
Int J Comput Vis (2011) 91: 303–327

DOI 10.1007/s11263-010-0399-6

Incremental Tensor Subspace Learning and Its Applications

to Foreground Segmentation and Tracking

Weiming Hu · Xi Li · Xiaoqin Zhang · Xinchu Shi ·

Stephen Maybank · Zhongfei Zhang

Received: 28 September 2009 / Accepted: 1 October 2010 / Published online: 15 October 2010

© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Appearance modeling is very important for back-

ground modeling and object tracking. Subspace learning-

based algorithms have been used to model the appear-

ances of objects or scenes. Current vector subspace-based

algorithms cannot effectively represent spatial correlations

between pixel values. Current tensor subspace-based al-

gorithms construct an offline representation of image en-

sembles, and current online tensor subspace learning al-

gorithms cannot be applied to background modeling and

object tracking. In this paper, we propose an online ten-

sor subspace learning algorithm which models appearance

Electronic supplementary material The online version of this article

(doi:10.1007/s11263-010-0399-6) contains supplementary material,

which is available to authorized users.

W. Hu (�) · X. Li · X. Shi

National Laboratory of Pattern Recognition, Institute of

Automation, Chinese Academy of Sciences, Beijing 100190,

China

e-mail: wmhu@nlpr.ia.ac.cn

X. Li

e-mail: lixichinanlpr@gmail.com

X. Shi

e-mail: xcshi@nlpr.ia.ac.cn

X. Zhang

College of Mathematics & Information Science, Wenzhou

University, Wenzhou 325000, Zhejiang, China

e-mail: xqzhang@wzu.edu.cn

S. Maybank

Department of Computer Science and Information Systems,

Birkbeck College, Malet Street, London WC1E 7HX, UK

e-mail: sjmaybank@dcs.bbk.ac.uk

Z. Zhang

State University of New York, Binghamton, NY 13902, USA

e-mail: zhongfei@cs.binghamton.edu

changes by incrementally learning a tensor subspace repre-

sentation through adaptively updating the sample mean and

an eigenbasis for each unfolding matrix of the tensor. The

proposed incremental tensor subspace learning algorithm

is applied to foreground segmentation and object tracking

for grayscale and color image sequences. The new back-

ground models capture the intrinsic spatiotemporal charac-

teristics of scenes. The new tracking algorithm captures the

appearance characteristics of an object during tracking and

uses a particle filter to estimate the optimal object state.

Experimental evaluations against state-of-the-art algorithms

demonstrate the promise and effectiveness of the proposed

incremental tensor subspace learning algorithm, and its ap-

plications to foreground segmentation and object tracking.

Keywords Incremental learning · Tensor subspace ·

Foreground segmentation · Tracking

1 Introduction

Modeling the appearances of objects or scenes plays an im-

portant role in computer vision applications such as back-

ground modeling, tracking, and behavior analysis. Color

histograms (Nummiaroa et al. 2003; Perez et al. 2002) of

regions are widely used for appearance modeling due to

their robustness to region scaling, rotation, and shape vari-

ations. Their limitation is that they ignore the spatial distri-

bution of pixel values. Kernel density estimation-based ap-

pearance models (Elgammal et al. 2002; Yang et al. 2005)

use spatial weighted kernels to represent the spatial distrib-

ution of pixel values. Their limitation is their high compu-

tational and memory complexities. GMM (Gaussian mix-

ture model)-based appearance models (Zhou et al. 2004;

Wu and Huang 2004) use a mixture of weighted Gaussian

http://dx.doi.org/10.1007/s11263-010-0399-6
mailto:wmhu@nlpr.ia.ac.cn
mailto:lixichinanlpr@gmail.com
mailto:xcshi@nlpr.ia.ac.cn
mailto:xqzhang@wzu.edu.cn
mailto:sjmaybank@dcs.bbk.ac.uk
mailto:zhongfei@cs.binghamton.edu

304 Int J Comput Vis (2011) 91: 303–327

distributions to learn a statistical model for colors. Their

limitation is that they deal with each pixel independently

and thus the relations between the values of nearby pixels

are not effectively characterized. Conditional random field-

based appearance models (Wang et al. 2006) use Markov

random fields to model the relations between the values of

neighboring pixels. Their limitations are that their training

is very expensive and the global distributions of pixels are

not considered. Online subspace learning-based appearance

models (Skocaj and Leonardis 2003; Ross et al. 2008) flat-

ten appearance regions to vectors in order to describe global

statistical information about pixel values. Their limitation

is that spatial information, which is invariant under certain

global appearance variations e.g. lighting changes and ro-

bust to image noise, is missing due to the flattening.

Recently, multi-linear subspace analysis has attracted

much attention and has been applied to image representa-

tion and appearance modeling, etc. Yang et al. (2004) de-

velop a 2-dimensional PCA (principal component analysis)

for image representation. An image covariance matrix is

constructed. The eigenvectors of this matrix are derived for

image feature extraction. Ye et al. (2004a) present a learning

method called 2-dimensional linear discriminant analysis in

which classification is based on operations on image matri-

ces. Ye (2005) propose an algorithm for low rank approxi-

mations of a collection of matrices using an iterative algo-

rithm which reduces the reconstruction error sequentially,

and improves the resulting approximation during successive

iterations. Ye et al. (2004b) present a new dimension reduc-

tion algorithm which constructs the low-order matrix repre-

sentation of images directly by projecting the images to a

vector space that is the product of two lower-dimensional

vector spaces. Some pioneering methods use tensors to con-

struct object models. Wang and Ahuja (2005) propose a

rank-R tensor approximation which can effectively capture

spatiotemporal redundancies in the tensor entries. Yan et

al. (2005) propose an algorithm for discriminant analysis

with tensor representation. This algorithm is derived from

the popular vector-based linear discriminant analysis algo-

rithm. Vasilescu and Terzopoulos (2002, 2003) apply the N -

mode SVD (singular value decomposition), i.e. multi-linear

subspace analysis, to construct a compact representation of

facial image ensembles factorized by different faces, expres-

sions, viewpoints, and illuminations. He et al. (2005) present

a tensor subspace analysis algorithm, which learns a lower

dimensional tensor subspace, to characterize the intrinsic

local geometric structure within the tensor space. Wang et

al. (2007) give a convergent solution for general tensor-

based subspace learning. Sun et al. (2006a, 2006b, 2008)

propose three tensor subspace learning methods: DTA (dy-

namic tensor analysis), STA (streaming tensor analysis), and

WTA (window-based tensor analysis), for representing data

streams over time.

The above tensor analysis algorithms cannot be applied

to background modeling and object tracking directly. We

point out the following aspects:

1) Except for the DTA, STA, and WTA algorithms, the

above tensor analysis algorithms learn tensor subspaces of-

fline, i.e. when new data arrives, the subspace model is re-

trained using the new data and the previous data. This results

in high memory and time costs, while spatiotemporal redun-

dancies are substantially reduced. In the context of back-

ground modeling and object tracking, it is necessary to use

the new data to online update the previously learned model.

This is because appearance updating for background model-

ing and object tracking is more effective if the recent frames

in a video are weighted more heavily than previous frames.

2) The DTA, STA, and WTA algorithms include incre-

mental tensor subspace learning which adaptively updates

the subspaces. However, they cannot be applied to back-

ground modeling and object tracking. These three algo-

rithms use column spaces of the three unfolding matrices

obtained from the corresponding three modes of the ten-

sor. In fact, the column space of the unfolding matrix on

the third mode is of no use for background modeling and

object tracking, but the row space of this matrix is useful.

Furthermore, DTA and WTA update the covariance matrix

formed from the columns of each of the unfolding matrices

and then obtain an eigenvector decomposition of the updated

covariance matrix, assuming that the mean of the previous

unfolding matrix is equal to the mean of the unfolding ma-

trix of new data. As a result, the updating is not accurate if

the mean changes. DTA and WTA have the small size prob-

lem: the number of new samples is much less than the rank

of the covariance matrix. STA applies the SPIRIT (stream-

ing pattern discovery in multiple timeseries) iterative algo-

rithm (Papadimitriou et al. 2005) to the new coming data to

approximate DTA without diagonalization. The tensor sub-

spaces learned using STA are less accurate than the tensor

subspaces learned using DTA. (More descriptions to DTA,

WTA, and STA are given in Sect. 3.3.6.)

In this paper, we develop a new incremental tensor sub-

space learning algorithm, and apply it to foreground seg-

mentation and object tracking. The main contributions of

our work are as follows:

• The proposed algorithm learns online a low dimensional

tensor subspace representation of the appearance of an

object or a scene by adaptively updating the sample mean

and an eigenbasis for each unfolding matrix using ten-

sor decomposition and incremental SVD. Compared with

existing vector subspace algorithms for appearance mod-

eling, our algorithm more efficiently captures the intrinsic

spatiotemporal characteristics of the appearance of an ob-

ject and a scene. Furthermore, our method works online,

resulting in much lower computational and memory com-

plexities.

Int J Comput Vis (2011) 91: 303–327 305

• Based on the proposed incremental subspace learning al-

gorithm, two background models, one for grayscale im-

age sequences and the other for color image sequences,

are developed to capture the spatiotemporal characteris-

tics of scenes based on a likelihood function which is

constructed from the learned tensor subspace model. The

background models are used to segment the foreground

from the background. The experimental results show that

our algorithm obtains more accurate foreground segmen-

tation results than the vector subspace-based algorithm

(Li 2004) and the GMM-based algorithm (Stauffer and

Grimson 1999).

• We propose a visual object tracking algorithm in which

the proposed incremental tensor subspace learning algo-

rithm is used to capture the appearance of an object during

tracking (Li et al. 2007). Particle filtering is used to prop-

agate the sample distributions over time. The experimen-

tal results show that our algorithm tracks objects more

robustly than the vector subspace-based algorithm (Ross

et al. 2008) and the Riemannian metric-based algorithm

(Porikli et al. 2006).

The remainder of the paper is organized as follows:

Sect. 2 discusses the related work. Section 3 describes our

incremental tensor subspace learning algorithm. Sections 4

and 5 present our background segmentation algorithm and

our object tracking algorithm respectively. Section 6 demon-

strates experimental results. The last section summarizes the

paper.

2 Related Work

In Sect. 1, we reviewed the work closely related to tensor-

based appearance modeling in order to strengthen the mo-

tivation of this paper. For completeness, in the following,

we briefly discuss the developments in foreground segmen-

tation and visual object tracking.

2.1 Foreground Segmentation

Segmentation of foreground regions in an image sequence

is accomplished by comparing each new frame with the

learned background model. Effective modeling of the back-

ground is crucial for foreground segmentation. However,

changes in dynamic scenes, such as illumination variations,

shadow movements, and tree swaying, make background

modeling quite difficult.

Much work has been done in background modeling and

foreground segmentation. Stauffer and Grimson (1999) pro-

pose an online adaptive background model in which a GMM

is used to model the sequence of values associated with each

pixel. Each pixel in a new frame is classified by matching the

value of the pixel with one of the distributions in the GMM

associated with this pixel. Sheikh and Shah (2005) use non-

parametric density estimation over a joint domain-range rep-

resentation of image pixels to directly model multimodal

spatial uncertainties and complex dependencies between

pixel location and color. Jacques et al. (2006) present an

adaptive background model for grayscale video sequences.

The model utilizes local spatiotemporal statistics to de-

tect shadows and highlights. It can adapt to illumination

changes. Haritaoglu et al. (2000) build a statistical back-

ground model which represents each pixel by three values

which are its minimum intensity value, its maximum inten-

sity value, and the maximum intensity difference between

consecutive frames. Wang et al. (2005) present a proba-

bilistic method for background subtraction and shadow re-

moval. Their method detects shadows by a combined in-

tensity and edge measure. Tian et al. (2005) propose an

adaptive Gaussian mixture model based on a local normal-

ized cross-correlation metric and a texture similarity metric.

These two metrics are used for detecting shadows and il-

lumination changes, respectively. Patwardhan et al. (2008)

propose a framework for coarse scene modeling and fore-

ground detection using pixel layers. The framework allows

for integrated analysis and detection in a video scene. Wang

et al. (2006) use a dynamic probabilistic framework based

on a conditional random field to capture spatial and tempo-

ral statistics of pixels for foreground and shadow segmen-

tation. Li (2004) constructs a subspace-based background

model. An online PCA is used to incrementally learn the

background’s subspace representation.

The aforementioned methods for background modeling

are unable to fully exploit the spatiotemporal redundancies

within image ensembles. In particular, the vector subspace

techniques (Li 2004) lose local spatial information, perhaps

leading to incorrect foreground segmentation results. Conse-

quently, it is interesting to develop the tensor-based learning

algorithms to effectively capture the spatiotemporal charac-

teristics of the background pixels.

