isIn B> expires in the 11*" second, the entailed triple <A
isIn C> also expires then and, thus, we tag it with the expiration time 11 (i.e.,
Step 2 of our approach). As the 11" second passes, we will have to just drop the



Table 4. The maintenance predicates of our approach

Name Content of the extension

P the current materialization

PI™* the triples that enter the window

PNew the triples which are progressively added to the materialization

PO the triples for which re-derivations with a longer expiration time were materialized
P'  the net insertions required to maintain the materialization

P~ the net deletions required to maintain the materialization

triples tagged with 11 and the materialization will be up to date (i.e., Step 1 of
our approach).

Let us then assume that in the 3" second, the triple <C isIn D> enters the
window. We tag it with the expiration time 13 and compute two entailments:
the triple <B isIn D> with expiration time 12 and the triple <A isIn D> with
expiration time 11. In the 4" second, the two triples <A isIn E> and <E isIn
D> enter the window. Both triples are tagged with the expiration time 14. We
also derive the entailed triple <A isIn D> with time expiration 14. The triple <A
isIn D> was previously derived, but its expiration time was 11 and, therefore,
that triple is dropped. The rest of Fig. 4 shows how triples are deleted when
they expire.

More formally, our logic program is composed of a set of rules R that we can
represent as H[T] :- Bi[T1],..., Bn[Ty], where H is the predicate that forms the
head of the rule and it is valid until 7. B1[T4], ..., Bu[T,] are the n predicates
that form the body of the rule with their respective n expiration times 7j ... T),.
As in the case illustrated in Section 2.3, we can formally assert that H, B; € P
where P denotes the set of predicates in a logic program.

Table 5. The rewriting functions of our approach

Predicate

Name|Generator Parameter | Rewriting Result

AVvIpecP PN [T] - P[T],notP[T}], Ti = (now — 1)

AYew|lpeP PYNew[T] .- PI"*[T], not POY[T]

AP IpeP POYT] .- Py, P[T),T1 > T

A9 IpeP POYT] .- P[], PI™S(T], T1 > T

A7 |PeP P~[T] - P[T}),T1 = (now — 1), not P'™*[T}]

A, |PeP P~[T] - POY[T]

ATT |PeP PTHT] .- PN [T, not P[T]

At |PeP PH(T] - PTH[T], not P°'[T}]

Rule

Name|Generator Parameter|Rewriting Result

A™s |H - By,...,B, {H™[T] - BY*®[T4],..., BN [Ti—1],
BI"S(T3], BNS[Tiya), ..., BNV [T, ],
T =min(T1,...,Th)}
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A maintenance program, which implements our approach in a declarative
way, can be automatically be derived from the original program with a fixed set
of rewriting functions (see Table 5) that uses five maintenance predicates (see
Table 4) inspired by the approach of Volz et al. [9].

Given a materialized predicate P and set of extensional insertions P'™* deter-
mined by the new triple entering the window, the goal of the rewriting functions
is the definition of the maintenance predicates Pt and P~ whose extension
contains the net insertions and the net deletions needed to incrementally main-
tain the materialization of P. The extension of the maintenance predicate P~
contains the extensions of predicate P that expires as well as the extension of
predicate PP In Table 5 we formally defines our rewriting functions. Note that
P+ is only an auxiliary predicate with not special meaning.

By applying the rewriting functions presented in Table 5 to the rule (R) and
the predicate isIn defined in Section 2.3, we obtain the maintenance program
shown in Table 6.

Table 6. The maintenance program automatically derived from a program containing
only the rule R by applying the rewriting functions show in Table 5

Rule Function
isIn™ " (z,y)[T)] - isIn(z,y)[T], notisIn(z,y)[T1], T1 = (now — 1) AN (isIn)
isIn™" (z,y)[T] - isIn'™ (z,y)[T], notisIn®'(z, y)[T] ANew (isIn)
isIn®'(z,y)[T] - isIn'™* (x,y)[T1],isIn(x,y)[T),T1 > T A (isIn)
isIn®'(z,y)[T] - isIn'™* (x,y)[T1],isIn""* (x,y)[T], T1 > T A (isIn)
isIn™(z,y)[T] - isIn(z,y)[T1], Ty = (now — 1), not isIn'™ (x,y)[T1] |A] (isIn)
isIn™ (z,y)[T] - isIn®'4(z,y)[T] A (isIn)
isInt ™t (z,y)[T] - isIn™N (z,y)[T], not isIn(z,y)[T1] At (isIn)
isIn® (z,y)[T] - isInt ™t (z,y)[T], not isIn°"(z, y)[T1] At (isIn)
isIn'™ (x, 2)[T] - isIn™™ (z,y)[T1], isIn™* (y, 2)[T2], T = min(T1, T2)| AT (R)
isIn'™(z, 2)[T] - isIn™ " (x,y)[T1], isIn""* (y, 2)[Ts], T = min(T1, Tz)| AT (R)

