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Incremental Topological Flipping Works
for Regular Triangulations'

H. Edelsbrunnérand N. R. Shah

Abstract. A set ofn weighted points in general position itf defines a unique regular triangulation. This
paper proves that if the points are added one by one, then flipping in a topological order will succeed in
constructing this triangulation. If, in addition, the points are added in a random sequence and the history of the
flips is used for locating the next point, then the algorithm takes expected time arfrisig n+n/%/21). Under

the assumption that the points and weights are independently and identically distributed, the expected running
time is between proportional to and a factor tognore than the expected size of the regular triangulation. The
expectation is over choosing the points and over independent coin-flips performed by the algorithm.
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1. Introduction. Delaunay triangulations, and their dual Voronoi diagrams, play an
important role in a variety of different disciplines of science (see, e.g., the survey of
Aurenhammer J]). The computational aspects of Delaunay triangulations have been
studied in the area of geometric algorithmig]} [23], and a number of different al-
gorithms have been proposed. This paper considers the class of regular triangulations
which includes the Delaunay triangulatiofd]. A finite point set inR¢ defines a unique
Delaunay triangulation, but there are many regular triangulations of the set. A unique
regular triangulation is implied if each point is assigned a real number as its weight. If
all weights are the same, then the regular triangulation is the Delaunay triangulation of
the set.

Several algorithms proposed for Delaunay triangulations are based on the notion of
a local transformation, henceforth referred to as a flip. Historically, the first such algo-
rithm is due to Lawson1[8], see also 19]. Given a finite point set in the real plane,
IR?, the algorithm first constructs an arbitrary triangulation of the set. This triangulation
is then gradually altered through a sequence of edge-flips until the Delaunay triangula-
tion is obtained. The generalization of this methodfohas difficulties, and Joel f]
demonstrates that it is indeed incorrect if the flips are applied to an arbitrary initial tri-
angulation. In a different paper, JoE/] shows that if a single pointp, is added to the
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Delaunay triangulation of a s&in R?, then at least one sequence of flips will succeed

in constructing the Delaunay triangulation 8fU { p}. This can be used as the basis

of an incremental algorithm. Raja@4] considers Delaunay triangulations in arbitrary
dimensionsRY, and argues that a single point can always be added by a sequence of
flips. However, he needs a priority queue to find the appropriate sequence, which takes
logarithmic time per flip. On a different front, Guibas et dI5] study the complexity of

the incremental algorithm iR? when the points are added in a random sequence. While
©(n?) edge-flips are required in the worst case, they prove that under a random insertion
sequence the expected number of flips is ddly). They also provide an elegant, and

in the expected sense efficient, technique for locating the triangle that contains the point
to be added. This step has been a sore point of all prior incremental methods.

This paper unifies and extends the algorithmic results of I@de Rajan 5], and
Guibaset al. [15]. In particular, we show that there is a sequence of flips that can be
used to add a single point to a regular triangulatioR%n This eliminates the need for a
priority queue P5] that sorts the flips. The priority queue is replaced by a stack used to
generate a topological ordering of the flips in constant amortized time per flip. We use
this result to generalize the incremental method1éf fo regular triangulations and to
arbitrary dimension®9. The resulting algorithm is similar to but not the same as the
ones in B, [6], [22). Without any assumptions on the point distribution, the resulting
algorithm runs in expected tim@(nlogn + n'%2). The expectation is over all possible
outcomes of coin-flips performed by the algorithm. The size of the regular triangulations
varies widely depending on the distribution of the points and weights. Assume that
the weighted points are independently and identically distributed, so that the expected
number of simplices in the regular triangulation fign). Then the expected running
time of our algorithm ismO(Zi”:1 f (n/i)). For example, if the points are chosen from
the uniform distribution over [01]¢ and all weights are zero, thei{n) = ®(n) and the
expected running time i©(n logn). For distributions withf (n) = ®(n'*?), ¢ > 0, we
have} " ; f(n/i) = O(f(n)), so the expected running time is as good as it can be.

Outline Section 2 defines regular triangulations and introduces related terminology.
Section 3 explains the relationship between regular triangulatidk$amd convex hulls

in R9*1. This relationship provides a sometimes helpful alternative view of all concepts
and techniques discussed in this paper, see 8]s&¢ction 4 discusses the anatomy of
flipping inRY. A counterexample to a nonincremental method that attempts to construct
regular triangulations ifR? by flipping is presented in Section 5. A minimalist data
structure for storing triangulations is described in Section 6. The incremental algorithm
is given in Section 7, and its correctness is proved in Section 8. The analysis of the
algorithm given in Section 9 follows the example 6F.[

2. Regular Triangulations

Triangulations We begin by defining the notion of a triangulation used in this paper.
For 0 < k < d, the convex hull of a setf of k 4+ 1 affinely independent points is a
k-simplex denoted byt. The simplicessy, U C T, are thefacesof o7. A collection
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of simplices C, is asimplicial complexf:

(i) The faces of every simplex ik are also inC.
(II) If or,01 €K, thenoT Not = oTAT-

Condition (ii) implies that the intersection of any two simplices in the complex is a
possible empty face of both; condition (i) implies that it also belongs to the complex.
Theunderlying spacef K is the pointwise union of its simplices. L8tbe a finite point
setinRY. Usually, a triangulation o8 is defined as a simplicial complex so tI®it the

set of 0-simplices (vertices) and the underlying space of the complex is the convex hull
of S. Itis convenient to relax the first condition: a simplicial comptéis atriangulation

of Sif:

(i) Each vertex ofC is a point inS.
(i) The underlying space df is con«S).

