

Incremental Sparse Saliency Detection

Yin Li, *Yue Zhou*, Lei Xu, Xiaochao Yang, Jie Yang Institute of Image Processing & Pattern Recognition Shanghai Jiao Tong University, China

Outline

Introduction

Related Work

- Our Proposed Method
- Experiments and Analysis
- Conclusion and Future Work

Introduction

Motivation

Everyone knows what attention is...

----William James

- A computational approach to visual attention
- Fast selection for objects of interest in scenes

Introduction

Difficulties

- "Black box" problem
 - Covert & overt attention
 - Biological plausible

- Difficulty in evaluation
 - Quantitative analysis
 - The data set

Introduction

Overview

Related Work

Feature Integration: Itti1998, Itti2000, Itti2005, Gao2008...

Related Work

Related Work

Other Method:

- Spectral Residual [Hou2007]
- © Contextual Guidance [Oliva2006]

Learning to Detect A Salient Object [Liu2007]

(a)

Our Proposed Model: Theory

Center-Surround Architecture

Our Proposed Method: Theory

- Saliency as Incremental Coding Length (ICL)
 - $\ \ \,$ For certain lossy coding scheme $L_{\varepsilon}({ullet})$
 - E distortion tolerance
 - Saliency of the center is defined as ICL:

$$\delta L_{\varepsilon}(x) = L_{\varepsilon}(S \cup x) - L_{\varepsilon}(S) = L_{\varepsilon}(x \mid S)$$

$$Sa(x) = \delta L_{\varepsilon}(x)$$

- $x \mid S$ encode x with S
- Optimum coding scheme required

Our Proposed Method: Theory

Core Idea:

Saliency = Non-redundancy = Hard to encode

- Sparse Coding Scheme
 - Center as the sparse linear representation of its surroundings

$$x \doteq \sum_{i=1}^{N} w_i F s_i = S w \qquad w \in R^N$$

Traditional approach

$$w = \min_{w} ||x - Sw||_2^2$$

- Sparse Coding Scheme
 - Our approach

$$\min ||w||_0 \quad s.t. \quad ||x - Sw||_2^2 \le \varepsilon$$

- Optimum coding length under distortion \mathcal{E}
- Computational intractable NP hard

- Sparse Coding Scheme
 - Our approach (NP-hard)

$$\min \|w\|_0 \quad s.t. \quad \|x - Sw\|_2^2 \le \varepsilon$$

Sparse assumption

$$||w||_0 \ll N$$
 given $n \ll N$

*Feature invariance

(F is not important)

Solution (Polynomial)

$$\min ||w||_1 \quad s.t. \quad ||x - Sw||_2^2 \le \varepsilon$$

Sparse Coding Scheme

Our solution

$$\min ||w||_1 \quad s.t. \quad ||x - Sw||_2^2 \le \varepsilon$$

$$\min \lambda \| w \|_{1} + \frac{1}{2} \| x - Sw \|_{2}^{2} \qquad \lambda > 0$$

Final saliency map by coding length

$$Sa(c) = \delta L_{\varepsilon}(c) = ||w||_{0}$$

Sparse Coding Scheme

Our Proposed Method: Summary

Summary

Algorithm1 (Incremental Sparse Saliency)

- 1.Input: given image I
- 2. for each patch c of the image I, calculate x = Fc and take patches from its surroundings to form S
 - solve the optimization problem $\min \lambda \|\mathbf{w}\|_1 + \frac{1}{2} \|\mathbf{x} \mathbf{S}\mathbf{w}\|_2^2$
 - given the sparse solution w, calculate the patch saliency Sa(c) by $Sa(c) = ||w||_0$, and accumulate the saliency by pixels
- 3.end
- 4.Output: the saliency map of I

Experiment and Analysis

One parameter: $\lambda > 0$

Image

Human

Experiment and Analysis: Images

From left to right

- Image
- Hand labeled
- **Itti1998**
- Hou2007
- Our Method

Experiment and Analysis: Video

Video

Video

Saliency Map

Conclusion and Future Work

Conclusion

- A visual saliency model by sparse coding
- Feature invariance
- Fairly good results

Future Work

- Quantitative evaluation of visual saliency
- Application of visual saliency in scene understanding

Thanks for your attention!