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Abstract. A central role in the development process of children is played
by self-exploratory activities. Through a playful interaction with the sur-
rounding environment, they test their own capabilities, explore novel
situations, and understand how their actions affect the world. During
this kind of exploration, interesting situations may be discovered. By
learning to reach these situations, a child incrementally develops more
and more complex skills. Inspired by studies from psychology, neuro-
science, and machine learning, we designed SMILe (Self-Motivated In-
cremental Learning), a learning framework that allows artificial agents
to autonomously identify and learn a set of abilities useful to face sev-
eral different tasks, through an iterated three phase process: by means of
a random exploration of the environment (babbling phase), the agent
identifies interesting situations and generates an intrinsic motivation
(motivating phase) aimed at learning how to get into these situations
(skill acquisition phase). This process incrementally increases the skills
of the agent, so that new interesting configurations can be experienced.
We present results on two gridworld environments to show how SMILe
makes it possible to learn skills that enable the agent to perform well
and robustly in many different tasks.

1 Introduction

In this paper, we describe SMILe (Self-Motivated Incremental Learning), a learn-
ing framework leading an agent to incrementally learn general abilities through
a direct interaction with the environment guided by self-generated interest. This
approach integrates ideas coming from cognitive sciences and intrinsically moti-

vated reinforcement learning and defines a self-development process that enables
animats to autonomously operate in complex environments.

In recent years, studies on the inner mechanisms of human development,
pursued in many different areas (such as neuroscience, psychology, developmental
sciences, robotics, machine learning) converged to a new field, commonly referred
to as developmental robotics [7, 20]. Traditionally, a designer must specifically
program the set of skills needed for an animat to accomplish a given task. Often,



these skills are tuned to perform a predefined task on a specific environment,
and the learned abilities can hardly be reused if the task or the environment
changes. On the other hand, developmental robotics tries to reproduce the basic
mechanisms at the basis of human and animal development processes so as to
propose frameworks in which the agent does not directly address any specific
problem, but develops a set of basic skills up to very general abilities that can
be used to solve many different tasks.

Because of the complexity of its goal, developmental robotics has many dif-
ferent facets [7]. In this paper, we focus on a subset of them and we will consider
the developmental process as an incremental process where an agent organizes

its initial skills through spontaneous exploratory phases and self-motivated learn-

ing activities. Self-motivated learning proved to be one of the most challenging
aspects of development processes, as shown in [19, 2, 8]. One of the most promis-
ing approaches is intrinsically motivated reinforcement learning [2], that enables
an agent to autonomously develop a hierarchy of skills through a process guided
by an intrinsic motivation, without any commitment to achieve a specific task.

The SMILe framework extends the intrinsically motivated reinforcement learn-
ing model to a more general development process, in which the notion of interest
is not hardwired, but autonomously extracted from characteristics of the envi-
ronment. The learning process of each skill has been decomposed into three
phases (babbling, motivating and skill acquisition), that are endlessly iterated
to develop a hierarchy of abilities that can be exploited by animats to better
control the environment.

The rest of the paper is organized as follows. In the next section we give
a general description of SMILe and we introduce a novel framework for self-
motivated learning. Section 3 gives an overview of the implementation of the
framework using Reinforcement Learning (RL) techniques, and we provide a
general definition of the interest function. Section 4 provides some experimental
results on two gridworlds that simulate simple robotic environments, showing
how the acquired skills help the agent to reduce the learning time in many
different tasks. Finally, in the last section we discuss the results and propose
some possible future directions.

2 The Learning Process

As stated in [20], one of the most promising approaches to achieve the ambitious
goal of autonomy in artificial systems, is the definition of a suitable lifelong de-
velopment process. This consists of an open-ended learning process in which an
agent pursues self-motivated goals and develops highly reusable skills. Develop-
mental robotics has its main source of inspiration in studies from neuroscience
and psychology [7], that show how similar mechanisms could be traced in the
developmental process of children.