Notice that the second condition implies that all extreme poin&ark vertices of every
triangulation ofS.

Power Distance and Power DiagramsAgain, letSbe a finite set of points iR¢, and
assign a real valued weight, to each pointp € S. For eachp, definerp: RY — R so
that

7p(X) = |XpI? — wp,

where |xp| is the Euclidean distance between poirts= (X3, X2,...,Xq) andp =
(P1, P2, ..., Pa). mp(X) is usually referred to as thower distancesf x from p. It is
easy to see that for poin{s q € S, the locus of pointx € RY with Tp(X) = mq(X) is
the hyperplane

d d
Xp,q:ZZXi @ — pi)+ Z(piz - q?) —wp + wq =0.
i=1 i=1

We call x, q thechordaleof the weighted pointg andg.

Sometimes itis convenient to interpret a pgiwith weightw, as a spherep, ,/wp)
with centerp and radiug /wp. If wp > 0 andx lies outside the sphere thus defined, then
mp(X) is the square of the length of a tangent line segment fkdmthe spherer,(x)
is also called the power ofwith respect to the sphele, ,/wp). If wy, is negative, then
the sphere has an imaginary radius.

Let Hp, 4 denote the half-space of pointss R for which Tp(X) < mq(X). For each
p € S, define itspower cellas

Py = ﬂ Hp.q-

qeS—{p}

Observe thaP, is a possibly empty convex polyhedron, the intersection of the interiors
of any two distinct power cells is empty, and the union of all power dellsp € S,
coversRY. The collection of power cells defines tpewer diagramP(S) of S, see,

e.g., fi].
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Orthogonal Centers For the remainder of the paper, we assume that the weighted
points of Sare in general position. This involves no loss of generality since we can use
the method in] 3] to simulate this assumption computationally. General position, in this
context, means that for evedy+ 1 weighted points ir§, there is a unique unweighted
pointx € RY with the same power distance from dll- 1 points, and for everg + 2
weighted points of, there is no such point. Two weighted poiqtsindz are said to be
orthogonalif

2
|PZ® = wp + wy,

that is, when the spherep, ,/wp) and(z, ,/w) are orthogonal. Note that this is equiv-
alenttorp(2) = w, andn,(p) = wy. Asubsefl of d 4 1 (weighted) points o defines

a uniqued-simplexo = o1 = conUT). There is a unique weighted point= z, that

is orthogonal to all weighted points € T. We callz the orthogonal centewof o. If
the weights of allp € T are zero, then the sphere with certeand radius,/w, is the
circumsphere of .

Local and Global Regularity Observe that,(p) = wyforall p € T. Callo (globally)
regularif m,(q) > wq forallq € S— T. Clearly, if o is regular, therz is a vertex of
P(9), the power diagram db. The regulad-simplices, together with their faces, define
a simplicial complex known as thregular triangulationof S, denoted byR (S). At this
point, it is not clear thakR (S) is a simplicial complex; this is shown in Section 3. There
is a close relationship between the regular triangulation and the power diagr@m of
Indeed,R(S) is a geometric realization of the nerve of the set of power cells, that is,
o1 € R(S) iff ﬂpeT Py, # ¢. Ifthe weights of all points irBare zero, the®(S) =V(S),
the Voronoi diagram 08 [28], andR(S) = D(S), the Delaunay triangulation &[7].
It is possible that the power cell of a poipte Sis empty. In this cas® is not a
vertex of R(S) and we refer tg as aredundantpoint. In general, the vertex set&f(S)
is a subset o8, namely the set of nonredundant pointsoff p is a vertex of congsS),
thenP, # ¢, so p is necessarily nonredundant. This implies that the underlying space
of R(S) is indeed the convex hull &, as required by our definition of a triangulation.
Consider an arbitrary triangulatidh of S. Leto = oy be a(d — 1)-simplex of 7
incident tod-simpliceso’ = oyy ande” = oyy. Let Z = z, be the orthogonal
center ofo’. Theno is said to bdocally regularin 7 if w, < 7, (b); otherwise, it
is locally nonregular Notice that ifo is locally regular in7", then this does not imply
that it belongs tdr(S). Still, we have the following lemma which is an extension of a
lemma for Delaunay triangulations proved i}.[This lemma can also be obtained as a
straightforward corollary to Lemma 3.1.

LEMMA 2.1, Ifthe vertex setoff contains all nonredundant points of S and@H 1)-
simplices of7” are locally regularthen7 = R(S).

The Power Increases The proof of Lemma 2.1 can be based on a property of regular
triangulations expressed in Lemma 2.2 below. &éando” be twod-simplices of a
regular triangulation that share a comm@in— 1)-simplexoc = o’ N ¢”. LetZ = z,
andz’ = z,» be their orthogonal centers. For every venieX o, 7, (v) = 7 (V) = w,.
Hence the chordalg, » is the hyperplane that contaiasSo if p is a point on the same
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side of x, » aso’, thenm,(p) < 7w (p). This implies the following lemma which is
important in Section 8 when we prove the correctness of the algorithm in Section 7. The
lemma can also be found in .

LEMMA 2.2. Consider a half-line emanating from a pointlptoy, oo, . .., ok+1 be the
d-simplices of a regular triangulation that intersect the half-line in this sequearoe
define z = z,,. Thenm, (p) < w5 41(p), forl <i <Kk.