2.2 Visual Object Tracking

The effective modeling of object appearance variations plays

a critical role in visual object tracking. There are two types

of appearance variations: intrinsic appearance variations re-

sulting from objects themselves such as object pose vari-

ation or object shape deformation, and extrinsic appear-

ance variations associated with the environment of the ob-

jects, such as changes in illumination, camera motion, or

occlusions. Much work has been done on modeling ob-

ject appearance for visual tracking. Hager and Belhumeur

(1996) propose a tracking algorithm which uses an extended

gradient-based optical flow method to track objects under

varying illumination. Black and Jepson (1998) present a nice

subspace learning-based tracking algorithm. A pre-trained,

306 Int J Comput Vis (2011) 91: 303–327

view-based eigenbasis representation is used to model ap-

pearance variations. Isard and Blake (1996) use curves or

splines to represent the boundary of an object and develop

the Condensation algorithm for contour tracking. Black et

al. (1998) employ a mixture model to represent and recover

object appearance changes in consecutive frames, providing

more reliable estimates of image motion than traditional op-

tical flow-based approaches. Jepson et al. (2003) develop a

robust tracking algorithm using wavelet features which can

be used to model the spatial correlations in images directly

and are suited to multiple scales. They use a wavelet basis

to decompose each image at two different scales. Each scale

has four orientations. In total, 8 filter masks are required.

The extraction of wavelet features is time consuming and

the number of extracted features is large. Zhou et al. (2004)

embed adaptive appearance models into a particle filter to

achieve robust visual object tracking. Yu and Wu (2006)

propose a non-rigid object tracking algorithm based on a

spatial-appearance model which captures non-rigid appear-

ance variations and recovers all the motion parameters effec-

tively. Li et al. (2005) use a generalized geometric transform

to handle object deformation, articulated objects, and occlu-

sions. Wong et al. (2006) present a robust appearance-based

tracking algorithm using an online-updating Bayesian clas-

sifier. Lee and Kriegman (2005) present a tracking method

based on an online learning algorithm which incrementally

learns a generic appearance model from a video. Lim et

al. (2006) present a human tracking framework using ro-

bust identification of system dynamics and a nonlinear di-

mension reduction technique. Ho et al. (2004) present a vi-

sual tracking algorithm based on linear subspace learning.

Ross et al. (2008) propose a generalized tracking framework

based on the incremental vector subspace learning method

with sample mean updating. Han et al. (2009) apply con-

tinuous density propagation in sequential Bayesian filtering

to real-time object tracking. The techniques of density in-

terpolation and density approximation are used to represent

the likelihood and the posterior densities with Gaussian mix-

tures. Gall et al. (2008) combine patch-based matching and

region-based matching to track both structured and homo-

geneous object body parts. Nickel and Stiefelhagen (2008)

propose a person tracker based on dynamic integration of

generalized cues. A layered sampling strategy is adopted

when particle filtering is applied to these cues. Chen and

Yang (2007) present a spatial bias appearance model which

exploits local region confidences for tracking objects un-

der complex backgrounds and partial occlusions. Mahade-

van and Vasconcelos (2009) propose an object tracking al-

gorithm which combines a top-down saliency mode and a

bottom-up saliency mode to localize the object. Yang et al.

(2009) propose an algorithm for tracking objects with non-

stationary appearances. In this algorithm, negative data con-

straints and bottom-up pair-wise data constraints are used

to dynamically adapt to the changes in the object appear-

ance. Kwon and Lee (2009) track a non-rigid object using a

local patch-based appearance model which maintains rela-

tions between local patches by online updating. Ramanan et

al. (2007) propose a human body tracking algorithm which

models the appearance of each body part individually and

represents the deformable assembly of parts by spring-like

connections between pairs of parts. Matthews et al. (2004)

propose an appearance template updating algorithm that

does not suffer from tracker drift. The template can be up-

dated in every frame and yet still stay attached to the original

object. The template is first updated at the current template

location. To eliminate drift, this updated template is then

aligned with the benchmark template extracted from the first

frame. Grabner et al. (2008) formulate the tracker updating

process in a semi-supervised fashion by combining the de-

cisions obtained from a given prior classifier and an online

classifier. The prior classifier, which is trained using samples

extracted from the first frame, is used to deal with tracking

drift. Both the above two algorithms (Matthews et al. 2004;

Grabner et al. 2008) use a fixed template, which is con-

structed in the first frame, to significantly alleviate tracking

drift. The limitation of these two algorithms is that the tem-

plate constructed in the first frame becomes unreliable if the

object appearance undergoes large changes.

It is noted that the above tracking algorithms do not fully

exploit the spatiotemporal information in the image ensem-

bles obtained while tracking an object. This is particularly

true for the vector subspace-based tracking algorithms (Ross

et al. 2008) in which information about correlations between

neighboring pixels is for the most part lost when the images

are flattened into vectors. In order to achieve robust track-

ing, it is necessary to develop the tensor-based learning al-

gorithms for effective subspace analysis to more effectively

utilize the spatiotemporal information about an object’s ap-

pearance.

3 Incremental Tensor Subspace Learning

First, basic concepts of tensor algebra, as well as its nota-

tions and symbols, are briefly introduced. Then, our online

tensor subspace learning algorithm is described.

3.1 Tensor Algebra

Tensor algebra (Lathauwer et al. 2000) is the mathematical

foundation of multi-linear analysis. A tensor can be regarded

as a multi-order “array” lying in multiple vector spaces. We

denote an N -order tensor as Â ∈ RI1×I2×···In···×IN , where

In (n = 1,2, . . . ,N) is a positive integer. Each element in

this tensor is represented as ai1...in...iN , where 1 ≤ in ≤ In.

Each order of a tensor is associated with a “mode”. By un-

folding a tensor along a mode, a tensor’s unfolding matrix

Int J Comput Vis (2011) 91: 303–327 307

Fig. 1 Illustration of unfolding a 3-order tensor

corresponding to this mode is obtained. For example, the

mode-n unfolding matrix A(n) ∈ R
In×(

∏

i �=n Ii) of Â consists

of In-dimensional mode-n column vectors which are ob-

tained by varying the nth-mode index in and keeping indices

of the other modes fixed, i.e. the column vectors of A(n) are

just the mode-n vectors. Figure 1 shows the process of un-

folding a 3-order tensor Â into three matrices: the mode-1

matrix A(1) consisting of I1-dimensional column vectors,

the mode-2 matrix A(2) consisting of I2-dimensional col-

umn vectors, and the mode-3 matrix A(3) consisting of I3-

dimensional column vectors. The inverse operation of the

mode-n unfolding is the mode-n folding which restores the

original tensor Â from the mode-n unfolding matrix A(n),

represented as Â = fold(A(n), n). The mode-n rank Rn of

Â is defined as the dimension of the space generated by the

mode-n vectors: Rn = rank(A(n)).

The operation of mode-n product of a tensor and a matrix

forms a new tensor. The mode-n product of tensor Â and

matrix U is denoted as Â ×n U . Let matrix U ∈ RJn×In .

Then, Â×n U ∈ RI1×···×In−1×Jn×In+1×···×IN and its elements

are calculated by:

(Â ×n U)i1...in−1jnin+1...iN =
∑

in

ai1...iN ujnin . (1)

Of course, Â ×n U can be obtained by calculating U ·

A(n) first where the operation “.” represents matrix multi-

plication, and then operating mode-n folding on U · A(n).

Given a tensor Â ∈ RI1×I2×···×IN and three matrices C ∈

RJn×In ,D ∈ RKn×Jn , and E ∈ RJm×Im (n �= m), tensor’s

mode-n product has the following properties:

1. (Â ×n C) ×m E = (Â ×m E) ×n C = Â ×n C ×m E

2. (Â ×n C) ×n D = Â ×n (D · C)

The scalar product of two tensors Â and B̂ with the same

set of indices is defined as:

〈Â, B̂〉 =
∑

i1

∑

i2

· · ·
∑

iN

ai1i2···iN bi1i2···iN . (2)

The Frobenius norm of Â is defined as:‖Â‖F =

√

〈Â, Â〉 .

3.2 Tensor Decomposition

Tensor decomposition is higher-order SVD (Vasilescu and

Terzopoulos 2003) which is a generalization of the conven-

tional matrix SVD. The SVD of a matrix X ∈ Rm×n can be

represented as X = U�V T , where matrix U ∈ Rm×m, ma-

trix � ∈ Rm×n and matrix V ∈ Rn×n. The column vectors in

U are the eigenvectors of XXT and � is a diagonal matrix

containing the singular values of X. The tensor decomposi-

tion of a N -order tensor Â which lies in N vector spaces in-

volves N orthonormal matrices U (1),U (2), . . . ,U (N) to gen-

erate these N spaces respectively: the orthonormal column

vectors of U (n) span the column space of the mode-n un-

folding matrix A(n) (1 ≤ n ≤ N). Then, the tensor Â is de-

composed in the following way:

Â = B̂ ×1 U (1) ×2 U (2) · · · ×N U (N) (3)

where B̂ is the core tensor controlling the interaction be-

tween the N mode matrices U (1), . . . ,U (N). In this way,

each mode matrix U (n) (1 ≤ n ≤ N) (Vasilescu and Ter-

zopoulos 2003) is computed by finding the SVD for the

mode-n unfolding matrix: A(n) = Ũn�̃nṼ
T
n and setting the

mode matrix U (n) as the orthonormal matrix Ũn (U (n) =

Ũn). The core tensor is computed by Vasilescu and Ter-

zopoulos (2003):

B̂ = Â ×1 U (1)T · · · ×n U (n)T · · · ×N U (N)T . (4)

Such a decomposition can only be achieved offline, i.e. it

cannot be used for incremental tensor subspace learning.

In real applications, dimension reduction is necessary

for a compact representation of a tensor. Lathauwer et al.

(2000) propose a rank-(R1,R2, . . . ,RN) approximation al-

gorithm for the dimension reduction. The algorithm applies

the technique of alternate least squares to find the domi-

nant projection subspaces of a tensor. Given an N -order ten-

sor Â ∈ RI1×I2×···×IN , a rank-(R1,R2, . . . ,RN) tensor D̂ is

found to minimize the square of the Frobenius norm of the

error tensor:

D̂ = arg min
Ĉ

(‖Â − Ĉ‖2
F). (5)

The computational and memory costs are high.

3.3 Incremental Rank-(R1,R2,R3) Tensor Subspace

Learning

In this section, we describe the proposed incremental rank-

(R1,R2,R3) tensor subspace learning algorithm for 3-order

tensors. The algorithm applies an incremental SVD algo-

rithm (Ross et al. 2008) to identify the dominant projection

subspaces of a 3-order tensor and incrementally update these

subspaces when new data arrive.

308 Int J Comput Vis (2011) 91: 303–327

3.3.1 Incremental SVD

Gu and Eisenstat (1995) propose an efficient and stable algo-

rithm for finding the SVD of a matrix obtained by deleting

a row from an original matrix. The algorithm updates the

SVD of the original matrix. They (Gu and Eisenstat 1993)

also propose a stable and fast algorithm for finding the SVD

of a matrix obtained by appending a row to an original ma-

trix with a known SVD. The techniques for downdating and

updating SVD are quite similar to each other. In incremen-

tal SVD, the aim is to update a given SVD when new data

arrives. The SVD contains only a relatively small number

of non-zero singular values. Incremental SVD is suitable for

background modeling and object tracking, as it emphasizes

the current observations and retains information about the

previous observations in the previous SVD. The algorithm

in Ross et al. (2008) extends the classic incremental SVD

(Levy and Lindenbaum 2000) by computing the subspace of

a dynamic matrix with the mean updating which removes

the assumption that the mean of the previous data is equal to

the mean of the new data. More accurate incremental SVD

is obtained.

In this paper, we apply the incremental SVD algorithm in

Ross et al. (2008) to our incremental tensor subspace learn-

ing algorithm. In the following, this incremental SVD al-

gorithm is briefly described. Let A′ be the previous data

matrix where the data are represented by column vectors.

Let F ′ be a new data matrix. Let μA,μF , and μA∗ be the

column mean vectors of A′,F ′, and (A′|F ′) respectively,

where the operation “|” merges the left and the right ma-

trices. Let {UA,�A,VA} be the SVD of A′, where only

the principal components with larger singular values are re-

tained. The SVD {UA∗ ,�A∗ ,VA∗} of (A′|F ′) is estimated

from μA, {UA,�A,VA}, and F ′. This incremental updating

process is outlined as follows:

Step 1: Compute

μA∗ =
IA

IA + IF

μA +
IF

IA + IF

μF (6)

where IA is the number of the columns in A′ and IF is the

number of columns in F ′.

Step 2: Construct a new matrix E:

E =

(

(F ′ − μF l1×IF
)|

√

IAIF

IA + IF

(μA − μF)

)

(7)

where l1×IF
is a IF -dimensional row vector whose elements

are all “1”, i.e.

IF
︷ ︸︸ ︷

1,1, . . . ,1.