Many approaches in developmental robotics refer to the studies by Piaget [13],
and to his research on children’s early stages of development. Piaget showed that
childish development can be considered as an incremental process of acquisition



Fig. 1. The self-motivated developmental learning process of SMILe

of new abilities in which children modulate the complexity of their activities in
association with the increasing complexity of their cognitive and morphological
structures. Another important contribution to the comprehension of the mech-
anisms attending human development comes from the research carried out by
Berlyne [3] about the notion of curiosity and its influence on behavior and the
rising of intrinsic motivation. Berlyne asserts that, in absence of a particular
aim, human behavior is partly determined by an innate will of exploring what is
perceived as interesting. Psychologists define curiosity as a form of motivation
that promotes exploratory behavior to learn more about a source of uncertainty.

In summary, life-long learning seems to be characterized by a progressive, self-
motivated development that leads to the incremental acquisition of more and
more complex skills. SMILe implements this concept into a simplified learning
process suitable for artificial systems, whose aim is to incrementally learn new
skills that could be potentially useful to face different tasks. Each skill is learned
by a self-motivated process that iterates on three main phases (see Fig. 1):

– Babbling: the agent playfully interacts with the environment to get aware of
the relationships between its actions and the environment dynamics.

– Motivating: the agent evaluates which is the most interesting situation it has
experienced during the exploration performed during the babbling phase.

– Skill acquisition: the agent learns the skill to reach the interesting situation.

2.1 Babbling Phase

One of the crucial activities in the development process of puppies and babies
is self-exploration [7]. Through self-explorative acts, they become aware of their
own capabilities with respect to the surrounding environment, understand the
consequences of the actions they have autonomously selected, and learn to con-
trol and exploit the dynamics of their bodies. In analogy to vocal babbling, this
experiential process has been called body babbling [10].

Moving from these observations, we introduced in SMILe, at the beginning
of each iteration, a babbling phase. The acquisition of a new skill starts with a
self-explorative phase in which the agent, for a certain time, randomly executes



its admissible actions. The choice of taking actions according to a uniform prob-
ability distribution over the action space, even if it is not fully compliant to body
babbling theory, is consistent with the fact that this exploration is completely
goal free, without any external motivation leading the agent behavior. The goal
of the babbling phase is to collect information about the environment dynamics
that can be used in the next phase to determine whether there is any interesting

skill that is worth learning.

2.2 Motivating Phase

There is a huge body of evidence about the central role played by intrinsic

motivation in development process as the main driver of organisms behavior
when no extrinsic motivation is available. In this way, they may increase their
competence to control the environment, by acquiring a broad set of skills that can
be reused for different goals. Studies from psychology, like those of Piaget [13] and
Berlyne [3], and from neuroscience [5], suggest that intrinsic motivation may be
generated by several factors: surprise, incongruity, and novelty. All these factors
act together to determine an intrinsic interest associated to different situations.

Many studies [15, 12] relate interest to the current knowledge of the observer
and its capability to predict the outcome of its interaction with the environment,
and propose particular quantitative definitions of novelty and surprise.

In SMILe, this second phase computes the interest function, which associates
an interest value to each state visited during the babbling phase. Despite previous
approaches, we propose a general methodology to define and compute interest
values for each state obtained by the propagation (through the estimated tran-
sition model of the environment) of a given local measure of interest (a formal
definition will be given in Section 3). Once the interest function has been com-
puted, SMILe determines the next goal by searching for the state associated to
the maximum interest. Learning to reach this state is the goal of the third phase.

It may happen that the agent has no strong motivation in learning to reach
a state rather than another. In this case, it makes no sense to spend time and
efforts in learning something that is not so interesting, but it is better to start
a new babbling phase in order to collect more experience that could allow to
discover new interesting situations (represented by the dashed line in Fig. 1).

