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Abstract

The incremental updating of lower and upper approximations under the variation of information systems
is an important issue in rough set theory. Many incremental updating approaches with respect to different
kinds of indiscernibility relations have been proposed. The grade indiscernibility relation is a fuzzification
of classical Pawlak’s indiscernibility relation which can characterize the similarity between objects more
precisely. Based on fuzzy rough set model, this paper discusses the approaches for dynamically acquiring
of the upper and lower approximations with respect to the grade indiscernibility relation when adding and
removing an attribute or an object, and changing the attribute value of the object, respectively. Since the
approaches are used in succession, they make the approximations can be updated correctly and effectively
when any kind of possible change in the information system. Finally, extensive experiments on data
sets from University of California, Irvine (UCI) show that the incremental methods effectively reduce the
computing time in comparison with the traditional non-incremental method.

Keywords: Rough set, Fuzzy relation, The grade indiscernibility relation, Incremental learning, Approxi-
mation operators.

1. Introduction

Rough set theory, a mathematical tool for dealing
with vagueness and uncertainty, was introduced by
Pawlak in 19821. It can be used in attribute value
representation models to describe the dependencies
among attributes, evaluate the significance of at-
tributes and derive decision rules2,3,4,5,6. Rough set-
based data analysis starts from a data table, also
called an information system, which contains data
about objects of interest that are characterized by a
finite set of attributes. Objects with the same infor-
mation are indiscernible and the indiscernibility re-

lation generated in this way forms the mathematical
basis for the theory of rough sets. By using the indis-
cernibility relation, a rough set is characterized by a
pair of sets, called the lower and upper approxima-
tions. In recent years, classical rough sets have been
extended to several general models, such as cover-
ing rough set model7, fuzzy rough set model8, vari-
able precision rough set model9, generalized rough
set model10, probabilistic rough set model11, etc.

With the rapid development of modern infor-
mation technology, different types of data have in-
creased dramatically. In many real-time cases, in-
formation systems may evolve over time, in other
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words, some new information becomes available
continuously while some information is no longer
useful. One can retrain the system from scratch
whenever adding or removing data(attributes or
objects), which is known as a non-incremental
approach12. However, the non-incremental ap-
proach becomes very costly or even intractable as
the number of data grows. Alternatively, one can
also apply an incremental learning scheme12. The
essence of incremental learning is to allow the learn-
ing process to take place in a continuous and pro-
gressive manner rather than a one-shot experience13.
The research on updating knowledge incrementally
has shown its importance in many areas, such as
clinical decision making, intrusion detection, stock
evaluation, and text categorization14. Some incre-
mental learning methods with respect to rough set
theory have been proposed14,15,16,17. Chan firstly put
forward an incremental method for updating the ap-
proximations of a crisp concept based on the lower
and upper boundary sets15. Li et al. presented
an incremental method of updating decision rules
when multi-attributes are deleted or added simulta-
neously under rough set based on the characteristic
relation16. Zhang et al. investigated the approach for
updating approximations under neighborhood rough
sets17. Cheng proposed two incremental methods
for the fast computing of the rough fuzzy approxi-
mations based on the boundary set and the cut sets
of a fuzzy set, respectively14. These studies have
significantly enriched the theory of rough set and
guided a way for dynamic data mining, even big data
mining.

The indiscernibility relation is a key notion of
rough set theory, which partitions the object set of
an information system into a collection of equiva-
lence classes. Zhao proposed the notion of grade
indiscernibility relation which is a fuzzy relation for
information system to characterize the difference be-
tween the grades of discernibility18. Based on fuzzy
rough set model8, Qin investigated rough approxi-
mation operators based on the grade indiscernibil-
ity relation19. For the sake of better applying of
the grade indiscernibility relation, Luo extend it to
incomplete information system20. The value tol-
erance relation based rough approximation opera-

tors are investigated21. In this way, we defined the
approximation operators based on the grade indis-
cernibility relation in the same manner20. Further-
more, the rule acquisition and attribute reduction
are discussed, and the advantages of the grade of
indiscernibility relation are also explained. In this
paper, we discusses the approaches for incremen-
tally acquiring approximations based on the grade
indiscernibility relation when the information sys-
tem changes. Due to these approaches are used in
succession, they can effectively updated approxima-
tions when any possible changes in the information
system occur. In order to show the succession of the
approaches, examples in this paper are used as in-
put from the output of the example before it. And
it should be noted that the order of the information
system changes can be arbitrary.

This paper is arranged as follows. In Section 2,
we review some fundamental concepts of Pawlak
rough sets and the grade indiscernibility relation.
The remainders of the sections are focused on the
approaches for incrementally updating approxima-
tions based on the grade indiscernibility relation
when the information system varies with time. With
changes of the attribute set, we discuss how to ac-
quire approximation operators in Section 3. In Sec-
tion 4, we investigate the methods for updating ap-
proximations when adding or removing an object in
the universal set. The approaches for updating ap-
proximations when changing the attribute value of
object is given in Section 5. In Section 6, we ana-
lyze the time complexity of algorithms presented in
Section 3,4,5. In Section 7, the incremental meth-
ods are evaluated on data sets from UCI. Finally we
conclude the work of this paper and preview the fur-
ther work.

2. Preliminaries

In this section, for our further development, we
briefly review some basic notions of Pawlak rough
set1 and the grade indiscernibility relation18. Mean-
while, the traditional non-incremental algorithm of
calculating approximations is presented.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 212–233
___________________________________________________________________________________________________________

213



2.1. The grade indiscernibility relation

Definition 1 1 An information system is a quadru-
ple S = (U,A,V,F), where

(1) U = {x1, x2, · · · , xn} is a nonempty finite set of
objects called the universe of discourse;

(2) A is a nonempty finite set of attributes;
(3) V = ∪

a∈A
Va,Vais the values domain of a;

(4) f : U×A→ V is an information function such
that f (x,a) ∈ Va, for any x ∈ U,a ∈ A.

Definition 2 1 Let S = (U,A,V,F) be an information
system, B⊆ A, the indiscernibility relation ind(B) in-
duced by B is defined as:

ind(B) = {(x,y) ∈ U × U;∀b ∈ B( f (x,b) =
f (y,b))}.

Clearly, ind(B) is an equivalence relation. If
(x,y) ∈ ind(B), then x and y are indiscernible with
respect to B. It is noticed that, if x and y are dis-
cernible with respect to B, i.e. (x,y) < ind(B), then
there exists at least one attribute b ∈ B such that
f (x,b) , f (y,b). Thus the grade of discernibility
may be different for different pairs of objects. The
difference has not been described in Pawlak’s indis-
cernibility relation. To address this issue, Zhao pro-
posed the grade indiscernibility relation for informa-
tion system18, which is defined as follows.

Definition 3 18 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, the grade indiscernibility rela-
tionship GRB on B is a binary fuzzy relation on U,
i.e. GRB : U ×U → [0,1], and for any x,y ∈ U,

GRB(x,y) = 1
|B| |{b ∈ B; f (x,b) = f (y,b)}| .

According to this definition, GRB(x,y) represents
the proportion of undistinguishable attribute of x
and y in B. Clearly, (x,y) ∈ ind(B) if and only if
GRB(x,y) = 1. Thus, GRB is a kind of fuzzification
of a indiscernibility relation ind(B). It is noticed
that GRB is a reflexive and symmetric fuzzy rela-
tion, but not necessarily transitive, i.e., GRB(x,y)∧
GRB(y,z) 6 GRB(x,z) is not necessarily hold. From
the point of fuzzy rough set model8, Qin presented
approximation operators based on grade indiscerni-
bility relation19.