Step 3: Compute the QR decomposition of E to obtain

the eigenbasis Ẽ of E. Let matrix U ′ be U ′ = (UA|Ẽ).

Step 4: Let matrix V ′ be

V ′ =

(

VA 0

0 �IF

)

(8)

where �IF
is the IF × IF identity matrix. Then, matrix �′

is defined as:

�′ =

(

�A (UA)T E

0 ẼT E

)

. (9)

Step 5: Compute the SVD of �′ : �′ = Ũ�̃Ṽ T . Then,

the of SVD of (A′|F ′) is obtained: UA∗ = U ′Ũ ,�A∗ = �̃,

and (VA∗)T = (Ṽ)T (V ′)T .

The forgetting factor λ in Ross et al. (2008) is used to

weight the data streams, in order that recent observations are

given higher weights than historical ones. This is achieved

by replacing the matrix A′ with λA′ in the incremental up-

dating process described above.

As shown in Levy and Lindenbaum (2000), Ross et al.

(2008), Golub and Van Loan (1996), the result of incremen-

tal SVD for a matrix is the same as the result of the SVD

for the matrix in the batch mode if all the non-zero singular

values at the previous step are retained and used for incre-

mental SVD at the current step. The subspace obtained us-

ing the incremental SVD in this way is very accurate. Except

for matrix SVD, there is no iterative process included in the

incremental SVD algorithm. There are reliable, stable algo-

rithms for the matrix SVD that converge rapidly to the cor-

rect result. So, the incremental SVD avoids the convergence

problem generally associated with iterative algorithms.

Let m be the number of rows in the data matrix and let

n be the number of singular values retained in the SVD

of the data matrix. In general, updates to the SVD require

O(mn2) operations in practice, although they can be done

in O(mn log(n)) in theory. According to Ross et al. (2008),

the above incremental SVD only requires O(mnIF) opera-

tions. As IF is a small integer, this incremental SVD is very

fast.

3.3.2 Unfolding an Extended 3-Order Tensor

In line with the requirements for foreground segmentation

and object tracking, we only consider the extension of 3-

order tensors along one order. Given a 3-order tensor Â ∈

RI1×I2×I3 , when a new 3-order tensor F̂ ∈ RI1×I2×I ′
3 ar-

rives, Â is extended along the third order to form a tensor

Â∗ = (Â|F̂) ∈ RI1×I2×I∗
3 where the operation “|” merges

the left and the right tensors along the third order, and

I ∗
3 = I3 + I ′

3. Figure 2 illustrates the process of unfold-

ing Â∗ and the relations between the previous unfolding

matrices A(1),A(2),A(3), the newly added unfolding ma-

trices F(1),F(2),F(3) and the current unfolding matrices

A∗
(1),A

∗
(2),A

∗
(3). The three different modes of unfolding a

extended 3-order tensor are shown in the left of Fig. 2. The

three unfolding matrices A∗
(1),A

∗
(2), and A∗

(3) corresponding

to the three different modes are shown in the right of Fig. 2.

In the figure, the white regions represent the previous tensor

Int J Comput Vis (2011) 91: 303–327 309

Fig. 2 Unfolding an extended 3-order tensor

Â and the previous unfolding matrices, and the gray regions

denote the newly added tensor F̂ and its unfolding matrices

F(1),F(2),F(3).

3.3.3 Incremental Learning for Unfolding Matrices

After addition of the new tensor, the column spaces of the

two unfolding matrices on modes 1 and 2 are extended, and

the row space of the mode-3 matrix is extended. Conse-

quently, our incremental tensor subspace learning algorithm

needs to online track the changes in these three extended

spaces, and online identify the three corresponding domi-

nant projection subspaces for a compact representation of

the tensor. These three spaces are handled in the following

ways:

1) With respect to A∗
(1)

, as A∗
(1)

= (A(1)|F(1)), the SVD

of A∗
(1) can be obtained from the SVD of A(1) and the data

in F(1) using the incremental SVD technique described in

Sect. 3.3.1.

2) With respect to A∗
(2), it is noted that A∗

(2) can be de-

composed as: A∗
(2) = (A(2)|F(2)) · P , where P is an elemen-

tary counterchange matrix obtained by column exchange

and transpose operations on an identity matrix Z with rank

I1I
∗
3 . Let

Z = (

I3
︷︸︸︷

E1 |

I ′
3

︷︸︸︷

Q1 |

I3
︷︸︸︷

E2 |

I ′
3

︷︸︸︷

Q2 . . . |

I3
︷︸︸︷

EI1
|

I ′
3

︷︸︸︷

QI1
) (10)

which is generated by partitioning Z into 2I1 blocks along

the column dimension. The partition of Z corresponds to

A∗
(2)’s block partition shown in Fig. 2, i.e. E1,E2, . . .EI1

correspond to the white regions, and Q1,Q2, . . .QI1
cor-

respond to the gray regions. Then, the elementary counter-

change matrix P is formulated as:

P = (E1|E2 . . . |EI1
|Q1|Q2 . . . |QI1

)T . (11)

In this way, the column subspace (column projection matrix)

of A∗
(2) can be efficiently obtained by the SVD of (A(2)|F(2))

from the SVD of A(2) and F(2) using the incremental SVD

technique.

3) With respect to A∗
(3), we estimate the row subspace,

instead of the column subspace. This is because we only

consider the extension of a 3-order tensor along the third or-

der with the increase of the dimension of the third order, and

we then only need to track the changes in the row space of

A∗
(3), and identify the new row projection subspace. For the

applications to background modeling and object tracking,

this row space contains information about the changes in the

appearance of an object or background over time. But the

subspace of the column space is of no use for background

modeling and object tracking, because values of each pixel

in an appearance over time form a vector, and the subspace

of this column space only uses a small number of vectors to

describe the vectors of all the pixels in the appearance. The

dimension of this column space becomes larger and larger

over time until finally the column space is too large for prac-

tical applications. Consequently, for A∗
(3), we should calcu-

late the SVD of the matrix

(
A(3)

F(3)

)T

(12)

where the operation “−” merges the upper and lower ma-

trices. Formula (12) is equal to (A(3))
T |(F(3))

T . We obtain

the SVD of (A(3))
T |(F(3))

T from the SVD of (A(3))
T and

(F(3))
T using the incremental SVD technique.

The first R1 dominant singular vectors with the larger

singular values are selected from the SVD of (A(1)|F(1))

to form the subspace of (A(1)|F(1)). The first R2 domi-

nant singular vectors with the larger singular values are

selected from the SVD of (A(2)|F(2)) to form the sub-

space of (A(2)|F(2)). The first R3 dominant singular vec-

tors with the larger singular values are selected from

the SVD of ((A(3))
T |(F(3))

T) to form the subspace of

((A(3))
T |(F(3))

T). The obtained three subspaces form the

result of the incremental rank-(R1,R2,R3) tensor subspace

learning.

3.3.4 Incremental SVD for 3-Order Tensors

We can use the results of incremental SVD of (A(1)|F(1)),

(A(2)|F(2)), and ((A(3))
T |(F(3))

T) to formulate online 3-

order tensor decomposition which is based on the SVD of

the unfolding matrices A∗
(1),A

∗
(2), and A∗

(3).

1) Let {Ũ (1), �̃(1), Ṽ (1)} be the SVD of (A(1)|F(1)). As

A∗
(1) = (A(1)|F(1)), the SVD U (1),D(1),V (1) of A∗

(1) is ob-

tained by: U (1) = Ũ (1),�(1) = �̃(1), and V (1) = Ṽ (1).

2) Let {Ũ (2), �̃(2), Ṽ (2)} be the SVD of (A(2)|F(2)). As

A∗
(2)

= (A(2)|F(2)) · P , where P is defined in (11), the SVD

310 Int J Comput Vis (2011) 91: 303–327

U (2),D(2),V (2) of A∗
(2) is obtained by: U (2) = Ũ (2),�(2) =

�̃(2), and V (2) = P T · Ṽ (2).

3) Let {Ũ (3), �̃(3), Ṽ (3)} be the SVD of ((A(3))
T |(F(3))

T).

As A∗
(3) = (

A(3)

F(3)
), the SVD U (3),�(3),V (3) of A∗

(3) is ob-

tained by: U (3) = Ṽ (3),�(3) = (�̃(3))T ,V (3) = Ũ (3).

It is noted that our online 3-order tensor decomposition

is different from the offline tensor decomposition formulated

in (3) and (4) in that we use the row vectors in the mode-3

unfolding matrix A∗
(3) rather than its column vectors. This

can be regarded as an extension of the offline tensor decom-

position, because if column vectors are used for A∗
(3) the

incremental subspace learning for A∗
(3)

cannot be achieved.

The mode-3 unfolding matrix and its incremental subspace

learning just correspond to the vector subspace learning al-

gorithm in Ross et al. (2008). In this way, the subspace

learned using the algorithm in Ross et al. (2008) is kept in

our tensor subspace learning algorithm. This ensures, in the-

ory, that our incremental tensor subspace learning algorithm

can obtain more accurate results than the incremental vector

subspace learning algorithm.

3.3.5 Likelihood Evaluation

It is necessary for a subspace learning-based algorithm to

evaluate the likelihood of the test sample given the learned

subspace or subspaces. The likelihood evaluation method

with respect to the proposed incremental 3-order tensor sub-

space learning algorithm is described as follows: As we only

consider the increase of the dimension of the third order of

a 3-order tensor A ∈ RI1×I2×I3 with the dimensions of the

first and second orders held constant, the learned subspaces

of the tensor should be composed of the mode-1 column pro-

jection matrix U (1) ∈ RI1×R1 , the mode-2 column projec-

tion matrix U (2) ∈ RI2×R2 , and the mode-3 row projection

matrix V (3) ∈ R(I1·I2)×R3 . Let μ(1) and μ(2) be the column

mean vectors of A(1) and A(2) respectively. Let μ(3) be the

row mean vector of A(3). Tensors M̂1 and M̂2 are defined

by:

M̂1 = (

I2
︷ ︸︸ ︷

μ(1), . . . ,μ(1)) ∈ RI1×I2×1

M̂2 = (μ(2), . . . ,μ(2)

︸ ︷︷ ︸

I1

)T ∈ RI1×I2×1
. (13)

The sum of the reconstruction error norms of a test sample

Ĵ ∈ RI1×I2×1 corresponding to the three modes is computed

by:

RE =

(
2

∑

i=1

∥
∥(Ĵ − M̂i) −

(

(Ĵ − M̂i) ×i (U (i) · U (i)T)
)∥
∥

2

F

+
∥
∥(J(3) − μ(3))

−
(

(J(3) − μ(3)) · (V (3) · V (3)T)
)∥
∥

2

F

) 1
2

(14)

where J(3) is the mode-3 unfolding matrix ofĴ , and the re-

construction error for a mode represents the distance from

the sample to the subspace corresponding to this mode. The

likelihood of the test sample Ĵ given the learned tensor sub-

spaces is computed by:

p(J |U (1),U (2),V (3)) ∝ exp

(

−
RE2

2σ 2

)

(15)

where σ is a scale factor. The smaller the RE, the larger the

likelihood.

3.3.6 Theoretical Comparison

In the following, we compare our algorithm with DTA,

WTA, and STA in Sun et al. (2006a, 2006b, 2008).

DTA: For DTA in Sun et al. (2006a, 2008), the incremen-

tal updating of the subspace of the unfolding matrix of a ten-

sor on each mode is performed by updating the covariance

matrix formed from the columns of the unfolding matrix and

then obtaining an eigenvalue decomposition of the updated

covariance matrix. The updating is achieved by:

Cd ← λCd + XT
(d)X(d) (16)

where Cd on the right hand side of (16) is the covariance

matrix of the unfolding matrix on mode d for the data ob-

served at the previous steps, and Xd is the unfolding matrix

on mode d for the incoming data at the current step. Accord-

ing to Ross et al. (2008), this updating of the covariance ma-

trix is based on the assumption that μd = μ′
d where μd is the

mean of the previous unfolding matrix, and μ′
d is the mean

of Xd , i.e. any changes in the mean are not considered. So,

this updating is not accurate if there are significant changes

in the mean. If the updating is applied to background mod-

eling and object tracking, the corresponding model cannot

adapt to large appearance changes.