4 Implementation Experience

Figure 5 illustrates the architecture of our current prototype, implemented by
using the Jena Generic Rule Engine. The Incremental Maintainer component
orchestrates the maintenance process. It keeps the current materialization in the
Permanent Space and uses the Working Space to compute the net inserts and
deletes. Both spaces consist of an RDF store for the triples and a hashtable
which caters for efficient management of the expiration time associated with
each triple.

The maintenance program (see Fig. 6) is loaded into the rule engine that
operates over the RDF store in the working space. The management of expiration
times is performed by using four custom built-ins, GetVT, GetDiff VT, SetV'T
and DelVT, that are triggered by the maintenance program?. GetVT retrieves

2 For more information on how to write built-ins for Jena Generic Rule Engine see [15].
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Fig. 5. Overview of the prototype implementation

[Newi: (?A isIn 7B), GetVT(?A isIn ?B, ?T), noValue(?7A isInExp ?B)
-> (7A isInNew 7B), SetVT(?A isInNew 7B, 7T)]

[New2: (?A isInIns 7B), GetVT(?A isInIns 7B, ?T), noValue(?A isIn0Old 7?B)
-> (?A isInNew ?B), SetVT(?A isInNew 7B, ?T)]

[01d1: (?A isInIns ?B), GetVT(?A isInIns 7B, ?7T1),
(?A isIn ?B), GetVT(?A isIn ?B, ?T), lessThan(?T, ?T1)
-> (7A isIn0ld ?B), DelVT(?A isInIns 7B, ?7T)]

[01d2: (?A isInIns 7B), GetVT(?A isInIns 7B, 7T1),
(?A isInIns 7B), GetDiffVT(?A isIn 7B, ?T1, ?T), lessThan(?T, 7?T1)
-> (?A isIn0ld ?B), DelVT(?A isInIns 7B, ?T)]

[Remi: (7A isInExp 7B), GetVT(?A isInExp ?B, 7T), noValue(?A isInIns ?B)
-> (?A isInRem ?B), DelVT(?A isInExp 7B, ?T) ]

[Rem2: (?7A isIn0ld ?B) -> (?A isInRem 7B) ]

[Add2: (?A isInNew ?B), GetVT(7A isInNew 7B, ?T), noValue(?A isIn 7B)
-> (?A isInAdd2 ?B), SetVT(?A isInAdd2 7B, ?T) ]

[Add1: (?A isInAdd2 ?B), GetVT(?7A isInAdd2 ?B, ?T), noValue(?A isIn0ld ?B)
-> (?A isInAdd ?B), SetVT(?A isInAdd 7B, ?T) ]

[Insi: (?A isInIns ?B), GetVT(?A isInIns 7B, 7T1),
(7B isInNew 7C), GetVT(?B isInNew ?C, ?7T2), min(?T1, ?T2, ?T)
-> (?A isInIns 7C), SetVT(?A isInIns 7C, ?7T)]

[Ins2: (?A isInNew ?B), GetVT(?A isInNew 7B, ?7T1),
(?B isInIns ?C), GetVT(?B isInIns ?C, ?T2), min(?T1, ?T2, ?T)
-> (7A isInIns ?C), SetVT(?A isInIns ?7C, ?T)]

Fig. 6. The maintenance program shown in Table 6 implemented in Jena Generic Rule
Engine
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the expiration time of a triple from the hashtable; GetDiff VT gets possible other
expiration times of a given triple and is used to efficiently implement the rules
generated by A9!?; SetVT sets the expiration time of a triple in the hashtable;
DelVT deletes the expiration time of a triple from the hashtable.

