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Incremental Topological Flipping Works
for Regular Triangulations1

H. Edelsbrunner2 and N. R. Shah2

Abstract. A set ofn weighted points in general position inRd defines a unique regular triangulation. This
paper proves that if the points are added one by one, then flipping in a topological order will succeed in
constructing this triangulation. If, in addition, the points are added in a random sequence and the history of the
flips is used for locating the next point, then the algorithm takes expected time at mostO(n logn+ndd/2e). Under
the assumption that the points and weights are independently and identically distributed, the expected running
time is between proportional to and a factor logn more than the expected size of the regular triangulation. The
expectation is over choosing the points and over independent coin-flips performed by the algorithm.
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1. Introduction. Delaunay triangulations, and their dual Voronoi diagrams, play an
important role in a variety of different disciplines of science (see, e.g., the survey of
Aurenhammer [2]). The computational aspects of Delaunay triangulations have been
studied in the area of geometric algorithms [10], [23], and a number of different al-
gorithms have been proposed. This paper considers the class of regular triangulations
which includes the Delaunay triangulations [21]. A finite point set inRd defines a unique
Delaunay triangulation, but there are many regular triangulations of the set. A unique
regular triangulation is implied if each point is assigned a real number as its weight. If
all weights are the same, then the regular triangulation is the Delaunay triangulation of
the set.

Several algorithms proposed for Delaunay triangulations are based on the notion of
a local transformation, henceforth referred to as a flip. Historically, the first such algo-
rithm is due to Lawson [18], see also [19]. Given a finite point set in the real plane,
R2, the algorithm first constructs an arbitrary triangulation of the set. This triangulation
is then gradually altered through a sequence of edge-flips until the Delaunay triangula-
tion is obtained. The generalization of this method toR3 has difficulties, and Joe [16]
demonstrates that it is indeed incorrect if the flips are applied to an arbitrary initial tri-
angulation. In a different paper, Joe [17] shows that if a single point,p, is added to the
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Delaunay triangulation of a setS in R3, then at least one sequence of flips will succeed
in constructing the Delaunay triangulation ofS∪ {p}. This can be used as the basis
of an incremental algorithm. Rajan [25] considers Delaunay triangulations in arbitrary
dimensions,Rd, and argues that a single point can always be added by a sequence of
flips. However, he needs a priority queue to find the appropriate sequence, which takes
logarithmic time per flip. On a different front, Guibas et al. [15] study the complexity of
the incremental algorithm inR2 when the points are added in a random sequence. While
2(n2) edge-flips are required in the worst case, they prove that under a random insertion
sequence the expected number of flips is onlyO(n). They also provide an elegant, and
in the expected sense efficient, technique for locating the triangle that contains the point
to be added. This step has been a sore point of all prior incremental methods.

This paper unifies and extends the algorithmic results of Joe [17], Rajan [25], and
Guibaset al. [15]. In particular, we show that there is a sequence of flips that can be
used to add a single point to a regular triangulation inRd. This eliminates the need for a
priority queue [25] that sorts the flips. The priority queue is replaced by a stack used to
generate a topological ordering of the flips in constant amortized time per flip. We use
this result to generalize the incremental method of [15] to regular triangulations and to
arbitrary dimensionsRd. The resulting algorithm is similar to but not the same as the
ones in [3], [6], [22]. Without any assumptions on the point distribution, the resulting
algorithm runs in expected timeO(n logn+ndd/2e). The expectation is over all possible
outcomes of coin-flips performed by the algorithm. The size of the regular triangulations
varies widely depending on the distribution of the points and weights. Assume that
the weighted points are independently and identically distributed, so that the expected
number of simplices in the regular triangulation isf (n). Then the expected running
time of our algorithm isO(

∑n
i=1 f (n/i )). For example, if the points are chosen from

the uniform distribution over [0, 1]d and all weights are zero, thenf (n) = 2(n) and the
expected running time isO(n logn). For distributions withf (n) = 2(n1+ε), ε > 0, we
have

∑n
i=1 f (n/i ) = O( f (n)), so the expected running time is as good as it can be.

Outline. Section 2 defines regular triangulations and introduces related terminology.
Section 3 explains the relationship between regular triangulations inRd and convex hulls
in Rd+1. This relationship provides a sometimes helpful alternative view of all concepts
and techniques discussed in this paper, see also [8]. Section 4 discusses the anatomy of
flipping inRd. A counterexample to a nonincremental method that attempts to construct
regular triangulations inR2 by flipping is presented in Section 5. A minimalist data
structure for storing triangulations is described in Section 6. The incremental algorithm
is given in Section 7, and its correctness is proved in Section 8. The analysis of the
algorithm given in Section 9 follows the example of [6].

2. Regular Triangulations

Triangulations. We begin by defining the notion of a triangulation used in this paper.
For 0 ≤ k ≤ d, the convex hull of a setT of k + 1 affinely independent points is a
k-simplex, denoted byσT . The simplicesσU , U ⊆ T , are thefacesof σT . A collection
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of simplices,K, is asimplicial complexif:

(i) The faces of every simplex inK are also inK.
(ii) If σT , σT ′ ∈ K, thenσT ∩ σT ′ = σT∩T ′ .

Condition (ii) implies that the intersection of any two simplices in the complex is a
possible empty face of both; condition (i) implies that it also belongs to the complex.
Theunderlying spaceofK is the pointwise union of its simplices. LetSbe a finite point
set inRd. Usually, a triangulation ofS is defined as a simplicial complex so thatS is the
set of 0-simplices (vertices) and the underlying space of the complex is the convex hull
of S. It is convenient to relax the first condition: a simplicial complexK is atriangulation
of S if:

(i) Each vertex ofK is a point inS.
(ii) The underlying space ofK is conv(S).

Notice that the second condition implies that all extreme points ofSare vertices of every
triangulation ofS.