According to (Ross et al. 2008) the accurate updating of

the covariance matrix with mean updating should be

Cd ← λCd +XT
(d)X(d) +

pq

p + q

(

μd − μ′
d

) (

μd − μ′
d

)T
(17)

where p is the number of columns in the previous matrix and

q is the number of columns in the new incoming data ma-

trix. Even if we introduce (17) into DTA, the obtained sub-

space is still not accurate for the applications to background

modeling and object tracking, because DTA has the small

size problem. For a 3-order tensor (RI1×I2×I3), the dimen-

sion of the row vectors in the unfolding matrix on mode 3 is

I1I2. The corresponding covariance matrix is a I1I2 × I1I2

Int J Comput Vis (2011) 91: 303–327 311

matrix. It is assumed that there are s new samples. In the

applications to background modeling and object tracking,

s ≪ I1I2 × I1I2. The rank of the mode-3 unfolding matrix

of the new incoming samples is equal to or less than s. The

eigenvector decomposition of a I1I2 × I1I2 matrix obtained

from s samples is degenerate. This is the small sample prob-

lem. One of the motivations in Ross et al. (2008) is to solve

the small sample problem using the incremental SVD. So,

our incremental subspace tensor learning method is more

accurate than DTA for the applications to background mod-

eling and object tracking.

2) WTA: WTA in Sun et al. (2006b, 2008) updates the

covariance matrix of the unfolding matrix in a similar way to

the DTA, but it only focus on a window of w recent samples,

i.e. the covariance matrix is more dependent on the most

recent w samples. Only one sample is used in each step of

the updating process:

Cd ← λCd − Xn−w,(d)X
T
n−w,(d) + Xn,(d)X

T
n,(d) (18)

where Xn−w,(d) is the d th mode unfolding matrix of the

(n−w)th sample, and Xn,(d) is the mode-d unfolding matrix

of the n-th sample, i.e. the new sample. WTA has the same

limitations as the DTA: it is assumed that the mean of the

previous data is equal to the mean of the new data and it has

the same small sample size problem. Furthermore, the fact

that only the w most recent samples are focused on leads

to model drift in applications to tracking. According to Sun

et al. (2008), the tensor subspaces learned using WTA are

less accurate than the tensor subspaces learned using DTA.

So, WTA is less accurate than our tensor subspace learning

method for the applications to background modeling and ob-

ject tracking.

3) STA: STA in Sun et al. (2006a, 2008) applies the

SPIRIT (streaming pattern discovery in multiple timeseries)

iterative algorithm (Papadimitriou et al. 2005) to the incom-

ing data to update the column subspace of the data matrix

for approximating DTA without diagonalization. The tensor

subspaces learned using STA are less accurate than the ten-

sor subspaces learned using DTA while STA is faster than

DTA. So, STA is less accurate than our tensor subspace

learning method.

3.3.7 Remarks

We discuss the following aspects:

1) Compared with the offline SVD for tensors, the pro-

posed incremental SVD for 3-order tensors adapts to ap-

pearance variations with a much lower complexity. The

incremental tensor subspace learning algorithm requires

O[I1I2(I3 + I ′
3)(R1 + R2 + R3)] operations and O[I1R1 +

I2R2 + I1I2(R3 + I ′
3)] memory units. In comparison, the

offline SVD for 3-order tensors requires O[I1I2(I1 + I2 +

I3 + I ′
3)(I3 + I ′

3)] operations and O[I1(I3 + I ′
3)I2] memory

units (Wang and Ahuja 2008). It is obvious that I3 is much

larger than R1,R2,R3, and I ′
3. So, the complexity of the of-

fline SVD for 3-order tensors is much higher than that of our

incremental tensor subspace learning algorithm.

2) The batch tensor subspace learning is not suitable for

background modeling and object tracking, due to the fol-

lowing points: A) The time taken for batch computation

increases indefinitely as the length of the video increases.

B) The batch processing algorithm considers all the changes

in object appearance in all the observed frames. The infor-

mation in the sequence of frames is not used. This reduces

the accuracy of appearance updating especially when the

number of frames is very large, as recent frames provide

more accurate information about the appearance model.

3) When our incremental tensor subspace learning method

is applied to appearance modeling for background modeling

and object tracking, the appearance should be treated as a

2-D matrix, like the vector subspace-based algorithms in Li

(2004), Ross et al. (2008). In Li (2004), Ross et al. (2008),

the 2-matrix is unfolded into a vector, and the SVD tech-

nique is used to obtain the subspace representing changes

in object appearance over time. In our method, the tensor

technique is introduced to object appearance representation

over time by treating appearances using 2-D matrices. The

spatial information of the object appearance is included in

the subspaces of the unfolding matrices on the first and the

second modes of the tensor. The subspace of the unfolding

matrix on the third mode of the tensor describes appear-

ance changes over time. In contrast to the vector subspace-

based algorithm in Li (2004), Ross et al. (2008), our tensor

subspace-based algorithm captures more spatial information

in images.

4 Foreground Segmentation

We apply the proposed incremental tensor subspace learn-

ing algorithm to foreground segmentation from image se-

quences. Figure 3 shows the architecture of our foreground

segmentation algorithm. A tensor subspace-based back-

ground appearance model is obtained using the incremen-

tal tensor subspace learning algorithm. When new frames

arrive, they are matched with the background appearance

model to detect foreground pixels in these new frames. The

background images corresponding to these new frames are

then constructed and used to update the tensor subspace-

based background model using the incremental tensor sub-

space learning.

Let Ĝ be a sequence B1,B2, . . . ,Bq , . . . ,Bt of back-

ground appearance images of a scene, i.e. a 3-order back-

ground appearance tensor, where Bq represents the qth

background image. We define a rectangular pixel region cen-

tered at pixel (u,v), where the region has the height of I1

pixels and the width of I2 pixels. Then, we define a back-

312 Int J Comput Vis (2011) 91: 303–327

Fig. 3 The architecture of our

foreground segmentation

algorithm

Fig. 4 The relation between tensors Ĝ and Â

ground appearance tensor Â = Buv
1 ,Buv

2 , . . . ,Buv
q , . . . ,Buv

t

which is smaller than Ĝ, where Buv
q is composed of pixels

in the rectangular pixel region. This tensor captures the spa-

tiotemporal interactions between pixel (u,v) and its I1I2 −1

neighboring pixels in the rectangular region. The relation

between tensors Ĝ and Â is illustrated in Fig. 4. We apply

the proposed incremental tensor subspace learning to ten-

sor Â to effectively mine statistical properties of Â. In this

paper, we develop two background appearance models for

grayscale image sequences and color image sequences re-

spectively.

4.1 Grayscale Background Model

For grayscale image sequences, the tensor subspace model

for the tensor Â ∈ RI1×I2×t associated with pixel (u,v) con-

sists of the mode-1 column projection matrix U (1) ∈ RI1×R1 ,

the mode-2 column projection matrix U (2) ∈ RI2×R2 , and

the mode-3 row projection matrix V (3) ∈ R(I1·I2)×R3 . Given

the rectangular pixel region J uv
t+1 ∈ RI1×I2 centered at (u,v)

in a new frame t +1, the likelihood P(J uv
t+1|U

(1),U (2),V (3))

for J uv
t+1 given the learned tensor subspace model {U (1),

U (2), V (3)} for pixel (u,v) is estimated using (14) and (15).

In this way, the criterion for foreground segmentation is de-

fined as:

(u, v) ∈

{

background if P(J uv
t+1|U

(1),U (2),V (3)) > Tgray

foreground otherwise

(19)

where Tgray denotes a threshold.

After foreground segmentation is implemented for all the

pixels at frame t + 1, a background appearance image Bt+1

at time t + 1 is constructed according to the result of fore-

ground segmentation at time t + 1 and the previous back-

ground appearance images B1,B2, . . . ,Bt . Let Mt be the

mean background appearance image at time t :

Mt =
1

t

t
∑

k=1

Bk. (20)

Typically, Mt is computed recursively:

Mt =
t − 1

t
Mt−1 +

1

t
Bt . (21)

Then, the value Bt+1(u, v) of each pixel (u, v) in Bt+1 is

computed by:

Bt+1(u, v) =

⎧

⎪
⎨

⎪
⎩

(1 − ω)Mt (u, v) + ωJt+1(u, v)

if (u, v) ∈ foreground

Jt+1(u, v) otherwise

(22)

where ω is a learning rate factor which is set to a very small

value. Formula (22) means that if a pixel is determined to

belong to the background, then its value in the current back-

ground appearance image is of course set to its value in

the current frame; otherwise its value in the current back-

ground appearance image is interpolated between its value

in the current frame and its value in the mean background

appearance image. This ensures that the background model

can adapt to the changes in the environment such as lighting

variations. Subsequently, the estimated background appear-

ance images are used to update the tensor subspace model of

the background appearance tensor Â of each pixel (u, v) by

applying the proposed incremental tensor subspace learning

algorithm.

4.2 Color Background Model

There are two typical background modeling algorithms

which can deal with color: the GMM-based algorithm

Int J Comput Vis (2011) 91: 303–327 313

(Stauffer and Grimson 1999) and the kernel-based algo-

rithm (Elgammal et al. 2002). In the GMM-based algorithm,

each mixture component of the background model is a single

Gaussian distribution in the RGB color space. The covari-

ance matrix of each Gaussian is a diagonal matrix
∑

= σ 2I

where I is an identity matrix and σ is a standard deviation.

The GMM-based algorithm deals with the RGB channels

separately, and assumes the same standard deviation for each

channel. Although dealing with color in this way is not con-

sistent with real data distributions, it can greatly increase

the speed with only a slight loss of accuracy. The kernel

density estimation-based background modeling algorithm

(Elgammal et al. 2002) also deals with the color channels

separately, i.e. the joint probability density of color pixels is

decomposed into the product of independent kernel density

functions of each color channel. In contrast to the GMM-

based algorithm, the kernel-based algorithm uses different

Gaussian kernel variances for each channel.

Referring to the GMM-based algorithm (Stauffer and

Grimson 1999) and the Kernel-based algorithm (Elgammal

et al. 2002), we extend the proposed background model for

grayscale sequences to the background model for color im-

age sequences. In the color background model, we use the

(r, g, s) color space which is defined in terms of the RGB

color space by r = R/(R + G + B),g = G/(R + G + B),

and s = (R +G+B)/3. The effects of shadows are reduced

in the (r, g, s) color space (Elgammal et al. 2002).

Let Âr ∈ RI1×I2×t be a 3-order tensor Br
1Br

2 . . .Br
q . . .Br

t ,

where Br
q is a matrix which is composed of the r-components

of pixels in the rectangular appearance region centered at

pixel (u,v) at time q . Similarly, we define tensors Âg ∈

RI1×I2×t (B
g

1 B
g

2 . . .B
g
t) and Âs ∈ RI1×I2×t (Bs

1B
s
2 . . .Bs

t)

for the g-components and the s-components of the pixels

in the region centered at (u,v). For each component’s ten-

sor ÂC (C ∈ {r, g, s}), a tensor subspace model is incremen-

tally learned using the proposed incremental tensor subspace

learning algorithm. In this way, three tensor subspace mod-

els for each pixel are obtained corresponding to the three

color components. The learning process for the tensor of

each component is similar to that for the grayscale sequence.

The subspace model for tensor ÂC (C ∈ {r, g, s}) consists of

the following terms: 1) the maintained subspace dimensions

(RC

1 ,RC

2 ,RC

3) corresponding to the three tensor unfolding

modes; 2) the column projection matrices U
(1)
C

∈ RI1×RC

1

and U
(2)
C

∈ RI2×RC

2 of modes 1 and 2, and the mode-3 row

projection matrix V
(3)
C

∈ R(I1·I2)×RC

3 ;3) the column mean

vectors μ
(1)
C

and μ
(2)
C

of the unfolding matrices AC

(1) and AC

(2)

of modes 1 and 2, and the row mean vector μ
(3)
C

of the mode-

3 unfolding matrix AC

(3). Let J r
t+1 ∈ RI1×I2 , J

g

t+1 ∈ RI1×I2

and J s
t+1 ∈ RI1×I2 be, respectively, the matrices of r, g, s-

components of pixels in the appearance region centered at

(u,v) at time t + 1. The distances RMr
uv,RM

g
uv and RMs

uv

between {r, g, s}-components of pixels in the rectangular

image region J uv
t+1 centered at (u,v) at frame t + 1 and

the learned {r, g, s}-component tensor-based subspace mod-

els are calculated, respectively, using (14). Then, the likeli-

hood Puv for Ĵ uv
t+1 given the learned tensor subspace models

{U
(1)
r ,U

(2)
r ,V

(3)
r }, {U

(1)
g ,U

(2)
g ,V

(3)
g }, and {U

(1)
s ,U

(2)
s ,V

(3)
s }

for pixel (u,v) is estimated by:

Puv = exp

(

−
1

2

(
RMr

uv

σr

)2

−
1

2

(
RM

g
uv

σg

)2

−
1

2

(
RMs

uv

σs

)2
)

(23)

where σr , σg , and σs are three scale factors. The criterion for

foreground segmentation is defined as:

(u, v) ∈

{

background if Puv > Tcolor

foreground otherwise
(24)

where Tcolor is a threshold.