The maintenance process is carried out as follows. When the system is started
up, the background knowledge is loaded into the permanent space. Then, the
maintenance program is evaluated on the background knowledge and the exten-
sion of all predicates P is stored in the RDF store. The expiration time of all
triples is set to a default value which indicates that they cannot expire. As the
window slides over the stream(s), the incremental maintainer:

(a) puts all triples entering the window in the extension of P

(b) loads the current materialization and P/™* in the working space,

(c) copies the expiration times from the permanent space into the working space,

(d) evaluates the maintenance program,

(e) updates the RDF store in the permanent space by adding the extension of
PT and removing the extension of P,

(f) updates the hash tables by changing the expiration time of the triples in the
extension of P* and removing from the table the triples of P~, and

(g) clears the working space for a new evaluation.

5 Evaluation

This section reports on the evaluation we carried out using various synthetically
generated data sets that use the transitive property isIn. Although we limit our
experiments to the transitive property, the test is significant because widely used
vocabularies in Web ontological languages are transitive (e.g., rdfs:subClassOf,
rdfs:subPropertyOf, owl:sameAs, owl:equivalentProperty, owl:equivalentClass
and all properties of type owl:TransitiveProperty). Moreover, transitive prop-
erties are quite generative in terms of entailments and, thus, stress the system.

Our synthetic data generator generates trees of triples all using ¢sIn as prop-
erty. We can control the depth of the tree and the number of trees generates.
All generated triples are stored in a pool. An experiment consists of measuring
the time needed to compute a new materialization based on the given the back-
ground knowledge, the triples in the window as well as the triples that enter and
exit the window at each step. When we start an experiment, we first extract
a subset of triples from the pool to form the background knowledge. Then, we
stream the rest of the triples from the pool. We control both the dimension of
the window over the stream of triples and the number of triples entering and
exiting the window at each step.

In our experiments we compare three approaches: (a) the naive approach of re-
computing the entire materialization at each step, (b) the maintenance program
shown in Table 3 implementing [9], denoted as incremental-volz), and (c) our
maintenance program shown in Tables 6 and in Fig. 6, denoted as incremental-
stream. Intuitively, the naive approach is dominated with a small number of
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Fig. 7. Evaluation results: the time (ms) required to maintain the materialization as a
function of the percentage of the background knowledge subject to change

streaming triples, and dominates when streaming triples are a large fraction of
the materialization.

We run multiple experiments® using different settings of the experimental
environment, by changing the size of the background knowledge, the size of the
window, and the number of triples entering and exiting the window at each step.
In Fig. 7, we plot the results of one of these experiments (which qualitatively are
very similar). We compare the materialization maintenance time as a function
of the percentage of the background knowledge subject to change. As one can
read from the graph, the incremental-volz [9] approach is faster that the naive
approach only if the changes induced by the streaming triples encompass less
that 2.5% of the background knowledge. Our incremental-stream approach is
an order of magnitude faster than incremental-volz for up to 0.1% of changes
and continues to be two orders of magnitude faster up to 2.5% of changes. It
no longer pays off with respect to the naive approach when the percentage of
change is above 13%.

6 Conclusion and Future Work

In this paper, we have shown how previous work from the field of deductive
databases can be applied to the maintenance of ontological entailments with
data streams. Our approach is an extension of the algorithm developed by
Volz et al. [9], that uses logic programming to maintain materializations in-
crementally. Data streams use the notion of windows to extract snapshots from
streams, that are then processed by the query evaluator; we leverage this fact to
define the triples that are inserted into and deleted from the materialization. We
have also presented an implementation as an extension of the Jena Generic Rule
Engine; our implementation uses hash tables to manage triple expiration time.
We have shown that our approach outperforms existing approaches when the
window size is a fraction (below 10%) of the knowledge base: this assumption
holds for all known data stream applications.

We foresee several extensions to this work. With our approach, at insertion
time we explicitly remove old triples which have multiple derivations, but we are

3 We run all experiment on a Intel® Core™ Duo 2.20 GHz with 2 GB of RAM.
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considering the option of keeping all derivations and simply let them expire when
they expire, thus simplifying also insertions. Of course, this requires programs
(e.g., our C-SPARQL engine) to be aware of the existence of multiple instances
of the same triple, with different expiration times, and ignore all but one of such
instances. Another open problem is the application of our approach to several
queries over the same streams, with several windows that move at different
intervals. A possible solution to this problem is to build the notion of “maximal
common sub-window” and then apply the proposed algorithm to them. This is
an original instance of multi-query optimization, that is indeed possible when
queries are preregistered (as with stream databases and C-SPARQL). Finally, we
intend to explore a “lazy” approach to materialization, in which only entailments
that are needed to answer registered queries are computed. In our future work,
we plan to address these issues.
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