Power Distance and Power Diagrams. Again, letSbe a finite set of points inRd, and
assign a real valued weightwp to each pointp ∈ S. For eachp, defineπp: Rd → R so
that

πp(x) = |xp|2− wp,

where |xp| is the Euclidean distance between pointsx = (x1, x2, . . . , xd) and p =
(p1, p2, . . . , pd). πp(x) is usually referred to as thepower distanceof x from p. It is
easy to see that for pointsp,q ∈ S, the locus of pointsx ∈ Rd with πp(x) = πq(x) is
the hyperplane

χp,q: 2
d∑

i=1

xi (qi − pi )+
d∑

i=1

(p2
i − q2

i )− wp + wq = 0.

We callχp,q thechordaleof the weighted pointsp andq.
Sometimes it is convenient to interpret a pointp with weightwp as a sphere(p,

√
wp)

with centerp and radius
√
wp. If wp ≥ 0 andx lies outside the sphere thus defined, then

πp(x) is the square of the length of a tangent line segment fromx to the sphere.πp(x)
is also called the power ofx with respect to the sphere(p,

√
wp). If wp is negative, then

the sphere has an imaginary radius.
Let Hp,q denote the half-space of pointsx ∈ Rd for whichπp(x) ≤ πq(x). For each

p ∈ S, define itspower cellas

Pp =
⋂

q∈S−{p}
Hp,q.

Observe thatPp is a possibly empty convex polyhedron, the intersection of the interiors
of any two distinct power cells is empty, and the union of all power cellsPp, p ∈ S,
coversRd. The collection of power cells defines thepower diagramP(S) of S, see,
e.g., [1].
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Orthogonal Centers. For the remainder of the paper, we assume that the weighted
points ofSare in general position. This involves no loss of generality since we can use
the method in [13] to simulate this assumption computationally. General position, in this
context, means that for everyd + 1 weighted points inS, there is a unique unweighted
point x ∈ Rd with the same power distance from alld + 1 points, and for everyd + 2
weighted points ofS, there is no such point. Two weighted pointsp andz are said to be
orthogonalif

|pz|2 = wp + wz,

that is, when the spheres(p,
√
wp) and(z,

√
wz) are orthogonal. Note that this is equiv-

alent toπp(z) = wz andπz(p) = wp. A subsetT of d+1 (weighted) points ofSdefines
a uniqued-simplexσ = σT = conv(T). There is a unique weighted pointz = zσ that
is orthogonal to all weighted pointsp ∈ T . We call z the orthogonal centerof σ . If
the weights of allp ∈ T are zero, then the sphere with centerz and radius

√
wz is the

circumsphere ofσ .

Local and Global Regularity. Observe thatπz(p) = wp for all p ∈ T . Callσ (globally)
regular if πz(q) > wq for all q ∈ S− T . Clearly, if σ is regular, thenz is a vertex of
P(S), the power diagram ofS. The regulard-simplices, together with their faces, define
a simplicial complex known as theregular triangulationof S, denoted byR(S). At this
point, it is not clear thatR(S) is a simplicial complex; this is shown in Section 3. There
is a close relationship between the regular triangulation and the power diagram ofS.
Indeed,R(S) is a geometric realization of the nerve of the set of power cells, that is,
σT ∈ R(S) iff

⋂
p∈T Pp 6= ∅. If the weights of all points inSare zero, thenP(S)=V(S),

the Voronoi diagram ofS [28], andR(S) = D(S), the Delaunay triangulation ofS [7].
It is possible that the power cell of a pointp ∈ S is empty. In this casep is not a

vertex ofR(S) and we refer top as aredundantpoint. In general, the vertex set ofR(S)
is a subset ofS, namely the set of nonredundant points ofS. If p is a vertex of conv(S),
then Pp 6= ∅, so p is necessarily nonredundant. This implies that the underlying space
ofR(S) is indeed the convex hull ofS, as required by our definition of a triangulation.

Consider an arbitrary triangulationT of S. Let σ = σU be a(d − 1)-simplex ofT
incident tod-simplicesσ ′ = σU∪{a} andσ ′′ = σU∪{b}. Let z′ = zσ ′ be the orthogonal
center ofσ ′. Thenσ is said to belocally regular in T if wb < πz′(b); otherwise, it
is locally nonregular. Notice that ifσ is locally regular inT , then this does not imply
that it belongs toR(S). Still, we have the following lemma which is an extension of a
lemma for Delaunay triangulations proved in [7]. This lemma can also be obtained as a
straightforward corollary to Lemma 3.1.

LEMMA 2.1. If the vertex set ofT contains all nonredundant points of S and all(d−1)-
simplices ofT are locally regular, thenT = R(S).

The Power Increases. The proof of Lemma 2.1 can be based on a property of regular
triangulations expressed in Lemma 2.2 below. Letσ ′ andσ ′′ be twod-simplices of a
regular triangulation that share a common(d − 1)-simplexσ = σ ′ ∩ σ ′′. Let z′ = zσ ′
andz′′ = zσ ′′ be their orthogonal centers. For every vertexv of σ ,πz′(v) = πz′′(v) = wv.
Hence the chordaleχz′,z′′ is the hyperplane that containsσ . So if p is a point on the same
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side ofχz′,z′′ asσ ′, thenπz′(p) < πz′′(p). This implies the following lemma which is
important in Section 8 when we prove the correctness of the algorithm in Section 7. The
lemma can also be found in [11].

LEMMA 2.2. Consider a half-line emanating from a point p, letσ1, σ2, . . . , σk+1 be the
d-simplices of a regular triangulation that intersect the half-line in this sequence, and
define zi = zσi . Thenπzi (p) < πzi+1(p), for 1≤ i ≤ k.

