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ABSTRACT

The 3D Mosaic system is a vision system that incrementally reconstructs complex 3 0 scenes from a

sequence of images obtained from multiple viewpoints. The system encompasses several levels of the

vision process, starting with images and ending with symbolic scene descriptions. This paper

describes the various components of the system, including stereo analysis. monocular analysis, and

constructing and updating the scene model. In addition, the representation of the scene model is

described. This model is intended for tasks such as matching, display generation. planning paths

through the scene, and making other decisions about the scene environment. Examples showing how

the system is used to interpret complex aerial photographs of urban scenes are presented.

Each view of the scene, which may be either a single image or a stereo pair. undergoes analysis

which results in a 3 0 wire-frame description that represents portions of edges and vertices of objects.

The model is a surface-based description comtructed from the wire frames. With each successive

view, the model is incrementally updated and gradually becomes more accurate and complete.

Task-specific knowledge, involving block-shaped objects in an urban scene, is used to extract the

wire frames and construct trrzd update the model.
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The model is represented as a graph in t e r m of symbolic primitives such as faces, edges, vertices.

and their topology and geometry. This permits the representation of partially complete. planar -faced

objects. Because incremental modrfications to the model must be easy to perform. the model contains

mechanisms to (1) add primitives in a manner such chat constraints on geometry imposed by these

additions are propagated throughout the model. and (2) modifv and delete primirives if dbcrepancies

arise between newly derived and current information. The model also contains mechanisms that

permit rhe generarion. addition, and deletion of hypotheses for parts of the scene for which there is

little data.

1. Introduction

I t i s important for a general vision system to derive three-dimensional (3D)
information about a given scene from images and store the information in a

coherent manner so that i t can be used for various matching, planning, and

display tasks. Our goal in developing the 3D Mosaic system has been to build a

full vision system, that is, one that goes all the way from images to symbolic 3D
descriptions. Further, we wanted to investigate this process in the context of

complex scenes. The result is really a first pass at such a system, and provides

us with a better understanding of the components required. This paper

describes the system and presents examples of how it is used to interpret

complex aerial photographs of urban scenes.

The paper i s organized as follows. First, we present the motivation for our

approach of incrementally acquiring the scene model, together with an over -

view of the system. Then we discuss the two components used to extract 3D

information from the images: the stereo analysis and monocular analysis

components. Finally, we describe the representation, construction, and updat-

ing of the scene model, along with the task-specific knowledge used here.

2. Description of System

The goal of the 3D Mosaic system is to obtain an understanding of the 3D

configuration of surfaces and objects in a scene. The significance of this goal

may be demonstrated by the following tasks.

(1) Model-bused image interpretation. A known 3D scene model can provide

significant aid in interpreting arbitrary images of the scene [7,27]. The 3D
Mosaic system performs the task of acquiring such a model of the scene.

(2) 3 0 change detection. Change detection i s a task that determines how the

geometry and structure of a scene change over time. The conventional

approach to this task involves comparing and detecting changes in images.

However, because of different viewpoints and lighting conditions, changes in

the images do not necessarily correspond to changes in the geometry and

structure of the scene. I f 3D scene descriptions were obtained from the images

first, such descriptions could be compared in 3D to determine changes in the

scene.
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(3) Simulating the appearance of the scene. I f a 3D description of the scene

were to be obtained, displays as seen from arbitrary viewpoints could be

generated from it. This i s useful for tasks such as familiarizing personnel with a

given area, and flight planning by generating the scene appearance along

hypothetical flight paths.

(4) Robot navigation. Three-dimensional descriptions of complex environ -

ments may be used to make decisions dealing with path planning or determin -

ing which parts of the environment to analyze in more detail.

Note that to perform these tasks, a vision system must do more than classify

images, segment them, or identify objects in them; it must be able to generate

a 3D description of the scene.

The 3D Mosaic system deals with complex, real-world scenes (e.g., Fig. 4).

That is, the scenes contain many objects with a variety of shapes, the object

surfaces have a variety of textures and reflectance characteristics, and the

scenes are imaged under outdoor lighting conditions. Because of the complexi -

ty, there are many difficulties in interpreting the images, including:

(1) Any particular image contains only partial information about the scene

because many surfaces are occluded.

(2) Even portions of the scene that are visible are often difficult to recover.

For example, surfaces with dark shadows cast across them, or with highlights,

may be difficult to interpret. Highly oblique surfaces may be difficult to analyze

if their resolution in the image i s poor. Such portions of the scene, therefore,

may be recovered with errors and inconsistencies, or may not be recovered at

all.

Our approach to the problems of complexity i s to use multiple images

obtained from multiple viewpoints. This approach aids interpretation in two

ways. First, surfaces occluded in one image may become visible in another.

Second, features of surfaces that are difficult to analyze and interpret in one

image (such as scene edges and texture) may become more apparent in another

image because of different viewpoint and/or lighting conditions.

2.1. Incremental approach

A large number of views will, in general, be required to obtain a fully accurate

and complete description of a complex scene. Typically, all these views will not

be simultaneously available, while some may never become available. Many of

them will only be obtained gradually through interaction with the scene

environment. Our system must therefore have the ability to utilize partial

descriptions and incrementally update them with new information whenever a

new view happens to become available. As a practical example, consider a

robot (perhaps a mobile ground robot or an automatically guided airplane)

which i s attempting to navigate through an unknown environment. The robot

would sequentially acquire images of the environment as it moves about.
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Information derived from each new image would serve to update i ts internal

model, and this partial model would be used to decide where to go next, or

where to analyze in more detail.

We have adopted an approach in which the 3D scene model is incrementally

acquired over the multiple views. The views of the scene are sequentially

acquired and processed. Partial 3D information is derived from each view. The
initial model i s constructed from 3D information obtained from the f i rst view,

and represents an initial approximation of the scene. As each successive view i s

processed, the model i s incrementally updated and gradually becomes more

accurate and complete.

In our approach, the scene model plays the role of a central representation

with two primary functions. First, it incrementally accumulates information

about the scene. Second, at any point along i ts development, i t represents the

current understanding of the scene. A s such, it may be used for tasks such as

matching, display generation, planning paths through the scene, and making

other decisions about the scene environment. Two such tasks are important for

the incremental acquisition process i tself: (1) 3D information derived from a

new view must be matched to the model so that updating can occur, and (2)
higher -level components should be able to use the model to determine which

parts of the scene to analyze in more detail, and from which viewpoints to take

the next images.
Most previous research at acquiring 3D scene descriptions from multiple

views have dealt with relatively simple scenes in controlled environments [2, 8,

9, 22, 25, 281. This has led, in some cases, to only utilizing occluding contours

in the image to form the 3D description [2, 8, 9, 221. The work of Moravec [23]
deals with complex indoor and outdoor scenes, but the 3D descriptions

generated by his system consist of sparse sets of feature points. Our system, on

the other hand, generates full, surface -based descriptions.

2.2. Overview

A flowchart for the 3D Mosaic system, showing the major modules and data

structures, is displayed in Fig. 1. The input is a new view of the scene, which

may be either a stereo image pair or a single image. The stereo pair undergoes

stereo analysis, while the single image undergoes monocular analysis. The
purpose of these analyses i s to obtain 3D scene features such as portions of

surfaces, edges, and corners. The stereo analysis component currently matches

junctions extracted from the two images, and generates a sparse 3D wire-frame

description of the scene. The monocular analysis component currently extracts

linear structures from the image and converts these to 3D wire frames using

task-specific assumptions.

The central scene model is a surface -based description which is constructed

and modified from these features. I t i s represented as a graph in terms of
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FIG. 1. 3D Mosaic flowchart, showing major modules (boxes) and data structures (ellipses). The

dashed lines represent components that have not yet been implemented; the solid lines represent

components already implemented

primitives such as faces, edges, vertices, and their topology and geometry. I t

also has mechanisms to add and delete hypotheses for parts of the scene for

which there are partial data. Before modifications to the scene model can

occur, the 3D features from the new view must be matched to the currcnt

model. The scene model may, at any point along i t s development, be used for

tasks such as image interpretation, planning, or display generation. A new view

may then be acquired which may further modify the model.