Using the result of foreground segmentation at the cur-

rent time t + 1, we can estimate the current background ap-

pearance image which consists of the (r, g, s)-component

background appearance matrices: Br
t+1 ∈ RI1×I2 ,B

g

t+1 ∈

RI1×I2 , and Bs
t+1 ∈ RI1×I2 . The elements in these three ma-

trices are estimated by:

BC

t+1(u, v) =

⎧

⎪
⎨

⎪
⎩

(1 − ωC)MC

t+1(u, v) + ωCJC

t+1(u, v)

if (u, v) ∈ foreground

JC

t+1(u, v) otherwise

(25)

where C ∈ {r, g, s},ωC is a learning rate factor, and MC
t is

the mean matrix of BC

1 ,BC

2 , . . . , and BC
t at time t . As for-

mulated in (20) and (21), MC
t is computed recursively.

Subsequently, the newly estimated background appear-

ance component matrices are used to incrementally update

the subspace models of the component tensors of the color

background appearance region centered at each pixel by ap-

plying the incremental tensor subspace learning algorithm.

The tensor subspace model for each component is learned

and updated in the same way as the tensor subspace model

for the grayscale sequences. Figure 5 is used to further illus-

trate the foreground segmentation process for color image

sequences.

5 Visual Tracking

We apply the proposed incremental tensor subspace learn-

ing algorithm to appearance-based object tracking. Figure 6

shows the architecture of our object tracking algorithm. In

the algorithm, a low dimensional subspace model for the

appearance tensor of an object is learned. The model uses

the incremental rank-(R1,R2,R3) tensor subspace learning

314 Int J Comput Vis (2011) 91: 303–327

Fig. 5 Foreground

segmentation for color image

sequences

Fig. 6 The architecture of our

tracking algorithm

algorithm to find the dominant projection subspaces of the

3-order tensor of the object appearance. The current object

state, which is initialized according to the previous state and

the dynamic model, is optimized using a particle filter. The

appearance region specified by the optimal state is the track-

ing result which is used to further update the object appear-

ance tensor subspace model.

5.1 Object Appearance Tensor Subspace Model

For tracking in grayscale images, the appearance regions of

an object at different frames are normalized to the same size

using linear interpolation and the intensities of the pixels in

these normalized appearance regions form a tensor Â. The

length of the tensor increases with time. For this tensor Â,

unfolding matrices A(1),A(2), and A(3) of modes 1, 2, and

3 are obtained. Column subspaces U (1) and U (2) of modes

1 and 2 and row subspace V (3) of mode 3 are learned us-

ing the proposed incremental tensor subspace learning algo-

rithm. These three subspaces are combined via tensor recon-

struction as formulated in (14) to form a tensor subspace-

based object appearance model. We compute the likelihood

for a candidate object appearance region given the tensor

subspaces of the object appearance. The value of the like-

lihood is a measure of the similarity between the candidate

region and the tensor subspaces of the object appearance.

When tracking an object in a color image sequence, the

r, g and s values of the pixels in the normalized appearance

regions of the object at different frames form, respectively,

three tensors Âr , Âg , and Âs for the r, g, and s compo-

nents. For each tensor ÂC (C ∈ {r, g, s}), unfolding matri-

ces A
(1)
C

,A
(2)
C

, and A
(3)
C

of modes 1, 2, and 3 are obtained,

and the corresponding column subspaces U
(1)
C

and U
(2)
C

of

modes 1 and 2 and the corresponding row subspace V
(3)
C

of mode 3 are then learned. We compute the reconstruction

error RMC (C ∈ {r, g, s}) of the component C matrix of a

candidate object appearance region given the componentC′s

tensor subspaces of the object using (14). Then, the likeli-

hood for the candidate object region given the tensor sub-

spaces of the object is estimated by:

exp

(

−
1

2

(
RMr

σr

)2

−
1

2

(
RMg

σg

)2

−
1

2

(
RMs

σs

)2
)

(26)

where σr , σg , and σs are three scale factors. Formula (26) is

similar to (23).

5.2 Bayesian Inference for Tracking

A Markov model with hidden state variables is used for

motion estimation. An affine image warping is applied to

Int J Comput Vis (2011) 91: 303–327 315

model the object motion between two consecutive frames.

The object state variable vector Xt at time t is described

using the six parameters of the affine motion transform:

xt , yt , ηt , st , βt , and φt , which are respectively the transla-

tion parameters of the x, y coordinates, the rotation angle,

the scale, the aspect ratio, and the skew direction. The loca-

tion, size and pose of the object are indicated in the affine

motion parameters. Given a set of observed image regions

O1,O2, . . . ,Ot , the posterior probability of the object state

is formulated by Bayes’ theorem:

p(Xt |O1,O2, . . . ,Ot)

∝ p(Ot |Xt)

∫

p(Xt |Xt−1)

× p(Xt−1|O1,O2, . . . ,Ot−1)dXt−1 (27)

where p(Ot |Xt) is the likelihood for the observation Ot

given the object state Xt , and p(Xt |Xt−1) is the probabil-

ity model for the object state transition. The terms p(Ot |Xt)

and p(Xt |Xt−1) determine the tracking process. A Gaussian

distribution is employed to model the state transition distri-

bution p(Xt |Xt−1):

p(Xt |Xt−1) = N(Xt : Xt−1,�) (28)

where � denotes a diagonal covariance matrix with six diag-

onal elements σ 2
x , σ 2

y , σ 2
η , σ 2

s , σ 2
β , and σ 2

φ . The observation

model p(Ot |Xt) is evaluated using the likelihood for a sam-

ple image region given the learned appearance tensor sub-

spaces. For grayscale image sequences, this probability is

estimated using (15). For color image sequences, this prob-

ability is estimated using (26).

A standard particle filter (Isard and Blake 1996) is used

to estimate the object motion state. The components of each

particle correspond to the six affine motion parameters. For

the maximum a posteriori estimate, the particle which max-

imizes the observation model is selected as the optimal state

of the object in the current frame. The affinely warped im-

age region associated with the optimal state of the object is

used to incrementally update the tensor subspace-based ob-

ject appearance model.

6 Experiments

The experimental results for the foreground segmentation

are shown first, and then the experimental results for the vi-

sual object tracking are shown. The runtimes are measured

on a computer with 3.25 GB RAM and Intel Core2 Quad

CPU at 2.83 GHz.

6.1 Foreground Segmentation

In order to evaluate the performances of the proposed incre-

mental tensor subspace learning-based algorithms for fore-

ground segmentation for grayscale image sequences and

for color image sequences, four examples corresponding to

four videos are shown to demonstrate the claimed contribu-

tions of our algorithms. The first two videos consist of 8-

bit grayscale images while the two remaining videos consist

of 24-bit color images. The first video is selected from the

PETS2001 database, available on http://www.cvg.cs.rdg.ac.

uk/slides/pets.html. It consists of 650 frames. In the video,

a person walks along a road in a well lit scene, and ve-

hicles enter or leave the scene every now and then. The

second video consists of 1012 frames. In the video, three

persons walk in a scene containing a side of a building,

two lightly swaying trees, and two cars. In the middle of

the video, these three people occlude each other. The third

video consists of 89 frames. In the video, two cars are mov-

ing in a dark and blurry traffic scene. The last video is se-

lected from CAVIAR2, available on http://homepages.inf.

ed.ac.uk/rbf/CAVIARDATA1/. It consists of 1000 frames.

In the video, several people walk along a corridor, or en-

ter or leave the corridor from time to time. The first two

videos are used to evaluate the foreground segmentation

performance of the proposed algorithm for grayscale im-

age sequences, while the third and fourth videos are used

to evaluate the foreground segmentation for color image

sequences. The tensor subspace-based background mod-

els for either grayscale image sequences or color image

sequences are updated every three frames. The rectangu-

lar regions centered at each pixel are of size 5 × 5 pix-

els, i.e. the values of I1 and I2 in Sect. 4 are both set

to 5.

We compare our background modeling algorithm with

the representative incremental vector subspace learning-

based algorithm in (Li 2004) and the standard GMM-based

algorithm in Stauffer and Grimson (1999), with respect to

accuracy and speed. The competing algorithms are briefly

described below:

• The vector subspace-based algorithm in (Li 2004) incre-

mentally constructs, using online PCA, a scene’s back-

ground model represented by a low dimensional vector

subspace. Although it uses a PCA model defined over the

whole image, information on each pixel is included in the

PCA model and each pixel should be handled one by one

to detect foreground pixels using the learned PCA model.

In the algorithm, each image is flattened into a vector

whose dimension is equal to the product of the width and

the height of the image. In our algorithm the maximum of

the lengths of the flattened vectors is only I1I2 which is

much less than the number of pixels in the full image. Our

algorithm can be applied to images which are in practice

http://www.cvg.cs.rdg.ac.uk/slides/pets.html
http://www.cvg.cs.rdg.ac.uk/slides/pets.html
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

316 Int J Comput Vis (2011) 91: 303–327

too large for the vector subspace-based algorithm in Li

(2004).

• For more fair comparison, we modify the original version

of the vector subspace-based algorithm in Li (2004) by

defining a separate PCA model for each I1 × I2 rectangle

sampled from the image, and compare our algorithm with

the modified version of the vector subspace-based algo-

rithm, besides the original version of the vector subspace-

based algorithm.

• The GMM-based algorithm provides a very good trade-

off between representational power and algorithmic com-

plexity, allowing for good results in real time.

As the vector subspace-based algorithm in Li (2004) is

only available for grayscale image sequences, the grayscale

videos in Examples 1 and 2 are used to achieve the com-

parisons between our algorithm and the vector subspace-

based algorithms. The GMM-based algorithm is available

for both grayscale and color image sequences, so results of

the GMM-based algorithm for all the four videos are re-

ported. In the following, the results of the examples are il-

lustrated, and then the analysis of the results is given.

6.1.1 Example 1

In the first example, the subspace dimensions R1,R2, and

R3 for the incremental tensor subspace learning algorithm

are empirically set to 3, 3, and 10 respectively. The scale

factor σ in (15) is set to 15. The threshold Tgray in (19) is

set to 0.8. The learning rate factor ω in (22) is set to 0.08.

The parameters for the vector subspace-based algorithm are

chosen to ensure that it performs as accurately as possible.

The PCA subspace dimension p is 12; the updating rate α

in Li (2004) is 0.96; and the coefficient β in Li (2004) is

11. The parameters for the GMM-based algorithm are set as

defaults in the OpenCV tool.

Six representative frames 345, 486, 511, 529, 563, and

624 of the foreground segmentation results are shown in

Fig. 7, where the first and the sixth rows are from the orig-

inal sequence, the second and the seventh rows show the

results of our algorithm, the third and the eighth rows show

the results of the original version of the vector subspace-

based algorithm, the fourth and the ninth rows show the re-

sults of the modified version of the vector subspace-based

algorithm, and the fifth and the tenth rows show the results

of the GMM-based algorithm. It can be seen that the seg-

mentation results of our algorithm are clean, connected for

each object, and almost noiseless, and furthermore almost

all of the associated shadows are omitted. Our algorithm

obtains more accurate foreground segmentations than the

vector subspace-based algorithms and the GMM-based al-

gorithm.

The frame rate of our algorithm for this example is 1.2

frames per second. The frame rate of the original version

of the vector subspace-based algorithm in Li (2004) is 8.3

frames. The frame rate of the modified version of the vec-

tor subspace-based algorithm is 2.3 frames. The frame rate

of the GMM-based algorithm is 7.6 frames per second. Al-

though our algorithm is slower than the vector subspace-

based algorithms and the GMM-based algorithm, the speed

of our algorithm is still acceptable.

6.1.2 Example 2

In the second example, the subspace dimensions R1,R2,

and R3 for the incremental tensor subspace learning al-

gorithm are empirically assigned as 3, 3, and 12 respec-

tively. The scale factor α in (15) is set to 20. The thresh-

old Tgray in (19) is chosen as 0.81. The learning rate fac-

tor ω in (22) is assigned as 0.09. The parameters for the

vector subspace-based algorithm are set as follows: the

PCA subspace dimension p is 13; the updating rate α is

0.95; and the coefficient β is 9. The parameters for the

GMM-based algorithm are set as defaults in the OpenCV

tool.

Five representative frames 178, 197, 203, 215, and 243 of

the foreground segmentation results are displayed in Fig. 8,

where the first row is from the original image sequence and

the second, the third, the fourth, and the fifth rows corre-

spond to our algorithm, the original version of the vector

subspace-based algorithm in Li (2004), the modified ver-

sion of the vector subspace-based algorithm, and the GMM-

based algorithm, respectively. It is shown that our algorithm

obtains a much cleaner segmented background than the vec-

tor subspace-based algorithms and the GMM-based algo-

rithm, and the foreground segmented by our algorithm is

cleaner, better connected for each object, less noisy, and

less affected by shadows than the foreground regions seg-

mented by the vector subspace-based algorithms and the

GMM-based algorithm.

For this example, the frame rates of our algorithm, the

original version of the vector subspace-based algorithm, the

modified version of the vector subspace-based algorithm,

and the GMM-based algorithm are 5.7, 39.6, 11.2, and 30.9

frames per second, respectively.