3. Lifting Regular Triangulations. This section reviews the relationship between
regular triangulations inRd and convex hulls inRd+1. For a pointp = (p1, p2, . . . , pd) ∈
Rd with weightwp ∈ R, define itslifted point

p+ = (p1, p2, . . . , pd, pd+1) ∈ Rd+1,

wherepd+1 =
∑d

i=1 p2
i −wp. For a setS⊆ Rd, defineS+ = {p+ | p ∈ S}. Let(g, g−1)

be a pair of functions defining apolar map, whereg maps a nonvertical hyperplaneh:
xd+1 = 2

∑d
i=1 ai xi + ad+1 in Rd+1 to the point

g(h) = (a1,a2, . . . ,ad,−ad+1) ∈ Rd+1,

andg−1 maps a pointp ∈ Rd+1 to the hyperplaneg−1(p) so thatg(g−1(p)) = p.
Lemma 3.1 below expresses the close relationship between regular triangulations in

Rd and convex hulls inRd+1. It is based on the embedding ofRd as thed-dimensional
subspacexd+1 = 0 in Rd+1. A facet of a convex polytope inRd+1 is a lower facetif
the hyperplane that contains it is nonvertical and the polytope lies vertically above this
hyperplane. By this we mean that the point(0, . . . ,0,+∞) and the polytope lie on the
same side of the hyperplane.

The lemma follows from the following fact, which is easily checked algebraically.
Consider two weighted pointsp andz in Rd, and leth be the hyperplaneg−1(z+). It is
nonvertical by definition and can thus be viewed as a function fromRd to R. Let h(p)
be its function value atp ∈ Rd and recall thatpd+1 =

∑d
i=1 p2

i − wp is the(d + 1)st
coordinate ofp+. Then

πz(p)− wp = pd+1− h(p).

This implies thatwp > πz(p) iff p+ lies vertically belowh, wp = πz(p) iff p+ ∈ h,
andwp < πz(p) iff p+ lies vertically aboveh.

LEMMA 3.1. Let S be a finite set of weighted points inRd. The vertical projection of
the lower facets ofconv(S+) intoRd gives the d-simplices ofR(S).

We can now reinterpret Lemmas 2.1 and 2.2 in the light of Lemma 3.1. A locally
regular(d − 1)-simplex of a triangulation corresponds to a locally convex ridge (that
is, (d − 1)-face) of the polytope whose lower facets project to thed-simplices of the
triangulation. Redundant points inRd correspond to lifted points that are not vertices
of lower facets, and the problem of constructing a regular triangulation becomes one of
constructing a convex hull. Indeed, there are similarities between the work in this paper
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and earlier work on convex hull algorithms. Noteworthy examples are the algorithms
of [6], [27]. In the second paper, Seidel discusses a convex hull algorithm based on
the notion of a line-shelling of its faces, see [4]. Computing the line-shelling is closely
related to computing the ordering of the flips for Delaunay triangulations mentioned
in [25]. The result of this paper can also be interpreted as finding a “topological line-
shelling.”

4. Flipping in d Dimensions

Definition and Classification of Flips. Consider a setT of d+2 points inRd. According
to Lawson [20], there are exactly two ways to triangulateT . Indeed, the two ways
correspond to the two sides (lower and upper) of the(d+ 1)-simplex that is the convex
hull of the corresponding lifted points inRd+1. Because of Radon’s theorem (Theorem 4.1
below) and because the(d+1)-simplex exhausts alld+2d-simplices as facets, there can
be no other triangulation ofT . A flip is the operation that substitutes one triangulation
of T for the other.

In R2 we distinguish two cases depending on whether the tetrahedron of the lifted
points inR3 projects to a triangle or a quadrilateral, see Figure 4.1. A 4-simplex inR4

projects to a single or a double tetrahedron (the convex hull of four or five points) inR3.
Flips inR3 are classified accordingly, see Figure 4.2.

Given d + 2 weighted points inRd, one of the two triangulations is the regular
triangulation of the points, the other is not regular. In the construction ofR(S), flips are
applied in this directional sense, substituting the regular triangulation ofd+2 points for
the nonregular one.

Flippability. Letσ = σU be a(d−1)-simplex of an arbitrary triangulationT of S, and
let σ ′ = σU∪{a} andσ ′′ = σU∪{b} be the two incidentd-simplices, assuming they exist.
The induced subcomplexof T = U ∪ {a, b} consists of all simplices inT spanned by

Fig. 4.1.There are three types of flips inR2, and we denote a flip by the number of triangles before and after
the flip. So the flips are of type “1 to 3,” “2 to 2,” and “3 to 1.” The first type introduces a new point, and the
last type removes a point. The last type of flip is not needed for Delaunay triangulations because no point is
redundant, and so no point has to be removed from the triangulation.
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Fig. 4.2.The flips inR3 can be classified as “4 to 1,” “3 to 2,” “2 to 3,” and “1 to 4.”

points inT . Clearly,σ , σ ′, andσ ′′ belong to the induced subcomplex ofT . We callT
(andσ ) flippableif conv(T) is the underlying space of the induced subcomplex ofT .

Assume that ifσ is given, thenσ ′ andσ ′′, and thereforeT , can be computed in
constant time. This requires thatd be a constant. Consider thed (d− 2)-simplices ofσ .
Call such a(d − 2)-simplexconvexif there is a hyperplane that contains it andσ ′ and
σ ′′ lie on the same side of this hyperplane; otherwise, call the(d − 2)-simplexreflex.
The underlying space of the induced subcomplex ofT is equal to conv(T) iff all reflex
(d − 2)-simplices ofσ have degree 3 in the induced subcomplex ofT , that is, each is
incident to exactly three(d − 2)-simplices of the induced subcomplex ofT . Thus the
σV of σ are incident to threed-simplicesσ ′, σ ′′, andσV∪{a,b} which fill the reflex wedge
atσV . Thus, givenσ , it is possible to test in constant time whether or not it is flippable.
Recall, however, that our algorithm would attempt to flipσ only if it is flippableand it
is locally nonregular.

A Convex Geometry Theorem. The above discussion is closely related to a classical
result in convex geometry known as Radon’s theorem [24]:

THEOREM4.1. Let T be a set of d+2 points inRd. Then a partition T= U ∪̇V exists
so thatconv(U ) ∩ conv(V) 6= ∅.

Every subset ofd+1 points ofT either containsU as a subset, orV , but not both. In
the former case thed-simplex spanned by the subset belongs to the triangulation ofT
that contains conv(U ) as a simplex. In the latter case it belongs to the other triangulation
that contains conv(V).