Definition 4 19 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A. For any fuzzy subset µ ∈ F(U),
the lower approximation GRB(µ) and the upper ap-

proximations GRB(µ) of µ are defined as follows:
∀x ∈ U,

GRB(µ)(x) = ∧
y∈U

((1−GRB(x,y))∨µ(y));

GRB(µ)(x) = ∨
y∈U

(GRB(x,y)∧µ(y)).

In this definition, if X ∈ P(U) is a subset of U,
then

GRB(X)(x) = ∧
y∈U−X

(1−GRB(x,y)),

GRB(X)(x) = ∨
y∈X

GRB(x,y).

Clearly, by the reflexivity of GRB(x,y), we have
GRB(X) ⊆ X ⊆GRB(X) for any X ⊆ U.

2.2. The non-incremental algorithm of
computing approximations

In order to get the approximations based on the
grade indiscernibility relation, the non-incremental
method will firstly build the relation matrix and then
get the approximations from the matrix. The calcu-
lation process of the traditional way can be repre-
sented as the following Steps in Algorithm 2.1.

Algorithm 2.1 (The traditional non-incremental
algorithm of computing approximations)

Step 1: Input S = (U,A,V, f ), X, B.
Step 2: Build the relation matrix Mn×m, where

n = |X| ,m = |U −X|.
Mn×m =GRB

(
xi, x j
)
= 1
|B|

∣∣∣∣{b ∈ B|, f (xi,b) = f
(
x j,b
)}∣∣∣∣,

xi ∈ X, x j ∈ U −X.
Step 3: Calculate the lower approximations

GRB(X)(xi) = ∧
y∈U−X

(1 − GRB(xi,y)) = 1 −
∨

y∈U−X
GRB(xi,y) and the set Y∧xi

= {y ∈ U −
X; ∨

y∈U−X
GRB(xi,y)}, xi ∈ X

Step 4: Calculate the upper approximations
GRB(X)(x j) = ∨

y∈X
GRB(x j,y) and the set Y∨x j

= {y ∈
X; ∨

y∈X
GRB(x j,y)}, x j ∈ U −X.

Step 5: Output the Mn×m; GRB(X)(xi) and Y∧xi
,

xi ∈ X; GRB(X)(x j and Y∨x j
, x j ∈U−X; GRB(X)(xi)=

0, xi ∈ U −X; GRB(X)(x j = 1, x j ∈ X.
It is easy to see that Algorithm 2.1 has a time

complexity of O(|X| |U −X| |B|), which is mainly de-
cided by the time cost of building the relation ma-
trix in Step 2. The following Example 1 shows the
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progress of using the Algorithm 2.1 to get the ap-
proximations based on the grade indiscernibility re-
lation.
Example 1 Let U = {x1, x2, x3, x4, x5, x6} be the uni-
versal set, A = {b1,b2,b3,b4,b5} be the conditional
attribute set, B = {b1,b2,b3,b4}, X = {x2, x3, x6} be
the decision set. The related information system is
given in Table 1.

Table 1.
b1 b2 b3 b4 b5 d

x1 2 2 1 1 3 U −X
x2 2 2 1 2 2 X
x3 2 2 2 1 3 X
x4 1 1 1 2 2 U −X
x5 1 2 2 2 3 X
x6 1 1 2 2 2 U −X

From the Step 2 of Algorithm 2.1 we have a rela-
tion matrix M3×3, where GRB(x,y), xi ∈ X, x j ∈U−X.

M3×3 =


x1 x4 x5

x2 3/4 2/4 2/4
x3 3/4 0 2/4
x6 0 3/4 3/4


The first column is the object that xi ∈ X. The first
row is the object that x j ∈ U −X.

From the step 3 of algorithm 2.1 we have the
lower approximations:

GRB(X)(x2) = ∧
y∈U−X

(1 − GRB(x2,y) = 1 −

∨
y∈U−X

GRB(x2,y) = 1 − 3
4 =

1
4 , and Y∧x2

=

{y; ∨
y∈U−X

GRB(x2,y)} = {x1}.
GRB(X)(x3) = ∧

y∈U−X
(1 − GRB(x3,y) = 1 −

∨
y∈U−X

GRB(x3,y) = 1 − 3
4 =

1
4 , and Y∧x3

=

{y; ∨
y∈U−X

GRB(x3,y)} = {x1}.
GRB(X)(x6) = ∧

y∈U−X
(1 − GRB(x6,y) = 1 −

∨
y∈U−X

GRB(x6,y) = 1 − 3
4 =

1
4 , and Y∧x6

=

{y; ∨
y∈U−X

GRB(x6,y)} = {x4, x5}.

GRB(X)(xi) = 0, xi ∈ {x1, x4, x5}.
From the step 4 of algorithm 2.1 we have the up-

per approximations:

GRB(X)(x1) = ∨
y∈X

GRB(x1,y) = 3
4 , and Y∨x1

= {y ∈
X; ∨

y∈X
GRB(x1,y)} = {x2, x3}.

GRB(X)(x4) = ∨
y∈X

GRB(x4,y) = 3
4 , and Y∨x4

= {y ∈
X; ∨

y∈X
GRB(x4,y)} = {x6}.

GRB(X)(x5) = ∨
y∈X

GRB(x5,y) = 3
4 , and Y∨x5

= {y ∈
X; ∨

y∈X
GRB(x5,y)} = {x6}.

GRB(X)(x j) = 1, x j ∈ {x2, x3, x6}.

3. Incrementally updating approximations
while adding or removing an attribute

The traditional non-incrementally update method is
based on static information system, which has huge
time complexity as the number of data grows. Incre-
mental update method can improve the efficiency by
using the existing approximation knowledge18.

3.1. Incrementally updating approximations
when adding an attribute

Proposition 1 Let S = (U,A,V,F) be an informa-
tion system, B⊆ A, b ∈ A and b < B. For any x,y ∈U,

GRB∪{b}(x,y) = |B|·GRB(x,y)+GR{b}(x,y)
|B|+1

=

 |B|·GRB(x,y)+1
|B|+1 , f (x,b) = f (y,b);

|B|·GRB(x,y)
|B|+1 , f (x,b) , f (y,b).

Proof. This proof is straightforward.

Proposition 2 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, b ∈ A, b < B, X ⊆ U. The lower
and upper approximations of X by adding b to B can
be updated respectively as follows.

Lower approximation: If xi ∈ U − X, then
GRB∪{b}(X)(xi) = GRB(X)(xi) = 0; If xi ∈ X,
thenGRB∪{b}(X)(xi)

=


|B|GRB(X)(xi)
|B|+1 , ∃y ∈ Y∧xi

( f (xi,b) = f (y,b));
1+|B|GRB(X)(xi)

|B|+1 , ∀y(y ∈ Y∧xi
→ f (xi,b) , f (y,b)).

Where Y∧xi
= {y ∈ U − X;GRB(X)(xi)=1 −

GRB(xi,y)}={y; ∨
y∈U−X

GRB(xi,y)}.
Upper approximation: If x j ∈ X, then

GRB∪{b}(X)(x j) = GRB(X)(x j) = 1; If x j ∈ U − X,
then GRB∪{b}(X)(x j)
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=


|B|GRB(X)(x j)+1

|B|+1 , ∃y ∈ Y∨x j
( f (x j,b) = f (y,b));

|B|GRB(X)(x j)
|B|+1 , ∀y(y ∈ Y∨x j

→ f (x j,b) , f (y,b)).

Proof. Lower approximation: For any xi ∈ U −X,
It is obviously that GRB∪{b}(X)(xi)=GRB(X)(xi)= 0.

