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Abstract. The recent selection of the AES block cipher to replace DES
has generated interest in developing new modes of operation to sup-
plement the modes defined as part of the DES standard [IJT6J23]. We
initiate the study of modes of encryption which are both incremental
and unforgeable, and point out a number of applications for modes meet-
ing these requirements. We also propose three specific modes achieving
these goals, and discuss the strengths and weaknesses of each.

1 Introduction

1.1 Motivation

With the recent selection of the proposed AES, there has been an intensification
of study on all aspects of private-key cryptography. In particular, there has
been much interest in the design and analysis of new modes of operation for
private-key encryption (indeed, NIST recently held a workshop focusing on this
topic [22]). Tt is important to note that just as no block cipher is “best” for all
applications, the same holds true for modes of encryption (hence the number of
different modes proposed). In fact, each application determines a different set of
requirements for the encryption scheme to be used.

It is often required to maintain an encrypted copy of data which undergoes
frequent, yet small, changes [4]. One example is a user revising a file who wants
to maintain an encrypted copy at all times. Other examples include the mainte-
nance of an encrypted database or table throughout the course of many update
operations during which isolated entries change while the bulk of the data re-
mains the same. These examples may be taking place in an environment such as
an encrypted file system [9] in which the underlying data is constantly changing
yet encrypted versions must always be stored.

In such cases, using an incremental encryption scheme can lead to huge effi-
ciency gains. The goal of incremental cryptography, introduced by Bellare, Gol-
dreich, and Goldwasser [3], is to design cryptographic algorithms whose output
can be updated very efficiently when the underlying input changes. For example,
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say we have a document D, and have applied cryptographic transformation T
to this document to generate T(D). The document is then modified via update
operation M (where, for example, M = “delete block 7”) to give new document
D’. An incremental update algorithm IncT is one such that IncT(D, M, T(D))
outputs a valid cryptographic transformation of D’. Note that computation of
IncT can be potentially much faster than recomputing T(D’) from scratch. Ide-
ally, the running time of IncT should depend on the type of modification only
(and possibly the security parameter), but, in particular, should be indepen-
dent of the size of the document |D|. Even when this cannot be achieved, one
might hope for an incremental update operation which runs in time O(log|D|)
instead of time O(|D|) which is required for re-computation from scratch. When
documents change frequently, dramatic efficiency improvements are possible.

In many of the aforementioned scenarios, incrementality is not enough. Ad-
ditionally, one typically requires a guarantee of data integrity. Consider the case
of an encrypted file system or remote database. The resulting ciphertext may
be stored on an insecure medium (this is the reason for encryption in the first
place), and an adversary may be able to modify the ciphertext as he chooses. A
malicious attacker should be prevented from modifying the ciphertext so that it
will appear correct when it is later decrypted by the user. Data integrity is useful
as a means of virus protection [4] if applications and data are always checked
for validity before being used. We model this requirement via unforgeability [18|
19| (also known as ciphertext integrity [7]). Briefly, a malicious adversary (who
views a sequence of encryptions and incremental update operations) should be
unable to generate any new ciphertext which decrypts to a valid plaintext. This
is the strongest notion of integrity for the case of encryption.

1.2 Previous Work

The joint importance of incrementality and integrity in the context of cryp-
tographic file systems has been recognized elsewhere [4]. However, [4] focuses
primarily on MAC and hashing algorithms. Achieving these goals simultaneously
for the case of encryption has not previously been considered.

INCREMENTAL ENCRYPTION. Prior work dealing with incremental cryptography
has focused mainly on hashing, signing, and message authentication [BIZI6TO/IT]
21]. We are aware of only one previous work dealing with (among other things)
incremental encryption [4]; the scheme there is based on encrypting a description
of the modification and appending it to the end of the current ciphertext. A
comparison of our work to [4] is worthwhile:

— A formal definition of security for incremental encryption does not appear
in [4]. We provide appropriate definitions here.

— To achieve incrementality in the non-amortized sense, the scheme of [4] is
complex and relatively inefficient. It requires O(log |D|) block cipher evalua-
tions even for simple updates, and results in ciphertext which is as much as
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four times longer than the plaintext. The schemes presented here are sim-
ple to implement, can be updated using a constant number of block cipher
evaluations, and (in some cases) reduce the ciphertext expansion.

— The scheme of [4] does not achieve any measure of integrity (this was not
the focus of their work). They did not consider active attacks, only semantic
security. The schemes presented here are unforgeable under the strongest
definition of the term.