For example, when the stereo analysis component i s applied to the images in

Fig. 4, the result is the set of wire frames in Fig. 33. The scene model

constructed from these wire frames i s shown in Fig. 36. When the monocular

analysis component i s applied to the image in Fig. 11, the result i s the set of

wire frames in Fig. 23. These, in turn, are converted into the scene model in

Fig. 37. Finally, the result of modifying the model in Fig. 36 with a new view i s

shown in Fig. 43.

3. Stereo Analysis

Most stereo matching methods involve matching low-level image features, such

as image intensities [3,14,21,24] or image edge points [3, 13,241. Points to be
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matched may also be chosen as “interesting points,” e.g., those with high

variance in all directions [6,23]. Our method involves matching structural

features-i.e., junctions -extracted from the images. There are several reasons

for this.

First, feature -based matching results in more accurate 3D positions for

occlusion boundaries than gray scale area matching. Second, by extracting 3D

information dealing with scene vertices and edges emanating from them, we

obtain portions of boundaries of scene buildings, particularly building corners.

These boundaries are then used to construct 3D approximations of the

buildings.’

Finally, because of our wide-angle stereo images, there are large disparity

jumps and large portions of the scene are visible in one image but not the

other. Because most stereo systems do not distinguish these from other regions

of the image, they try to find matches for them and therefore have trouble

[3,5,6, 13, 14,211.
In our approach, rather than attempting to find matches for scene faces

occluded in one of the images, we match face boundaries visible in both

images. We do this by explicitly taking into account the way junction appear -

ances change from one image to the other, using the knowledge that in urban

scenes, roofs of buildings tend to be parallel to the ground plane, while walls

tend to be perpendicular to this plane. Edges in the scene perpendicular to the

ground will appear in each image to be directed towards the vertical vanishing

point [19].
I f a feature in an image lies on a roof, i t s appearance in the other image as a

function of position along the epipolar line can be predicted if the normal to

the ground plane i s known.’ To see why, consider Fig. 2. Suppose the junction

P,P,P, in Image1 i s given, and our goal i s to predict the junction Q,Q,Q, in

Image2, where the point Q, lies anywhere (inside the infinity point) on the

epipolar line corresponding to P,. For the position Q,, the 3-space position of

VI can be computed as the intersection of the rays through P, and Q,. This
uniquely determines the position of the plane parallel to the ground that

contains V,. The 3-space positions of the points V, and V, can now be

computed as the intersections of this plane with the rays corresponding to the

points P2 and P,, respectively. Finally, the points Q, and Q3 are uniquely

determined as central projections of the points V, and V,, re~pect ively.~

Although this analysis i s independent of the camera geometry relative to the
scene, vertical aerial photography i s in general more useful than oblique aerial

’For a different approach developed for the same domain, see [151.

In stcreo images, i t is known that for each point in one image, the corresponding point in the

other image lies along a line, called the epipolar line, which depends only on the camera model [5].

Note that this analysis i s valid not only for features lying on horizontal planes in the scene, but

for any family of parallel planes.
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Epipolar line

Image1 Image2

FIG. 2. For junction P,P,Pz, i t s apprearance in Image2 can be predicted as a function of position

Q, along the epipolar line. The normal to plane V,V,V, must be known.

photography because of the greater probability that an arbitrary junction in the

image lies on a roof or on the ground. In oblique aerial photography, larger

portions of horizontal surfaces would be occluded by vertical walls.

Therefore, when an L-junction is found in one image, it i s initially assumed

to arise from a corner of a roof, and i t s appearance in the other image can be

predicted. When an ARROW or FORK junction is found, the leg of the junction

directed towards the vertical vanishing point is initially assumed to arise from a

scene edge perpendicular to the ground, while the other two legs are initially

assumed to arise from scene edges lying on a roof or on the ground. Again i t s

appearance can be predicted.

Structural relationships between scene vertices are also used to aid in the

matching. I f two junctions in an image arise from scene vertices at the same

height above the ground, the positions of the corresponding junctions in the

other image, as a function of position along the epipolar line, can be predicted

if the normal to the ground plane is known. This can be shown using similar

arguments as before. In Fig. 2, pretend that the points P,, Q,, and V, corre-

spond to positions of separate junctions and vertices. For example, if P, and P3

are two separate junctions in Imagel, then for some point Q, on the epipolar

line corresponding to P,, the position of the junction Q,, corresponding to P,,
can be predicted if V, and V, are assumed to l ie at the same height. We make

the assumption that junctions close to one another in the image often corre-

spond to vertices lying on top of the same building and therefore have

approximately the same height. In this way, the configurations within the

neighborhoods around junctions in the two images are used in the matching.
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/ p r o j e c t i o n

space

plane

FIG. 3. The vector from the focal point to the vertical vanishing point is a 3-space vector in the

vertical direction.

These matching techniques assume that the vector normal to the ground

plane i s known. To obtain this vector, we form a vector from the focal point to

the vertical vanishing point. A s shown in Fig. 3, this results in a 3-space vector

in the vertical direction [4]. The vertical vanishing point i s the central projec -

tion of the “infinite” point of any vertical line. In other words, a line

containing the focal point and vertical vanishing point intersects any vertical

line at “infinity.” Therefore they must be paralleL
4

The focal length and

vertical vanishing point are currently manually obtained.

3.1. Steps in stereo analysis

We now provide an example showing how the stereo analysis is performed on

the stereo pair of images in Fig. 4.

The first few steps in the stereo analysis involve (1) extracting linear

features, (2) extracting junctions, and (3) finding potential matches between

the junctions in the two images. These steps are described in detail in [17].
Figure 5 shows junctions that have been found in the two images. Notice that

many of these junctions correspond to building corners.

The step that involves finding potential junction matches uses the junction

prediction technique described earlier. Each L-junction, for example, i s initial -

ly assumed to l ie on a horizontal scene plane. The shape and orientation of i t s

corresponding junction in the other image can therefore be predicted. In this

way, each L-junction in the f i rst image i s associated with a set of potentially

matching junctions in the other image.

Th is analysis, of course, holds for all vanishing points, not only the vertical one.
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FIG. 4. Gray scale stereo images of a region of Washington, DC.

The next step i s to find the best potential matches, resulting in a single match

for each junction. Two criteria are used in determining the best matches:

(1) I f the image intensities inside two potentially matching junctions are

similar, the likelihood that they really match is increased. This i s because the

two junctions will often have similar intensities if they arise from the same face

corner. To measure the degree of similarity, we compute the average inten-

sities of regions along the two legs of the L-junction in each image. As depicted

in Fig. 6, let A and B be the average intensities of these regions in one image,

and let A’ and B‘ be the average intensities of corresponding regions in the
other image. Then the degree of similarity, called the local cost, i s defined as
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Image1 Image2

FIG. 6. Intensities of corresponding regions of L-junctions in the two images are used to compute

the local matching cost.

Similar intensities in the two junctions result in small local cost, while diverse

intensities result in large local cost.

(2) A s described previously, if two junctions in an image arise from scene

vertices that are at the same height, the relative positions of the corresponding

junctions in the other image, as a function of position along the epipolar line,

can be predicted. We use this to determine whether two sets of junction

matches are consistent with one another. Suppose, in Fig. 7, that the junctions

J, and J2 in Image1 arise from scene vertices that are at the same height.

Suppose also that the junction matches (Il,J;) and (J2, J;) have been

hypothesized. To measure the degree of consistency between these two sets of

matches, we predict the position of the junction in Image2 that corresponds to

(say) J2. L e t us refer to the predicted position as J". I f the vector from J; to 7;'
i s (al,bl) and the vector from Ji to J; i s (u2, b2), then the degree of

consistency between the two sets of matches, called the global COS?, i s defined

as

Two sets of junction matches whose relative positions are near the prediction

result in small global cost, while positions far from the prediction result in large

global cost.

To arrive at a unique set of junction matches, the space of potential matches

i s searched using a beam search [27], which i s guided by the above two criteria.