For any xi ∈ X, if ∃y ∈ Y∧xi
such that f (xi,b) =

f (y,b), then GRB∪{b}(X)(xi) = 1 −GRB∪{b}(xi,y) =

1− |B|GRB(xi,y)+1
|B|+1 = 1− |B|(1−GRB(X)(xi))+1

|B|+1 =
|B|GRB(X)(xi)
|B|+1 .

If f (xi,b) , f (y,b) for any y ∈ Y∧xi
, then

GRB∪{b}(X)(xi) = ∧
y∈U−X

(1 − GRB∪{b}(xi,y)) = 1 −
(GRB∪{b}(xi,y0)∨( ∨

y∈U−X−Y∧xi , f (xi,b)= f (y,b)
GRB∪{b}(xi,y)))=

1− ( |B|GRB(xi,y0)
|B|+1 ∨ ( ∨

y∈U−X−Y∧xi , f (xi,b)= f (y,b)

|B|GRB(xi,y)+1
|B|+1 ),

where y0 ∈ Y∧xi
. For any y ∈ U − X − Y∧xi

, we
have GRB(xi,y0) > GRB(xi,y), that is |B|GRB(xi,y0)

|B|+1 >
|B|GRB(xi,y)+1
|B|+1 . Therefore, GRB∪{b}(X)(xi) = 1 −

|B|GRB(xi,y0)
|B|+1 =

|B|GRB(X)(xi)+1
|B|+1 .

Upper approximation: For any x j ∈ X, it is obvi-
ously that GRB∪{b}(X)(x j) =GRB(X)(x j) = 1.

For any x j ∈ U − X, if ∃y ∈ Y∨x j
, such

that f (x j,b) = f (y,b), then GRB∪{b}(X)(x j) =
GRB∪{b}(x j,y) = |B|GRB(x j,y)+1

|B|+1 =
|B|GRB(X)(x j)+1

|B|+1 .
If f (x j,b) , f (y,b) for any y ∈ Y∨x j

,
then GRB∪{b}(X)(x j) = ∨

y∈X
GRB∪{b}(x j,y) =

GRB∪{b}(x j,y0)∨( ∨
y∈X−Y∨x j , f (x j,b)= f (y,b)

GRB∪{b}(x j,y))=

|B|GRB(x j,y0)
|B|+1 ∨ ( ∨

y∈X−Y∨x j , f (x j,b)= f (y,b)

|B|GRB(x j,y)+1
|B|+1 ),

where y0 ∈ Y∨x j
. For any y ∈ X − Y∨x j

, we have

GRB(x j,y0) > GRB(x j,y), that is |B|GRB(x j,y0)
|B|+1 >

|B|GRB(x j,y)+1
|B|+1 . Therefore, GRB∪{b}(X)(x j) =

|B|GRB(x j,y0)
|B|+1 =

|B|GRB(X)(x j)
|B|+1 .

Particularly, if Y∧xi
= {yk} and Y∨x j

= {yl} are sub-
sets of the universe with single element, the lower
and upper approximations of X by adding b to B can
be updated respectively as follows.

Lower approximation: If xi ∈ U − X, then
GRB∪{b}(X)(xi) =GRB(X)(xi) = 0; If xi ∈ X, then

GRB∪{b}(X)(xi)=


|B|GRB(X)(xi)
|B|+1 , f (xi,b) = f (yk,b);

|B|GRB(X)(xi)+1
|B|+1 , f (xi,b) , f (yk,b).

Upper approximation: If x j ∈ X, then
GRB∪{b}(X)(x j) = GRB(X)(x j) = 1; If x j ∈ U − X,
then

GRB∪{b}(X)(x j)=


|B|GRB(X)(x j)+1

|B|+1 , f (x j,b) = f (yl,b);
|B|GRB(X)(x j)
|B|+1 , f (x j,b) , f (yl,b).

Since the incremental update approaches need to
use the set of Y∧xi

and Y∨x j
, in order to maintain the

continuity of the approaches, Y∧xi
and Y∨x j

also need
to update.
Proposition 3 The set of Y∧xi

and Y∨x j
by adding b to

B can be updated respectively as follows.

Y∧∗xi
=



{y ∈ Y∧xi
; f (xi,b) = f (y,b)},∃y ∈ Y∧xi

( f (xi,b) = f (y,b));

{y; ∨
y∈U−X

GRB∪{b}(xi,y)},∀y(y ∈ Y∧xi

→ f (xi,b) , f (y,b)).

Y∨∗x j
=



{y ∈ Y∨x j
; f (x j,b) = f (y,b)},∃y ∈ Y∨x j

( f (x j,b) = f (y,b));

{y; ∨
y∈X

GRB∪{b}(x j,y)},∀y(y ∈ Y∨x j
→

f (x j,b) , f (y,b)).
Algorithm 3.1 (Incremental algorithm for updat-

ing approximations when adding an attribute b)
Step 1: Input the relation matrix Mn×m;

GRB(X)(xi), Y∧xi
, xi ∈ X; GRB(X)(x j, Y∨x j

, x j ∈ U −X;
the increasing attribute b.

Step 2: We get a new relation matrix M∗n×m =

GRB∪{b}(xi, x j)=

 |B|·GRB(xi,x j)+1
|B|+1 , f (xi,b) = f (x j,b);

|B|·GRB(xi,x j)
|B|+1 , f (xi,b) , f (x j,b).

xi ∈ X, x j ∈ U −X. // According to Proposition 1.
Step 3: Calculate the lower approximations xi ∈

X.
If ∃y ∈ Y∧xi

, such that f (xi,b) = f (y,b),

then GRB∪{b}(X)(xi) =
|B|GRB(X)(xi)
|B|+1 and Y∧∗xi

= {y ∈
Y∧xi

; f (xi,b) = f (y,b)}.
Else GRB∪{b}(X)(xi) =

1+|B|GRB(X)(xi)
|B|+1 and

Y∧∗xi
= {y; ∨

y∈U−X
GRB∪{b}(xi,y)}. // According to

Proposition 2 and 3.
Step 4: Calculate the upper approximations x j ∈

U −X.
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If ∃y ∈ Y∨x j
, such that f (x j,b) = f (y,b) then

GRB∪{b}(X)(x j) =
|B|GRB(X)(x j)+1

|B|+1 and Y∨∗x j
= {y ∈

Y∨x j
; f (x j,b) = f (y,b)}.

Else GRB∪{b}(X)(x j) =
|B|GRB(X)(x j)
|B|+1 and

Y∨∗x j
= {y; ∨

y∈X
GRB∪{b}(x j,y)}.// According to Propo-

sition 2 and 3.
Step 5: Output the relation matrix M∗n×m;

GRB∪{b}(X)(xi), Y∧∗xi
, xi ∈ X; GRB∪{b}(X)(x j), Y∨∗x j

,
x j ∈ U − X; GRB∪{b}(X)(xi) = 0, xi ∈ U − X;
GRB∪{b}(X)(x j) = 1, x j ∈ X.

The time complexity of Algorithm 3.1 is
O(|X| |U −X|), which is mainly decided by the time
cost of building the relation matrix in Step 2. In the
following Example 2, We use the results from Ex-
ample 1 to demonstrate how algorithm 3.1 update
the approximations when adding an attribute.
Example 2 We consider the information system
given in Table 1. Let U = {x1, x2, x3, x4, x5, x6} be
the universal set, B = {b1,b2,b3,b4} be the condi-
tional attribute set, X = {x2, x3, x6} be the decision
set. Adding an attribute b5 to B.
Using the result of Example 1.