— The basic scheme of [4] is not oblivious in the sense of hiding the revision
history of the document (see Section ?7). The schemes presented here are
all oblivious, without requiring additional complexity.

In fairness, the notion of security considered in [4] is stricter than that which we
consider here. Specifically, we allow the adversary to determine the location of
modifications made (although an adversary cannot determine the nature of the
change). In practice, we believe this is not a serious concern. Discussion of this
point appears in Section 2.3l

UNFORGEABILITY. The importance of integrity in the context of private-key
encryption has been recognized for some time. Besides being important in its
own right, integrity implies security against chosen ciphertext attacks [19] (see
also [7]). Recently, there have appeared a flurry of definitions, detailed analyses,
and modes of encryption all intending to more carefully address this issue [19]
T77RIT224122/15]. We use the notion of unforgeability [I8/19] (also known as
ciphertext integrity [7]), which is the strongest notion of integrity. Under this
definition, an adversary may observe a sequence of encryptions (and incremental
updates in our case) yet should be unable to generate any new ciphertext which
decrypts to valid plaintext. The formal definition appears in Section 24l

1.3 Summary of Results

We begin by presenting our definitions: a definition for incremental encryption,
formal definitions of security (privacy and integrity) for the setting of incremental
encryption, and a definition of obliviousness. We then introduce three modes of
encryption achieving both incrementality and unforgeability, and give theorems
indicating the exact security of each construction. We conclude with a discussion
comparing the strengths and weaknesses of these modes.

2 Definitions

2.1 Notation

For probabilistic algorithm A, denote by y <+ A(x1,22,...) the experiment
in which we generate random coins r for A and let y equal the output of
A(xq,22,...;r). Furthermore, let {A(z1,z2,...)} represent the probability dis-
tribution defined by execution of A on the specified input, with coins for A
generated randomly. If S is a set, then b < S denotes assigning to b an el-
ement uniformly chosen from S. If p(z1,22,...) is a predicate, the notation
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Prx; « S;xe «— A(z1,y2,...); - : p(x1,22,...)] denotes the probability that
p(x1,xa,...) is true after ordered execution of the listed experiments.

STRONG PSEUDORANDOM PERMUTATIONS. We follow [I3[/2/20] in defining a
strong pseudorandom permutation family F' as one for which the input/output
behavior of Fjy, ijl “looks random” to someone who does not know the ran-
domly selected key sk. We refer to the listed references for details.

2.2 Incremental Encryption

DoOCUMENT MODIFICATIONS. We view the document D as a sequence of blocks
01,...,05, where the blocksize may depend on the security parameter k. For
simplicity, we assume that all documents consist of an integral number of blocks
(documents can be padded using standard methods if this is not the case). In the
context of incremental cryptography, various modification operations have been
considered. We represent a generic modification operation by M and denote the

effect of M on document D by D(M). We define sequential modifications opera-

tions by: D(My, Ma, ..., My) % (- (D(My))(Ms)) - - -)(Mj,). We consider the

following types of modification operations:

— M = (delete, i) deletes block i of the document.
— M = (insert,i,0) inserts o between the i*" and (i 4+ 1)*® blocks of the docu-
ment.

— M = (replace, i, o) changes the i‘"

block of the document to o.

Other modifications of interest include the cut and paste operations, which divide
a document into two or combine two documents together. Although some of the
schemes presented here support these modifications, we leave the details for a
future version of this paper.

The location of modification operation M is the block number ¢ which is mod-
ified. We always implicitly assume that a modification operation is valid; that
is, it represents some feasibld] modification of D. For the operations considered
above, we define | M| to be the underlying blocksize.

INCREMENTAL ENCRYPTION SCHEMES. We recall the generic definition of an
incremental algorithm as presented by Bellare, Goldreich, and Goldwasser [4],
modified here for the case of encryption. (Although the definition below explicitly
mentions the security parameter k, we omit this parameter when discussing
concrete security definitions and theorems since, in practice, we are given a
fixed-size block cipher only.)

Definition 1. An incremental, private-key encryption scheme II defined over
modification space M is a 4-tuple of algorithms (IC, &, IncE, D) in which:

— K, the key generation algorithm, is a probabilistic, poly(k)-time algorithm
that takes as input security parameter k (in unary) and returns secret key
sk. The security parameter also fixes a block size b.