2.3 Skill Acquisition Phase

During a development process an organism starts with very simple skills and
acquires more and more complex abilities. Each time a new skill is learned, it
may be used to simplify the learning of the following ones, thus progressively
increasing the complexity of the tasks that could be successfully faced.

Recently, the idea of hierarchically decomposing complex problems into sim-
pler sub-problems has been successfully exploited also in RL with the introduc-
tion of formalisms for managing temporally extended actions [1]. Several of these
approaches work with fixed hand-coded decompositions, even if some proposals



have been advanced to dynamically decompose a given goal into simpler sub-
goals [9, 11]. Barto et al. [2] have proposed an intrinsically motivated approach
to generate the hierarchy of skills.

In SMILe, during the skill acquisition phase the agent learns, through an
intrinsic reward function, a skill that leads to the most interesting state identified
by the motivating phase. While learning the skill, the agent, in addition to its
basic actions, may benefit also from other previously acquired skills.

After the acquisition of a new skill, the development process of SMILe starts
a new iteration activating a new babbling phase, in order to experience how the
new skill modifies the agent interaction with the environment. This leads to the
computation of a new interest function that defines a new learning goal, thus
obtaining an incremental learning process that continuously increases the agent
capabilities of controlling its environment.

3 SMILe

In this section we propose an implementation of the learning framework de-
scribed in Section 2. As already proved in many studies [2, 21, 19], Reinforce-
ment Learning (RL) is one of the most suitable frameworks to deal with learning
problems in developmental robotics. Furthermore, the incremental development
of simple skills into complex activities can be efficiently described using Hierar-
chical Reinforcement Learning (HRL) [1], as suggested in [2].

3.1 Formal Representation of Skills: the Option Framework

HRL problems are generally formalized using Semi-Markov Decision Process
(SMDP) models. In particular, in the option framework [1] an SMDP is defined
by tuple 〈S,O,P ,R〉, where S is the set of states (i.e. perceptions), O is the set
of options (i.e. skills), P(s, o, s′) is the transition model, that is the probability
to get to state s′ taking option o is state s, and R(s) is the reward in state s. The
main difference between traditional RL approaches and intrinsically motivated
learning, concerns the source of reinforcement. While in the usual interaction
model the agent receives a reinforcement signal provided by an external critic,
we consider the reward as the result of an intrinsic motivation of the agent that
pursues self-generated goals according to the model proposed in [2].

Formally, a skill is represented as an option o, i.e. a tuple 〈πo, I, β〉, where
πo : S ×O → [0, 1] is the control policy that describes the probability to execute
an option when the agent is in a specific state, I ⊂ S is the set of states where
the option is defined and β(s) is the probability for an option to terminate at
state s. When the development process starts, the agent has an initial set of basic
options O0, at the k-th iteration, the set of options is incrementally modified
adding the option learned in the skill acquisition phase: Ok = Ok−1 ∪ {ok}.



3.2 Incremental Learning of Reusable Skills

In the following, we give a brief description of the implementation of the devel-
opment phases of SMILe, summarized in Algorithm 1 (for more details see [4]).

In the babbling phase, at each time instant the agent simply executes one
skill at random, choosing among the set of admissible skills Ok. The aim of this
phase is to build, at each iteration k, an estimate (even partial) P̂πk

R

(s, s′) of the

state transition probabilities when the random policy πk

R
is used for a sufficient

number of steps. Since the state transition probabilities do not depend only on
characteristics of the environment, but also on the abilities of the agent, when
a new skill is learned, the capabilities of the agent to control the environment
dynamics change and the state transition probabilities must be recomputed.

Through the playful exploration performed in the babbling phase, the agent
experiences several different situations. In the motivating phase, SMILe computes
the interest associated to each state on the basis of the information contained in
the estimated state transition probabilities P̂πk

R

(s, s′).