M3×3 =


x1 x4 x5

x2 3/4 2/4 2/4
x3 3/4 0 2/4
x6 0 3/4 3/4


GRB(X)(x2) = 1

4 ,Y
∧
x2
= {x1};GRB(X)(x3) = 1

4 ,Y
∧
x3
=

{x1};GRB(X)(x6) = 1
4 ,Y

∧
x6
= {x4, x5};GRB(X)

(xi) = 0, xi ∈ {x1, x4, x5}.
GRB(X)(x1) = 3

4 ,Y
∨
x1
= {x2, x3};GRB(X)(x4) =

3
4 ,Y

∨
x4
= {x6};GRB(X)(x5)= 3

4 ,Y
∨
x5
= {x6};GRB(X)(x j)

= 1, x j ∈ {x2, x3, x6}.
From the Step 2 of Algorithm 3.1 we have a new

relation matrix M∗3×3:

M∗3×3 =


x1 x4 x5

x2 3/5 3/5 2/5
x3 4/5 0 3/5
x6 0 4/5 3/5


The lower and upper approximations of X =

{x2, x3, x6} by adding b5 to B are updated as follows.

From the step 3 of algorithm 3.1 we have the
lower approximations:

GRB∪{ b5}(X)(x2): For any y ∈ Y∧x2
, f (x2,b5) ,

f (y,b5). So we have GRB∪{b5}(X)(x2) = 1+1
4+1 =

2
5 and

Y∧∗x2
= {y; ∨

y∈U−X
GRB∪{b5}(x2,y)} = {x1, x4}.

GRB∪{ b5}(X)(x3): ∃x1 ∈ Y∧x3
, such that f (x3,b5) =

f (x1,b5), then GRB∪{b5}(X)(x3) = 1
4+1 =

1
5 andY∧∗x3

=

{ y ∈ Y∧x3
; f (x,b5) = f (y,b5)} = { x1} .

GRB∪{ b5}(X)(x6): ∃x4 ∈ Y∧x6
, such that f (x6,b5) =

f (x4,b5), then GRB∪{b5}(X)(x6) = 1
4+1 =

1
5 and Y∧∗x6

=

{ y ∈ Y∧x6
; f (x,b5) = f (y,b5)} = { x4} .

GRB∪{ b5}(X)(xi) = 0, xi ∈ {x1, x4, x5}.
From the step 4 of algorithm 3.1 we have the up-

per approximations:
GRB∪{ b5}(X)(x1): ∃x2 ∈ Y∨x1

, such that f (x1,b5) =
f (x2,b5), then GRB∪{b5}(X)(x1) = 3+1

4+1 =
4
5 and Y∨∗x1

=

{ y ∈ Y∨x1
; f (x1,b5) = f (y,b5)} = {x3}.

GRB∪{ b5}(X)(x4): ∃x6 ∈ Y∨x4
, such that f (x4,b5) =

f (x6,b5), then GRB∪{b5}(X)(x4) = 3+1
4+1 =

4
5 and Y∨∗x4

=

{ y ∈ Y∨x4
; f (x4,b5) = f (y,b5)} = {x6}.

GRB∪{ b5}(X)(x5): For any y ∈ Y∨x5
, f (x5,b5) ,

f (y,b5), so we have GRB∪{b5}(X)(x5) = 3
4+1 =

3
5 and

Y∨∗x5
= {y; ∨

y∈X
GRB∪{b5}(x5,y)} = {x3, x6}.

GRB∪{ b5}(X)(x j) = 1, x j ∈ {x2, x3, x6}.

3.2. Incrementally updating approximations
when removing an attribute

Proposition 4 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, b ∈ B. For any x,y ∈ U,

GRB−{b}(x,y) = |B|·GRB(x,y)−GR{b}(x,y)
|B|−1

=

 |B|·GRB(x,y)+1
|B|+1 , f (x,b) = f (y,b);

|B|·GRB(x,y)
|B|+1 , f (x,b) , f (y,b).

Proof. This proof is straightforward.

Proposition 5 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, b ∈ B,X ⊆ U. The lower and up-
per approximations of X by removing b from B can
be updated respectively as follows.

Lower approximation: If xi ∈ U − X, then
GRB−{b}(X)(xi) = GRB(X)(xi) = 0; If xi ∈ X, then
GRB−{b}(X)(xi)
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=


|B|GRB(X)(xi)−1

|B|−1 , ∃y ∈ Y∧xi
( f (xi,b) , f (y,b));

|B|GRB(X)(xi)
|B|−1 , ∀y(y ∈ Y∧xi

→ f (xi,b) = f (y,b)).
Where Y∧xi

= {y ∈ U − X;GRB(X)(xi)=1 −
GRB(xi,y)}={y; ∨

y∈U−X
GRB(xi,y)}.

Upper approximation: If x j ∈ X, then
GRB−{b}(X)(x j) = GRB(X)(x j) = 1; If x j ∈ U − X,
then GRB−{b}(X)(x j)

=

 |B|GRB(X)(x j)
|B|−1 , ∃y ∈ Y∨x j

( f (x j,b) , f (y,b));
|B|·GRB(x,y)
|B|−1 , f (x,b) , f (y,b).

Where Y∨x j
= {y ∈ X;GRB(X)(x j)=GRB(x j,y)}={y;

∨
y∈X

GRB(x j,y)}.

Proof. Lower approximation: For any xi ∈ U −X,
it is obviously that GRB−{b}(X)(xi)=GRB(X)(xi)= 0.

For any xi ∈ X, if ∃y ∈ Y∧xi
, such that f (xi,b) ,

f (y,b), then GRB−{b}(X)(xi) = 1 −GRB−{b}(xi,y) =

1− |B|GRB(xi,y)
|B|−1 = 1− |B|(1−GRB(X)(xi))

|B|−1 =
|B|GRB(X)(xi)−1

|B|−1 .
If f (xi,b) = f (y,b) for any y ∈ Y∧xi

, then
GRB−{b}(X)(xi) = ∧

y∈U−X
(1 − GRB−{b}(xi,y)) = 1 −

(GRB−{b}(xi,y0)∨( ∨
y∈U−X−Y∧xi , f (xi,b), f (y,b)

GRB−{b}(xi,y)))=

1− ( |B|GRB(xi,y0)−1
|B|−1 ∨ ( ∨

y∈U−X−Y∧xi , f (xi,b), f (y,b)

|B|GRB(xi,y)
|B|−1 ),

where y0 ∈ Y∧xi
. For any y ∈ U − X − Y∧xi

, we have
GRB(xi,y0) > GRB(xi,y), that is |B|GRB(xi,y0)−1

|B|−1 >
|B|GRB(xi,y)
|B|−1 . Therefore, GRB−{b}(X)(xi) = 1 −

|B|GRB(xi,y0)−1
|B|−1 =

|B|GRB(X)(xi)
|B|−1 .

Upper approximation: For any x j ∈ X, it is ob-
viously that GRB−{b}(X)(x j) = GRB(X)(x j) = 1. For
any x j ∈U−X, if ∃y ∈ Y∨x j

such that f (x j,b), f (y,b),

then GRB−{b}(X)(x j) = GRB−{b}(x j,y) = |B|GRB(x j,y)
|B|−1 =

|B|GRB(X)(x j)
|B|−1 .
If f (x j,b) = f (y,b) for any y ∈ Y∨x j

,
then GRB−{b}(X)(x j) = ∨

y∈X
GRB−{b}(x j,y) =

GRB−{b}(x j,y0)∨( ∨
y∈X−Y∨x j , f (x j,b), f (y,b)

GRB−{b}(x j,y))=

|B|GRB(x j,y0)−1
|B|−1 ∨ ( ∨

y∈X−Y∨x j , f (x j,b), f (y,b)

|B|GRB(x j,y)
|B|−1 ),

where y0 ∈ Y∨x j
. For any y ∈ X − Y∨x j

, we have

GRB(x j,y0) > GRB(x j,y), that is |B|GRB(x j,y0)−1
|B|−1 >

|B|GRB(x j,y)
|B|−1 . Therefore, GRB−{b}(X)(x j) =

|B|GRB(x j,y0)−1
|B|−1 =

|B|GRB(X)(x j)−1
|B|−1 .