The search space i s represented by a network whose nodes are the possible

pairs of junction matches. This i s depicted in Fig. 8, where each junction in

(say) Imagel (i.e., J, K, L, . . .) i s paired with each of its potential matches in

Image2 (Le., J:, K:, L:, . . .). The junctions in Imagel are ordered so that the

junction in column k i s within an M X M window of the junction in column k - 1.

M i s chosen so that there is a good probability that junctions within the window

arise from vertices on top of the same building.
_-
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Image 1 Image2

FIG. 7. Tositional vectors of predicted and actual positions of two junction matches are used to

compute the global matching cost.

Column

Uumber

Junc t ion

i n Image1

Candidate

junctions

i n Image2

1 2 3 . . .

3 K L . . .

. .

. .

FIG. 8. Each column contains a junction from Image1 and i ts candidate matches from Image2. The

candidates form the nodes of a network which i s searched by a beam search.
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In Fig. 8, each junction and i t s candidates l ie in a single column. and each

candidate is represented by a node in the network. Any path through the

network that visits a single node at each column represents a set of unique

junction matches. Associated with each such path i s a cost obtained by adding

all the local costs of the nodes visited by thc path and all the global costs

between each successive pair of nodes in the path. The goal of the search i s to

find the minimum cost path. With beam search, only a limited number of paths

are explored.

The search starts at column 1 (Fig. 8) and proceeds successively to each

column. At each column k, the best N partial paths from column 1 to k are

extended to column k + 1 as follows. Suppose that each node in column k has a

cost corresponding to the minimum cost path from column 1 to the node. Then

for each of the N lowest cost nodes Ji in column k, compute the cost of the

path when extended from J: to each node K: in column k + 1. This cost i s thc

sum of the cost of the partial path to node1:, the global cost between nodes1:

and K:, and the local cost of node K:. Then add a link in the network between

nodes JI and K:.
At the end of this set of steps, there will be a link from each of the best N

nodes in column k to each node KI in column k + 1, and each node K: will

now have several costs associated with it, one for each link into the node.

Suppose the link from node J: has the lowest cost to KI. A backpointer from

K: to 1: is added, and the associated cost i s stored. All other links and costs

associated with node K: are discarded. Each of the best N nodes in column

k + 1 are then extended to column k t 2 . Notice that this search i s not

guaranteed to result in the lowest cost path in the network. A path discarded at

column k because it i s not among the best N may have been part of the best

FIG. 9. Matches that have been found for the junction in Fig. 5. Actually. not all matches are

correct. For example, although the junction matches (I,,J2) and (J 3*J,) are correct, the match

(J5, J,) i s incorrect.
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path at column k + jif i t were extended that far. The results of this procedure

are displayed in Fig. 9, which shows junctions in one image that have matches

in the other image.

The final steps in the stereo analysis involve (1) finding l ines in the images

that might be the third leg of matched junctions and that might represent scene

edges perpendicular to the ground plane, and (2) using triangulation to derive

3D coordinates of vertices and equations of edges. Figure 10 shows a perspec -

tive view of the 3D vertices and edges that result. We call this a wire -frame

description of the scene.

4. Monocular Analysis

Although stereo i s a major source of 3D information, some views of the scene

will be only single images. We can also extract 3D information from these

images by exploiting task-specific knowledge. We assume that the objects in

the scene are trihedral polyhedra containing only vertical and horizontal faces,

i.e., faces perpendicular and parallel, respectively, to the ground plane. Our

monocular analysis extracts linear structures in the image that represent

boundaries of buildings. and then converts these structures into 3D wire

frames.

4.1. Steps in monocular analysis

This section provides an example showing how the monocular analysis is

performed on the image in Fig. 11. This is a different view of the same scene

shown in the earlier stereo pair (Fig. 4).

Extracting fines and junctions. The f irst step in the monocular analysis i s to

extract linear segments and junctions from the image. The method used here is

FIG. 11. Aerial photograph showing part of Washington, DC. This i s a different view of the same

scene as in Fig. 4.
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the same as that used during stereo analysis (as previously described). Thinned

edge points are shown in Fig. 12, and the result of extracting lines and

junctions is shown in Fig. 13.

Locating 2D structures. Next we form linear connected structures in the

image by hypothesizing new lines to connect the previously extracted junctions.

These connected structures are meant to represent building boundaries and the

hypothesized lines are meant to correspond to building edges. The process of

hypothesizing connecting lines consists of two steps. First, two junctions may

be connected only i f a leg of one points at the other, that is, the extended leg

meets the other junction. Second, the two junctions must appear to be

connected by line segments in the line image.

The first step involves finding all pairs of junctions such that one has a leg

pointing at the other, and proceeds as follows. First, if two junctions share the .

same leg, they are connected. Next, for each leg of each junctionI,,a thin

rectangular window is located in the direction along the leg (Fig.14). Of the

junctions within this window and within an angle LY from the direction of the

leg, the one closest to J, i s retained as a candidate for being connected to 1,.
Figure 15 shows a graph with al l candidate connections drawn.

The second step involves determining which connections shown in Fig. 15
appear as connections in the line image (Fig. 13). For each pair of connected

FIG. 12. Result of thinning the edges obtained by applying a Sobel operator to the image of Fig. 11.
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FIG. 13. Lines fitted to the edge points of Fig. 12 after they are linked. Junctions in the image are

classified as L, A (arrow), F (fork). or T.

junctions J, and Jk (Fig. 16), we find all segments in the line image that are

contained within a thin rectangular window connecting J, and J,, and project

these segments onto the line connecting the two junctions. Then we consider

how much of this line i s covered by projected segments. The connection

between J, and Jk i s retained only i f the percentage of coverage exceeds a

threshold. The result of this pruning step i s shown in Fig. 17. Note that i t does

a good job in eliminating unwanted connections. These two steps illustrate how

useful a hypothesize -and-test method can be for low-level image processing. In

the first step, candidate connections are hypothesized on rather preliminary

evidence. In the second step, the candidates that do not pass a rigid test are

eliminated.

The junction legs originally extracted in the junction finding step are then

added .to the result of Fig. 17, and extraneous legs are deleted. The final

connected structures are displayed in Fig. 18.

Obtaining 3 0 wire frames. The next step is to convert the 2D structures into

3D wire frames. In order to do so, we assume that all lines that form the 2D
structures arise from either vertical or horizontal scene edges. Furthermore, we
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FIG. 14. The closest junction to J, within the thin rectangular window of length d and height W, and

within the angle 2a. IS a candidate for being connected to J,.

FIG. 15. Each line represents a possible connection between the junctions at i t s two end points.

Each end point corresponds to a junction in Fig. 13.
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l i n e seaments

l i n e A

FIG. 16. All line segments within the thin rectangular window connecting junctions J, and Jk are

projected onto line A to determine the amount of coverage.

I

/

FIG. 17. Result of pruning the junction connections in Fig. 15 by determining whether segments in

Fig. 13 adequately cover the area between each pair of connected junctions.

use several features that aid us in relating an image to the 3D scene depicted in

the image, including vanishing points, the ground plane constraint, propagation

of 3D constraints and colinearity (i.e., alignment of lines).

First, the lines that form the 2D structures are labeled as either “vertical” or

“horizontal” depending on whether or not they are directed toward the vertical

vanishing point [19]. Next, we use the position of the vertical vanishing point to
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FIG. 18. Result of adding to Fig. 17 the junction legs that were originally extracted in the junctlon

finding step. and then deleting extraneous legs.

calculate the vector in the vertical direction, as described previously. Le t us

now consider how to recover the 3D configuration of the junction p,p2p3p4 in

Fig. 19. Suppose that line pzpJ
has been labeled “vertical” and lines plpz and

p2p3 have been labeled “horizontal.” Let u be the unit vector in the vertical

direction. This vector i s normal to all horizontal planes. First we would like to

determine the 3-space position of u2, corresponding to the junction point pz.

Since it i s impossible to determine the actual position of this point from a single

image without special information, the position i s determined as some arbitrary

point lying on the ray through p z, i.e., the depth a of u2 i s arbitrarily chosen.

The horizontal plane uIu2u3 can now be established, since it contains uz and i t s

normal vector i s u. The 3-space positions of the points u, and u3 can then be

computed as the intersections of this plane with the rays through p, and p,,

respectively. Finally, the 3-space position of the point u4 i s computed as the

intersection of the ray through p4 with the line through u2 along the vector u.