Algorithm 1 The SMILe Algorithm
1: repeat

2: Babbling Phase

3: for all Babbling episodes do

4: for all Steps do

5: Given state s, choose action o at random over Ok

6: Take action o, observe state s′

7: Update state transition probability estimation P̂
πk

R

(s, s′)

8: end for

9: end for

10: Motivating Phase

11: Given model P̂
πk

R

(s, s′), compute local interest ρ(s)

12: Compute interest function I(s)
13: if no interesting state can be identified then

14: step back to the Babbling Phase
15: else

16: Extract subgoal s∗ = arg maxs I(s)
17: Create reward function R(s)
18: end if

19: Skill Acquisition Phase

20: for all Skill Acquisition episodes do

21: for all Steps do

22: Given state s, choose action o according to ǫ-greedy
23: Take action o, observe state s′ and reward r

24: Update state-action value function
25: end for

26: end for

27: until forever



Although there are several characteristics of a model that could be used to
compute the local interest of a state, such as transition entropy and controllabil-
ity (details can be found in [14]), here we will focus on the following definition:

ρ(s) = (1− pin(s)) − pin(s) (1− pout(s)) , (1)

where pin(s) = 1
|S|

∑
s′∈S PπR

(s′, s) and pout(s) =
∑

s′ 6=s
PπR

(s, s′). The first

term of Equation 1 is the probability of not moving into state s in one step
following the policy πR, given that the agent starts from a random state. To this
term, we subtract a second term that represents the probability to reach s in one
step starting from a random location and then to remain in s for another step.
The intuition behind Equation 1 is that states that, under a random policy, are
difficult to be reached or that, once reached, can be easily left, are relevant as
subgoals for many complex tasks whose solution needs the agent to pass through
states that cannot be easily reached without a specific skill.

This measure defines the concept of interest of a state only on the basis of
information about its input and output transition probabilities, without taking
into account the characteristics of the surrounding states; for this reason we call
it local interest functions. Using the estimated state transition probabilities and
a local interest function, we define the global interest function with the following
Bellman-like equation:

Ik(s) = ρk(s) + γ
∑

s′∈S

P̂πk

R

(s, s′)Ik(s′). (2)

In this way, the interest of a state depends, not only on the characteristics
of its local transitions, but also on the interests of those states that may be
reached from it. The discount factor γ ∈ [0, 1) determines how much distant
states should influence the interest of the current state. To compute I(s) we can
use an iterative policy evaluation algorithm that uses Equation 2 as an update
rule [17]. The formulation of the interest function I(s) given in Equation 2 is
such that it can represent a large set of the aspects of the concept of interest
depending on the specific definition of local interest ρ(s) that is used.

Once Ik(s) has been computed, the agent self-determines its next goal by
choosing the most interesting state sk = arg maxs Ik(s), and produces an intrin-
sically motivated reward function that simply returns a positive reward when
the agent achieves state sk and null otherwise. It is possible to show that, using
the definition of local interest previously introduced, the acquisition of new skills
decreases the interest in goal states (boredom effect), thus preventing the agent
from choosing them again.

As stated in Section 2.2, after some iterations, the interest function tends to
flatten until no state with relevant interest can be identified in the motivating
phase. In this case, the agent has no advantage from learning to reach new
useless goals and the babbling phase is started again in order to either refine the
transition model estimation or adapt to changes in the environment dynamics [4].

After having identified the goal state sk and generated the intrinsically mo-
tivated reward function Rk(s), the agent starts the skill acquisition phase in
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Fig. 2. Four Rooms
world.

Fig. 3. Density plot of
subgoal distribution in
Four Room world.

Algorithm Mean Max

Q-Learning 1.293 · 104 3.569 · 104

Random 1.756 · 104 6.777 · 104

SMILe 0.957 · 104 2.044 · 104

Table 1. Average and maximum
number of learning steps in Four-
Rooms with random goal

which it learns the policy of a new option ok whose goal is sk. The policy of
the new option is learned according to the option learning algorithm described
in [1]. At each time step, the action value function Q(s, o), that is the estimation
of the amount of reward the agent can obtain by taking option o in state s, is
updated according to the following update rule:

Q(s, o)← (1− α)Q(s, o) + α

[
r̃ + γi max

o′∈Ok−1

Q(s′, o′)

]
(3)

where α is a learning step size, i is the number of steps taken by option o to
meet its termination condition and r̃ is the reward accumulated from s to s′ in
i steps according to the reward function Rk(s).