Particularly, if Y∧xi
= {yk} and Y∨x j

= {yl} are sub-
sets of the universe with single element, the lower
and upper approximations of X by removing b from
B can be updated respectively as follows.

Lower approximation: If xi ∈ U − X, then
GRB−{b}(X)(xi) =GRB(X)(xi) = 0. If xi ∈ X, then

GRB−{b}(X)(xi)=


|B|GRB(X)(xi)−1

|B|−1 , f (xi,b) , f (yk,b);
|B|GRB(X)(xi)
|B|−1 , f (xi,b) = f (yk,b).

Upper approximation: If x j ∈ X, then
GRB−{b}(X)(x j) = GRB(X)(x j) = 1. If x j ∈ U − X,
then

GRB−{b}(X)(x j)=


|B|GRB(X)(x j)
|B|−1 , f (x j,b) , f (yl,b);

|B|GRB(X)(x j)−1
|B|−1 , f (x j,b) = f (yl,b).

Proposition 6 The set of Y∧xi
and Y∨x j

by removing b
from B can be updated respectively as follows.

Y∧∗xi
=



{y ∈ Y∧xi
; f (xi,b) = f (y,b)},∃y ∈ Y∧xi

( f (xi,b) , f (y,b));

{y; ∨
y∈U−X

GRB−{b}(xi,y)},∀y(y ∈ Y∧xi
→

f (xi,b) = f (y,b)).

Y∨∗x j
=



{y ∈ Y∨x j
; f (x j,b) = f (y,b)};∃y ∈ Y∨x j

( f (x j,b) , f (y,b)),

{y; ∨
y∈X

GRB−{b}(x j,y)};∀y(y ∈ Y∨x j
→

f (x j,b) = f (y,b)).
Algorithm 3.2 (Incremental algorithm for updat-

ing approximations when removing an attribute b)
Step 1: Input the relation matrix Mn×m;

GRB(X)(xi), Y∧xi
, xi ∈ X; GRB(X)(x j, Y∨x j

, x j ∈ U −X.
Step 2: We get a new relation matrix M∗n×m =

GRB−{b}(xi, x j)=

 |B|·GRB(xi,x j)+1
|B|+1 , f (xi,b) = f (x j,b);

|B|·GRB(xi,x j)
|B|+1 , f (xi,b) , f (x j,b).

xi ∈ X, x j ∈ U −X. // According to Proposition 4.
Step 3: Calculate the lower approximations xi ∈

X
If ∃y ∈ Y∧xi

( f (xi,b), f (y,b), then GRB−{b}(X)(xi)=
|B|GRB(X)(xi)−1

|B|−1 and Y∧∗xi
= {y ∈ Y∧xi

; f (xi,b) = f (y,b)}.
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Else Y∧∗xi
= {y; ∨

y∈U−X
GRB−{b}(xi,y)} and

GRB−{b}(X)(xi) =
|B|GRB(X)(xi)
|B|−1 . //According to Propo-

sition 5 and 6.
Step 4: Calculate the upper approximations x j ∈

U −X
If ∃y ∈ Y∨x j

( f (x j,b) , f (y,b)), then

GRB−{b}(X)(x j) =
|B|GRB(X)(x j)
|B|−1 and Y∨∗x j

= {y ∈
Y∨x j

; f (x j,b) = f (y,b)}.

Else GRB−{b}(X)(x j) =
|B|GRB(X)(x j)−1

|B|−1 and Y∨∗x j
=

{y; ∨
y∈X

GRB−{b}(x j,y)}. // According to Proposition 5

and 6.
Step 5: Output the relation matrix M∗n×m;

GRB(X)(xi), Y∧xi
, xi ∈ X; GRB(X)(x j, Y∨x j

, x j ∈ U −X;
GRB(X)(xi) = 0, xi ∈ U −X; GRB(X)(x j = 1, x j ∈ X.

The Algorithm 3.2 has a time complexity of
O(|X| |U −X|), which is mainly decided by Step 2.
In the following Example 3, We use the results from
Example 2 to demonstrate how algorithm 3.2 update
the approximations when removing an attribute.
Example 3 We consider the information system
given in Table 1. Let U = {x1, x2, x3, x4, x5, x6} be
the universal set, B = {b1,b2,b3,b4,b5} be the con-
ditional attribute set, X = {x2, x3, x6} be the decision
set. Removing an attribute b2 from B.

Table 2.
b1 b3 b4 b5 d

x1 2 1 1 3 U −X
x2 2 1 2 2 X
x3 2 2 1 3 X
x4 1 1 2 2 U −X
x5 1 2 2 3 U −X
x6 1 2 2 2 X

Using the result of Example 2.

M3×3 =


x1 x4 x5

x2 3/5 3/5 2/5
x3 4/5 0 3/5
x6 0 4/5 3/5


GRB(X)(x2) = 2

5 , Y∧x2
= {x1, x4}; GRB(X)(x3) = 1

5 ,
Y∧x3
= {x1}; GRB(X)(x6)= 1

5 , Y∧x6
= {x4}; GRB(X)(xi)=

0, xi ∈ {x1, x4, x5}.

GRB(X)(x1) = 4
5 , Y∨x1

= {x3}; GRB(X)(x4) =
4
5 ,Y

∨
x4
= {x6}; GRB(X)(x5) = 3

5 , Y∨x5
= {x3, x6};

GRB(X)(x j) = 1, x j ∈ {x2, x3, x6}.
From the Step 2 of Algorithm 3.2 we have a new

relation matrix M∗3×3

M∗3×3 =


x1 x4 x5

x2 2/4 3/4 1/4
x3 3/4 0 2/4
x6 0 3/4 3/4


The lower and upper approximations of X =

{x2, x3, x6} by removing b2 from B are updated as
follows.

From the step 3 of algorithm 3.2 we have the
lower approximations:

GRB−{ b2}(X)(x2): ∃x4 ∈ Y∧x2
, such that f (x2,b2) ,

f (x4,b2), then GRB−{b2}(X)(x2) = 2−1
5−1 =

1
4 and Y∧∗x2

=

{y ∈ Y∧x2
; f (x,b2) , f (y,b2)} = {x4}.

For any y ∈ Y∧x3
, f (x3,b2) = f (y,b2),

so we have GRB−{b2}(X)(x3) = 1
5−1 =

1
4 and

Y∧∗x3
= {y; ∨

y∈U−X
GRB−{b2}(x3,y)} = {x1}.

For any y ∈ Y∧x6
, f (x6,b2) = f (y,b2),

so we have GRB−{b2}(X)(x6) = 1
5−1 =

1
4 and

Y∧∗x6
= {y; ∨

y∈U−X
GRB−{b2}(x6,y)} = {x4, x5}.

GRB−{ b2}(X)(xi) = 0, xi ∈ {x1, x4, x5}.
From the step 4 of algorithm 3.2 we have the up-

per approximations:

GRB−{ b2}(X)(x1): For any y ∈ Y∨x1
, f (x1,b2) =

f (y,b2), so we have GRB−{b2}(X)(x1) = 4−1
5−1 =

3
4 and

Y∨∗x1
= {y; ∨

y∈X
GRB−{b2}(x1,y)} = {x3}.