6.1.3 Example 3

In the third example, the tensor subspace dimensions (Rr
1 ,

Rr
2 , Rr

3), (R
g

1 ,R
g

2 ,R
g

3), and (Rs
1,R

s
2,R

s
3) corresponding to

the three components (r, g, s) in the color space are empiri-

cally assigned as (3, 3, 11), (3, 3, 11), and (3, 3, 10), respec-

tively. The learning rate factors ωr ,ωg , and ωs in (25) are all

assigned as 0.08. The scale factors σr , σg , and σs in (23) are

set to 0.12, 0.13, and 16, respectively. The threshold Tcolor in

(24) is chosen as 0.79. The parameters for the GMM-based

algorithm are set as defaults in the OpenCV tool.

Int J Comput Vis (2011) 91: 303–327 317

Fig. 7 Foreground

segmentation results for the first

video: Rows 1 and 6 are from

the original sequence where the

moving regions are highlighted

by white boxes; Rows 2 and 7

show the results of our

algorithm; Rows 3 and 8 show

the results of the original

version of the vector

subspace-based algorithm; Rows

4 and 9 show the results of the

modified version of the vector

subspace-based algorithm; and

Rows 5 and 10 show the results

of the GMM-based algorithm

Five representative frames 52, 69, 79, 83, and 87 of the

foreground segmentation results of our algorithm and the

GMM-based algorithm are shown in Fig. 9, where Rows

1, 2 and 3 display the original images, the results of our

algorithm and the results of the GMM-based algorithm, re-

spectively. The foreground regions are accurately segmented

using our algorithm even though their sizes are small; al-

most all the street lamps are segmented as background, even

those which are particularly bright; and our algorithm suc-

cessively identifies regions corresponding to traffic lights

which change over time as background. However, some of

these regions are mistakenly identified as foreground by the

GMM-based algorithm. In this example, our algorithm more

accurately models the color background than the GMM-

based algorithm. The frame rates of our algorithm and the

GMM-based algorithm are 5.3 and 32.0 frames per second,

respectively.

6.1.4 Example 4

In the fourth example, the tensor subspace dimensions

(Rr
1,R

r
2,R

r
3), (R

g

1 ,R
g

2 ,R
g

3), and (Rs
1,R

s
2,R

s
3) correspond-

ing to the three components in the (r, g, s) color space are

empirically set to (3,3,9), (3,3,9), and (3,3,11) respec-

tively. The learning rate factors ωr ,ωg , and ωs in (25) are

all set to 0.08. The scale factors σr , σg , and σs in (23) are

set to 0.11, 0.13, and 20 respectively. The threshold Tcolor in

(24) is chosen as 0.78. The parameters for the GMM-based

algorithm are set as defaults in the OpenCV tool.

The five representative frames 296, 312, 472, 790, and

814 of the foreground segmentation results are displayed in

318 Int J Comput Vis (2011) 91: 303–327

Fig. 8 Foreground

segmentation for the second

video: In row 1, the moving

regions are highlighted by white

boxes; Rows 2, 3, 4, and 5 show

the results of our algorithm, the

original version of the vector

subspace-based algorithm, the

modified version of the vector

subspace-based algorithm, and

the GMM-based algorithm,

respectively

Fig. 9 The foreground segmentation results for Example 3: In row 1, the moving regions are highlighted by white boxes; Row 2 displays the

results of our algorithm; and Row 3 corresponds to the results of the GMM-based algorithm

Fig. 10, where Row 1 shows the original images, and Rows 2

and 3 show the results of our algorithm and the GMM-based

algorithm respectively. It can be seen that good foreground

segmentation results are obtained using our algorithm in that

the background is clean and the foreground is connected.

In contrast, the GMM-based algorithm does not effectively

handle shadows, in that many shadows are mistakenly clas-

sified as foreground. The frame rates of our algorithm and

the GMM-based algorithm for this example are 5.2 and 28.7

frames per second, respectively.

Int J Comput Vis (2011) 91: 303–327 319

Fig. 10 The foreground segmentation results for Example 4: In row 1, the moving regions are highlighted by white boxes; Rows 2 and 3 show the

results of our algorithm and the GMM-based algorithm respectively

6.1.5 Analysis of Results

The reason why our algorithm obtains more accurate fore-

ground segmentation results in complicated scenes, as com-

pared with the incremental vector subspace-based algo-

rithms and the GMM-based algorithm, is that our algorithm

is able to exploit the spatiotemporal correlations of values of

pixels within the image ensembles by the incremental ten-

sor subspace learning. The vector subspace-based algorithm

flattens the images into vectors, and as a result loses most

of the spatial correlation information. The global or local

variations in a scene would substantially change the vector

subspace, resulting in foreground segmentation errors. The

GMM-based algorithm models all the pixels in an image in-

dependently: spatial correlations of the image are not con-

sidered.

The reason why our foreground segmentation algorithm

is slower than the GMM-based algorithm and the vector

subspace-based algorithms is that the GMM-based algo-

rithm directly models individual pixels; the vector-based al-

gorithm uses a PCA model defined over the whole image;

the modified vector subspace-based algorithm uses a flat-

tened matrix to describe appearance changes in the rectan-

gular region centered at each pixel; but our algorithm uses a

tensor corresponding to three unfolding matrices to describe

appearance changes in the rectangular pixel region centered

at each pixel. The speed of our algorithm is still acceptable

because the size of the rectangular region is small, and the

incremental SVD in Ross et al. (2008) is fast.

The frame rate of foreground segmentation is dependent

on the image size. For example, the frame rate in Example 1

is much lower than the frame rates in Examples 2, 3, and 4,

because the image size in Example 1 is much larger than the

image sizes in other examples.

6.2 Tracking

To evaluate the performance of the proposed tracking algo-

rithm, five videos are used, one video for each example. The

different scenarios include noisy images, scene blurring, ob-

jects with small apparent sizes, object pose variations, and

occlusions. In the first, fourth, and fifth examples, moving

faces are tracked. In the second and third examples, pedes-

trians are tracked. The face tracking is initialized using the

face detection algorithm (Yan et al. 2007). For tracking a

pedestrian in the video captured by a stationary camera, the

initialization is based on background subtraction. For track-

ing a pedestrian in the video taken by a mobile camera, the

initialization is based on optical flow region analysis (Zhou

et al. 2007).

For the tensor subspace representation of object appear-

ance during tracking, object regions obtained at different

times are normalized to a size of 20 × 20 pixels using

linear interpolation. The forgetting factor λ in the incre-

mental SVD is set to 0.99. For the particle filtering in

the visual tracking, the number of particles is set to 300.

The six diagonal elements σ 2
x , σ 2

y , σ 2
η , σ 2

s , σ 2
β , and σ 2

φ in

the covariance matrix � in (28) are assigned the values

52,52,0.032,0.032,0.0052, and 0.0012, respectively. The

tensor subspaces are updated every three frames.

In the experiments, we compare our tracking algorithm

with three state-of-the-art representative and typical track-

ing algorithms: the vector subspace learning-based tracking

algorithm (Ross et al. 2008), the Riemannian metric-based

tracking algorithm (Porikli et al. 2006), and a DTA-based

tracking algorithm which is designed for this paper. The

competing algorithms are briefly described below:

• The vector subspace learning-based tracking algorithm

flattens object appearances in frames in which the object

appears into vectors on which online subspace learning is

320 Int J Comput Vis (2011) 91: 303–327

Fig. 11 Tracking results for Example 1: The first row shows the re-

sults of our algorithm without added noise; the second, the third and

the fourth rows show, respectively, the results of our algorithm and the

vector subspace-based algorithm and the DTA-based algorithm in the

presence of high amplitude noise

implemented to obtain a vector subspace-based represen-

tation of the object appearance.

• The Riemannian metric-based tracking algorithm (Porikli

et al. 2006) uses the covariance matrix of image features

for object representation. An affine-invariant Riemannian

metric is used in updating of the appearance model.

• According to Sun et al. (2008), DTA is more accurate than

STA and WTA. So, we choose to apply DTA to object

tracking. DTA itself cannot be applied to tracking directly.

We modify DTA by using the row space of the mode-3

unfolding matrix instead of the column space, as required

by the tracking application. The values of all parameters

such as the forgetting factor, the particle number, and the

covariance matrix in (28) are the same as those used in

our tensor subspace-based tracking algorithm.

In the following, the results of these five examples are

first demonstrated, a quantitative comparison of the results

is then made, and analysis of results is finally given.

6.2.1 Example 1

The video for this example is captured in an indoor scene

from a mobile camera, available on http://www.cs.toronto.

edu/~dross/ivt/. It consists of 100 frames. Each frame is an

8-bit grayscale image. In the video, a man walks in a room,

changing his pose and facial expression over time under

varying lighting conditions. In order to investigate track-

ing performance in the presence of high amplitude image

noise, we add Gaussian random noise to the video. The

process of adding the noise is formulated as: I ′(x, y) =

g(I (x, y)+s ·Z), where I (x, y) is the original pixel value at

(x, y), I ′(x, y) is the pixel value after the noise is added, Z

is a sample from the standard normal distribution N(0,1), s

is a scale factor controlling the noise amplitude, and the

function g(ϕ) is defined as:

g(ϕ) =

⎧

⎨

⎩

0 ϕ < 0

255 ϕ > 255

[ϕ] 0 ≤ ϕ ≤ 255

(29)

where [ϕ] stands for the floor of the element ϕ.

In the experiment, s is set to 200. The subspace dimen-

sions R1,R2, and R3 are empirically assigned as 3, 3, and 5

respectively. For the vector subspace learning-based track-

ing algorithm, 5 singular vectors are maintained during the

tracking, and the remaining singular vectors are discarded

at each subspace updating. Six representative frames 11,

21, 30, 41, 54 and 72 of the tracking results are shown in

Fig. 11, where the first row shows the tracking results of

our algorithm without added noise, and the remaining three

rows show, respectively, the tracking results of our algo-

rithm, the vector subspace-based tracking algorithm, and the

DTA-based algorithm in the presence of the added noise.

The results shown in the first row are used as references for

the accuracies of the tracking results shown in the remaining

three rows. From Fig. 11, we see that the proposed tracking

algorithm is more resistant to strong noise. Two points are

made out:

http://www.cs.toronto.edu/~dross/ivt/
http://www.cs.toronto.edu/~dross/ivt/

Int J Comput Vis (2011) 91: 303–327 321

Fig. 12 Results of tracking a pedestrian with a very small apparent size in a dark scene: Rows 1, 2, 3, and 4 correspond to our algorithm, the

vector subspace-based algorithm, the Riemannian metric-based algorithm, and the DTA-based algorithm, respectively

• Our algorithm exhibits much more robust results than the

vector subspace-based tracking algorithm. The reason for

this is that the added noise substantially changes the vec-

tor subspace representation of the object appearance in

the vector subspace-based tracking algorithm, resulting

in tracking errors. In comparison, our tracking algorithm

relies on a tensor subspace model which makes use of

more spatial information from the three modes, resulting

in more accurate results.

• Our algorithm tracks the face of the man more accurately

than the DTA-based algorithm. The reason for this is that

the tensor subspaces learned using our algorithm are more

accurate than the tensor subspaces learned using the DTA-

based algorithm.

The frame rates of our algorithm, the vector subspace-

based algorithm, and the DTA-based algorithm are 11.2,

38.0, and 8.3 frames per second, respectively. So our al-

gorithm is faster than the DTA-based algorithm, but slower

than the vector subspace-based algorithm.

6.2.2 Example 2

The video used in this example is chosen from the open

PETS2001 database. It is recorded in an outdoor scene by

a stationary camera and it consists of 500 8-bit grayscale

images. In this video, a pedestrian with a very small appar-

ent size moves down a road in a dark scene. The motivation

of this example is to check the tracking performance in han-

dling image blurring and objects with small apparent sizes.

In the experiment, the tensor subspace dimensions R1,R2,

and R3 in our algorithm and the DTA-based algorithm are

empirically set to 5, 5, and 8 respectively. For the vector

subspace-based tracking algorithm, 16 singular vectors are

maintained during the tracking. Six representative frames

236, 314, 334, 336, 345, and 360 of the tracking results

are shown in Fig. 12, where the first, the second, the third,

and the fourth rows correspond to our algorithm, the vector

subspace-based algorithm, the Riemannian metric-based al-

gorithm, and the DTA-based algorithm, respectively. It can

be seen that the results of our algorithm are the most accu-

rate. The Riemannian metric-based algorithm tracks more

accurately than the vector subspace-based algorithm. The

DTA-based algorithm loses the track after Frame 173. This

example reflects that our algorithm makes a more compact

object appearance representation and thus more efficiently

reduces spatiotemporal redundancy of object appearance in-

formation particularly for tracking an object with a small

apparent size in blurred images.