Once the skill acquisition is finished, the new option ok is created and added
to the set of options Ok−1. This new option is characterized by a deterministic
policy that can be directly derived from the action value function Q(s, o) by
choosing in each state s the option o that maximizes its value. The termination
condition β(s) is set to 1 for s = sk and to 0 elsewhere. For what concerns the
initial set, it can be limited to a subset of the state space S composed by the
states that have been most visited in the skill acquisition phase.

The incremental generation of new options makes the agent able to develop
a hierarchy of skills, where new options can reuse previously learned options to
achieve the goals extracted in the motivating phase.

4 Experiments

In this section, we provide experimental results obtained by SMILe in two differ-
ent environments. In the first problem, we show how SMILe learns general pur-
pose options that may be effectively reused for learning to reach a large number
of goals. The second experiment puts in evidence how the SMILe development
process can significantly reduce the learning times.

4.1 Four-Room Gridworld

The Four-Room (Fig. 2) environment [18] is a 10x10 grid with a set of walls
that delimit four rooms. The initial set of actions is A = {down, right, up, left}



and the starting state is the upper left corner. To introduce stochasticity in the
world dynamics, actions have a probability of 0.3 to fail. When an action fails
the agent moves to one of the adjacent states at random.

The development process of SMILe led to the identification of interesting
goals only in limited regions. The density plot in Fig. 3 shows the frequency
of subgoal identification for each state: the lighter the region the higher the
frequency of extraction. It is worth noting that, using the interest function de-
scribed in Section 3, SMILe finds the states in the middle of the rooms as most
interesting. Recalling the definition of local interest (Eq. 1), the explanation
of this result is that from these states the agent can easily reach all the other
states in the room. The usefulness of the learned skills can be measured only
by imposing many different external goals to the agent and by evaluating the
global learning performance. Therefore, we have performed a comparison among
Q-learning [17], Q-learning with four skills whose goals have been chosen at ran-
dom, and Q-learning with the four skills learned by SMILe, over 1000 randomly
extracted external goal states. Then, we have recorded the sum of learning steps
for each goal over the first 100 episodes. Table 1 reports the number of steps in
the average and in the worst case. As it can be noticed, both the average and the
maximum number of steps needed by SMILe are less than those needed by the
other two algorithms. This means that the skills acquired by SMILe produced a
relevant advantage when facing different learning problems. Furthermore, since
Q-Learning with skills for random goals obtained the worst performance, the
result of SMILe is not simply determined by the use of the option framework,
but it strongly depends on the identification of interesting states that lead to
the acquisition of general-purpose skills.

4.2 Playworld Environment

The second experiment we discuss, is a version of the Playworld proposed in [16].
The Playworld is an abstraction of a real environment characterized by two
rooms with a door in between, two panels and a charger (see Fig. 4). The panels
are in the room at left: the light panel switches the light on and off, while the
door panel opens and closes the door. The animat perceives the light intensity,
whether the door is open or not, its charge level and its position (i.e., absolute
coordinates and orientation). The animat is initially placed at random in the
left room and the light is switched off. When in the dark, the animat may fail in
taking the selected action with a probability of 0.2, it cannot perceive the status
of the door, and the door panel is deactivated. Once the light is switched on,
actions always succeed, the animat can open the door, move to the other room
and charge. The animat can turn left, turn right, and move ahead.

The experiment consists of two main stages: intrinsically motivated incremen-
tal learning and extrinsically motivated learning. In the first stage the animat
explores the environment and develops new skills according to the process de-
scribed in Section 2. In the second stage, five different goals are imposed by an
external designer by providing an extrinsic reward function.