GRB−{ b2}(X)(x4): For any y ∈ Y∨x4
, f (x4,b2) =

f (y,b2), so we have GRB−{b2}(X)(x4) = 4−1
5−1 =

3
4 and

Y∨∗x4
= {y; ∨

y∈X
GRB−{b2}(x4,y)} = {x2, x6}.

GRB−{ b2}(X)(x5): ∃x6 ∈ Y∨x5
, such that f (x5,b2) ,

f (x6,b2), then GRB−{b2}(X)(x5) = 3
5−1 =

3
4 and Y∨∗x5

=

{y ∈ Y∨x5
; f (x5,b2) , f (y,b2)} = {x6}.

GRB−{ b2}(X)(x j) = 1, x j ∈ {x2, x3, x6}.
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4. Incrementally updating approximations
while adding or removing an object

In this section, we consider the problem of updating
approximations based on the garde indiscernibility
relation of a target concept in terms of adding or re-
moving an object.

4.1. Incrementally updating approximations
when adding an object

Proposition 7 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, x∨ < U, X ⊆ U, U∨ = U ∪ {x∨}.
The lower and upper approximations of X by adding
x∨ to U can be updated respectively as follows.

Lower approximation: When xi ∈ U∨−X, we
have GR∨B(X)(xi) = 0. When xi ∈ X, we have:

If 1 − GRB(xi, x∨) > GRB(X)(xi),then
GR∨B(X)(xi) =GRB(X)(xi)andY∧∗xi

= Y∧xi
.

If 1 − GRB(xi, x∨) = GRB(X)(xi), then
GR∨B(X)(xi) =GRB(X)(xi) and Y∧∗xi

= Y∧xi
∪{x∨}.

If 1 − GRB(xi, x∨) < GRB(X)(xi), then
GR∨B(X)(xi) = 1−GRB(xi, x∨) and Y∧∗xi

= {x∨}.
Upper approximation: If x j ∈ X, GR

∨
B(X)(x j)= 1;

Ifx j ∈U∨−{x∨}−X, then GR
∨
B(X)(x j) =GRB(X)(x j)

and Y∨∗x j
= Y∨x j

. If x j = x∨, then GR
∨
B(X)(x∨) =

∨
y∈X

GRB(x∨,y) and Y∨∗x∨ = {y; ∨
y∈X

GRB(x∨,y)}.

Proof. Lower approximation:
If xi ∈ X, we have GR∨B(X)(xi) = ∧

y∈(U−X)∪{x∨}
(1−

GRB(xi,y)) = (1 − GRB(xi, x∨)) ∧ ( ∧
y∈U−X

(1 −
GRB(xi,y))) = (1 −GRB(xi, x∨)) ∧GRB(X)(xi). If
x ∈ U∨ − X, it is obviously that GR∨B(X)(xi) =
GRB(X)(xi) = 0.

Upper approximation:
If x j ∈ X, it is obviously that GR

∨
B(X)(x j) =

GRB(X)(x j) = 1. If x j ∈ U∨−{x∨}−X, we have
GR
∨
B(X)(x j) = ∨

y∈X
GRB(x j,y) = GRB(X)(x j). If

x j = x∨, we have GR
∨
B(X)(x j) = ∨

y∈X
GRB(x j,y).

Algorithm 4.1 (Incremental algorithm for updat-
ing approximations when adding an object x∨ to
U −X)

Step 1: Input the relation matrix Mn×m;
GRB(X)(xi), Y∧xi

, xi ∈ X; GRB(X)(x j, Y∨x j
, x j ∈ U −X;

the increasing object x∨.
Step 2: We get a new relation matrix M∗n×(m+1). //

Calculate GRB(x∨, xi), xi ∈ X.
Step 3: Calculate the lower approximations xi ∈

X
If 1 − GRB(xi, x∨) > GRB(X)(xi), then

GR∨B(X)(xi) =GRB(X)(xi) and Y∧∗xi
= Y∧xi

.
If 1 − GRB(xi, x∨) = GRB(X)(xi), then

GR∨B(X)(xi) =GRB(X)(xi) and Y∧∗xi
= Y∧xi

∪{x∨}.
If 1 − GRB(xi, x∨) < GRB(X)(xi), then

GR∨B(X)(xi) = 1 −GRB(xi, x∨) and Y∧∗xi
= {x∨}. //

According to Proposition 7.
Step 4: Calculate the upper approximations x j ∈

U∨−X
If x j ∈ U∨ − {x∨} − X, then GR

∨
B(X)(x j) =

GRB(X)(x j) and Y∨∗x j
= Y∨x j

.

GR
∨
B(X)(x∨) = ∨

y∈X
GRB(x∨,y) and Y∨∗x∨ =

{y; ∨
y∈X

GRB(x∨,y)}. // According to Proposition 7.

Step 5: Output the relation matrix M∗n×(m+1);

GR∨B(X)(xi), Y∧∗xi
, xi ∈ X; GR

∨
B(X)(x j), Y∨∗xJ

, x j ∈U∨−
X. GR∨B(X)(xi) = 0, x j ∈ U∨ − X, GR

∨
B(X)(x j) = 1,

x j ∈ X.
The time complexity of Algorithm 4.1 is

O(|X| |B|), which is mainly decided by Step 2. In
the following Example 4, We use the results from
Example 3 to demonstrate how algorithm 4.1 update
the approximations when adding an object to U −X.
Example 4 We consider the information system
given in Table 2. Let U = {x1, x2, x3, x4, x5, x6} be
the universal set, B = {b1,b3,b4,b5} be the condi-
tional attribute set, X = {x2, x3, x6} be the decision
set. Adding an object x7 ∈Ψ to U−X, U∨ =U∪{x7}.

Table 3.
b1 b3 b4 b5 d

x1 2 1 1 3 U −X
x2 2 1 2 2 X
x3 2 2 1 3 X
x4 1 1 2 2 U −X
x5 1 2 2 3 U −X
x6 1 2 2 2 X
x7 1 2 2 1 U −X
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Using the result of Example 3.

M3×3 =


x1 x4 x5

x2 2/4 3/4 1/4
x3 3/4 0 2/4
x6 0 3/4 3/4


GRB(X)(x2) = 1

4 ,Y
∧
x2
= {x4};GRB(X)(x3) = 1

4 , Y∧x3
=

{x1};GRB(X)(x6) = 1
4 ,Y

∧
x6
= {x4, x5};GRB(X)(xi) =

0, xi ∈ {x1, x4, x5}.
GRB(X)(x1) = 3

4 ,Y
∨
x1
= {x3}; GRB(X)(x4) =

3
4 , Y∨x4

= {x2, x6}; GRB(X)(x5) = 3
4 ,Y

∨
x5
= {x6};

GRB(X)(x j) = 1, x j ∈ {x2, x3, x6}.
From the Step 2 of Algorithm 4.1 we have a new

relation matrix:

M∗3×4 =


x1 x4 x5 x7

x2 2/4 3/4 1/4 1/4
x3 3/4 0 2/4 1/4
x6 0 3/4 3/4 3/4


The lower and upper approximations of X =

{x2, x3, x6} by adding x7 to U −X are updated as fol-
lows.

From the step 3 of algorithm 4.1 we have the
lower approximations:

GR∨B(X)(x2): Since 1 − GRB(x2, x7) >
GRB(X)(x2), then GR∨B(X)(x2) = GRB(X)(x2) = 1

4
and Y∧∗x2

= Y∧x2
= {x4}.

GR∨B(X)(x3): Since 1 − GRB(x3, x7) >
GRB(X)(x3), then GR∨B(X)(x3) = GRB(X)(x3) = 1

4
and Y∧∗x3

= Y∧x3
= {x1}.