3. Lifting Regular Triangulations. This section reviews the relationship between
regular triangulations iR and convex hulls ilR4*+2. For a pointp = (py, P2, ..., Pa) €
RY with weightw, € R, define itslifted point

pt = (p1, P2, - - -, Pds Pas1) € R

wherepg1 = Y0, p2—wp. ForaseS C RY, defineSt = {p* | p € S}. Let(g. g~ %)
be a pair of functions defining olar map whereg maps a nonvertical hyperplahe
X1 =2 Z?:l a X + ag,1 in R4 to the point

gh) = (ay, @, ..., aq, —ag1) € R4,

andg~! maps a poinp € R to the hyperplang=(p) so thatg(g—*(p)) = p.

Lemma 3.1 below expresses the close relationship between regular triangulations in
RY and convex hulls iiR4+1, It is based on the embeddingBf as thed-dimensional
subspaceg,1 = 0 in R4+L, A facet of a convex polytope iR%*? is alower facetif
the hyperplane that contains it is nonvertical and the polytope lies vertically above this
hyperplane. By this we mean that the paidt. . ., 0, +00) and the polytope lie on the
same side of the hyperplane.

The lemma follows from the following fact, which is easily checked algebraically.
Consider two weighted points andz in RY, and leth be the hyperplang=1(z*). Itis
nonvertical by definition and can thus be viewed as a function fRno R. Let h(p)
be its function value ap € RY and recall thapy 1 = Zidzl p? — wp is the(d + 1)st
coordinate ofp*. Then

72(P) — wp = Pa+1 — h(p).

This implies thatw, > 7,(p) iff p* lies vertically belowh, w, = ,(p) iff p* € h,
andwp < 7,(p) iff p* lies vertically abové.

LEMMA 3.1. Let S be a finite set of weighted pointsRA. The vertical projection of
the lower facets ofonv(S*) into RY gives the d-simplices &.(S).

We can now reinterpret Lemmas 2.1 and 2.2 in the light of Lemma 3.1. A locally
regular(d — 1)-simplex of a triangulation corresponds to a locally convex ridge (that
is, (d — 1)-face) of the polytope whose lower facets project to dhgimplices of the
triangulation. Redundant points R correspond to lifted points that are not vertices
of lower facets, and the problem of constructing a regular triangulation becomes one of
constructing a convex hull. Indeed, there are similarities between the work in this paper
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and earlier work on convex hull algorithms. Noteworthy examples are the algorithms
of [6], [27]. In the second paper, Seidel discusses a convex hull algorithm based on
the notion of a line-shelling of its faces, seg.[Computing the line-shelling is closely
related to computing the ordering of the flips for Delaunay triangulations mentioned
in [25]. The result of this paper can also be interpreted as finding a “topological line-
shelling.”

4. Flipping in d Dimensions

Definition and Classification of Flips Consider a sé of d+ 2 points inRY. According

to Lawson P0], there are exactly two ways to triangulafe Indeed, the two ways
correspond to the two sides (lower and upper) of(the- 1)-simplex that is the convex
hull of the corresponding lifted pointsikf*+1. Because of Radon’s theorem (Theorem 4.1
below) and because tlig¢+ 1)-simplex exhausts all+2 d-simplices as facets, there can
be no other triangulation of. A flip is the operation that substitutes one triangulation
of T for the other.

In R? we distinguish two cases depending on whether the tetrahedron of the lifted
points inR3 projects to a triangle or a quadrilateral, see Figure 4.1. A 4-simpl&¢in
projects to a single or a double tetrahedron (the convex hull of four or five poirls) in
Flips inRR? are classified accordingly, see Figure 4.2.

Given d + 2 weighted points irRY, one of the two triangulations is the regular
triangulation of the points, the other is not regular. In the constructigd(&, flips are
applied in this directional sense, substituting the regular triangulatidra-dt points for
the nonregular one.

Flippability. Leto = oy be a(d — 1)-simplex of an arbitrary triangulatioh of S, and
leto’ = oy ando” = oyyw be the two incidend-simplices, assuming they exist.
Theinduced subcomplexf T = U U {a, b} consists of all simplices ilr spanned by

‘3to 1’

———

‘1to 3

‘2 to 2’

Fig. 4.1.There are three types of flips B?, and we denote a flip by the number of triangles before and after
the flip. So the flips are of type “1to 3,”“2 to 2,” and “3 to 1.” The first type introduces a new point, and the
last type removes a point. The last type of flip is not needed for Delaunay triangulations because no point is
redundant, and so no point has to be removed from the triangulation.
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Fig. 4.2.The flips inR3 can be classified as “4 t0 1,"“3t0 2" “2t0 3,” and “1 to 4.”

points inT. Clearly,o, o/, anda” belong to the induced subcomplex df We call T
(ando) flippableif conv(T) is the underlying space of the induced subcompleX of

Assume that ifo is given, theno’ ando”, and thereforel', can be computed in
constant time. This requires thibe a constant. Consider tdegd — 2)-simplices ofo.
Call such ad — 2)-simplexconvexf there is a hyperplane that contains it amdand
o” lie on the same side of this hyperplane; otherwise, callthe 2)-simplexreflex
The underlying space of the induced subcompleX a equal to congT) iff all reflex
(d — 2)-simplices ofc have degree 3 in the induced subcompleX othat is, each is
incident to exactly thre¢éd — 2)-simplices of the induced subcomplex Bf Thus the
oy of o are incident to thred-simplicess’, o, andoyy(a by Which fill the reflex wedge
atoy. Thus, givery, itis possible to test in constant time whether or not it is flippable.
Recall, however, that our algorithm would attempt to #ipnly if it is flippableandit
is locally nonregular.