Assume that|U | ≤ |V |. Then |U | ≤ (d + 2)/2 andσU is a k-simplex withk =
|U |−1≤ d/2. WhenT is flipped thenσU can only belong to one of the two triangulations
of T , the one before or the one after the flip. This implies that, for every flip inRd, there
is at least one simplex of dimension at mostd/2 that is removed or introduced by the flip.
This observation will be useful in Section 9 where we analyze the algorithm of Section 7.
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Fig. 5.1.The weights of the six points are chosen so that the solid edges are locally regular while the dotted
edges are not. This is achieved if the lifted points of the three boundary vertices lie in a horizontal planeh and
the lifted points of the other three vertices lie in a horizontal planeh′ aboveh.

5. Counterexample to Nonincremental Flipping. As mentioned in the Introduction,
Lawson’s algorithm constructs Delaunay triangulations inR2 by flips that are applied to
an initial triangulation. More specifically, the algorithm starts with an arbitrary triangu-
lation of the point set and performs a sequence of “2 to 2” flips until the triangulation is
the Delaunay triangulation. Joe [16] demonstrates that the generalization of this strategy
toR3 does not always correctly compute the Delaunay triangulation. The reason is that
there can be locally nonregular triangles that are not flippable. Such triangles can also
appear when flips are applied after adding a single point to a Delaunay or regular trian-
gulation (Section 7). However, in contrast to the nonincremental method, we can show
that in the incremental case there is always some flip that can be applied (Section 8).

The purpose of this section is to show that in two dimensions the nonincremental
method no longer works if instead of Delaunay triangulations we construct regular trian-
gulations. Consider the example shown in Figure 5.1. The two-dimensional triangulation
is a view of the inside of the so-called Sch¨onhardt polytope inR3 [26]. This polytope
is nonconvex and the smallest example of a polytope that cannot be decomposed into
tetrahedra unless points other than its vertices are used as vertices. In the triangulation
of Figure 5.1 all flippable edges are locally regular and all locally nonregular edges are
nonflippable. Furthermore, all vertices have degree 4. Even though the triangulation is
not the regular triangulation of the six weighted points, there is no flip that can change a
locally nonregular configuration to a regular one. An iterative improvement by flipping
is thus not possible.

6. A Minimalist Data Structure. In order to be reasonably specific when we discuss
the algorithm in Section 7, we need to say a few words about how we store a triangulation
in Rd. This section describes a data structure that represents a triangulation by storing
its d-simplices and their adjacencies. We make an effort to keep the data structure as
simple as possible. It is specified in PASCAL-like formalism.

type coordinate = integer;
vertex = array [1..d + 1] of coordinate;
vertexindex = 1..n;
simplex = record vertices:array [1..d + 1] of vertexindex;

neighbors:array [1..d + 1] of ↑ simplex
end.
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The weighted input points are stored in an array whose elements are of typevertex. A
d-simplexσ is represented by a record of typesimplexso thatσ .vertices [ ] gives the
indices of its vertices.σ .neighbors[i ] points to thed-simplex that shares all vertices
except forσ .vertices[i ]. Simplices of dimensionk < d are implicit in the data structure.

Let σ ′ = σU∪{a} andσ ′′ = σU∪{b} be twod-simplices incident to a(d − 1)-simplex
σ = σU . In order to decide whether or notσ is locally regular, we need to test whether
wb is smaller or larger thanπz′(b), wherez′ = zσ ′ . This is the same as deciding whether
the pointb+ ∈ Rd+1 lies above or below the hyperplaneg−1(z′+). This is the unique
hyperplane that contains the lifted vertices ofσ ′ (see Section 3). Such a test is described
in [13]. σ is flippable iff all its reflex(d − 2)-simplices have degree 3. LetσV be a
(d− 2)-simplex ofσ , and let{c} = U − V . σV is reflex iff b andc lie on different sides
of the hyperplane throughV ∪ {a}. AssumingσV is reflex, it has degree 3 iffσT , with
T = V ∪ {a, b}, is ad-simplex of the triangulation.σT , if present, is incident to the
(d−1)-simplicesσV∪{a} andσV∪{b}. We conclude that with the above data structure, the
local regularity and flippability ofσ can be tested in constant time. Similarly, a flip can
be carried out in constant time because the total number ofd-simplices involved, the
ones deleted and the ones added, is onlyd + 2.

7. The Algorithm. The algorithm constructs the regular triangulation of a given set
S= {p1, p2, . . . , pn} of weighted points incrementally, that is, points are added one at
a time. It is convenient first to construct an artificiald-simplex,σS0 = conv(S0), with
S0 = {p−d, . . . , p0}, so thatS is contained in it. We should also require that everyd-
simplex ofR(S) is also ad-simplex of the regular triangulation ofS∪ S0. Thed + 1
artificial points can be convieniently chosen at infinity. For example, setwpi = 0, and

pi j =


0 if −i > j,

+ζ if −i = j,

−ζ if −i < j,

wherepi j denotes thej th coordinate ofpi , for−d ≤ i ≤ 0. The symbol “ζ ” is a place-
holder for a large enough number, and this is the easiest way to think of the artificial
points and their effect on the computations. The particular choice of points guarantees
thatR(S) is a subcomplex ofR(S0 ∪ S). In fact,R(S) consists of all simplices of
R(S0 ∪ S) that are not incident to any point ofS0.

Global Algorithm. DefineSi = {p−d, p−d+1, . . . , pi }. We proceed as follows. Given
R(Si−1), let σ = σT be thed-simplex that containspi . If, even after addingpi , σ is
still regular, thenR(Si ) = R(Si−1). Otherwise, flipT ∪ {pi }. This is a flip of type “1 to
d + 1.” Continue flipping locally nonregular(d − 1)-simplices until none remain. The
resulting triangulation isR(Si ).

We need some more terminology. A(d−1)-simplexσU of a triangulation belongs to
thelink of vertexpi if σU∪{pi } is ad-simplex of the triangulation. The(d−1)-simplices of
the link of pi are calledlink facets. In the algorithm given below only locally nonregular
link facets are flipped.