Although this technique permits us to recover the 3D configuration of any

junction relative to some arbitrary depth, it i s not useful to apply it directly to

the junctions in the original line image (Fig. 13) because the relative heights
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FIG. 19. The 3D configuration of the junction p,p2p,pr can be recovered under assumptions

explained in the text.

above the ground plane of the corresponding vertices cannot be determined;

the height of each vertex i s arbitrarily chosen without relation to the heights of

other vertices. It i s more useful, however, to apply the technique to the 2D
structures in Fig. 18, since the heights of the vertices within each structure can

be related. To see how this is done, consider the example in Fig. 20, which

shows a 2D structure. The solid lines are part of the extracted structure (while

the dashed lines are for the reader’s convenience to make the 3D shape more

apparent). Suppose lines p,p6 and p3p4 have been labeled “vertical,” while the

other solid lines have been labeled “horizontal.” Applying our technique to

(say) point p,, the 3-space positions of the vertices corresponding to points pI,
p2 and p6 can be determined relative to some arbitrary depth a for p,. I f the

technique is applied next to point pz, the 3-space position of point p, can be

determined as a function of the depth a. This procedure continues with points

p6. p4, and so on, until the 3D configuration of the whole structure has been

determined, relative to some arbitrary depth.
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d i r e c t i o n

“ v e r t i c a l ”

vanishing

point

FIG. 20. T h e solid lines represent a connected 2D structure. The dashed lines are for the reader’s

convenience to make the 3D shape more apparent.

In order to obtain a coherent scene description, the depths of the different

structures in the scene must be related. We use two methods to do this. The
first method involves finding structures that l ie on the ground plane. Suppose a

junction point p of such a structure is hypothesized to arise from a vertex lying

on the ground. Then the 3-space position of the vertex may be obtained as the

intersection of the ground plane with the ray through p. The normal vector u

to the ground plane i s known, but the distance d from the focal point to the

ground plane i s arbitrarily chosen. Since the 3-space position of all junctions

arising from ground points can be calculated in this manner, the depths of all

structures containing such points can be related to one another through the

parameter d.
To hypothesize junctions that arise from vertices lying on the ground plane,

we use the observation that if a line labeled “vertical” connects two junctions

(e.g., line p1p6 in Fig. 20), the line is directed toward the vertical vanishing

point with respect to one junction, but away from this vanishing point with

respect to the other junction. The latter junction i s assumed to represent a

vertex lying on the ground plane. Points p, and p3 in Fig. 20 are examples of

such junctions. The 3-space positions of these junctions are then calculated,

and their values are propagated throughout their structures as described

previously. Figure 21 depicts a perspective view of the 3D wire frames obtained

in this manner.

There are many structures in Fig. 18 that do not contain points lying on the
ground plane, either because such points are occluded in the scene or because

they have not been properly extracted from the image. Nevertheless, the

heights of some of these structures can be determined using the rule that i f two

lines are aligned in the image, they are often aligned in 3-space. This rule has

been used in other systems [20] and in fact i s a restricted version of the parallel

line rule [18] which states that parallel lines in the image often arise from
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FIG. 21. Perspective view of 3D wire frames generated from Fig. 18 using the method of finding

junctions arising from vertices lying on the ground plane.

p 5

P
7

’6 p

g

np8 11

FIG. 22. If the 3D configuration of the structure on the left has been determined, the relative 3D

position of the structure on the right may also be determined because lines p6p, and pRpll
are

aligned.

parallel lines in 3-space. To see how this rule i s used, consider Fig. 22. Suppose

that points p1 through p, have already been assigned 3D coordinates, and we

want to obtain the 3-space position of the 2D structure p8p9p,op,1. Since the

lines p6p7 and p8pl, are aligned in the image and both are labeled “horizon -

tal,” they are assumed to be aligned in the scene and to l ie in the same

horizontal plane. The 3-space position of (say) point p8 is therefore determined

as the intersection of this plane with the ray through ps. The 3D coordinates of

this point may then be propagated to points p9, plo, and pI1 as described
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FIG. 23. Perspective view of final set of 3D wire frames generated from Fig. 18.

previously. Note that all 3D positions are functions of the parameter d, which

i s arbitrarily chosen for the equation of the ground plane.

Figure 23 depicts a perspective view of the final 3D wire frames obtained

using both the methods of hypothesizing points on the ground plane and

applying the alignment rule.

5. Representing and Manipulating the 3D Scene Model

The representation we have developed for the 3D scene model draws on ideas

from geometric modelling used in computer -aided design systems [l,261. In

these systems, however, the 3D models are usually derived through interaction

with a user. Our case i s different in that (1) the 3D models are derived

automatically from 2D images, and (2) many portions of the scene are

unknown or recovered with errors because of occlusions or unreliable analysis.

The following factors have determined how the scene model i s represented

and manipulated.

(1) Partially complete, planar -faced objects must be efficiently described by

the model. I t i s therefore represented as a graph in terms of symbolic

primitives such as faces, edges, vertices, and their topology and geometry.

Information i s added and deleted by means of these primitives.

(2) The model must be easy to use in matching.

(3) Because scene approximations are often more useful i f they contain

reasonable hypotheses for parts of the scene €or which there are partial data,

we introduce mechanisms that permit hypotheses to be generated, added, and

deleted.
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(4) Because incremental modifications to the model must be easy to per-

form, we introduce mechanisms to (a) add primitives to the model in a manner

such that constraints on geometry imposed by these additions are propagated

throughout the model. and (b) modify and delete primitives if discrepancies

arise between newly derived and current information.
The 3D structure in the scene is represented in the form of a graph, called

the structure graph. The nodes and links represent primitive topological and

geometric constraints. The structure graph is incrementally constructed

through the addition and deletion of these constraints. As constraints are

accumulated. their effects are propagated to other parts of the graph so as to

obtain globally consistent interpretations.

The current structure graph representation models surfaces in the scene a s

polyhedra. The components of a polyhedral surface are the face. edge. and

vertex. We distinguish the topology of the polyhedral components from their

geometry [1, 12). The geometry involves the physical dimensions and location

in 3-space of each component, while the topology involves connections be-

tween the components.

Nodes in the structure graph represent either primitive topological elements

(i.e., faces, edges, vertices, objects, and edge groups (which are rings of edges

on faces)) or primitive geometric elements (i.e., planes, lines. and points).

Face, edge, vertex, and point nodes are tagged as either confirmpd or

unconfirmed. Confirmed means that the element represented by the node has

been derived directly from images. Unconfirmed means that the element has

only been hypothesized. An edge may actually be partially confirmed and

partially unconfirmed. For example, a confirmed edge, extracted from the

image, may later be hypothesized to extend further in length. In this case. the

confirmed portion of the edge will l ie between two confirmed points, while the

unconfirmed portion will l ie between a confirmed and an unconfirmed point.

The primitive geometric elements serve to constrain the 3-space locations of

faces, edges, and vertices. Plane and line nodes contain plane and line

equations, respectively. Point nodes contain coordinate values. The structure

graph contains two types of links: the part-of link, representing the part/whole

relation between two topological nodes, and the geometric constraint link,

representing the constraint relation between a geometric and topological node.

Figure 24 shows a simple example of a structure graph consisting of two

objects, ob1 and ob2. Arrows with single lines represent part-of links, and

arrows with double lines represent geometric constraint links. The faces are

represented as J, the edge groups as g,, the edges as e,, and the vertices as u,.

The graph shows one point node pt and one plane node pl.

6. Modifications to the 3D Scene Model

Modifications to the structure graph are made by adding or deleting nodes and

links, or changing the equations of line and plane nodes, or the coordinates of



INCREMENTAL RECONSTRUCTION OF 3D SCENES 315

point nodes. All effects of modifications are propagated to other parts of the

graph. These modifications, to be described next, are the basic processes used

in constructing the structure graph representation as described in Section 7,
and in modifying the structure graph by incorporating a new view. as described

in Section 8.