A Convex Geometry TheoremThe above discussion is closely related to a classical
result in convex geometry known as Radon’s theordj [

THEOREM4.1. Let T be a set of & 2 points inRY. Then a partition T= U UV exists
so thatconvU) N conuV) £ @.

Every subset ofl + 1 points ofT either containg) as a subset, o/, but not both. In
the former case thd-simplex spanned by the subset belongs to the triangulatidn of
that contains corJ) as a simplex. In the latter case it belongs to the other triangulation
that contains conW).

Assume thatU| < |V|. Then|U| < (d + 2)/2 andoy is ak-simplex withk =
|U|—1 < d/2. WhenT isflipped thersy can only belong to one of the two triangulations
of T, the one before or the one after the flip. This implies that, for every fi§flithere
is at least one simplex of dimension at ma& that is removed or introduced by the flip.
This observation will be useful in Section 9 where we analyze the algorithm of Section 7.
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Fig. 5.1.The weights of the six points are chosen so that the solid edges are locally regular while the dotted
edges are not. This is achieved if the lifted points of the three boundary vertices lie in a horizontl afehe
the lifted points of the other three vertices lie in a horizontal plareoveh.

5. Counterexample to Nonincremental Flipping. As mentioned in the Introduction,
Lawson’s algorithm constructs Delaunay triangulationR%rby flips that are applied to
an initial triangulation. More specifically, the algorithm starts with an arbitrary triangu-
lation of the point set and performs a sequence of “2 to 2" flips until the triangulation is
the Delaunay triangulation. Jogf] demonstrates that the generalization of this strategy
to R® does not always correctly compute the Delaunay triangulation. The reason is that
there can be locally nonregular triangles that are not flippable. Such triangles can also
appear when flips are applied after adding a single point to a Delaunay or regular trian-
gulation (Section 7). However, in contrast to the nonincremental method, we can show
that in the incremental case there is always some flip that can be applied (Section 8).
The purpose of this section is to show that in two dimensions the nonincremental
method no longer works if instead of Delaunay triangulations we construct regular trian-
gulations. Consider the example shown in Figure 5.1. The two-dimensional triangulation
is a view of the inside of the so-called Sitiardt polytope iR [26]. This polytope
is nonconvex and the smallest example of a polytope that cannot be decomposed into
tetrahedra unless points other than its vertices are used as vertices. In the triangulation
of Figure 5.1 all flippable edges are locally regular and all locally nonregular edges are
nonflippable. Furthermore, all vertices have degree 4. Even though the triangulation is
not the regular triangulation of the six weighted points, there is no flip that can change a
locally nonregular configuration to a regular one. An iterative improvement by flipping
is thus not possible.

6. A Minimalist Data Structure. In order to be reasonably specific when we discuss
the algorithmin Section 7, we need to say a few words about how we store a triangulation
in RY. This section describes a data structure that represents a triangulation by storing
its d-simplices and their adjacencies. We make an effort to keep the data structure as
simple as possible. It is specified in PASCAL-like formalism.

type coordinate = integer;
vertex = array [1..d + 1] of coordinate
vertexindex = 1..n;
simplex = record vertices:array [1..d + 1] of vertexindex

neighborsarray [1..d 4+ 1] of 1 simplex
end.
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The weighted input points are stored in an array whose elements are ofdxtpg A

d-simplexo is represented by a record of typenplexso thato .vertices [ ] gives the

indices of its verticeso .neighborg[] points to thed-simplex that shares all vertices

except foro .vertices]. Simplices of dimensiok < d are implicit in the data structure.
Leto’ = oyua ando” = oy be twod-simplices incident to &d — 1)-simplex

o = oy. In order to decide whether or netis locally regular, we need to test whether

wp is smaller or larger than, (b), wherez = z,.. This is the same as deciding whether

the pointbt € R9+! lies above or below the hyperplage®(z+). This is the unique

hyperplane that contains the lifted vertices6{see Section 3). Such a test is described

in [13]. o is flippable iff all its reflex(d — 2)-simplices have degree 3. Let, be a

(d — 2)-simplex ofo, and let{c} = U — V. oy is reflex iff b andc lie on different sides

of the hyperplane througtl U {a}. Assumingoy is reflex, it has degree 3 itf, with

T = V U {a, b}, is ad-simplex of the triangulatione, if present, is incident to the

(d — 1)-simplicesoyya; andoyu . We conclude that with the above data structure, the

local regularity and flippability o& can be tested in constant time. Similarly, a flip can

be carried out in constant time because the total numbdradfnplices involved, the

ones deleted and the ones added, is dniy 2.

7. The Algorithm. The algorithm constructs the regular triangulation of a given set
S={p1, P2, ..., pn} Of weighted points incrementally, that is, points are added one at
a time. It is convenient first to construct an artificiebimplex,og, = conUS), with

S = {p_g, ..., Po}, SO thatSis contained in it. We should also require that every
simplex of R(S) is also ad-simplex of the regular triangulation U &. Thed + 1
artificial points can be convieniently chosen at infinity. For examplewget= 0, and

0 if —i>],
pjp=q+¢ if —i=],
¢ if —i<],

wherep;; denotes thgth coordinate ofy;, for —d < i < 0. The symbol " is a place-
holder for a large enough number, and this is the easiest way to think of the artificial
points and their effect on the computations. The particular choice of points guarantees
that R(S) is a subcomplex ofR(S U ). In fact, R(S) consists of all simplices of
R(S U S) that are not incident to any point &.

