
FCCM20	
 Endorsement	

Incremental Reconfiguration for
Pipelined Applications
Herman Schmit

Year of publication: 1997
Area: Run-time Systems and Run-Time Reconfiguration

By the mid-1990s, FPGAs were being used for signal processing
and computing. However, using FPGAs for computational tasks
was hard. The FPGAs were small. An application developer had to
be acutely aware of the FPGA capacity and massage the design to
fit. The chip capacity created a performance cliff for designs.
Furthermore, when a new, larger FPGA came along, it was
necessary to redesign the application to exploit the new logic
capacity. This was particularly unattractive to developers long accustomed to microprocessors,
where you did not have to be aware of the size of your computation in order to get it working.
Furthermore, once you had a design working, you could reasonably expect newer
microprocessors to run the design faster without further development.
At the same time, FPGA users, vendors, and researchers were experimenting with runtime
reconfiguration to create the illusion of additional logic capacity. While early runtime
reconfiguration applications looked promising, they demanded more design effort and did not
address the issue of scaling.
The signal processing and cryptography kernels that were showing good performance on FPGAs
often obtained their performance benefits by exploiting pipeline parallelism---building a deep
spatial pipeline for the computation. Schmit observed that pipelined computation could be used
as an abstract model for these applications, and this model could be supported with a novel
reconfiguration architecture to address the problem of design fit and scalability.

In particular, the pipeline provided a basis for loading only a small fraction of the configuration
per cycle---the configuration for a single stage of the pipeline. It also served as a key unit of
temporal locality---the same configuration could be reused on the next cycle to compute the next
set of data flowing through the pipeline. The configuration could, itself, be pipelined through the
computational fabric to spatially adjacent pipeline stages. This allowed (1) the reconfigurable
array to be compact, holding a single configuration, (2) the configurations to live in large, dense
memories outside of the array, and (3) the array to productively use limited bandwidth to the
external configuration memory. The architecture could scale by adding physical pipeline stages.

This paper was the first of a series of papers about the architecture that would eventually be
known as PipeRench. It identified the challenge and the basic solution, used simple analysis to
show the potential benefits of the scheme, provided preliminary VLSI implementation
characteristics, and illustrated support for a couple of applications. The PipeRench design later
became a key part of the CMU Q-Machine and was briefly commercialized by Rapport, Inc.

André	
 DeHon	

DOI:	
 http://dx.doi.org/10.1109/FPGA.1997.624604