232 H. Edelsbrunner and N. R. Shah

1 ConstructR(S0) = σS0;
2 for i := 1 to n do
3 locate thed-simplexσT inR(Si−1) that containspi ;
4 if R(T ∪ {pi }) 6= σT then
5 flip T ∪ {pi };
6 while there are locally nonregular link facetsdo
7 find a locally nonregular link facetσ that is flippable;
8 flip σ
9 endwhile

10 endif
11 endfor.

In Section 8 we argue that it is indeed sufficient to restrict our attention to link facets
when we search for a remaining nonregular(d − 1)-simplex in step 7. The details of
thewhile loop (steps 6–9) and the point-location operation (step 3) are explained below.
As we will see, the implementation of steps 3 and 4 is slightly different than indicated
above, that is, sometimespi is discarded even beforeσT is found.

Finding and Flipping Link Facets. We now describe a way to implement steps 6 and 7
efficiently. A stack of link facets is maintained. Each time a link facetσ is flipped, all new
link facets are pushed onto the stack. The search for a link facet that is locally nonregular
and also flippable begins at the top of the stack. If the topmost link facet is not flippable
or it is locally regular or it is not part of the current triangulation, then it is simply popped
from the stack. In the first case it could be that this link facet becomes flippable later as
the result of some changes in its neighborhood. If this happens, then a neighboring link
facet will be added whose flip implies the flip of the popped link facet. Consider the case
where the link facetσ is no longer in the current triangulation.σ is stored in the stack
as a pair of pointers to the twod-simplices incident to it. Bothd-simplices are no longer
part of the current triangulation. To handle this case, thed-simplices removed by flips
are marked. If the twod-simplices incident to a link facet are marked, it is discarded. In
fact, thed-simplices destroyed by flips are maintained in a structure called thehistory
dag, see below. Each flip adds at mostd facets to the stack. This implies that the total
time required by thewhile loop is proportional to the number of flips performed.

Point Location. The method we use to implement step 3 is a generalization of the two-
dimensional technique of [15]. The history of performed flips is used as an aid in the
search. More specifically, as points are added and flips are carried out, we maintain the
collection of discardedd-simplices in a directed acyclic graph, called thehistory dag.

The history dag has a unique root, which is thed-simplexσS0. At any moment, the
d-simplices of the current triangulation are the sinks of the dag. Recall that a flip replaces
somek d-simplices of the current triangulation with some otherd+ 2− k d-simplices.
Before the flip, thek d-simplices are sinks of the dag. Performing the flip means adding
thed+ 2− k newd-simplices as successors to thek old d-simplices. Thus, thek sinks
become inner nodes, andd + 2− k new sinks are added to the dag.

The search with a pointpi proceeds as follows. Starting at the root of the history dag,
we follow the path ofd-simplices that containpi . Before proceeding from ad-simplex
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σT to the next one, we check whetherwpi < πz(pi ), wherez = zσT . If it is, then the
search terminates because this implies thatpi is redundant inT∪{pi } ⊆ Si and therefore
also inS.

8. Correctness. The algorithm of Section 7 could fail for two reasons. First, if all link
facets are locally regular although there are other locally nonregular(d − 1)-simplices,
then the algorithm would stop before reaching the regular triangulation. We show this
cannot happen. Second, it could be that thewhile loop does not terminate, either because
it cycles in an infinite loop of flips or none of the locally nonregular link facets is
flippable. Again we show this is impossible. We begin with a basic property of regular
triangulations.

Regular d-Simplices Maximize Power Distance. Consider a subsetT of d+1 weighted
points of S, defineσ = σT , and lety be a point in the interior ofσ . Definez = zσ ,
hσ = g−1(z+), and fy(σ ) = πz(y) = |zy|2 − wz. Sincehσ is a nonvertical hyperplane
we can think of it as a function fromRd to R and writehσ (y) for its function value at
y = (y1, y2, . . . , yd) ∈ Rd. As observed in Section 3, we have

fy(σ ) = yd+1− hσ (y),

whereyd+1 =
∑d

i=1 y2
i . In order to maximizefy, over alld-simplicesσ defined bySthat

containy, we therefore need to minimizehσ (y). Sohσ must be the hyperplane spanning
the lower facet of conv(S+) that intersects the vertical line throughy. This lower facet is
the lifted version of thed-simplexσ ofR(S) that containsy. We thus have the following
result which has been proved in [25] for d-dimensional Delaunay triangulations.

LEMMA 8.1. Let S be a finite set of weighted points inRd, and let y ∈ conv(S) be
a point that does not lie on the hyperplane spanned by any d points of S. Over all
d-simplicesσ defined by S that contain y, fy(σ ) is maximized iffσ is inR(S).

For example, consider the case where a setT of d+2 points plays the role ofS in the
above lemma. Assume thatT is flippable within some triangulation, and lety be a point
in the interior of the convex hull ofT . Let σ ′ andσ ′′ be thed-simplices that containy,
whereσ ′ belongs to the triangulation ofT before the flip andσ ′′ to the one after the flip.
Then fy(σ

′) < fy(σ
′′) because the triangulation after the flip is the regular triangulation

of T andσ ′′ is part of it.

Link Facets Suffice. We show that all flips applied in the course of adding the next
point, pi , satisfy the following two properties. LetT be the set ofd + 2 points that is
flipped.

(i) pi ∈ T .
(ii) σold = σT−{pi } is ad-simplex inR(Si−1), and the flip destroys it.

Properties (i) and (ii) certainly hold for the first flip, performed in step 5, which adds
pi with a “1 to d + 1” flip. Assume inductively that (i) and (ii) hold for the firstj − 1
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flips. This implies that alld-simplices generated by thesej −1 flips havepi as a vertex.
So alld-simplices of the current triangulation that are disjoint frompi ared-simplices
of R(Si−1). This implies that ifT ⊆ Si−1 is a flippable configuration, then it is locally
regular andT would not be flipped. Thus, property (i) also holds for thej th flip. Let T
be thed + 2 points of thej th flip and considerU = T − {pi } andσU . Thisd-simplex
belongs to the triangulation ofT either before or after the flip. To get a contradiction,
assume thatσU belongs to the triangulation after the flip, that is,σU is created by the flip.
Take a pointy in the interior ofσU and letσ be thed-simplex inR(Si−1) that contains
y. We have fy(σU ) > fy(σ ) because the flip increasesfy and earlier flips either also
increase it or leave it unchanged. However, this contradicts Lemma 8.1 which asserts
that among thed-simplices spanned bySi−1 that containy—and bothσU andσ belong
to this collection—fy is maximized byσ . So we conclude thatσU is destroyed by thej th
flip, rather than created. Property (ii) follows for thej th flip and thus holds in general.