Global Algorithm Define§ = {p_g, P—d+1, - - -, Pi}- We proceed as follows. Given
R(S_1), leto = ot be thed-simplex that containg;. If, even after addingy;, o is
still regular, therR(S) = R(S_1). Otherwise, flipT U {p;}. This is a flip of type “1 to
d + 1.” Continue flipping locally nonregulaid — 1)-simplices until none remain. The
resulting triangulation iR (S).

We need some more terminology(& — 1)-simplexoy of a triangulation belongs to
thelink of vertexp; if oyuyp,) is ad-simplex of the triangulation. Thi — 1)-simplices of
the link of p; are calledink facets In the algorithm given below only locally nonregular
link facets are flipped.
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1 ConstructiR(S) = og;
2 fori:=1ltondo
3 locate thel-simplexot in R(S_1) that containgy;;
4 if R(TU{pi}) # ot then
5 flip T U {pi};
6 while there are locally nonregular link facets
7 find a locally nonregular link facet that is flippable;
8 flip o
9 endwhile

10 endif

11 endfor.

In Section 8 we argue that it is indeed sulfficient to restrict our attention to link facets
when we search for a remaining nonreguldr— 1)-simplex in step 7. The details of
thewhile loop (steps 6—9) and the point-location operation (step 3) are explained below.
As we will see, the implementation of steps 3 and 4 is slightly different than indicated
above, that is, sometimgs is discarded even befoeg is found.

Finding and Flipping Link Facets We now describe a way to implement steps 6 and 7
efficiently. A stack of link facets is maintained. Each time a link facetflipped, all new

link facets are pushed onto the stack. The search for a link facet that is locally nonregular
and also flippable begins at the top of the stack. If the topmost link facet is not flippable
oritis locally regular or it is not part of the current triangulation, then it is simply popped
from the stack. In the first case it could be that this link facet becomes flippable later as
the result of some changes in its neighborhood. If this happens, then a neighboring link
facet will be added whose flip implies the flip of the popped link facet. Consider the case
where the link facet is no longer in the current triangulatios.is stored in the stack

as a pair of pointers to the twbsimplices incident to it. Botld-simplices are no longer

part of the current triangulation. To handle this case disimplices removed by flips

are marked. If the twd-simplices incident to a link facet are marked, it is discarded. In
fact, thed-simplices destroyed by flips are maintained in a structure calletlighery

dag see below. Each flip adds at makfacets to the stack. This implies that the total
time required by thevhile loop is proportional to the number of flips performed.

Point Location The method we use to implement step 3 is a generalization of the two-
dimensional technique ofLf]. The history of performed flips is used as an aid in the
search. More specifically, as points are added and flips are carried out, we maintain the
collection of discarded-simplices in a directed acyclic graph, called ttistory dag

The history dag has a unique root, which is theimplexog,. At any moment, the
d-simplices of the current triangulation are the sinks of the dag. Recall that a flip replaces
somek d-simplices of the current triangulation with some ottler 2 — k d-simplices.
Before the flip, thék d-simplices are sinks of the dag. Performing the flip means adding
thed + 2 — k newd-simplices as successors to theld d-simplices. Thus, thk sinks
become inner nodes, add+ 2 — k new sinks are added to the dag.

The search with a point; proceeds as follows. Starting at the root of the history dag,
we follow the path ofi-simplices that contai;. Before proceeding from @-simplex
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ot to the next one, we check whethep, < 7,(pi), wherez = z,,. Ifitis, then the
search terminates because this implies ghag redundantimf U{p;} € § and therefore
also inS.

8. Correctness. The algorithm of Section 7 could fail for two reasons. First, if all link
facets are locally regular although there are other locally nonre¢ulilarl)-simplices,

then the algorithm would stop before reaching the regular triangulation. We show this
cannot happen. Second, it could be thattihde loop does not terminate, either because

it cycles in an infinite loop of flips or none of the locally nonregular link facets is
flippable. Again we show this is impossible. We begin with a basic property of regular
triangulations.

Regular d-Simplices Maximize Power Distanc€onsider a subsatof d+ 1 weighted
points of S, defineoc = o7, and lety be a point in the interior of. Definez = z,,
h, = g~%(z"), and fy(o) = m.(y) = |zy|?2 — w,. Sinceh, is a nonvertical hyperplane
we can think of it as a function frol® to R and writeh, (y) for its function value at
Yy = (Y1, Y2, ..., Ya) € R As observed in Section 3, we have

fy(o) = Ya+1 — he (¥),

whereyg 1 = Zidzl yZ. In order to maximizef,, over alld-simplicess defined bySthat
containy, we therefore need to minimitg (y). Soh, must be the hyperplane spanning
the lower facet of cony&") that intersects the vertical line throughThis lower facet is
the lifted version of the-simplexo of R(S) that containg. We thus have the following
result which has been proved i) for d-dimensional Delaunay triangulations.

LEMMA 8.1. Let S be a finite set of weighted pointsRA, and let y € conuS) be
a point that does not lie on the hyperplane spanned by any d points O#/& all
d-simplicess defined by S that contain ¥y (o) is maximized ife is in R(S).