! E.g., we do not call (delete,i) on D when D contains fewer than i blocks.
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— &, the encryption algorithm, is a probabilistic, poly(k,|D|)-time algorithm
that takes as input sk and document D € ({0,1}*)* and returns ciphertext
C.

— IncE, the incremental update algorithm, is a probabilistic, poly(k,|C|, |M])-
time algorithm that takes as input secret key sk, document D, modification
operation M € M, and ciphertext C and returns modified ciphertext C'.

— D, the decryption algorithm, is a deterministic, poly(k, |C|)-time algorithm
that takes as input secret key sk and ciphertext C and returns either docu-
ment D or a special symbol L to indicate that ciphertext C is invalid.

We require that for all sk which can be output by K, for all valid D, we have
Dy (Esk (D)) = D. Additionally, for all sk which can be output by KC, for all valid
D, for all modifications M € M, we have Dgy(IncEs, (D, M, Es(D))) = D(M).

Remark 1. We do not define the behavior of IncEs, (D, M, C) in the case when
it is given “garbage” input; i.e., when Dy (C) # D or Dy (C) =L. We refer to
this sort of input as invalid for the incremental update algorithm.

Remark 2. It may seem strange that we allow the running time of IncE to be
polynomial in | D|. However, such schemes may be of interest; for example, when
an update can be done in half the time it would take to re-encrypt from scratch.
Optimally, the running time of IncE should be independent of the length of
document D. Following [4], such schemes are called ideal. In the present schemes,
IncE does not require access to the original document D; thus, execution of the
incremental update algorithm is abbreviated by IncEgx (M, C).

Remark 3. The underlying modification space M is included in the specification.
As discussed in Section [2.2] various modification operations can be considered;
not every incremental encryption scheme supports every such operation.

2.3 Indistinguishability of Incremental Encryption

Although security for incremental encryption has been discussed informally in
[], this is the first formal definition of which we are aware. The secrecy require-
ments (informally) are as follows: first, the basic encryption algorithm should
be semantically secure. Second, the incremental update algorithm should not
somehow “ruin” the semantic security of the encryption. Finally, the incremen-
tal update algorithm itself should not leak information (discussed in more detail
below) about the underlying modification.

According to the previous definition [4], an adversary, upon observing an
incremental update, should not be able to determine the location of the mod-
ification taking place or the symbol being modified. We relax this requirement
and allow the possibility that an adversary can determine where a modification
takes place (but still cannot determine the symbol being modified). For exam-
ple, an adversary should be unable to distinguish between a (replace, i, o) and



114 E. Buonanno, J. Katz, and M. Yung

a (replace,i,0’) modification. The case addressed by the previous definition is
often not of practical concern (the location of a change may be known, anyway).
Furthermore, the other benefits of our schemes outweigh this weaker security
guarantee in many situations. In particular, our schemes are oblivious (hide de-
tails about the document modification history) and unforgeable, which are often
more desirable goals. Finally, it is unclear how to extend the previous definition
to handle modifications such as cut and paste, in which the “location” of the
modification is trivially determined.

Formally, we model security using the notion of find-then-guess indistin-
guishability [2], which implies the standard notion [14] of semantic security.
The adversary may interact with an encryption oracle Es(-) and an incremen-
tal update oracle IncEgy (-, -). Then, the adversary outputs either two documents
(D1, D2) (which must have equal number of blocks ¢) or a ciphertext C along
with two modification operations (M7, M2) (which must be of the same type and
modifying the same location). A bit b is chosen at random and kept hidden from
the adversary. In the first case document Dy is encrypted, while in the second
case the IncE algorithm is applied to M}, and C; in either case, the result is given
to the adversary. The adversary may then continue to interact with the £ and
IncEgy, oracles. We say the adversary succeeds if it correctly guesses b. We define
the advantage of the adversary as twice the probability of success, minus 1/2.

Our concrete security definition follows the approach employed by [5]. We
say that encryption scheme IT is (¢, ge, it, Gine, £; €)-secure in the sense of indis-
tinguishability if, for any adversary A which runs in time ¢, making g, queries
to the encryption oracle and g, queries to the IncE oracle (with the total num-
ber of blocks in all encryption and incremental update queries equal to u), the
advantage of A is less than e.