GR∨B(X)(x6): Since 1 − GRB(x6, x7) =
GRB(X)(x6), then GR∨B(X)(x6) = GRB(X)(x6) = 1

4
and Y∧∗x6

= Y∧x6
∪{x7} = {x4, x5, x7}.

GR∨B(X)(xi) =GRB(X)(xi) = 0, xi ∈ {x1, x4, x5, x7}.
From the step 4 of algorithm 4.1 we have the up-

per approximations:
GR
∨
B(X)(x7) = ∨

y∈{x2,x3,x6}
GRB(x7,y) = 3

4 ,Y
∨∗
x7
=

{y; ∨
y∈{x2,x3,x6}

GRB(x7,y)} = {x6}.

GR
∨
B(X)(x j) = GRB(X)(x j),Y∨∗x j

= Y∨x j
, x j ∈

{x1, x4, x5}.
GR
∨
B(X)(x j) = 1, x j ∈ {x2, x3, x6}.

Proposition 8 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, x∨ < U, X ⊆ U, U∨ = U ∪ {x∨}.

The lower and upper approximations of X∨ = X ∪
{x∨} by adding x∨ to X can be updated respectively
as follows.

Lower approximation: If xi ∈ U∨ − X∨, then
GR∨B(X∨)(xi) = 0; If xi ∈ X, then GR∨B(X∨)(xi) =
GRB(X)(xi) and Y∧∗xi

= Y∧xi
. If xi = x∨ ,then

GR∨B(X∨)(x∨) = ∧
y∈U∨−X∨

(1−GRB(x∨,y)) and Y∧∗x∨ =

{y; ∨
y∈U−X

GRB(x∨,y)}.

Upper approximation: When x j ∈ X∨, we have
GR
∨
B(X∨)(x j) = 1. When x j ∈ U∨−X∨, we have:

If GRB(x j, x∨)>GRB(X)(x j), then GR
∨
B(X∨)(x j)=

GRB(x j, x∨) and Y∨∗x j
= {x∨}.

If GRB(x j, x∨)=GRB(X)(x j), then GR
∨
B(X∨)(x j)=

GRB(X)(x j) and Y∨∗x j
= Y∨x j

∪{x∨}.
If GRB(x j, x∨)<GRB(X)(x j), then GR

∨
B(X∨)(x j)=

GRB(X)(x j) and Y∨∗x j
= Y∨x j

.

Proof. This proof is similar to that of Proposition
7.

Algorithm 4.2 (Incremental algorithm for updat-
ing approximations when adding an object x∨ to X)

Step 1: Input the relation matrix Mn×m;
GRB(X)(xi), Y∧xi

, xi ∈ X; GRB(X)(x j, Y∨x j
, x j ∈ U −X;

the increasing object x∨.
Step 2: We get a new relation matrix

M∗(n+1)×(m+1). // Calculate GRB(x∨, x j), x j ∈ U −X.
Step 3: Calculate the lower approximations xi ∈

X∨

If xi ∈ X, then GR∨B(X∨)(xi) = GRB(X)(xi)
and Y∧∗xi

= Y∧xi
. If xi = x∨ ,then GR∨B(X∨)(x∨) =

∧
y∈U∨−X∨

(1−GRB(x∨,y)) and Y∧∗x∨ = {y; ∨
y∈U−X

GRB(x∨,y)}.
// According to Proposition 8.

Step 4: Calculate the upper approximations x j ∈
U∨−X∨

If GRB(x j, x∨)>GRB(X)(x j), then GR
∨
B(X∨)(x j)=

GRB(x j, x∨) and Y∨∗x j
= {x∨}.

If GRB(x j, x∨)=GRB(X)(x j), then GR
∨
B(X∨)(x j)=

GRB(X)(x j) and Y∨∗x j
= Y∨x j

∪{x∨}.
If GRB(x j, x∨)<GRB(X)(x j), then GR

∨
B(X∨)(x j)=

GRB(X)(x j) and Y∨∗x j
= Y∨x j

. // According to Proposi-
tion 8.
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Step 5: Output the relation matrix M∗(n+1)×m;

GR∨B(X∨)(xi), Y∧∗xi
, xi ∈ X∨; GR

∨
B(X∨)(x j), Y∨∗x j

,
x j ∈ U∨ − X∨; GR∨B(X∨)(xi) = 0, xi ∈ U∨ −
X∨,GR

∨
B(X∨)(x j) = 1, x j ∈ X∨.

The Algorithm 4.2 has a time complexity of
O(|U −X| |B|), which is mainly decided by Step 2.
In the following Example 5, We use the results from
Example 4 to demonstrate how algorithm 4.2 update
the approximations when adding an object to X.

Example 5 We consider the information system
given in Table 3. Let U = {x1, x2, x3, x4, x5, x6, x7}
be the universal set, B = {b1,b3,b4,b5} be the con-
ditional attribute set, X = {x2, x3, x6} be the decision
set. Adding x8 ∈ Φ to X, X∨ = X∪{x8}.

Table 4.
b1 b3 b4 b5 d

x1 2 1 1 3 U −X
x2 2 1 2 2 X
x3 2 2 1 3 X
x4 1 1 2 2 U −X
x5 1 2 2 3 U −X
x6 1 2 2 2 X
x7 1 2 2 1 U −X
x8 2 1 2 2 X

Using the result of Example 4.

M3×4 =


x1 x4 x5 x7

x2 2/4 3/4 1/4 1/4
x3 3/4 0 2/4 1/4
x6 0 3/4 3/4 3/4



GRB(X)(x2) = 1
4 , Y∧x2

= {x4}; GRB(X)(x3) =
1
4 ,Y

∧
x3
= {x1}; GRB(X)(x6) = 1

4 ,Y
∧
x6
= {x4, x5, x6};

GRB(X)(xi) = 0, xi ∈ {x1, x4, x5, x7}.

GRB(X)(x1) = 3
4 , Y∨x1

= {x3}; GRB(X)(x4) =
3
4 ,Y

∨
x4
= {x2, x6}; GRB(X)(x5) = 3

4 ,Y
∨
x5
= {x6};

GRB(X)(x7) = 3
4 ,Y

∨
x5
= {x6}; GRB(X)(x j) = 1, x j ∈

{x2, x3, x6}.

From the Step 2 of Algorithm 4.2 we have a new
relation matrix M∗4×4:

M∗4×4 =


x1 x4 x5 x7

x2 2/4 3/4 1/4 1/4
x3 3/4 0 2/4 1/4
x6 0 3/4 3/4 3/4
x8 2/4 3/4 1/4 1/4


The lower and upper approximations of X∨ =
{x2, x3, x6, x8} by adding x8 to X are updated as fol-
lows.

From the step 3 of algorithm 4.2 we have the
lower approximations:

GR∨B(X∨)(x8) = ∧
y∈{x1,x4,x5,x7}

(1−GRB(x8,y)) = 1
4 ,

and Y∧∗x8
= {y; ∨

y∈{x1,x4,x5,x7}
GRB(x8,y)} = {x4}.

GR∨B(X∨)(xi) = GRB(X)(xi), Y∧∗xi
= Y∧xi

, xi ∈
{x2, x3, x6}.