For example, consider the case where a'setd + 2 points plays the role din the
above lemma. Assume thatis flippable within some triangulation, and kebe a point
in the interior of the convex hull of . Leto’ ando” be thed-simplices that contairy,
wheres’ belongs to the triangulation df before the flip and” to the one after the flip.
Thenfy(c’) < fy(c”) because the triangulation after the flip is the regular triangulation
of T ando” is part of it.

Link Facets Suffice We show that all flips applied in the course of adding the next
point, p;, satisfy the following two properties. Lt be the set ofl 4+ 2 points that is
flipped.

(i) peT.
(i) ood = or_{p) is ad-simplex iNR(S_1), and the flip destroys it.

Properties (i) and (ii) certainly hold for the first flip, performed in step 5, which adds
pi with a “1 tod + 1” flip. Assume inductively that (i) and (ii) hold for the firgt— 1
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flips. This implies that altl-simplices generated by thege- 1 flips havep; as a vertex.
So alld-simplices of the current triangulation that are disjoint frpmared-simplices
of R(S_1). This implies that ifT € §_; is a flippable configuration, then it is locally
regular andl’ would not be flipped. Thus, property (i) also holds for ffik flip. Let T
be thed + 2 points of thejth flip and consideld = T — {p;} andoy . Thisd-simplex
belongs to the triangulation af either before or after the flip. To get a contradiction,
assume thaty belongs to the triangulation after the flip, thatds, is created by the flip.
Take a pointy in the interior ofoy and leto be thed-simplex inR(S_1) that contains
y. We havefy(oy) > fy(o) because the flip increasdg and earlier flips either also
increase it or leave it unchanged. However, this contradicts Lemma 8.1 which asserts
that among thel-simplices spanned b§ _; that containy—and bothoy ando belong
to this collection—f is maximized by>. So we conclude thai, is destroyed by théth
flip, rather than created. Property (ii) follows for ttn flip and thus holds in general.

We thus proved that each flip destroys a unide@mplex,oqq, of R(S_1). All other
d-simplices destroyed by a flip shapeas a vertex. Except in the first flip (step 5) there
is at least one suctl-simplex,o’. oo ando’ share ad — 1)-simplex which is thus a
link facet. Right before the flip happens this link facet is flippable and locally nonregular
by assumption. We thus have proved that it is sufficient to restrict our attention to link
facets when locally nonreguléd — 1)-simplices are sought.

Thewhile Loop Terminates Notice first that the flip ofl increasesfy for all points
y in the interior of conyT). For all other pointsy € RY, fy remains unchanged. The
increase inf value can be viewed as an indication of the progress made by the algorithm.
This implies that once lsimplex is destroyed it can never be reintroduced in the future.
Thus, we can be sure that thdiile loop does not get caught in an infinite loop of flips.
Finally, we show that if there are locally nonregular link facets, then at least one of
them is flippable. Consider a triangulati@hreached at some point in time during the
insertion of pointp;. Thed-simplices of7 that do not belong t& (S_;) are exactly the
ones that have; as one of their vertices. The union of thessimplices is a star-shaped
polytope, denoted by stgm ). The facets of stdp;) are exactly the link facets. L&t be
the collection ofd-simpliceso in 7 that lie outside stap;) and share a link facet with
stap;). Let L’ be the subset al-simplices inL that are incident to locally nonregular
link facets. By assumptiorl,” # . For eacho € L considerf (o) = fj (o) and let
omin = oy be thed-simplex inL’ that minimizesf . We prove below that = U U {p;}
is flippable.
By choice, f (omin) < f(o) forallo € L’. All 0 € L — L’ are incident to locally
regular link facets. Thereforey, < m,(p;), wherez = z,. This implies

f(Omin) < Wp < T (Pi) = f(o).

In other wordsomin minimizes f over allo € L. Consider a half-liner,, emanating
from p; that intersects a link facet in its relative interior. Before intersecting any dther
simplex outside stap; ), r intersectsl-simplices inL. By Lemma 2.2f increases along
the sequence a-simplices intersecting. Thus, ifr intersectsmin, then it cannot inter-
sect any othed-simplex outside st&p;) beforeonn. This implies that the subcomplex
induced byT = U U {p;} has underlying space equal to cony.

In other wordsT is flippable.
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9. Randomized Analysis. If the points ofSare added in a random sequence we can
show that the expected running time of our algorith®i® log n + n'¥21) for any point
distribution. Furthermore, if the points are independently and identically distributed and
f (n) is the expected number of simplicesR(S), then we can show a running time

of O3, f(n/i)). We begin with a brief worst-case analysis of the number of flips
performed.

Maximum Number of Flips Thed+ 2 points involved in a flip defind+ 2 d-simplices,

each occurring either in the triangulation of tthe+ 2 points before the flip or the one

after the flip. So one of the two triangulations hag (d + 2)/2 d-simplices. Thes&
d-simplices intersectin @ —k+ 1)-simplex, withd —k+1 < d/2. Setuw = |d/2]. This

implies that each flip deletes at least qnasimplex or adds at least one. As mentioned

in Section 8, a simplex is added and deleted at most once, so the number of flips cannot
exceed the total number @f-simplices defined by points. A u-simplex is spanned

u-simplices. Note, however, that we add

n+d+l>.lt

+1
follows that the maximum number of flips needed for a regular triangulatiorpofnts

d+1
in RY is at most ;(n + +_; ) = O(n'@*V72ly This is therefore an upper bound on the
m

worst-case storage requirement. An additional factgppears in the worst-case running
time. The rather pessimistic worst-case analysis is due to the point-location strategy and
can be improved using linear programming. The randomized analysis shows, however,
that such a modification is neither necessary nor appropriate. Compare with Lemma 9.2
below.