2.4 Unforgeability of Incremental Encryption

We now consider unforgeability for incremental modes of encryption, extending
the definition of [I9]. The adversary is again allowed to interact with an en-
cryption oracle and an incremental update oracle. Now, however, we allow the
adversary to submit only valid queries (in the sense of Remark 1) to the IncE al-
gorithm. At the end of its execution, the adversary outputs a ciphertext C' which
must be different from any ciphertext it received from either of its oracles. The
adversary succeeds if C' is valid. Formally:

Definition 2. Let IT = (K,&,IncE, D) be an incremental encryption scheme

over modification space M, and let A be an adversary. Let Advj’ﬁ] def

Pr [sk K C e ABROINE() Do) £1]

We insist that A’s queries to the IncE oracle are all valid, and that C was never
received in response from either oracle. We say that I is (t, Ge, 14, Qinc; €)-Secure
in the sense of unforgeability if, for any adversary A which runs in time t, making
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ge queries to the encryption oracle and ¢;n. valid queries to the IncE oracle (with
the total number of blocks in all encryption and incremental update queries equal
unf

to p), Adviyy is less than e.

The above definition corresponds to the “basic security” of [3/4]. One may
also consider the more complicated setting in which the adversary is given un-
restricted access to the IncE oracle, and is allowed to submit invalid queries as
well. Security in this setting is generally much more difficult to achieve [3[46]. In
this paper, we concentrate on the case of basic security onlyﬁ (which in typical
applications is sufficient).

2.5 Obliviousness of Incremental Encryption

An incremental encryption scheme raises new security concerns. One such con-
cern is that a ciphertext may reveal information about the revision history of
the underlying plaintext. We say a scheme is oblivious if this revision history is
hidden even to someone who knows the secret key. Motivation for this concern
arises when the ciphertext is transmitted between two parties; the first party
sending the ciphertext will not, in general, want the second party to be able to
learn about the modifications made in the course of creating the document. This
notion was first formally defined by Micciancio [21]; we modify his definition for
the present context:

Definition 3. Let II be an incremental encryption scheme over modification
space M. We say that II is oblivious if, for any two documents D, D', for any
sequence of modifications My, ..., M; € M such that D' = D{(My, ..., M;), and
for all keys sk, we have:

{E (D)} = {InCEpo (M, -+, INCE oo (M7, Egie (D)) - - )} .

3 Incremental and Unforgeable Modes of Encryption

3.1 Encrypt-then-Incremental-MAC

One method of achieving both incrementality and unforgeability is to use an
incremental mode of encryption together with an incremental MAC [3J46] of the
ciphertext (the encrypt-then-MAC approach [7]). Let inc-€ be an incremental
encryption scheme, and let inc-MAC be a secure, incremental MAC algorithm.
Then incremental, unforgeable encryption can be performed as follows:

E ks (D) = C 0 ine-MACy, (C), (1)

where C' = inc-&, (D). Incremental updates are done in the straightforward
way: first, perform the incremental update operation for C' (based on the new

2 The indistinguishability of our schemes, however, holds even when an adversary is
given unrestricted access to the IncE oracle, as reflected in the definition.
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document) to obtain C’; then, perform the incremental update operation for the
MAC (based on the new ciphertext C').

Care must be taken with the details of inc-£. First, note that not all incre-
mental encryption algorithms will result in practical schemes. For example, if the
incremental update operation for inc-€ changes a large fraction of the ciphertext
C, there may not exist an efficient incremental update operation for the MAC.
Furthermore, one must ensure that the incremental encryption scheme is indeed
secure under the definition of Section 23l One possible solution is the following
“randomized” ECB mode of encryption (rECB): given message o1, .. .,0,, choose
random 7g,71,...,7, < {0,1}* (where b is the blocksize) and compute:

Fo(r0), Fsi(r1 ® 10), Fsp(o1 ®11), ..., Fop(rn ®10), For(0n @ 15).

This mode is a secure, incremental encryption scheme, with updates (replace,
insert, and delete) done in the obvious way. Note that incremental updates result
in only small changes to the ciphertext; thus, we can efficiently combine this
mode with an incremental MAC algorithm (which handles replace, insert, and
delete), as in (). If the incremental MAC is secure, the result is a mode of
encryption which is both incremental and unforgeable.

3.2 inc-IAPM Mode

The previous proposal is attractive for its simplicity. Unfortunately, in practice,
incremental MAC algorithms are not very efficient (see Section (). Thus, we
propose other modes which improve the computational efficiency and ciphertext
expansion rate.