The frame rates of our algorithm, the vector subspace-

based algorithm, the Riemannian metric-based algorithm,

and the DTA-based algorithm are 10.9, 33.6, 25.6, and 8.6

frames per second, respectively. Our algorithm is faster

than the DTA-based algorithm, but slower than the vector

subspace-based algorithm and the Riemannian metric-based

algorithm.

322 Int J Comput Vis (2011) 91: 303–327

Fig. 13 Tracking during drastic pose changes: Rows 1 and 2 show

the results of our algorithm for the color sequence and the grayscale

sequence respectively; Rows 3, 4, and 5 show, respectively, the results

of the vector subspace-based algorithm, the Riemannian metric-based

algorithm, and the DTA-based algorithm for the grayscale sequence

6.2.3 Example 3

The video for this example is recorded in an outdoor scene

using a mobile camera. It consists of 235 frames. In the

video, a man walks from left to right on a well lit road and

his body pose varies over time. In the middle of the video,

there are drastic motions and pose changes: the man bows

down to reach the ground and then stands back up again.

The motivation of this example is to make a comparison be-

tween our algorithm and the competing algorithms in han-

dling pose variations.

The 8-bit grayscale image sequence and the 24-bit RGB

color image sequence are both considered. The tensor sub-

space dimensions R1,R2 and R3 are empirically assigned

as 8, 8, and 10 respectively. For the vector subspace-based

algorithm, 16 singular vectors are maintained during the

tracking. Six representative frames 145, 150, 166, 182, 192,

and 208 of the tracking results are shown in Fig. 13, where

Rows 1 and 2 show the results of our algorithm for the

color sequence and the grayscale sequence respectively; and

Rows 3, 4, and 5 show, respectively, the results of the vec-

tor subspace-based algorithm, the Riemannian metric-based

algorithm, and the DTA-based algorithm for the grayscale

image sequence. It can be seen that in the color sequence

and in the grayscale sequence, our algorithm tracks the ob-

ject successfully even when there are drastic pose and mo-

tion changes. The results for the color sequence are slightly

more accurate than the results for the grayscale image se-

quence as more information is available in the color se-

quence. However, both the vector subspace-based algorithm

and the DTA-based algorithm lose the track during and af-

ter the drastic pose and motion changes. The results of the

Riemannian metric-based algorithm are very inaccurate in

many frames. For this example, the frame rates of our algo-

rithm, the vector subspace-based algorithm, the Riemannian

metric-based algorithm, and the DTA-based algorithm are

10.8, 34.2, 27.6, and 8.3 frames per second, respectively.

6.2.4 Example 4

The video for this example is recorded from an indoor scene

by a stationary camera. It consists of dark and motion-

blurring grayscale images, and its length is 535 frames. In

this video, a man shakes his head, first takes off and then

wears his glasses, and sometimes uses his hands to occlude

his face. The motivation of this example is to compare the

performance of our algorithm with those of the competing

algorithms in handling partial occlusions.

Int J Comput Vis (2011) 91: 303–327 323

Fig. 14 Tracking a face during partial occlusions in blurred images: Rows 1, 2, 3, and 4 show the results of our algorithm, the vector sub-

space-based algorithm, the Riemannian metric-based algorithm, and the DTA-based algorithm, respectively

In this example, the tensor subspace dimensions R1,R2

and R3 are empirically set to 3, 3, and 5, respectively. For

the vector subspace-based algorithm, 10 singular vectors are

maintained during the tracking. Six representative frames

92, 102, 119, 132, 148, and 174 of the tracking results are

shown in Fig. 14, where rows 1, 2, 3, and 4 correspond to

our algorithm, the vector subspace-based algorithm, the Rie-

mannian metric-based algorithm, and the DTA-based algo-

rithm, respectively. From the figure, we see that our algo-

rithm tracks the face accurately under poor lighting condi-

tions even when the face of the man is occluded seriously by

the hands from time to time. However, the vector subspace-

based algorithm loses track of the face in several frames.

The results of the Riemannian metric-based algorithm are

acceptable, although they are less accurate than the results of

our algorithm. The DTA-based algorithm can complete the

tracking all the time but its results are inaccurate, in particu-

lar when the face is occluded (see Frames 92, 119, and 148).

For this example, the frame rates of our algorithm, the vector

subspace-based algorithm, the Riemannian metric-based al-

gorithm, and the DTA-based algorithm are 11.2, 40.6, 27.7,

and 9.2 frames per second, respectively.

6.2.5 Example 5

This example is widely used for testing face tracking algo-

rithms. The video is available on http://www.cs.toronto.edu/

vis/projects/dudekfaceSequence.html. It is recorded with a

mobile camera, and its length is 573 frames. In this video, a

man who sits in a chair changes his pose and facial expres-

sion over time and from time to time his hand occludes his

face. (There are benchmark points in this example, and the

corresponding quantitative results are shown in Sect. 6.2.6.)

In the experiment, 8-bit grayscale images are used. All

the tensor subspace dimensions are set to 8. The subspace

dimension of the vector subspace-based algorithm is set to

13. Six representative frames 50, 76, 106, 107, 118, and

124 of the tracking results are shown in Fig. 15, where the

first, the second, the third, and the fourth rows correspond

to our algorithm, the vector subspace-based algorithm, the

Riemannian metric-based algorithm, and the DTA-based

algorithm, respectively. It can be seen that our algorithm

tracks the face accurately even during occlusions and pose

changes, while the vector subspace-based algorithm, the

Riemannian metric-based algorithm and the DTA-based al-

gorithm loses the track in many frames. For this example,

the frame rates of our algorithm, the vector subspace-based

http://www.cs.toronto.edu/vis/projects/dudekfaceSequence.html
http://www.cs.toronto.edu/vis/projects/dudekfaceSequence.html

324 Int J Comput Vis (2011) 91: 303–327

Fig. 15 Tracking a face under partial occlusions and pose variations: Rows 1, 2, 3, and 4 show the results of our algorithm, the vector sub-

space-based algorithm, the Riemannian metric-based algorithm, and the DTA-based algorithm respectively

algorithm, the Riemannian metric-based algorithm, and the

DTA-based algorithm are 10.7, 26.7, 24.2, and 9.4 frames

per second, respectively.

6.2.6 Quantitative Comparisons

For Examples 1, 2, 3, and 4, there are no existing bench-

marks, so we provide a quantitative comparison between

our algorithm, the vector subspace-based algorithm, the Rie-

mannian metric-based algorithm, and the DTA-based algo-

rithm by labeling a number of representative frames in each

of these examples. The centers of object locations in the rep-

resentative frames are labeled manually as the ground truth.

Then, we quantitatively evaluate the tracking performances

by computing the mean location deviation which is the av-

erage of the pixel distances between the center of the rec-

tangle which representing the tracking result in each frame

and the corresponding center of the ground truth. The less

the deviation, the higher the localization accuracy. Table 1

lists the mean localization deviations of the tracking results

of our algorithm, the vector subspace-based algorithm, the

Riemannian metric-based algorithm, and the DTA-based al-

gorithm in the representative frames in the four examples.

From the table, it can be seen that the object localization

accuracy of our algorithm is higher than those of the vec-

tor subspace-based algorithm, the Riemannian metric-based

algorithm, and the DTA-based algorithm.

For Example 5, each frame contains seven manually la-

beled benchmark points, which characterize the location and

Table 1 Mean localization deviations of the tracking results

Algorithms Examples

Example 1 Example 2 Example 3 Example 4

Our algorithm 5.1 2.5 3.3 2.5

Vector 31.7 28.7 77.2 28.6

subspace-based

Riemannian – 12.7 19.6 6.5

metric-based

DTA-based 27.3 68.3 79.2 11.3

the shape of the face. These benchmark points are used to

evaluate the accuracy of tracking results. During the track-

ing, the values of the object’s affine motion parameters for

each frame are used to obtain seven validation points corre-

sponding to the seven benchmark points. In each frame, the

deviation which is defined as the average of the pixel dis-

tances between each validation point and its corresponding

benchmark point is used to quantitatively evaluate the track-

ing accuracy in this frame. The quantitative comparison re-

sults are displayed in Fig. 16, where the x-coordinate is the

frame number and the y-coordinate is the tracking deviation.

From the figure, we see that the average pixel distances for

our tracking algorithm are always lower than those for the

vector subspace-based tracking algorithm, the Riemannian

metric-based algorithm, and the DTA-based algorithm: our

algorithm obtains more accurate results than the competing

algorithms.

Int J Comput Vis (2011) 91: 303–327 325

Fig. 16 The quantitative comparison for Example 5: (a) Our algorithm; (b) The vector subspace-based algorithm; (c) The Riemannian met-

ric-based algorithm; (d) The DTA-based algorithm

6.2.7 Analysis of Results

From the aforesaid experimental results, it is shown that our

tracking algorithm is able to robustly track objects through

changes in appearance, such as noise disturbance, image

blurring, objects with small apparent sizes, drastic pose

changes, and occlusions. In the experiments, tracker drift

(Matthews et al. 2004; Grabner et al. 2008), that is small

inaccuracies in localization lead to gradual corruption of the

appearance model and loss of track, did not occur for our al-

gorithm. The reasons for robustness of our algorithm to ap-

pearance change and tracker drift are as follows: 1) Our al-

gorithm can provide accurate tensor subspaces which record

the object or background appearances over time. 2) The ten-

sor representation encodes spatial information as well as the

object appearance variations, and thus makes the appearance

model discriminative. Even if the subspace information on

one mode of the tensor is partially lost or drastically varies,

the cues obtained from the subspace information in the other

modes of the tensor can recover the subspace information on

this mode. As a result, small inaccuracies in the location of

the object do not accumulate.

In contrast to our tracking algorithm, the vector subspace-

based tracking algorithm only considers information in one

mode. If there is a change in the appearance of the object,

the vector subspace-based tracking algorithm is more likely

to lose the track. The tensor subspaces obtained by the DTA-

based algorithm are less accurate than those obtained by our

algorithm. The Riemannian metric-based tracking algorithm

does not directly model the changes of each pixel in ob-

ject appearance over time. These problems make these al-

gorithms less robust to appearance changes and tracker drift

than our algorithm.

7 Conclusion

In this paper, we have developed an incremental tensor sub-

space learning algorithm based on subspace analysis within

a multi-linear framework. The appearance of an object or

a scene and the changes in appearance over time are mod-

eled by incrementally learning a low dimensional tensor

subspace representation which is updated incrementally as

new images arrive. We have applied the proposed incremen-

tal tensor subspace learning algorithm to foreground seg-

mentation and object tracking. Our foreground segmentation

algorithms for grayscale image sequences or color image

sequences capture the intrinsic spatiotemporal characteris-

tics of scenes based on a likelihood function which is con-

structed on the basis of the learned tensor subspace model.

Our tracking algorithm captures the appearance character-

istics of an object during tracking, and uses particle filter-

ing to propagate the sample distributions over time. Exper-

imental results show that our proposed algorithms for fore-

ground segmentation and object tracking are robust to noise

or low quality images, occlusions, lighting changes, scene

blurring, objects with small apparent sizes, and object pose

variations. Consequently, our incremental tensor subspace

learning algorithm performs effectively in modeling appear-

ance changes of objects or scenes in complex scenarios.

Our future work will focus on the following aspects:

• We will use something like a wavelet basis, which rep-

resents the image using coefficients that capture the spa-

tial correlations, and then take wavelet-like features into

the incremental subspace learning algorithm which is then

applied to background modeling and object tracking.

• We will consider the image a 3D tensor (with color cre-

ated the third axis) and do the fourth order tensor decom-

position to deal with changes in color appearance. Cor-

respondingly, incremental subspace learning for 4-order

tensors should be achieved, especially for the applications

to background modeling and object tracking.

Acknowledgements This work is partly supported by NSFC (Grant

No. 60825204, 60935002) and the National 863 High-Tech R&D Pro-

gram of China (Grant No. 2009AA01Z318).

326 Int J Comput Vis (2011) 91: 303–327

Open Access This article is distributed under the terms of the Cre-

ative Commons Attribution Noncommercial License which permits

any noncommercial use, distribution, and reproduction in any medium,

provided the original author(s) and source are credited.

References

Black, M. J., & Jepson, A. D. (1998). EigenTracking: robust matching

and tracking of articulated objects using a view-based representa-

tion. International Journal of Computer Vision, 26(1), 63–84.

Black, M. J., Fleet, D. J., & Yacoob, Y. (1998). A framework for model-

ing appearance change in image sequence. In Proc. of IEEE inter-

national conference on computer vision (pp. 660–667), Jan. 1998.

Chen, D., & Yang, J. (2007). Robust object tracking via online dy-

namic spatial bias appearance models. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 29(12), 2157–2169.

Elgammal, A., Duraiswami, R., Harwood, M., & Davis, L. S. (2002).