The analysis of the running time under the assumption of a random input sequence
requires some additional definitions.

n
by u + 1 points, son points spar(
nw+1

d + 1 artificial points at infinity; hence the number pfsimplices is<

Terminology and k-Set BoundsConsider an arbitrary subs€&tof d + 1 points of S
and letoc = o7 be the simplex defined by. Let z = z, be the orthogonal center of,
and define

I'e ={p e S| m(p) < wp}.

Note thatl', N T = ¢, and that", = @ iff o is ad-simplex of R(S). Cally, = |I',| the
widthof o.

The analysis is based on bounds for the numbdrsifnplices with a fixed widtlk. It
is also necessary to considesimplices incident to points &. For each subsét C S
and for each G< k < n, write G¢ for the collection of subsefs € S,, [T| = d + 1, for
whichT N & = @ andy,, = k. To avoid any confusion: thie points counted by,
are points inS, because the definition @f, is such that it necessarily excludes points
of §. Furthermore, defin€&%; = (Ji_, G¥-

For nonempty2, the setsGy? are somewhat more natural if we consider the lifted
setSF = {p™ € R¥1 | p € S)}. As explained in Section 3, the orthogonal center of
o=or,T CS,|T| =d+ 1, corresponds to the hyperplane that contains the points
of T*. The constraint that a hyperplane contain a point with some arbitrarily large or
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arbitrarily small coordinates (symbolized by or —oo) really means the hyperplane
must contain a certain direction. Recall tHah § = © and thafT ™ containsw = ||
points with arbitrarily large or small coordinates. So the hyperplane spanngt st
containw directions. These constraints can be expressed using the linear I§eii, of
lin(22*), which is ano-dimensional linear subspaceRf . Let Fq, be thd -dimensional
linear subspace orthogonal to(f2*), wherel = d + 1 — w. Fq can be viewed as an
embedding oR! in R4+1,

The maximum cardinalities of the se®’ relate to the maximum number kfsets
of a collection of points iR!. A k-set of a finite point sef C R' is a subseB C A of
sizek for which there is a half-spadd in R' with B = AN H. Write g(”(A) for the
number ofk-sets ofA and deflneg(') (A = Zk 1 g(')(A) The results ok-sets that are
most relevant to our analysis are both taken fréimllet n be the number of points iA.

(1) g2} (A) = O(j "Inl"2),

and

@ etal i =o(i'1(5)).

Result (2) assumes that the points are independently and identically distributédeand
is the expected number of facets of the convex hull oftpeints so chosen. The proof
of (1) and (2) assumes thhis a constant ang is asymptotically less than. If j is
proportional ton, then the bounds (1) and (2) are trivial. Alternatively, this bound can
be obtained by a straightforward extension of the relevant calculatiois]in [

The connection between the s&8 and the concept of keset is based on the lifting
map explained in Section 3. Consider a®et G{¥. So|T|=d+1,T NS = L, and
for o = o1 we havey, = |I',| = k. Leth, be the hyperplane iR%+! spanned by the
points inT*. The property of the lifting map discussed immediately before Lemma 3.1
implies thatl" = St N H for one of the two open half-spacesbounded by, . Thus,
' is ak-set of St. Furthermore, if2 # ¢ andQ # S, then there is ah-dimensional
linear subspacehq, with 1 <| =d + 1 — || < d, orthogonal to lii&2™). For a point
p € S, let pg be the orthogonal projection @ into Fg,. Extend this definition to sets,
so that, for examples, = {pe | p € S}. With these definitions(I', ) is ak-set of ;.
So we can use the above bound on the numbkyrsats and obtain the result formulated
in Lemma 9.1(i).

In order to get a similar result for independently and identically distributed points,
observe that the expected number of facets of the convex halpoints is also at most
f (n) in every projection into an affine space with fewer dimensions. Note that this bound
tends to be less accurate as the dimenkimecomes smaller.

LEMMA 9.1.

(i) Forall 2 € §,we havgG?;| < g(')(SQ) O(jM2nl"2ly wherel=d+1—1|.
(i) If the points are mdependently and |dent|cally distributed and the expected number
of facets of their convex hull is(fi), then H|G% J|] < O(j' f(n/})).

Expected Number of d-SimplicesUsing Lemma 9.1, we now derive a bound for the
expected number af-simplices that appear during the constructiorRgfs,). We also
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need the following observation. Consider a et G{. The probability thab = ot

is ad-simplex of a regular triangulatio®R(S), for some 1< i < n,isll/((k + 1)

- (k+2)- -+ «(k+1)), wherel =d+ 1— || as usual. This is because the probability
is the same as the one of adding thints inT N S before any of th& points inT,.
Call such ad-simplexo nontransient

LEMMA 9.2. The expected number of nontransient d-simplices(i €¥') without any
assumption on the distribution of the weighted pqiat®l it is O(n® + f (n)), ¢ > 0,with

the assumption of an independent and identical distribution for the weighted points such
that the expected number of simplices of the regular triangulation of n such weighted
points is given by a function (h) with f(n)/n® monotonically increasing

PROOF  We express the expected number of nontranglesimplices,E, in terms of
probabilities. Here the expectation is solely over the outcomes of coin-flips occurring
when the point-intersection order is decided. The effect of a distribution of the weighted
points will enter the proof later.

E=)_ i > Probpris nontransient]

QCSH k=0 TeGY

We can replace the last sum by the cardinalityG§f times the probability calculated
above.