The inc-IAPM mode described here is directly based on the TAPM mode of
Jutla [I7]. TAPM mode represents an advance over previous unforgeable modes
of encryption, and is more efficient than the standard “encrypt-then-MAC” ap-
proach by a factor of two. Furthermore, it is parallelizable, which suggested to us
the possibility that it could be adapted to give an incremental mode. However,
it is non-trivial to modify this mode to achieve an efficient, incremental mode
while completely satisfying our definitions of security.

We now present the details. Similarly to the TAPM mode, encrypting an
n-block plaintext requires a sequence of pairwise independent blocks (labeled
So, S, 8T, ..., SfH_l, S} 11, 5" see below) which will be used for “output whiten-
ing”. These blocks are generated from a random seed K which is included with
the ciphertext. Generation of these output whitening blocks is described in [17],
and a more detailed analysis of the output whitening appears in [15]. It is im-
portant to note that generation of these blocks can be done very efficiently using
O(logn) block cipher calls [17] or even without using a block cipher at all [15].
In the analysis of our construction, we assume that blocks generated from the
same seed are pairwise independent and blocks generated from different seeds
are completely independent (this can be refined along the lines of [15]).

3 Recall that an incremental encryption scheme might require time O(|D|) for update
operations, as long as this time is less than that required to re-encrypt from scratch.
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Let F' be a block cipher family with blocksize b. The key generation algo-
rithm outputs a random key sk for F' (in addition to the key necessary for gen-
eration of the whitening sequence). The plaintext is parsed as a sequence of b-bit
blocks o1, ..., 0,. Encryption is described in Fig. 1 (generation of the whitening
sequence from seed K is as described above). Decryption is done by decrypt-

Algorithm &y 51 (D; K)
Generate Sp, ... using K and sk’
fori=1ton:
L; +— {0, 1}17; R;=L; ®o;
Lo, Ro < {0,1}®
Ln+1 = @?:0 Lz
Rup1 =@, Ri
0" = Lo® Ro
fori=0ton+1:
Cf = For(Li ® S5) & Sf
C* = Fa(o” © S) ® So
return K,C§,C5 .. ., CfLH, Chy1,C*

Fig. 1. inc-IAPM mode of encryption.

ing each ciphertext block, re-generating the pairwise independent sequence, and
checking the integrity conditions on L, 11, R,+1, and o*. If the integrity checks
succeed, D; is computed as L; @ R;; if they fail, the output is L.

For this particular mode, we are only able to achieve security with respect
to the replace operationty. The incremental (replace,i, o) operation proceeds as
follows. First, blocks L; and R; are updated to reflect the new value of block
. In addition, new random values Ly and R are selected. Finally, in order to
satisfy the integrity check, the algorithm updates the values for L, 1, R,11,
and o*. Details follow; for simplicity, we describe the algorithm informally (the
ciphertext is parsed as a sequence of b-bit blocks K,C§,Cp, ..., C*):

Algorithm IncEg s ((replace, i,0), C)
Compute So, S§, S5, 8¢, S, S4 1, Sh, 1, 5" from K
Decrypt to obtain Ly, Ry, L;, R;, Ly+1, Rn41, and o*
Choose random Lg), L}, and Ry,
Set Ri =L, &0
Update L;, 1, Ry, |, and 0’* to satisfy the integrity checks
Re-encrypt Ly, Ry, L, R}, Ly, 1, Ry, |, and o’

4 Incremental delete and insert modifications are known to be significantly more diffi-
cult to achieve in general [3/6].
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3.3 RPC Mode

The inc-IAPM mode is more efficient than the encrypt-then-incremental-MAC
approach, yet it only supports incremental replace operations. Here, we introduce
RPC mode which is slightly less efficient than inc-IAPM, but supports replace,
insert, and delete. The mode is specified by parameters b and r, where b is the
block size and r is the amount of random padding. The document D is parsed
as a sequence of b — 2r-bit blocks o1, ..., 0,. Encryption is performed as follows
(start is not part of the valid message space):

Algorithm %7 (D)

fori=0ton:

T < {0, 1}7’
C’O = Esk(r()aStarta Tl)
fori=1ton—1:

Ci = Fop(ri, 04, 7i41)
Cn - sk(rnaanar())
=@ i
C* = Fg(r* @ 1o, Ob_%ﬂ“*)
return Cy ...C,C*

Decryption is done in the obvious way, by computing Fs_k1 for each block of
the ciphertext and then checking that the first block contains an encryption of
start, that the values {r;} are chained correctly, and that decryption of C* gives
the correct ro and checksum. If these integrity checks succeed, the computed
document is output; if they fail, the output is L.