We thus proved that each flip destroys a uniqued-simplex,σold, ofR(Si−1). All other
d-simplices destroyed by a flip sharepi as a vertex. Except in the first flip (step 5) there
is at least one suchd-simplex,σ ′. σold andσ ′ share a(d − 1)-simplex which is thus a
link facet. Right before the flip happens this link facet is flippable and locally nonregular
by assumption. We thus have proved that it is sufficient to restrict our attention to link
facets when locally nonregular(d − 1)-simplices are sought.

Thewhile Loop Terminates. Notice first that the flip ofT increasesfy for all points
y in the interior of conv(T). For all other pointsy ∈ Rd, fy remains unchanged. The
increase inf value can be viewed as an indication of the progress made by the algorithm.
This implies that once ak-simplex is destroyed it can never be reintroduced in the future.
Thus, we can be sure that thewhile loop does not get caught in an infinite loop of flips.

Finally, we show that if there are locally nonregular link facets, then at least one of
them is flippable. Consider a triangulationT reached at some point in time during the
insertion of pointpi . Thed-simplices ofT that do not belong toR(Si−1) are exactly the
ones that havepi as one of their vertices. The union of thesed-simplices is a star-shaped
polytope, denoted by star(pi ). The facets of star(pi ) are exactly the link facets. LetL be
the collection ofd-simplicesσ in T that lie outside star(pi ) and share a link facet with
star(pi ). Let L ′ be the subset ofd-simplices inL that are incident to locally nonregular
link facets. By assumption,L ′ 6= ∅. For eachσ ∈ L consider f (σ ) = fpi (σ ) and let
σmin = σU be thed-simplex inL ′ that minimizesf . We prove below thatT = U ∪ {pi }
is flippable.

By choice, f (σmin) ≤ f (σ ) for all σ ∈ L ′. All σ ∈ L − L ′ are incident to locally
regular link facets. Therefore,wpi < πz(pi ), wherez= zσ . This implies

f (σmin) < wpi < πz(pi ) = f (σ ).

In other words,σmin minimizes f over all σ ∈ L. Consider a half-line,r , emanating
from pi that intersects a link facet in its relative interior. Before intersecting any otherd-
simplex outside star(pi ), r intersectsd-simplices inL. By Lemma 2.2f increases along
the sequence ofd-simplices intersectingr . Thus, ifr intersectsσmin, then it cannot inter-
sect any otherd-simplex outside star(pi ) beforeσmin. This implies that the subcomplex
induced byT = U ∪ {pi } has underlying space equal to conv(T).

In other words,T is flippable.
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9. Randomized Analysis. If the points ofS are added in a random sequence we can
show that the expected running time of our algorithm isO(n logn+ndd/2e) for any point
distribution. Furthermore, if the points are independently and identically distributed and
f (n) is the expected number of simplices inR(S), then we can show a running time
of O(

∑n
i=1 f (n/i )). We begin with a brief worst-case analysis of the number of flips

performed.

Maximum Number of Flips. Thed+2 points involved in a flip defined+2d-simplices,
each occurring either in the triangulation of thed + 2 points before the flip or the one
after the flip. So one of the two triangulations hask ≥ (d + 2)/2 d-simplices. Thesek
d-simplices intersect in a(d−k+1)-simplex, withd−k+1≤ d/2. Setµ = bd/2c. This
implies that each flip deletes at least oneµ-simplex or adds at least one. As mentioned
in Section 8, a simplex is added and deleted at most once, so the number of flips cannot
exceed the total number ofµ-simplices defined byn points. Aµ-simplex is spanned

by µ + 1 points, son points span

(
n

µ+ 1

)
µ-simplices. Note, however, that we add

d + 1 artificial points at infinity; hence the number ofµ-simplices is

(
n+ d + 1

µ+ 1

)
. It

follows that the maximum number of flips needed for a regular triangulation ofn points

in Rd is at most 2

(
n+ d + 1

µ+ 1

)
= O(nd(d+1)/2e). This is therefore an upper bound on the

worst-case storage requirement. An additional factorn appears in the worst-case running
time. The rather pessimistic worst-case analysis is due to the point-location strategy and
can be improved using linear programming. The randomized analysis shows, however,
that such a modification is neither necessary nor appropriate. Compare with Lemma 9.2
below.

The analysis of the running time under the assumption of a random input sequence
requires some additional definitions.

Terminology and k-Set Bounds. Consider an arbitrary subsetT of d + 1 points ofS
and letσ = σT be the simplex defined byT . Let z= zσ be the orthogonal center ofσ ,
and define

0σ = {p ∈ S | πz(p) < wp}.
Note that0σ ∩ T = ∅, and that0σ = ∅ iff σ is ad-simplex ofR(S). Callγσ = |0σ | the
widthof σ .

The analysis is based on bounds for the number ofd-simplices with a fixed widthk. It
is also necessary to considerd-simplices incident to points ofS0. For each subsetÄ ⊆ S0

and for each 0≤ k ≤ n, write GÄ
k for the collection of subsetsT ⊆ Sn, |T | = d+ 1, for

which T ∩ S0 = Ä andγσT = k. To avoid any confusion: thek points counted byγσT

are points inS, because the definition of0σ is such that it necessarily excludes points
of S0. Furthermore, defineGÄ

≤ j =
⋃ j

k=0 GÄ
k .