Background and foreground modeling using nonparametric ker-

nel density estimation for visual surveillance. Proceedings of the

IEEE, 99(7), 1151–1163.

Gall, J., Rosenhahn, B., & Seidel, H.-P. (2008). Drift-free tracking of

rigid and articulated objects. In Proc. of IEEE conference on com-

puter vision and pattern recognition (pp. 1–8), June 2008.

Golub, G. H., & Van Loan, C. F. (1996). Matrix computations. Balti-

more: Johns Hopkins University Press.

Grabner, H., Leistner, C., & Bischof, H. (2008). Semi-supervised on-

line boosting for robust tracking. In Proc. of European conference

on computer vision (pp. 234–247).

Gu, M., & Eisenstat, S. C. (1993). A stable and fast algorithm

for updating the singular value decomposition. Research report

YALEU/DCS/RR-966, Department of Computer Science, Yale

University, New Haven, June 1993.

Gu, M., & Eisenstat, S. C. (1995). Downdating the singular value de-

composition. SIAM Journal on Matrix Analysis and Applications,

16(3), 793–810.

Hager, G. D., & Belhumeur, P. N. (1996). Real-time tracking of image

regions with changes in geometry and illumination. In Proc. of

IEEE conference on computer vision and pattern recognition (pp.

403–410), June 1996.

Han, B., Zhu, Y., Comaniciu, D., & Davis, L. S. (2009). Visual tracking

by continuous density propagation in sequential bayesian filtering

framework. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31(5), 919–930.

Haritaoglu, I., Harwood, D., & Davis, L. S. (2000). W4: real-time sur-

veillance of people and their activities. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 22(8), 809–830.

He, X., Cai, D., & Niyogi, P. (2005). Tensor subspace analysis. In Proc.

of annual conference on neural information processing systems

Dec. 2005 Cambridge: MIT Press.

Ho, J., Lee, K., Yang, M., & Kriegman, D. (2004). Visual tracking

using learned linear subspaces. In Proc. of IEEE conference on

computer vision and pattern recognition (vol. 1, pp. 782–789).

Isard, M., & Blake, A. (1996). Contour tracking by stochastic propa-

gation of conditional density. In Proc. of European conference on

computer vision (vol. 2, pp. 343–356).

Jacques, J. C. S. Jr., Jung, C. R., & Musse, S. R. (2006). A background

subtraction model adapted to illumination changes. In Proc. of

IEEE international conference on image processing (pp. 1817–

1820), Oct. 2006.

Jepson, A. D., Fleet, D. J., & El-Maraghi, T. F. (2003). Robust online

appearance models for visual tracking. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 25(10), 1296–1311.

Kwon, J., & Lee, K. M. (2009). Tracking of a non-rigid object via

patch-based dynamic appearance modeling and adaptive basin

hopping Monte Carlo sampling. In Proc. of IEEE conference on

computer vision and pattern recognition workshops (pp. 1208–

1215), June 2009.

Lathauwer, L. D., Moor, B. D., & Vandewalle, J. (2000). On the best

Rank-1 and Rank-(R1,R2, . . . ,Rn) approximation of higher-

order tensors. SIAM Journal of Matrix Analysis and Applications,

21(4), 1324–1342.

Lee, K., & Kriegman, D. (2005). Online learning of probabilistic ap-

pearance manifolds for video-based recognition and tracking. In

Proc. of IEEE conference on computer vision and pattern recog-

nition (vol. 1, pp. 852–859).

Levy, A., & Lindenbaum, M. (2000). Sequential Karhunen-Loeve basis

extraction and its application to images. IEEE Transactions on

Image Processing, 9, 1371–1374.

Li, Y. (2004). On incremental and robust subspace learning. Pattern

Recognition, 37(7), 1509–1518.

Li, J., Zhou, S. K., & Chellappa, R. (2005). Appearance modeling un-

der geometric context. In Proc. of IEEE international conference

on computer vision (vol. 2, pp. 1252–1259).

Li, X., Hu, W. M., Zhang, Z. F., Zhang, X. Q., & Luo, G. (2007). Ro-

bust visual tracking based on incremental tensor subspace learn-

ing. In Proc. of IEEE international conference on computer vision

(pp. 1–8), Oct. 2007.

Lim, H., Morariu, V. I., Camps, O. I., & Sznaier, M. (2006). Dynamic

appearance modeling for human tracking. In Proc. of IEEE con-

ference on computer vision and pattern recognition (vol. 1, pp.

751–757).

Mahadevan, V., & Vasconcelos, N. (2009). Saliency-based discrimi-

nant tracking. In Proc. of IEEE conference on computer vision

and pattern recognition workshops (pp. 1007–1013), June 2009.

Matthews, I., Ishikawa, T., & Baker, S. (2004). The template update

problem. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 26(4), 810–815.

Nickel, K., & Stiefelhagen, R. (2008). Dynamic integration of general-

ized cues for person tracking. In Proc. of European conference on

computer vision, Part IV. Lecture notes in computer science (vol.

5305, pp. 514–526), Oct. 2008.

Nummiaroa, K., Koller-Meierb, E., & Gool, I. V. (2003). An adaptive

color-based particle filter. Image and Vision Computing, 21(1),

99–110.

Papadimitriou, S., Sun, J., & Faloutsos, C. (2005). Streaming pattern

discovery in multiple timeseries. In Proc. of international confer-

ence on very large data bases (pp. 697–708).

Patwardhan, K., Morellas, V., & Sapiro, G. (2008). Robust foreground

detection in video using pixel layers. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 30(4), 746–751.

Perez, P., Hue, C., Vermaak, J., & Gangnet, M. (2002). Color-based

probabilistic tracking. In Proc. of European conference on com-

puter vision, Part I. Lecture notes in computer science (vol. 2350,

pp. 661–675).

Porikli, F., Tuzel, O., & Meer, P. (2006). Covariance tracking using

model update based on Lie algebra. In Proc. of IEEE conference

on computer vision and pattern recognition (vol. 1, pp. 728–735).

Ramanan, D., Forsyth, D. A., & Zisserman, A. (2007). Tracking peo-

ple by learning their appearance. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 29(1), 65–81.

Ross, D. A., Lim, J., Lin, R.-S., & Yang, M.-H. (2008). Incremental

learning for robust visual tracking. International Journal of Com-

puter Vision, 77(2), 125–141.

Sheikh, Y., & Shah, M. (2005). Bayesian object detection in dynamic

scenes. In Proc. of IEEE conference on computer vision and pat-

tern recognition (vol. 1, pp. 74–79).

Skocaj, D., & Leonardis, A. (2003). Weighted and robust incremental

method for subspace learning. In Proc. of IEEE international con-

ference on computer vision (vol. 2, pp. 1494–1501), Oct. 2003.

Int J Comput Vis (2011) 91: 303–327 327

Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mix-

ture models for real-time tracking. In Proc. of IEEE conference on

computer vision and pattern recognition (vol. 2, pp. 246–252).

Sun, J., Tao, D., & Faloutsos, C. (2006a). Beyond streams and graphs:

dynamic tensor analysis. In Proc. of ACM SIGKDD international

conference on knowledge discovery and data mining (pp. 374–

383), Aug. 2006.

Sun, J., Papadimitriou, S., & Yu, P. S. (2006b). Window-based tensor

analysis on high-dimensional and multi-aspect streams. In Proc.

of international conference on data mining (pp. 1076–1080), Dec.

2006.

Sun, J., Tao, D., Papadimitriou, S., Yu, P. S., & Faloutsos, C. (2008).

Incremental tensor analysis: theory and applications. ACM Trans-

actions on Knowledge Discovery from Data, 2(3), 1–37.

Tian, Y., Lu, M., & Hampapur, A. (2005). Robust and efficient fore-

ground analysis for real-time video surveillance. In Proc. of IEEE

conference on computer vision and pattern recognition (vol. 1, pp.

1182–1187).

Vasilescu, M. A. O., & Terzopoulos, D. (2002). Multilinear subspace

analysis of image ensembles: TensorFaces. In Proc. of European

conference on computer vision (pp. 447–460), May 2002.

Vasilescu, M. A. O., & Terzopoulos, D. (2003). Multilinear subspace

analysis of image ensembles. In Proc. of IEEE conference on

computer vision and pattern recognition (vol. 2, pp. 93–99), June

2003.

Wang, H., & Ahuja, N. (2005). Rank-R approximation of tensors using

image-as-matrix representation. In Proc. of IEEE conference on

computer vision and pattern recognition (vol. 2, pp. 346–353).

Wang, H., & Ahuja, N. (2008). A tensor approximation approach to

dimensionality reduction. International Journal of Computer Vi-

sion, 76(3), 217–229.

Wang, Y., Tan, T., Loe, K. F., & Wu, J. K. (2005). A probabilistic ap-

proach for foreground and shadow segmentation in monocular im-

age sequences. Pattern Recognition, 38(11), 1937–1946.

Wang, Y., Loe, K., & Wu, J. (2006). A dynamic conditional ran-

dom field model for foreground and shadow segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

28(2), 279–289.

Wang, H., Yan, S., Huang, T., & Tang, X. (2007). A convergent so-

lution to tensor subspace learning. In Proc. of international joint

conference on artificial intelligence (pp. 629–634).

Wong, S., Wong, K. K., & Cipolla, R. (2006). Robust appearance-based

tracking using a sparse bayesian classifier. In Proc. of interna-

tional conference on pattern recognition (vol. 3, pp. 47–50).

Wu, Y., & Huang, T. S. (2004). Robust visual tracking by integrating

multiple cues based on co-inference learning. International Jour-

nal of Computer Vision, 58(1), 55–71.

Yan, S., Xu, D., Yang, Q., Zhang, L., Tang, X., & Zhang, H. (2005).

Discriminant analysis with tensor representation. In Proc. of IEEE

conference on computer vision and pattern recognition (vol. 1, pp.

526–532), June 2005.

Yan, S., Shan, S., Chen, X., Gao, W., & Chen, J. (2007). Matrix-

structural learning (MSL) of cascaded classifier from enormous

training set. In Proc. of IEEE conference on computer vision and

pattern recognition (pp. 1–7), June 2007.

Yang, J., Zhang, D., Frangi, A. F., & Yang, J. (2004). Two-dimensional

PCA a new approach to appearance-based face representation and

recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26(1), 131–137.

Yang, C., Duraiswami, R., & Davis, L. S. (2005). Efficient mean-shift

tracking via a new similarity measure. In Proc. of IEEE confer-

ence on computer vision and pattern recognition (vol. 1, pp. 176–

183), June 2005.

Yang, M., Fan, Z., Fan, J., & Wu, Y. (2009). Tracking nonstationary

visual appearances by data-driven adaptation. IEEE Transactions

on Image Processing, 18(7), 1633–1644.

Ye, J. (2005). Generalized low rank approximations of matrices. Ma-

chine Learning, 61(1–3), 167–191.

Ye, J., Janardan, R., & Li, Q. (2004a). Two-dimensional linear discrim-

inant nalysis. In Proc. of neural information processing systems

conference (pp. 1569–1576). Cambridge: MIT Press.

Ye, J., Janardan, R., & Li, Q. (2004b). GPCA: an efficient dimension

reduction scheme for image compression and retrieval. In Proc. of

ACM SIGKDD international conference on knowledge discovery

and data mining (pp. 354–363), Aug. 2004.

Yu, T., & Wu, Y. (2006). Differential tracking based on spatial-

appearance model (SAM). In Proc. of IEEE conference on com-

puter vision and pattern recognition (vol. 1, pp. 720–727), June

2006.

Zhou, S. K., Chellappa, R., & Moghaddam, B. (2004). Visual track-

ing and recognition using appearance-adaptive models in particle

filters. IEEE Transactions on Image Processing, 13(11), 1491–

1506.

Zhou, X., Hu, W. M., Chen, Y., & Hu, W. (2007). Markov random

field modeled level sets method for object tracking with moving

cameras. In Proc. of Asian conference on computer vision, Part I

(pp. 832–842).

	Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking
	Abstract
	Introduction
	Related Work
	Foreground Segmentation
	Visual Object Tracking

	Incremental Tensor Subspace Learning
	Tensor Algebra
	Tensor Decomposition
	Incremental Rank-(R1,R2,R3) Tensor Subspace Learning
	Incremental SVD
	Unfolding an Extended 3-Order Tensor
	Incremental Learning for Unfolding Matrices
	Incremental SVD for 3-Order Tensors
	Likelihood Evaluation
	Theoretical Comparison
	Remarks

	Foreground Segmentation
	Grayscale Background Model
	Color Background Model

	Visual Tracking
	Object Appearance Tensor Subspace Model
	Bayesian Inference for Tracking

	Experiments
	Foreground Segmentation
	Example 1
	Example 2
	Example 3
	Example 4
	Analysis of Results

	Tracking
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Quantitative Comparisons
	Analysis of Results

	Conclusion
	Acknowledgements
	Open Access
	References