For lack of space, we describe (informally) the incremental delete, insert, and
replace algorithms (a detailed description of these algorithms will appear in the
full paper): The block i to be modified and adjacent blocks are decrypted to
determine 7;_1, r;, and r;4;. When a new symbol o is to be placed in position
j (where j = i,i + 1), o is encrypted by choosing new, random r} and com-
puting C = Fy(r},0,7:41). This causes the {r;} to remain chained correctly.
Furthermore (and this occurs even during a delete modification), new rg and rq
are chosen at random, and the checksum r* is recomputed (and the resulting
blocks are re-encrypted to give modified ciphertext blocks C{, Cj, and C'*).

4 Proofs of Security

The obliviousness of each mode is clear, by inspection. Thus, we focus on indis-
tinguishability and unforgeability. We assume throughout this section that the
block cipher family F' is a family of strong pseudorandom permutations. The
constructions can thus be analyzed by viewing F as a truly random permuta-
tion on b bits; “real-world” security bounds can be derived from the theorems
below and exact security bounds on F'. The theorems below give rough bounds
on the security of the constructions. More detailed proofs, and tighter security
bounds, will appear in the full version of this paper.
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4.1 Encrypt-then-Incremental-MAC

A general composition theorem (along the lines of [7]) shows that a secure, incre-
mental encryption scheme appended by a securel, incremental MAC of the result
gives a secure, incremental encryption scheme which is also unforgeable. For the
concrete security analysis, however, we choose the randomized ECB (rECB) mode
(see Section 3.1]) as the encryption algorithm, and the XOR-MAC of [4] (using r
bits of random padding per block) as the MAC algorithm.

Theorem 1. rECB-XOR over modification space M = {replace, delete, insert} is
(t, Ge, fhy Gine, L; €)-secure in the sense of indistinguishability, where:

€2+/J/£ £2M2
e:(’)< o + 22b>.

Proof (Sketch) Indistinguishability of the scheme is determined by rECB alone
(since the MAC is computed on the ciphertext, it can be simulated by the adver-
sary). Consider all blocks used as input to F' during the course of the encryption
oracle calls and incremental update oracle calls. Call such blocks wused. First
consider the case where the adversary outputs two documents, each containing
£ blocks. Let ro and B = {ry ®ro,01 ®711,...,70 ® 10,00 B 1} (cf. Section BI))
be the set of blocks used as input to F' during the encryption of the chosen
document. The adversary has non-zero advantage in only the following cases:
(1) For some By, By € B, it is the case that By = Bag; (2) for some 4, ; @ ro,
and o; @ r; are both used. The probability of (1) is bound by O(¢?/2%), while
the probability of (2) is bound by O(¢£2u2/22°).

When the adversary outputs two modifications, the adversary has a non-zero
advantage only if the modifications were of type replace or insert. In either case,
a new, random 7r; is chosen. The adversary can have non-zero advantage only if
either (1) r; @ rg is equal to o & ry; or (2) r; By and o & r; are both used. The
probability of either of these events is bound by O(u/2°). |

Theorem 2. rECB-XOR over modification space M = {replace, delete, insert} is
(t, Qe 11, Qine; €)-secure in the sense of unforgeability, where:

_ (QC + qinc)2 /1/2
e=0 ( 2 + o |-

Proof Unforgeability of the scheme is determined by the unforgeability of the
MAGC; taking the bounds from Theorem 3.1 of [4] gives the desired result. |

5 The security of the MAC must be that it is infeasible to forge a new, valid pair
(M, tag); it is not sufficient that it be infeasible to forge a valid tag on a new message.
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4.2 inc-IAPM

Theorem 3. The inc-IAPM mode of encryption over modification space M =
{replace} is (¢, qe, i, Gine, {; €)-secure in the sense of indistinguishability, where:

QE+Qinc 64

Proof (Sketch)  Consider all blocks x used as input to F' during the course
of the encryption oracle calls and incremental update oracle calls. Call all such
blocks used. Note that a ciphertext block received by the adversary is computed
as C; = Fg(2;) ® S;; in this case we say that x; is used with S;. First consider
the case where the adversary outputs two documents, each containing ¢ blocks.
Let B={L; ®S§, Ry,... L, ® S5, R,} be the set of blocks used as input to F
during encryption of the chosen document. The adversary has non-zero advan-
tage only in the following cases: (1) There exist Bi, Bo, Bs, B4 € B such that
B; = By and B3 = By; (2) for some i, L; @ Sg is used with Sf and R; is used
with S} . This is similar to the analysis in Theorem 1, except that the pairwise-
independent output whitening modifies conditions (1) and (2). The probability
of (1) is O(¢*/2%), and the probability of (2) is bound by O(g./2°).