6.1. Propagation due to geometric modifications

Consider adding or deleting a geometric constraint link between a geometric

and topological node. Any of the three geometric nodes (points, lines, and

planes) may constrain any of the three topological nodes (vertices. edges, and

faces). Object and edge group nodes may not be geometrically constrained

directly. Figure 25 shows how a constraint on one node may propagate to

others. The arrows in the figure indicate the direction of propagation. The tail

of an arrow indicates the source constraint; the head indicates the constraint

implied by the source constraint.

We see in Fig. 25 that point constraints propagate upward. That is, if a point

constrains a vertex, i t must also constrain all edges and faces which contain that

vertex. Similarly, a point that constrains an edge must also constrain al l faces

containing that edge. Note that when a point constrains an edge, we assume

that no constraint is implied for arbitrary vertices that are part of that edge,

since the point need not l ie on any of these vertices. In one sense, the point

may be considered to constrain such vertices since they must l ie on a line going

through the point. This constraint, however, i s not useful until another

constraint on the line i s derived, such as another point that lies on the edge. In

this case, our system generates the equation of the line that constrains the edge

and propagates the line constraint down to the vertex, as explained in the next

paragraph. A more direct and useful constraint i s thus imposed on the vertex.

FIG. 25. Rectangular boxes indicate geometric constraints on topological modes. Arrows indicate

direction of propagation of constraints.
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Similarly. when a point constrains a face. no useful constraint i s implied for

arbitrary edges or vertices that are part of the face.

As indicated in Fig. 25, line constraints propagate outward. A line that

constrains an edge must also constrain all faces containing the edge and al l

vertices that are part of the edge. Finally. plane constraints propagate down-

ward. A plane that constrains a face must also constrain all edges and vertices

that are part of the face. Similarly, a plane that constrains an edge must also

constrain all vertices that are part of the edge. Whenever a geometric

constraint link is added, propagation occurs as indicated in Fig. 25.

When a geometric constraint link i s deleted, the rest of the structure graph

must be made consistent with this change. Our approach to this problem i s

based on the T M S system [ lo], using the notion that when an assertion i s

deleted, ail assertions implying i t and all assertions implied by it that have no

other support should also be deleted. To see this, consider Fig. 26. Le t

{x , , x2, . . . , x m} be a set of assertions, each of which independently implies
the assertion y. The assertion ( y A u, A u 2 A . .), in turn. implies each asser -

tion in the set {z,. z,, . . . . z
n
} . Furthermore, for each i, z, is independently

implied by each assertion in the set {w,}. Now suppose the assertion y i s

deleted, i.e.. it is declared false. Then:

(1) Since each assertion z, depends on the truth of y, z, is deleted unless i t

has other support wi,.

(2) All assertions x, are made false. None of them can be true, for if one

were, y must be true. Since x
i

may consist of a conjunction of assertions, at

least one of them i s deleted to make xi false.

We obtain assertions that imply a given assertion by following backwards

along the arrows in Fig. 25, and we obtain assertions implied by a given

assertion by following forward along the arrows.

Y

" 1

v2

A

A

FIG. 26. The assertion y is independently implied by each x,. Each assertion z, IS independently

implied bv ( y A L ', A u2 A . . , ) and w,!.
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r . ~ s p ~ r t o f e ( l ~ n k1)
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p cunstrainsf(1ink 5)

FIG. 27. (a) Initial structure graph. (b) Link 4 i s deleted. (c) Resulting structure graph after effects

of deletion have been propagated.

Consider the simple example in Fig. 27(a), which depicts three topological

nodes (vertex u, edge e. face f ) constrained by one geometric node (point p),

Suppose now that link 4 is deleted (Fig. 27(b)), that is. the assertion “p

constrains e” is deleted. All assertions which have implied this must now be

deleted, for if one were to hold, link 4 would also hold. To find these

assertions, we locate the box in Fig. 25 that represents a point constraining an

edge and follow backwards along the arrow. The result is the box that

represents the point constraining any vertex of the edge. In Fig. 27(b). this

corresponds to the assertion ‘‘p constrains u, and u is part of e.” This assertion

must therefore be made false. To do so, we may delete either link 1, link 3, or

both from Fig. 27(b). Our intuition tells us that part-of links (link 1) should

dominate constraint links (link 3), and thus link 3 i s deleted. This seems to

work well for our examples.

We now must determine the assertions implied by the one initially deleted.

All these assertions must also be deleted unless they have other support. To do

so, we follow forward along the arrow from the box in Fig. 25 that represents a

point constraining an edge, and the result i s the box that represents the point

constraining all faces containing the edge. In Fig. 27(b), this corresponds to the

assertion “p constrainsf,” which i s link 5. This link should therefore be deleted

since i t has no other support. One possible source of other support is external

to the structure graph. Link 5 may have been derived, for example, directly

from image data, rather than through structure graph propagation. We rule out

the possibility that links 4 and 5 are unrelated, and thus delete link 5. The

resulting structure graph is depicted in Fig. 27(c).
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6.2. Propagation due to topological modifications

When a topological part-of link between two topological nodes i s added or

deleted, the effects are propagated to other parts of the structure graph. In the

following, we will consider both geometric and topological effects.

6.2.1. Geometric effects

When a topological part-of link is added between two topological nodes, the

geometric constraints on each node must be propagated to the other node in

accordance with the chart in Fig. 25. There are three main cases to consider:

(1) adding a part -of link between a vertex and edge node, (2) between an edge

and face node, and (3) between a vertex and face node. These three cases are

explicitly covered in Fig. 25. The remaining cases fal l into two classes: (a) .

adding a part-of link between some topological node and an object node, and

(b) between some topological node and an edge-group node. Since object

nodes cannot be geometrically constrained directly, actions in class (a) have no

geometric effects. Since geometric constraints can be propagated through

edge-group nodes, actions in class (b) do have geometric effects. These effects,

however, can be reduced to the three cases above, as explained in the next

paragraph.

Consider the example of adding a part-of link between an edge node E and a

face node F. From Fig. 25, we see that all point and line constraints on E must

be propagated to F, while all plane constraints on F must be propaged to E.
Plane constraints propagated to E are, in turn, propagated to vertices of E. As

another example, consider adding a part-of link between an edge-group node

G and a face node F. This situation results in the same geometric propagation

as the following two cases: (1) add a part-of link from each edge of G to F, and

(2) from each vertex of G to F. Similar rules can be established for the other

two situations involving edge-group nodes (i.e., adding a link between a vertex

and edge-group node, and between an edge and edge-group node).

When a part-of link between two topological nodes i s deleted, an attempt is

made to nullify any geometric propagation that occurred through the link. This

is done by deleting, from the two nodes connected by the link, all geometric

constraints that have propagated through the link. The effects of deleting these

geometric constraint links are, in turn, propagated to the rest of the graph in

the manner described in the previous section.

As an example, consider deleting a part-of link between an edge node E and

a face node F. A s seen in Fig. 25, all point and line constraints on F that also

constrain E were either (1) propagated up from E, (2) propagated up from

another edge or vertex of F, or (3) derived from an external source. We rule

out the possibility that the same constraints on E and F are unrelated, thus

ruling out the external source. Therefore, points and lines that constrain both F

and E, but do not also constrain another edge or vertex of F, are deleted from
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F since we just cut off the only path through which they could have propagated

to F. The effects of deleting the point and line constraints from F are. in turn.

propagated to the rest of the graph. Similarly. a l l plane constraints on E that

also constrain F a r e deleted from E unless they also constrain another face that

contains E (which would be unusual). The effects of deleting plane constraints

from E are then propagated.

An example of a link with more than one source of support i s shown in Fig.

28(a). Suppose the part -of link between e, and f, link 4, i s deleted (Fig. 28( h)).

According to the chart in Fig. 25, link 8 is a candidate €or deletion since the

point node p constrains both e, and f. However. since p also constrains the

edge e,, which is part off , link 8 is still valid.

6.2.2. Topological effects

A topological modification sometimes implies topological changes elsewhere in

the structure graph. This i s best illustrated through an example. Figure 29(a)

shows the graph representing the situation in Fig. 29(b). The edge e has two

vertices, u, and u,, and u, i s known to be part of the facef. Now suppose a

part -of link is added between u2 and f (link 4 in Fig. 29(c)). Since both vertices

of e are now part of f. e must also be part of f, a5 shown in Fig. 29(d).