For nonemptyÄ, the setsGÄ
k are somewhat more natural if we consider the lifted

setS+n = {p+ ∈ Rd+1 | p ∈ Sn}. As explained in Section 3, the orthogonal center of
σ = σT , T ⊆ Sn, |T | = d + 1, corresponds to the hyperplane that contains the points
of T+. The constraint that a hyperplane contain a point with some arbitrarily large or
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arbitrarily small coordinates (symbolized by+∞ or−∞) really means the hyperplane
must contain a certain direction. Recall thatT ∩ S0 = Ä and thatT+ containsω = |Ä|
points with arbitrarily large or small coordinates. So the hyperplane spanned byT+must
containω directions. These constraints can be expressed using the linear hull ofÄ+,
lin(Ä+), which is anω-dimensional linear subspace ofRd+1. Let FÄ be thel -dimensional
linear subspace orthogonal to lin(Ä+), wherel = d + 1− ω. FÄ can be viewed as an
embedding ofRl in Rd+1.

The maximum cardinalities of the setsGÄ
k relate to the maximum number ofk-sets

of a collection of points inRl . A k-set of a finite point setA ⊆ Rl is a subsetB ⊆ A of
sizek for which there is a half-spaceH in Rl with B = A ∩ H . Write g(l )k (A) for the
number ofk-sets ofA and defineg(l )≤ j (A) =

∑ j
k=1 g(l )k (A). The results onk-sets that are

most relevant to our analysis are both taken from [6]. Let n be the number of points inA.

g(l )≤ j (A) = O( j dl /2enbl /2c),(1)

and

E[g(l )≤ j (A)] = O

(
j l f

(
n

j

))
.(2)

Result (2) assumes that the points are independently and identically distributed andf (n)
is the expected number of facets of the convex hull of then points so chosen. The proof
of (1) and (2) assumes thatl is a constant andj is asymptotically less thann. If j is
proportional ton, then the bounds (1) and (2) are trivial. Alternatively, this bound can
be obtained by a straightforward extension of the relevant calculations in [15].

The connection between the setsGÄ
k and the concept of ak-set is based on the lifting

map explained in Section 3. Consider a setT ∈ GÄ
k . So|T | = d + 1, T ∩ S0 = Ä, and

for σ = σT we haveγσ = |0σ | = k. Let hσ be the hyperplane inRd+1 spanned by the
points inT+. The property of the lifting map discussed immediately before Lemma 3.1
implies that0+σ = S+ ∩ H for one of the two open half-spacesH bounded byhσ . Thus,
0+σ is ak-set ofS+. Furthermore, ifÄ 6= ∅ andÄ 6= S0, then there is anl -dimensional
linear subspace,FÄ, with 1≤ l = d + 1− |Ä| ≤ d, orthogonal to lin(Ä+). For a point
p ∈ S, let pÄ be the orthogonal projection ofp+ into FÄ. Extend this definition to sets,
so that, for example,SÄ = {pÄ | p ∈ S}. With these definitions,(0σ )Ä is ak-set ofSÄ.
So we can use the above bound on the number ofk-sets and obtain the result formulated
in Lemma 9.1(i).

In order to get a similar result for independently and identically distributed points,
observe that the expected number of facets of the convex hull ofn points is also at most
f (n) in every projection into an affine space with fewer dimensions. Note that this bound
tends to be less accurate as the dimensionl becomes smaller.

LEMMA 9.1.

(i) For all Ä ⊆ S0, we have|GÄ
≤ j | ≤ g(l )≤ j (SÄ) = O( j dl /2enbl /2c), where l= d+1−|Ä|.

(ii) If the points are independently and identically distributed and the expected number
of facets of their convex hull is f(n), then E[|GÄ

≤ j |] ≤ O( j l f (n/ j )).

Expected Number of d-Simplices. Using Lemma 9.1, we now derive a bound for the
expected number ofd-simplices that appear during the construction ofR(Sn). We also
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need the following observation. Consider a setT ∈ GÄ
k . The probability thatσ = σT

is a d-simplex of a regular triangulationR(Si ), for some 1≤ i ≤ n, is l !/((k + 1)
· (k+ 2) · · · · ·(k+ l )), wherel = d+ 1− |Ä| as usual. This is because the probability
is the same as the one of adding thel points inT ∩ S before any of thek points in0σ .
Call such ad-simplexσ nontransient.

LEMMA 9.2. The expected number of nontransient d-simplices is O(ndd/2e)without any
assumption on the distribution of the weighted points, and it is O(nε+ f (n)), ε > 0,with
the assumption of an independent and identical distribution for the weighted points such
that the expected number of simplices of the regular triangulation of n such weighted
points is given by a function f(n) with f (n)/nε monotonically increasing.

PROOF. We express the expected number of nontransientd-simplices,E, in terms of
probabilities. Here the expectation is solely over the outcomes of coin-flips occurring
when the point-intersection order is decided. The effect of a distribution of the weighted
points will enter the proof later.

E =
∑
Ä⊆S0

n∑
k=0

∑
T∈GÄ

k

Prob[σT is nontransient].

We can replace the last sum by the cardinality ofGÄ
k times the probability calculated

above.

E =
∑
Ä⊆S0

l !
n∑

k=0

|GÄ
k |

(k+ 1)(k+ 2) · · · · · (k+ l )

=
∑
Ä⊆S0

l !

(
n∑

k=0

|GÄ
≤k|

(k+ 1) · · · · · (k+ l )
−

n−1∑
k=0

|GÄ
≤k|

(k+ 2) · · · · · (k+ l + 1)

)

=
∑
Ä⊆S0

l !

(
|GÄ
≤n|

(n+ 1) · · · · · (n+ l )
+

n−1∑
k=0

l · |GÄ
≤k|

(k+ 1) · · · · · (k+ l + 1)

)
.