When the adversary outputs two modifications, the modification must (by
definition) be of type replace. In this case, a random block L; is chosen. The
adversary’s success will be 0 unless L; ® S§ is used with S{ and R; is used with
Sr. The probability of this occurring is bounded by O(gin./2°). |

Theorem 4. The inc-IAPM mode of encryption over modification space M =
{replace} is (t, qe, t, Gine; €)-secure in the sense of unforgeability, where:

1 G2+ Gine

Proof (Sketch) Assume that seeds used in encryption oracle calls never re-
peat; such repetitions occur only with probability O(q2/2%). Let C be the set
of ciphertexts received by the adversary from all its oracle calls, and let C’ be
the new ciphertext output by the adversary. Clearly, the adversary’s success will
be bounded by 273 if C’ uses a seed which has never appeared in any of the
ciphertexts in C. Now, assume the adversary uses a seed K which was used pre-
viously. Denote by Cx C C the set of all ciphertexts which use this seed. Note
that since seeds do not repeat for encryption oracle calls and we are dealing with
replace operations only, all ciphertexts in Cx have the same length. By a similar
argument to that of [17], the adversary has advantage at most 1/2° if the length
of C” is not equal to this length.

For each position i (0 <i < n+1), let C{ be the set of ciphertext blocks cor-
responding to position Cf in all ciphertexts in Cx. Define CI and C* analogously.
The adversary has success bounded by 27 if, for any i, C/* & C¢ (with similar
statements holding for CJ" and C"*). This holds by pairwise independence of
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the values in the output whitening sequence (and complete independence from
sequences generated by other seeds).

Denote by L; the set of values corresponding to decryption of blocks in Cf,
and by L, the value corresponding to decryption of block CZ(Z in the adversary’s
output ciphertext. From the argument above, we may assume L, € £;. Note that
the adversary will have success probability bounded by 27° unless it is that case
that Lo, ..., L,4+1 were all used together in some ciphertext in Cx. This is true
since the values U; L; are completely independent except for the relation (defined
by the checksum) which holds between L;’s used in the same ciphertext. In other
words, the adversary’s success is bounded by 27 unless the blocks Cf were all
used together in some ciphertext in Cx. A similar argument holds for the R; (and
hence the C7). The same argument also holds for Ly, Ry, and D*, and hence for
C§,Cy, and C*. Thus, unless Lg has repeated for some pair of ciphertexts in Cg
(which happens only with probability O(¢2,./2%)), the adversary has advantage
at most 27° if it outputs a ciphertext different from those in Cg. |

4.3 RPC Mode

Theorem 5. RPC"" mode over modification space M = {replace, delete, insert}
is (t, Qe [,y Qine, U; €)-secure in the sense of indistinguishability, where:

€2+£M Qinc
ez@( o2r +2r>.

Proof (Sketch) Consider all blocks used as input to F' during the encryption
and incremental update oracle calls. Call all such blocks used. We first consider
the case when the adversary outputs two documents, each containing ¢ blocks.
Let B = {ri|o1|ra, ra2|oz|rs, ..., reloe|ro} be the set of blocks used as input to
F' during the encryption of the chosen document. The adversary has non-zero
advantage in only the following cases: (1) For some Bj, B € B, it is the case
that By = Ba; (2) some B € B is used. The probability of (1) is O(¢2/2%"), while
the probability of (2) is O(fu/2%").

When the adversary outputs two modifications, the adversary has a non-zero
advantage only if the modifications were of type replace or insert. In either case, a
random 7’ is chosen. The adversary has non-zero advantage only when r/|o|r;41
is used. But the probability of this is bounded by O(gin./2").