Therefore link 5 in Fig. 29(c) is added.

Another kind of topological effect results from the desire to eliminate

redundant part -of links. Part-of links serve as paths in the structure graph

along which effects of geometric changes are propagated. In order to simplify

this process, the number of paths between each pair of topological nodes is

minimized using the following rule: Two topological nodes may not be directly

FIG. 28. Example of a link with more than one source of support. (a) Initial structure graph. (b)

Link 4 i s deleted, but link 8 remains because of support from links 3 and 7.
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( e l

FIG. 29. Topological propagation. (a) and (b) Initial situation. (c) and (d) Link 4 is added, resulting

in addition of link 5. (e) Redundant links are eliminated.

connected (i.e., by means of a part-of link) if they are also connected through

one or more intermediate topological nodes. For example, suppose a part-of

link is added between the edge node e and the face node f in Fig. 30(a). To

avoid redundancy, all links connecting vertex nodes of e and the node f (link 1
in Fig. 30(a)) and vertex nodes of e and object nodes containing f (link 2) are
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FIG. 30. (a) Initial configuration. (b) When a link i s added from e tof, links 1 and 2 are deleted to

eliminate redundancy.

8
la) Ibl

FIG. 31. (a) Initial configuration. (b) Final result after link 1 is deleted.

deleted. In addition, if there were any links between e and object nodes

containing f, they would also be deleted. The final configuration i s shown in

Fig. 30(b). In the example of Fig. 29, the graph in (c) has redundant links.

Links 1 and 4 are therefore deleted, resulting in the graph of Fig. 29(e).
Although adding a part-of link can result in topological changes elsewhere in

the graph, deleting a part -of link does not change the topology anywhere else.

No attempt is made to recover previous states of topological connections.

Figure 31(b) shows the result of deleting link 1 from the graph in Fig. 31(a).

This technique seems to work well in our experiments.
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7. Constructing and Updating the 3D Scene Model

Each view of the scene (which may be either a single image or a stereo pair)

undergoes analysis which results in a 3D wire-frame description representing

3D vertices and edges corresponding to portions of boundaries of objects in the

scene. The goal of the updating process i s to merge the wire -frame description

with the current model. In general, this process will result in a partial 3D

model which may consist of surfaces at some places but only portions of

boundaries at other places. This partial 3D model must then be converted into

a full surface -based description by hypothesizing new vertices. edges, and

faces. Our current techniques for making such hypotheses exploit task-specific

knowledge that falls into two categories: (1) knowledge of planar -faced

objects, and (2) knowledge of urban scenes.

Both the wire frames and scene models are represented by structure graphs.

The wire -frame description extracted from the f irst view forms the initial state

of the scene model, and all of i t s edges, vertices, and points are tagged as

confirmed. This wire -frame model is then converted into a full surface -based

model using task-specific knowledge. All elements of the model that were not

present in the initial state are hypothesized and tagged as unconfirmed.

When a wire -frame description is extracted from a new view, all of i t s edges,

vertices, and points are tagged as confirmed. This description is then matched

to the current model (in order to find corresponding elements in the two and

the scale and coordinate transformation from one to the other) and merged

with the current model. In the merging process, confirmed elements in the wire

frames and model that match are “averaged’ together, resulting in new

confirmed elements. The parts of the wire frames that have no match in the

model are then added to the model. Hypothesized elements in the model that

are no longer consistent with confirmed parts are deleted. At this point,

task-specific knowledge is again used to fill out the model and to form a full

surface -based description.

7.1. Knowledge of planar -faced objects

Since the structure graph has been designed for scenes that can be modelled as

collections of planar -faced objects, knowledge of such objects i s inherent in the

representation and propagation rules, as described above. We now discuss how

knowledge of such objects is used to construct a scene model from wire frames.

When new wire-frame information (derived either from the first or a

subsequent view) i s added to the model, many object descriptions will be

incomplete. A goal of the model construction process, of course, i s to complete

these object descriptions using task-specific knowledge. The notion of an

object description being complete i s best expressed in the context of the

structure graph. An object node in the structure graph i s considered complete

if it meets certain requirements, which may be expressed in terms of complete
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nodes contained by the object node. Each type of node in the graph, therefore,

must meet certain requirements to be considered complete. Even though these

requirements are only implicitly followed during the model construction pro-

cess, it i s useful to state them explicitly.

(1) An object node i s complete i f i t is closed, i.e., each edge node of the

object i s part of two face nodes, both of which are complete.

(2) A face node is complete if it is constrained by a plane node and contains

one or more complete edge-group nodes. One of these edge-group nodes must

represent a bounding ring of edges on the face. The other, optional edge-group

nodes represent inner edge rings, which would be holes in the face. In

addition, each edge node of the face must be part of an edge group of the face.

(3) An edge-group node i s complete if i t contains a single, connected, closed

ring of complete edges on a face.

(4) An edge node is complete i f it is constrained by a line node and contains

two complete vertex nodes.

(5) A vertex node i s complete if it is constrained by a point node.

The following techniques applicable to planar -faced objects are used in

constructing the model (see [17] for more details): (1) combining edges (Fig. 32
and E, and E, in Fig. 33), (2) generating a partial face, called a web face, for

each adjacent pair of legs ordered around a vertex (Fig. 34(a)), (3) merging

partial faces, and (4) finding and constructing holes in faces (Fig. 34(b)).

The procedure that merges partial faces distinguishes those that touch each

other from those that do not. Two partial faces that touch each other (e.g., Fig.

34(c), and F, and F2 in Fig. 33) should be merged i f (1) they share exactly one

edge, (2) the edge serves as a boundary of both faces, but does not partition

them, and (3) the planes of the faces are nearly parallel and very close to each

other.
The procedure for merging two touching faces provides a good example of

how the basic modification techniques described in Section 6 are used to

construct the structure graph representation. The merging of two touching

FIG. 32. Combining edges. (a) Edges e, and e, are very close to each other, and each has a

confirmed vertex (u, and u2. respectively). These vertices are on opposite ends of each other. (b)

The new edge i s shown as the result of merging e, and e,.
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FIG. 34. Obtaining a surface -based description from wire frames.

faces F, and F2 involves (1) finding the two edge groups G, of F, and G, of F,
that contain the shared edge, (2) subtracting edges and vertices from G, (i.e.,

deleting part-of links in the structure graph) and adding them to G? (adding

appropriate part-of links), (3) subtracting edge groups, edges, vertices. lines,

and points from F, and adding them to F,, and (4) recalculating the plane

equation of F2 as a least -squares fit to all the points now constraining F,. As

elements are added or subtracted from the structure graph, their effects are

propagated to other parts of the graph, as described in Section 6.

Two partial faces that do not touch each other (e.g., Fig. 35(a), and F3 and

F4 in Fig. 33) should be merged if (1) each face has a single chain of edges that

is not closed, (2) each of the two end points of the edge chain of one face is

uniquely matched with those of the other face, where unique matching i s

determined by the distance between the two points being less than a threshold

(in Fig. 35(a), pi uniquely matches with pi, and p 2 with pl), and (3) the planes

of the faces are nearly parallel and very close to each other. When merging two

faces that do not touch, the two edges on which each matching pair of end

points lie are intersected. The intersection points form two new vertices on the

resulting face (vertices u, and u2 in Fig. 35(b)). Notice in Fig. 35(b) that the

edge e, has been shortened in the process, while the other edges have been

extended.
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FIG. 35. Merging of nontouching faces. (a) j,and fisatisfy the conditions for merging. (b) Result

of merging f, and fi. (c) and (d) The complete face f, i s merged with the partial face f,. (e) The

complete face j,,which contains a hole, is merged with the partial face f2.