" G|
E = I
sé) g(k—i—l)(k%—Z) e (kD
_ G4l __Sf IGZ
n—1 |G |

The first term in the sum over se@scan be neglected because

eg= (")

which implies that it is smaller than 1. If we now use Lemma 9.1(i), we obtain

cnl’2l

E=< Z I(II)Z ki+l72)°

QCY

wherec is some positive constant. Note tHatc d + 1 and|S| = d + 1 are both
constants becauskis a constant. This implieE = O(n/%21), which is the first part of
the assertion. If we use Lemma 9.1(ii) instead of (i), we get

E<Y |<|')Z° T ot

QCH k=
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if we assume thaf (n) = Q(n°), ¢ > 0, sincef (n)/n is monotonically increasing.
This gives the second result of the lemma. O

The above argument only counts nontranseestmplices that occur during the con-
struction ofR(S,). There are also transiettsimplices that occur. #&ansient dsimplex
is constructed during the insertion of new point, payand is destroyed before the regular
triangulation ofS is completed. As mentioned earlier, each flip destroystbanplex
of R(S_1), and it creates at modt+ 1 d-simplices. It thus follows that the total number
of transientd-simplices constructed by the algorithm is at most of the same order of
magnitude as the number of nontransient ones. Thus, the bound in Lemma 9.2 applies
also to the expected number of transigrgimplices. If we ignore the input, the amount
of memory required by the algorithm in Section 7 is bounded by the size of the history
dag, which is proportional to the total number of transient and nontrarssigintplices.
Thus, Lemma 9.2 gives a bound on the expected memory requirement.

Point Location The amount of time spent for locating (step 3) is proportional to
the length of the traversed path. The accounting is done differently for transient and for
nontransient-simplices. Ifo is a nontransierd-simplex on the path of;, but not the
lastd-simplex on this path, thep; € T',. If o is transient, then we find a nontransient
d-simplexs’ with p; € T, that is not used yet in the accounting of the cost ffpr
Sinceo is transient, there is a flip that removedrom the triangulation, and this flip
also removed ond-simplex of R(S_1). Thisd-simplex is nontransient and we let

be thisd-simplex. Notice that’ is counted only once for poing;. In summary, the
point-location cost fop; is bounded by one plus the number of nontrangiesimplices

that containp; in their setsI". Therefore,n plus the sum ofy, over all nontransient
d-simpliceso is an upper bound for the total cost that occurs in step 3 of the algorithm.

LEMMA 9.3. The expected cost of point location ir@ogn + nl%21), without any
assumption on the distribution of the poingnd it is O(Zﬂzl f (n/k)), with the as-
sumption that the weighted points are independently and identically distributed and the
expected number of simplices in the regular triangulation of n such weighted points
is f(n).

PrROOF As in the proof of Lemma 9.2, we can compute the expectafigrof 3 y,
by summing probabilities. We sum over all nontransidrgimpliceso. If we use
Lemma 9.1(i), we get

E = k - Probpris nontransient]
CSH k=0TeG

Q0
Y

=0

" n CnLI/ZJ | 42
(.);W: O(nlogn + nl¥21y,

IA

QCH
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wherec is some positive constant ahd= d + 1 — |€2|, as in Lemma 9.2. This proves
the first part of the assertion. If we use Lemma 9.1(ii), we get

E < Zm!)ic. f (E>:O<§f(g))

QCH k=1

which is the second part of the assertion. O

Apart from the point-location cost, the algorithm takes only constant time per flip.
Note that the sum expressing the running time is bounded from abo@ byn)) if
f(n) = Q(n'**), ¢ > 0, and f (n)/n*** monotonically increases. This shows that the
algorithm runs in expected time proportional to the expected size of what it produces,
unless this expected size is linear or only slightly superlinear.

An interesting special case is when the points are independently and uniformly dis-
tributed in the unit hypercube iRY. For the case of zero weights (in which case the
regular triangulation is the Delaunay triangulation of the points), Dw§igoroved that
f(n) = ©(n), assumingl is a constant, see alsb][ Theorem 9.4 implies that in this
case the expected running time of our algorithr®ig logn).

We can thus summarize the results of this section, and indeed of this paper.

THEOREM9.4. The expected running time and memory requirement of the randomized
incremental version of the algorithm in Sectidrare, respectivelyO(nlogn + n/@21)

and O(n'¥21), If we assume that the weighted points are independently and identically
distributed and {n) is the expected number of simplices in the regular triangulation of n
such weighted pointghen the expected running time is{gﬂzl f (n/k)). Furthermore

if f (n)/n? is monotonically increasinghen the expected memory requirement (§G-

f(n)), foranye > 0.

10. Concluding Remarks. Delaunay triangulations, and more generally regular tri-
angulations, have a fair number of applications, including the generation of grids for
point configurations and the construction of so-called alpha shaggq14]. Indeed,

the main motivation for studying the problems solved in this paper is our intention to
implement weighted and unweighted alpha shapes in dimensions bRyoitdvould

be interesting to conduct an experimental study comparing the algorithm of this paper
with its main contenders for constructigdimensional regular triangulations. These
are probably the randomized algorithm of Clarkson and S#j@r{d the output-sensitive
algorithm of Seidel27]. The difference between the algorithms in this paper and]in [

are in the details which nevertheless can affect their performance. It should be pointed
out that Seidel’s algorithm is neither randomized nor on-line. The algorithm in this paper
is sensitive to the expected output size when the weighted points are independently and
identically distributed.
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