Theorem 6. RPC*" mode over modification space M = {replace, delete, insert}
is (t, Ge, [ty Qine; €)-Secure in the sense of unforgeability, where:

1 (QE + qmc)2

Proof (Sketch) Denote by C the set of all ciphertexts received by the adversary
from its oracles. Note that the initial blocks of all ciphertexts in C are distinct,
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Table 1. Comparison of the various modes. See text for details.

Block size|Expansion|Cipher evals|IND|Unf| Comments
IECB-XOR| 128 4 6n | k| &%
256 2.7 46n || L

inc-TAPM| 128 2 2n sk ;?gé only replace
RPC 128 1 an | dine | g
256 2 on |G| G

except with probability O((ge + gine)?/2°"). Now, assume they are all distinct.
Let the ciphertext output by the adversary be denoted C’.

Denote by Cy the set of values for the first block, for all ciphertexts in C. Note
that the adversary’s success probability is bounded by 272" if C}, € Cy. Let C € C
be such that Cy = C{; (by the assumption above, this defines a unique C). C' and
C’ either consist of the same blocks (possibly in different order), or there exists
a block which appears a different number of times in C' and C”. In the first case,
note that if the blocks are in different order, then the adversary’s probability
of success is bounded by 272", In the second case, since the random nonces
used for the additional block are independent of all other nonces in the sequence
(in particular, the value 1 defined by block Cp), the adversary’s probability of
success is bounded by 2727, |

5 A Comparison of the Various Schemes

The encrypt-then-incremental-MAC approach is appealing because it is so simple.
Unfortunately, incremental MAC algorithms are, in practice, difficult to design.
The constructions of [3l6] are number-theoretic in nature and involve algebraic
operations over groups instead of fast bit-wise operations such as XOR. A tree-
based suggestion of [4] is practical, but update operations require O(log |D])
block cipher evaluations. The only truly practical incremental MAC (with con-
stant update time) of which we are aware is the XOR-scheme of [4]. We call the
resulting scheme (cf. Section BI)) rECB-XOR.

Consider implementation with a 128-bit block cipher, and using r = 64 bits of
padding for the MAC. This results in ciphertext which is more than four times the
length of the plaintext (for an n-block document, rECB encryption results in 2n
blocks, and the tag computed by the MAC is an additional 2n blocks). Encryption
of a document from scratch is computationally expensive. An n-block document
requires 2n block cipher evaluations for the encryption and an additional 4n
block cipher evaluations to compute the MAC, for a total of 6n block cipher
evaluations. Furthermore, the security guarantee (for unforgeability) is not as
strong as one might like, since it is limited by the factor of u2/2%* even though
the underlying block cipher is 128 bits long. On the other hand, the scheme
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supports incremental insert, delete, and replace operations, and each can be done
in constant time. Performance of the mode is enhanced slightly when using a
256-bit block cipher. In this case, keeping » = 64 results in ciphertext only 2.7
times the length of the plaintext and only 4.6n block cipher evaluations are
required for encryption of an m-block document. The security guarantee (for
unforgeability) is still relatively poor.

The inc-IAPM mode results in ciphertext which is twice the length of the
plaintext. Encryption of an n-block document requires only 2n + O(1) block
cipher evaluations (this is comparable to the gain in efficiency of IAPM wvs.
standard encrypt-then-MAC [I7]). The incremental replace operation can be done
using only a constanti number of block cipher evaluations independent of the
document size. We note that this mode is efficient without requiring the larger,
256-bit blocksize. Finally, the security guarantees for inc-IAPM are stronger than
that for the previous scheme, most strikingly in the case of unforgeability.

The biggest drawback of the inc-IAPM mode is that it does not support
incremental delete and insert operations. This might be acceptable in some con-
texts; for example, when maintaining a database with a fixed number of entries.
Since the number of entries does not change, delete and insert operations are not
required. However, it is still important to support incremental replace operations,
since this is what will be required when entries are modified.

RPC mode supports incremental replace, insert, and delete modifications in
constant time. The ciphertext expansion and computational efficiency, however,
are not as good as the inc-IAPM mode. When using a 128-bit block cipher, one
might set r = 48 which results in ciphertext expansion by a factor of 4 and
requires 4n block cipher evaluations for encryption of an n-block document. The
security (especially in the sense of indistinguishability) is poor, being limited by
Qine/2%®. However, this mode performs much better when using a 256-bit block
cipher. Here, we may set r = 64, resulting in ciphertext expansion of only 2 and
requiring only 2n block cipher evaluations for encrypting an n-block document.
The security may now be acceptable for many applications.
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