INCREMENTAL RECONSTRUCTION OF 3D SCENES 321

Up t i l l now, w e have only discussed the merging of partial faces. However. i f

the confirmed parts of two faces, each of which may be partial or complete,

satisfy the conditions for merging nontvuching faces, then the faces may be

merged. For example, suppose the face f, in Fig. 35(c) contains the confirmed

edges e, and e z and the hypothesized edges e3 and e,. Now suppose that the

web face f, in Fig. 35(d) i s new information that becomes available, say. from a

new view. The confirmed parts off, may then be merged with /? i f they satisfy

the conditions for merging. In the process, hypothesized parts of f , must be

deleted. The mechanisms for doing this will be discussed later.

Another interesting example is depicted in Fig. 35(e), whose situation is

similar to that in Fig. 35(d) except that the web face f2 i s merged with

confirmed parts of the face f,, which has a hole in it. Notice that the condition

that the confirmed parts of each face must have two end points which are

uniquely matched to those of the other face i s satisfied by pi and p,, and by p,

and p4. As a result of merging, f, aids in completing the boundary of the hole

in f,.

7.2. Knowledge of urban scenes

Because the wire -frame data extracted from images represent a partial and

sparse description of the scene, knowledge of planar -faced objects by i tsel f is

generally not adequate for completing many of the objects in the model.

Knowledge of urban scenes that contain block-shaped objects has been useful

for this task. This knowledge is described in [17], and involves (1) completing

the shapes of faces in the form of a parallelogram (Fig. 34(d)) or other poly-

gon (Fig. 34(e)). and (2) hypothesizing vertical faces for incomplete object5

(Fig. 34(f)).

7.3. Examples of generating the 3D scene model

When the techniques described above are applied to the output of the stereo

analysis component depicted in Fig. 33, we obtain the scene model shown in

Fig. 36. Notice that one of the buildings has a hole in it, through the roof. The

planar patches at the “front” of the scene are part of the ground. Because they

were not high enough above the ground plane, they were not treated as

building roofs. When these techniques are applied to the output of the

monocular analysis component shown in Fig. 23, we obtain the scene model

shown in Fig. 37. Note that all vertices, edges, and faces which have been

hypothesized by the procedures described above are marked as such, and will

be replaced by more correct versions as more information becomes available

from new views.

Figures 38 and 39 show the result of adding gray scale to the faces of the

models in Figs. 36 and 37, respectively. The technique for doing this i s

described in [17].
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FIG. 38. Reconstructed buildings of Fig. 36 with gray scale, derived from the top Image In Fig. 4.

mapped onto faces. On a color display, faces and portions of faces occluded in the original image

are colored red.
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FIG. 39. Reconstructed buildings of Fig. 37 with gray scale, derived from Fig. 11, mapped onto

faces.
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Although the stereo, monocular, and model generation components of the

system have been applied to several other images of downtown Washington,

DC, the results presented in this paper are the best we have obtained. We are

currently working on improving the system so as to make i t more robust.

8. Combining New Views with the Current Model

The process of incorporating a 3D wire -frame description extracted from a new

view into the current scene model can be divided into three main steps:

(1) The wire -frame data must first be matched to the current model. This
process provides (a) the scale transformation and coordinate transformation

from the wire-frame data to the model, and (b) corresponding elements (i.e.,

vertices and edges) in the two.

(2) The new wire-frame data is then merged with the current model. This
process includes (a) merging pairs of corresponding elements, and (b) adding

to the model wire -frame elements for which no correspondences were found.

The latter procedure is aided by knowledge of the scale and coordinate

transformations. During the merging process, hypothesized parts of the model

that are inconsistent with the new wire-frame data are deleted.

(3) At this point, many objects in the model may be incomplete because (a)

new wire -frame data has been added. and/or (b) some hypothesized elements

have been deleted. These objects are completed using the techniques described

in the previous section.

To see how these steps are carried out, consider the example of incorporat -

ing the information from a second view into the scene model of Fig. 36. This
scene model was constructed from the set of wire frames (Fig. 33) autornatical -

ly extracted from a “front” view of the scene (Fig. 4). The second set of wire

frames, shown in Fig. 40, was manually generated to simulate information

available from an opposing point of view (viewing the scene from the “back”).

Notice that the information in Fig. 33 emphasizes edges and vertices facing the

front of the scene, while those facing the back of the scene are emphasized in

Fig. 40.

8.1. Matching

We assume in this example that the scale and coordinate transformations from

the new wire -frame data to the current model i s known; the data and model

may therefore be described in the same coordinate system. We have not yet

implemented a general matcher that provides these transformations between

the two (but see [16]).

The next step i s to determine corresponding edges and vertices in the data

and model. First we label each connected group of edges in the wire -frame

data as a distinct wire -frame object. Next, wire-frame objects are matched with

model objects. Two objects are said to match i f they have confirmed parts that
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FIG. 40. Perspective view of manually generated vertices and edges which simulate information

available from images showing an opposite point of view from that shown in Fig. 4. T h e viewpoint

for this drawing i s chosen to be similar to Fig. 33. Points P,, P,, and P,, for example, correspond

to points P,, P,, and P, in Fig. 33.

match. Matches are sought only for edges and vertices, since these constitute

the only confirmed parts of a wire -frame object. The requirements for two

confirmed vertices, one from each object, to match are: (1) they must be very

close to each other, or (2) they must be part of matching edges whose other

two vertices match. The requirements for two confirmed edges, one from each

object, to match are: (1) the two confirmed vertices of one edge must match

the two of the other, or (2) one confirmed vertex on one edge matches one on

the other, and the two edges are close together and overlap in their lengths.

These rules are used in a relaxation algorithm to obtain matching vertices and

edges.

A s an example, consider Fig. 42. Suppose the object in Fig. 42(a) is part of

the model. Suppose also that the wire-frame object in Fig. 42(b) has been

derived from a new view, and it has been transformed to register with the

model object. The following algorithm is used to match the two.

Step 1. Find pairs of confirmed vertices that match by determining which
ones l ie within a threshold distance of one another. The vertices u2 and ~ 1 , ~ ~are

found to match, but let us suppose the distance between u3 and ulO, exceeds the

threshold.

Step 2. Find pairs of confirmed matching edges that contain previously

found m.atching vertices. The edges e2 and elO0, and e 3 and e,,,, contain

matching vertices and., using the distance and overlap tests, are found to match.

Step 3. For each new matching pair of edges found, if they contain a single

pair of matching vertices, match their other vertices (if they exist and are

confirmed). The vertices u3 and ulOl match because e3 and el,, match. No new

matching vertices result from the matching edges e2 and e,,,, since elOO has only

one vertex.
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Step 4. Proceed by repeating Step 2, i.e., find new pairs of confirmed

matching edges that contain previously found matching vertices. The edges e4

and eI2 are compared with el,? and elOJ
, respectively. Using the distance and

overlap tests, e 4 and e,,?, as well as e,, and elO4, are found to match.

Step 5. Next, Step 3 is repeated. New matching vertices are sought that l ie

on newly found matching pairs of edges. The matching edges found in Step 4
contain no new matching vertices, since u4 and u6 are unconfirmed. The
algorithm therefore halts at this point; it would have continued with Step 2 i f

new matching vertices had been found. The following pairs of matches are

returned:(u,, uloo>, (u3?u l ~ l > > elo,>, (e3, el,,). (e4. (e123 e104)’

8.2. Discrepancies

We must now merge the new wire-frame data into the model. An important

issue here is how to handle discrepancies between the two. We consider the

following two types of discrepancies:

(1) After the coordinate system of the wire-frame data has been transfor -

med to that of the model and scale adjustments have been made, correspond -

ing pairs of confirmed vertices and edges may not register perfectly in 3-space.

In order to merge them into single elements, we perform a “weighted

averaging” of their positions.

(2) Hypothesized elements in the model may be inconsistent with newly

obtained elements. We handle this by deleting such hypothesized elements

using the structure graph modification techniques described in Section 6.

To determine whether or not hypotheses are still valid when confirmed

elements in the model are modified or deleted, we consider the elements which

gave rise to the hypotheses. A hypothesis i s dependent on all elements whose

existence directly resulted in the creation of the hypothesis. I f one of these

elements i s modified or deleted, the hypothesis must also be modified or

deleted since the conditions under which i t was created are no longer valid.