The first term in the sum over setsÄ can be neglected because

|GÄ
≤n| ≤

(
n+ l

l

)
which implies that it is smaller than 1. If we now use Lemma 9.1(i), we obtain

E ≤
∑
Ä⊆S0

l (l !)
n∑

k=1

cnbl /2c

k1+bl /2c ,

wherec is some positive constant. Note thatl ≤ d + 1 and|S0| = d + 1 are both
constants becaused is a constant. This impliesE = O(ndd/2e), which is the first part of
the assertion. If we use Lemma 9.1(ii) instead of (i), we get

E ≤
∑
Ä⊆S0

l (l !)
n∑

k=1

c · f (n/k)

k
= O( f (n))
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if we assume thatf (n) = Ä(nε), ε > 0, since f (n)/nε is monotonically increasing.
This gives the second result of the lemma.

The above argument only counts nontransientd-simplices that occur during the con-
struction ofR(Sn). There are also transientd-simplices that occur. Atransient d-simplex
is constructed during the insertion of new point, saypi , and is destroyed before the regular
triangulation ofSi is completed. As mentioned earlier, each flip destroys oned-simplex
ofR(Si−1), and it creates at mostd+1 d-simplices. It thus follows that the total number
of transientd-simplices constructed by the algorithm is at most of the same order of
magnitude as the number of nontransient ones. Thus, the bound in Lemma 9.2 applies
also to the expected number of transientd-simplices. If we ignore the input, the amount
of memory required by the algorithm in Section 7 is bounded by the size of the history
dag, which is proportional to the total number of transient and nontransientd-simplices.
Thus, Lemma 9.2 gives a bound on the expected memory requirement.

Point Location. The amount of time spent for locatingpi (step 3) is proportional to
the length of the traversed path. The accounting is done differently for transient and for
nontransientd-simplices. Ifσ is a nontransientd-simplex on the path ofpi , but not the
lastd-simplex on this path, thenpi ∈ 0σ . If σ is transient, then we find a nontransient
d-simplexσ ′ with pi ∈ 0σ ′ that is not used yet in the accounting of the cost forpi .
Sinceσ is transient, there is a flip that removedσ from the triangulation, and this flip
also removed oned-simplex ofR(Si−1). This d-simplex is nontransient and we letσ ′

be thisd-simplex. Notice thatσ ′ is counted only once for pointpi . In summary, the
point-location cost forpi is bounded by one plus the number of nontransientd-simplices
that containpi in their sets0. Therefore,n plus the sum ofγσ over all nontransient
d-simplicesσ is an upper bound for the total cost that occurs in step 3 of the algorithm.

LEMMA 9.3. The expected cost of point location is O(n logn + ndd/2e), without any
assumption on the distribution of the points, and it is O(

∑n
k=1 f (n/k)), with the as-

sumption that the weighted points are independently and identically distributed and the
expected number of simplices in the regular triangulation of n such weighted points
is f (n).

PROOF. As in the proof of Lemma 9.2, we can compute the expectation,E, of
∑
γσ

by summing probabilities. We sum over all nontransientd-simplicesσ . If we use
Lemma 9.1(i), we get

E =
∑
Ä⊆S0

n∑
k=0

∑
T∈GÄ

k

k · Prob[σT is nontransient]

≤
∑
Ä⊆S0

l (l !)
n∑

k=1

cnbl /2c

kbl /2c
= O(n logn+ ndd/2e),
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wherec is some positive constant andl = d + 1− |Ä|, as in Lemma 9.2. This proves
the first part of the assertion. If we use Lemma 9.1(ii), we get

E ≤
∑
Ä⊆S0

l (l !)
n∑

k=1

c · f
(n

k

)
= O

(
n∑

k=1

f
(n

k

))
,

which is the second part of the assertion.

Apart from the point-location cost, the algorithm takes only constant time per flip.
Note that the sum expressing the running time is bounded from above byO( f (n)) if
f (n) = Ä(n1+ε), ε > 0, and f (n)/n1+ε monotonically increases. This shows that the
algorithm runs in expected time proportional to the expected size of what it produces,
unless this expected size is linear or only slightly superlinear.

An interesting special case is when the points are independently and uniformly dis-
tributed in the unit hypercube inRd. For the case of zero weights (in which case the
regular triangulation is the Delaunay triangulation of the points), Dwyer [9] proved that
f (n) = 2(n), assumingd is a constant, see also [5]. Theorem 9.4 implies that in this
case the expected running time of our algorithm isO(n logn).

We can thus summarize the results of this section, and indeed of this paper.

THEOREM9.4. The expected running time and memory requirement of the randomized
incremental version of the algorithm in Section7 are, respectively, O(n logn+ ndd/2e)
and O(ndd/2e). If we assume that the weighted points are independently and identically
distributed and f(n) is the expected number of simplices in the regular triangulation of n
such weighted points, then the expected running time is O(

∑n
k=1 f (n/k)). Furthermore,

if f (n)/nε is monotonically increasing, then the expected memory requirement is O(nε+
f (n)), for anyε > 0.

10. Concluding Remarks. Delaunay triangulations, and more generally regular tri-
angulations, have a fair number of applications, including the generation of grids for
point configurations and the construction of so-called alpha shapes [12], [14]. Indeed,
the main motivation for studying the problems solved in this paper is our intention to
implement weighted and unweighted alpha shapes in dimensions beyondR3. It would
be interesting to conduct an experimental study comparing the algorithm of this paper
with its main contenders for constructingd-dimensional regular triangulations. These
are probably the randomized algorithm of Clarkson and Shor [6] and the output-sensitive
algorithm of Seidel [27]. The difference between the algorithms in this paper and in [6]
are in the details which nevertheless can affect their performance. It should be pointed
out that Seidel’s algorithm is neither randomized nor on-line. The algorithm in this paper
is sensitive to the expected output size when the weighted points are independently and
identically distributed.

Acknowledgments. We thank Raimund Seidel for sharing an observation that signifi-
cantly simplified an earlier version of the correctness proof in Section 8. We thank Edgar
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[26] E. Schönhardt.Über die Zerlegung von Dreieckspolyedern in Tetraeder.Math.Ann.,98(1928), 309–312.

[27] R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face.Proc. 18th Ann.
ACM Symp. on Theory of Computing, 1986, pp 403–413.

[28] G. F. Voronoi. Nouvelles applications des param`etres continus `a la théorie des formes quadratiques.
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