In the first stage, the salient events we can expect the animat to find are: light
on, light off, open door, close door, charge. The upper graph of Fig. 5 shows the
events occurred in the babbling phase at first iteration, when the agent succeeds
in switching the light on and off only a few times. The lower graph of Fig. 5
shows the changes in the babbling phase introduced by the skills learned after
five iterations. As it can be noticed, the skills developed in the previous iterations
bias the random exploration so that the animat succeeds in activating new and
more complex events (e.g., open the door and charge). This shows how SMILe
enables the animat to autonomously discover interesting configurations in the
environment and to develop new skills for achieving them.

In the second stage, when the development process is over, we compare the
performance of an animat that exploits the new skills, to that of an animat using
Q-Learning with basic skills, on five different tasks:

Task1 : charge
Task2 : charge, move to upper left corner of right room
Task3 : charge, move to upper left corner of left room
Task4 : charge, move to left room and close the door
Task5 : charge, move to left room, close the door, switch the light off

While Task2 and Task3 are not strictly related to any salient event, the other
tasks require the animat to achieve configurations relevant in the Playworld
environment. In the comparison, we adopted the same learning parameters for
both Q-Learning and SMILe (learning rate α = 0.6, ǫ-greedy exploration with
ǫ = 0.2, discount factor γ = 0.95). Each 1,000 learning episodes, the extrinsic
reward function is changed according to the task that must be accomplished and
the learning animat should be able to adapt its policy to the new task without
restarting the learning from scratch.

Fig. 6 shows the number of steps per learning episode. The first 2,100 episodes,
labeled as Self-Development in the graph, represent the first stage of the experi-
ment in which the SMILe animat autonomously identifies six different interesting
states, used as goals for learning six new skills. On the other hand, in the first
stage the Q-Learning animat does nothing, since no extrinsic reward is provided.
The second stage starts with the introduction of a positive extrinsic reward for
achieving the charger. While the Q-Learning animat can only use the basic skills,
the SMILe animat exploits the skills learned in the first stage and succeeds in
finding the optimal policy to reach the charger in less episodes than those needed
by Q-Learning. Similarly, SMILe succeeds in exploiting its skills even for chang-
ing tasks, while Q-Learning took more time to adapt to new extrinsic reward
functions. Furthermore, in Fig. 7 we compare the total number of steps for both
the algorithms and we report their difference. In the first stage, SMILe takes al-
most 250,000 steps to explore the environment and to learn the new skills, while
no steps are taken by the Q-Learning robot. Notwithstanding the initial loss, the
total number of steps needed by SMILe after the accomplishment of Task1 is
less than that of Q-Learning. The advantage of SMILe becomes even more rele-
vant at the end of the second stage when Q-Learning took almost twice as many
steps as SMILe. This comparison shows that SMILe, even though it requires po-



Fig. 4. The Playworld environment
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tentially expensive exploration of the environment, leads to the development of
useful skills that can be profitably reused in many different tasks. In particular,
the number of steps saved during the extrinsically motivated learning stage is
greater than those used in the first stage already in the first goal.

5 Conclusions

Hand-coded abilities, though useful in domains where tasks are fixed, proved to
be inadequate to enable artificial systems to solve even slightly different tasks in
uncertain environments. On the other hand, the capability to develop new skills
from basic abilities without any imposed goal, is what makes human beings and
animals able to reuse their skills in many complex tasks.

In this paper, we have presented SMILe, a self-development RL framework
that incrementally acquires more and more complex skills through an itera-
tive three phase learning process similar to those taken by children and animal
puppies in their early development stages. Experimental results show the effec-
tiveness of the skills learned by SMILe when operating in environments where
different tasks may arise, thus developing agents with a good degree of autonomy.

Currently, we are investigating the use of function approximation techniques
to scale to large, high dimensional domains. Future work includes the integration
of SMILe with developmental robotics approaches in real robotic tasks [6].
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