The dependency relationships for hypothesized elements are explicitly recor -

ded at the time of their creation using dependency pointers [ll].
We currently record these relationships for the following situations:

(1) When two nontouching partial faces are merged (Fig. 41(a)), each face

has two partial edges which are intersected with their counterparts in the other

face. The intersection points form two new hypothesized vertices, each of

which is dependent on the two edges whose intersection gave rise to it. In Fig.
41(a), the arrows indicate the dependencies. Vertex u, i s dependent on edges e,

and e,, and vertex u2 is dependent on edges e2 and e4. I f one of the edges were

to be modified (e.g., i f i ts position were to be displaced), the vertex that

depends on that edge would no longer be a valid hypothesis, and would

therefore be deleted. A new vertex might then be hypothesized.

(2) When an incomplete face i s completed in the shape of a parallelogram
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FIG. 41. Generating dependencies for hypothesized edges and vertices. The dependence of an

element on another is depicted as an arrow from the former to the latter. (a) Two nontouching

partial faces are merged. (b) A face is completed in the shape of a parallelogram. (c) A face is

completed by connecting i ts two end points. (d) Vertical edges are dropped from a floating face.

(Fig. 41(b)), two new edges and three new vertices are hypothesized. Each of

the new edges e, and e4 i s dependent on both of the old edges e, and e,. The

edge e3, for example, is dependent on e, in the sense that i t s end point i s

constrained by the end point of e,. I t i s dependent on e2 in the sense that i t is

constrained to be parallel to e2. The new vertex u j i s dependent on the two

hypothesized edges e3 and e4, while the new vertices u, and u, are dependent

on the confirmed edges on which they lie.

(3) When a face i s completed by connecting i ts two end points (Fig. 41(c)),

two new vertices and one new edge are hypothesized. The new edge e4 is

dependent on both e, and e3, while the new vertices u, and v2 are dependent on

the edges on which they l ie.
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(4) When a vertical wall is dropped from a face, the f irst step is to drop

hypothesized edges from vertices of the face. Such edges are dependent on the

vertices from which they are dropped. In Fig. 41(d), the new edges e, and e,

are dropped from, and are dependent on, the vertices uI and u2, respectively.

A dropped edge is constrained to be perpendicular to the ground plane, and

would therefore no longer be a valid hypothesis i f the vertex it depends on,

which is one of i t s end points, were to be displaced. After edges are dropped

from all vertices of the face, vertical faces are generated. This results in more

hypothesized edges and vertices. The situations under which these are created

fall under categories (2) and (3) above.

When a confirmed edge or vertex in the model is modified or deleted, the set

of all hypothesized elements that depend on i t are deleted. Recursively,

elements depending on deleted ones are also deleted. When hypothesized

vertices and edges are deleted in this manner, it is possible for hypothesized

faces to lose minimal support, i.e., they may no longer be constrained by at

least three noncolinear points. Such faces are also deleted.

8.3. Merging

The procedure that merges corresponding wire-frame and model objects takes

into account the fact that the 3-space positions of end points of edges that are

confirmed vertices are generally much more accurate than the positions of

nonvertex end points. Therefore, confirmed vertices are given more weight

during merging. As an example, consider again Fig. 42, where the wire-frame

object in Fig. 42(b) i s to be merged with the model object in Fig. 42(a).

The merging procedure starts by merging corresponding vertices. Pairs of

such vertices ((u2, uIoo) and (u3, uIo1) in Fig. 42) are combined into single

vertices with coordinates of the midpoint between them. I f the distance

between an initial pair of such vertices exceeds a threshold, all hypothesized

edges and vertices that recursively depend on the initial model vertex are

deleted. Hypothesized faces that have lost minimal support are also deleted.

At this point, all corresponding pairs of edges will share at least one vertex.

The corresponding edges are merged next as follows:

(1) If the two edges share both their vertices ((e3, e,,,) in Fig. 42), the new

edge connects the two new vertices already generated.

(2) I f one edge has two confirmed vertices but the other does not

((e?, elon) and (e4, e,o2) in Fig. 42), the new edge is the same as the former.

Notice that the nonvertex end point in this case is given zero weight.

(3) I f the two edges share one vertex and the other end points are not

confirmed vertices ((e,*, eln4) in Fig. 42), the new edge i s the “average” of the

two edges, obtained using a least-squares fit.

Before merging, a model edge may contain either one or two confirmed

vertices. I f it contains one confirmed vertex, then all hypothesized edges and
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FIG. 42. The wire -frame object in (b) i s to be merged with the model object in (a). The confirmed

edges of the model object (indicated by solid lines) are e,. e,, e,, e,,, and e,*; the confirmed vertices

(indicated by circles) are u,, u2, and u,. Dashed lines represent hypothesized edges. (c) The result

after merging.

vertices in the model that recursively depend on this edge are deleted.

Hypothesized faces that have lost minimal support are also deleted. In Fig. 42,

this occurs for the edges e, and eI2. The hypothesized elements in the figure

that recursively depend on, say, e, are the vertices u, and u,, and the edges e5,

e,,, e, and el,. I f a model edge to be merged contains two confirmed vertices
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(e.g., e, and e3 in Fig. 42), no hypothesized elements need be deleted since all

necessary deletions were made when the vertices of the edge were merged.

After all corresponding elements of the two objects have been merged, the

edges and vertices remaining in the wire-frame object that were not merged

(e,,,,, in Fig. 42) are added to the model object. The final configuration after

merging i s shown in Fig. 42(c). This object i s incomplete and must be completed

using the techniques described in Section 7.

8.4. Results of merging

When these procedures are applied to the wire-frame data in Fig. 40 and the

scene model in Fig. 36, we obtain the updated scene model shown in Fig. 43.

The updated version has two important improvements over the initial version.

First, the updated model contains more buildings since new wire -frame data,

some of which represent new buildings, have been incorporated into the initial

model. Second, for many buildings described in both versions of the model, the

positions of vertices and edges are more accurate in the updated version. This

i s because many hypothesized vertices and edges are replaced by accurate ones

obtained from the new data, and many confirmed vertices and edges are

merged with corresponding ones in the data by “averaging” their positions,

generally decreasing the amount of error.

The shape of the large hole in the roof of one of the buildings has changed

from a rectangle in the initial model to an almost triangular quadrilateral in the

updated version. When compared with the source images in Fig. 4, the

rectangular shape would seem more accurate. However, the positions of the

edges and vertices that form the hole are more accurate in the updated model

in the sense that they are more faithful to the wire -frame descriptions derived

from the images.

This experiment demonstrates how information provided by each additional

view allows the model to be incrementally made more complete and accurate.

9. Conclusions

We set out to develop an entire vision system to interpret complex images, one

that goes all the way from images to symbolic 3D descriptions. The following

are some conclusions we can draw from this project.

(1) Complex images usually cannot be fully interpreted. Difficulties in

interpretation arise not only from occlusions, but also from variations in

surface texture and reflectance, variations in shape, and complex lighting

conditions. Computer vision systems must therefore have the capability to deal

with approximate, imperfect scene descriptions when performing tasks such as

matching, path planning, or model-based image interpretation.

(2) Incremental reconstruction of complex scenes will often be necessary.

Multiple views are required to effectively reconstruct complex scenes. A
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system that moves about and interacts with i t s environment in order to obtain

the multiple views will be able to gradually add more information to i t s scene

model at the same time that i t carries out i t s other tasks.

(3) Scene descriptions are often more useful i f they contain reasonable

hypotheses for parts of the scene for which there are only partial or no data.

For example, path planning cannot be done for occluded regions of the scene

without a good guess about what lies in these regions. I f the hypotheses turn

out to be incorrect, they should eventually be modified. Computer vision

systems must therefore have mechanisms for intelligently generating hypoth-

eses, verifying them, and modifying them.

(4) Task-specific knowledge i s very useful at all levels of complex image

interpretation, from low-level image analysis to high-level formation of sym-

bolic descriptions. Knowledge of block-shaped objects in an urban scene is

used in the 3D Mosaic system for stereo analysis, monocular analysis, and

reconstructing shapes from the wire frames.

(5) Stereo matching of 2D structural features (such as junctions) may be
important for complex images and should be further investigated.
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