GR∨B(X∨)(xi) = 0, xi ∈ {x1, x4, x5, x7}.
From the step 4 of algorithm 4.2 we have the up-

per approximations:
GR
∨
B(X∨)(x1): Since GRB(x1, x8) < GRB(X)(x1),

then GR
∨
B(X∨)(x1) = GRB(X)(x1) = 3

4 and Y∨∗x1
=

Y∨x1
= {x3}.
GR
∨
B(X∨)(x4): Since GRB(x4, x8) = GRB(X)(x4),

then GR
∨
B(X∨)(x4) = GRB(X)(x4) = 3

4 and Y∨∗x4
=

Y∨x4
∪{x8} = {x2, x6, x8}.
GR
∨
B(X∨)(x5): Since GRB(x5, x8) < GRB(X)(x5),

then GR
∨
B(X∨)(x5) = GRB(X)(x5) = 3

4 and Y∨∗x5
=

Y∨x5
= {x6}.
GR
∨
B(X∨)(x7): Since GRB(x7, x8) < GRB(X)(x7),

then GR
∨
B(X∨)(x7) = GRB(X)(x7) = 3

4 and Y∨∗x7
=

Y∨x7
= {x6}.
GR
∨
B(X∨)(x j) = 1, x j ∈ {x2, x3, x6, x8}.

4.2. Incrementally updating approximations
when removing an object

Proposition 9 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, x∧ ∈ U and x∧ < X, X ⊆ U,
U∧ = U − {x∧}. The lower and upper approxima-
tions of X by removing x∧ from U can be updated
respectively as follows.
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Lower approximation: If xi ∈ U∧ − X, then
GR∧B(X)(xi) = GRB(X)(xi) = 0. If xi ∈ X, then we
have:

If GRB(X)(xi) = 1 − GRB(xi, x∧), then
GR∧B(X)(xi) = ∧

y∈U∧−X
(1 − GRB(xi,y)) and Y∧∗xi

=

{y; ∨
y∈U∧−X

GRB(xi,y)}.

If ∃y ∈ Y∧xi
, such that GRB(X)(xi)= 1−GRB(xi,y),

then GR∧B(X)(xi) =GRB(X)(xi) and Y∧∗xi
= Y∧xi

−{x∧}.
Upper approximation: GR

∧
B(X)(x j) = 1, x j ∈ X,

and GR
∧
B(X)(x j) =GRB(X)(x j),Y∨∗xi

= Y∨xi
, x j ∈ U∧ −

X.

Algorithm 4.3 (Incremental algorithm for updat-
ing approximations when removing an object x∧

from U −X)
Step 1: Input the relation matrix Mn×m;

GRB(X)(xi), Y∧xi
, xi ∈ X; GRB(X)(x j, Y∨x j

, x j ∈ U −X.
Step 2: We get a new relation matrix M∗n×(m−1).

// Delete GRB(x∧, xi), xi ∈ X from the relation matrix
Mn×m.

Step 3: Calculate the lower approximations xi ∈
X

If ∃y ∈ Y∧xi
, such that GRB(X)(xi)= 1−GRB(xi,y),

then GR∧B(X)(xi) =GRB(X)(xi) and Y∧∗xi
= Y∧xi

−{x∧}.
Else GR∧B(X)(xi) = ∧

y∈U∧−X
(1 − GRB(xi,y)) and

Y∧∗xi
= {y; ∨

y∈U∧−X
GRB(xi,y)}. // According to the

Proposition 9.
Step 4: Calculate the upper approximations x j ∈

U∧−X
GR
∧
B(X)(x j) =GRB(X)(x j),Y∨∗xi

= Y∨xi
. // Accord-

ing to the Proposition 9.
Step 5: Output the relation matrix M∗n×(m−1);

GR∧B(X)(xi), Y∧∗xi
, xi ∈ X; GR

∧
B(X)(x j), Y∨∗xi

, x j ∈U∧−
X; GR∧B(X)(xi) = 0, xi ∈ U∧ − X and GR

∧
B(X)(x j) =

1, x j ∈ X.
The Algorithm 4.3 has a time complexity of

O(|X|), which is mainly decided by Step 2. In the
following Example 6, We use the results from Ex-
ample 5 to demonstrate how algorithm 4.3 update
the approximations when removing an object from
U −X.
Example 6 We consider the information system
given in Table 4. Let U = {x1, x2, x3, x4, x5, x6, x7, x8}
be the universal set, B = {b1,b3,b4,b5} be the condi-

tional attribute set, X = {x2, x3, x6, x8} be the decision
set. Removing x4 ∈ Ψ from U −X.

Table 5.
b1 b3 b4 b5 d

x1 2 1 1 3 U −X
x2 2 1 2 2 X
x3 2 2 1 3 X
x5 1 2 2 3 U −X
x6 1 2 2 2 X
x7 1 2 2 1 U −X
x8 2 1 2 2 X

Using the result of Example 5.

M4×4 =


x1 x4 x5 x7

x2 2/4 3/4 1/4 1/4
x3 3/4 0 2/4 1/4
x6 0 3/4 3/4 3/4
x8 2/4 3/4 1/4 1/4


GRB(X)(x2) = 1

4 , Y∧x2
= {x4}; GRB(X)(x3) =

1
4 ,Y

∧
x3
= {x1}; GRB(X)(x6) = 1

4 , Y∧x6
= {x4, x5, x7};

GRB(X)(x8) = 1
4 ,Y

∧
x8
= {x4}; GRB(X)(xi) = 0, xi ∈

{x1, x4, x5, x7}.
GRB(X)(x1) = 3

4 , Y∨x1
= {x3}; GRB(X)(x4) =

3
4 , Y∨x4

= {x2, x6, x8}; GRB(X)(x5) = 3
4 ,Y

∨
x5
= {x6};

GRB(X)(x7) = 3
4 , Y∨x7

= {x6}; GRB(X)(x j) = 1, x j ∈
{x2, x3, x6, x8}.

From the Step 2 of Algorithm 4.3 we have a new
relation matrix M∗4×3:

M∗4×3 =


x1 x5 x7

x2 2/4 1/4 1/4
x3 3/4 2/4 1/4
x6 0 3/4 3/4
x8 2/4 1/4 1/4


The lower and upper approximations of X =

{x2, x3, x6, x8} by removing x4 from U−X be updated
as follows:

From the step 3 of algorithm 4.3 we have the
lower approximations:

GR∧B(X)(x2): Since GRB(X)(x2) = 1 −
GRB(x2, x4), then GR∧B(X)(x2) = ∧

y∈{x1,x5,x7}
(1 −

GRB(x2,y))= 2
4 and Y∧∗x2

= {y; ∨
y∈{x1,x5,x7}

GRB(x2,y)}=
{x1}.
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GR∧B(X)(x3): Since Y∧x3
= {x1}, GRB(X)(x3) = 1−

GRB(x3, x1), then GR∧B(X)(x3)=GRB(X)(x3)= 1
4 and

Y∧∗x3
= Y∧x3

−{x4} = {x1}.
GR∧B(X)(x6): Since ∃x5 ∈ Y∧x6

, such that
GRB(X)(x5) = 1 −GRB(x6, x5), then GR∧B(X)(x6) =
GRB(X)(x6) = 1

4 and Y∧∗x6
= Y∧x6

−{x4} = {x5, x7}.
GR∧B(X)(x8): Since GRB(X)(x8) = 1 −

GRB(x8, x4), then GR∧B(X)(x8) = ∧
y∈{x1,x5,x7}

(1 −

GRB(x8,y))= 2
4 and Y∧∗x8

= {y; ∨
y∈{x1,x5,x7}

GRB(x8,y)}=
{x1}.

GR∧B(X)(xi) =GRB(X)(xi) = 0, xi ∈ {x1, x5, x7}.
From the step 4 of algorithm 4.3 we have the up-

per approximations:
GR
∧
B(X)(x j) = GRB(X)(x j), Y∨∗xi

= Y∨xi
, x j ∈

{x1, x5, x7}, and GR
∧
B(X)(x j) = 1, x j ∈ {x2, x3, x6, x8}.

Proposition 10 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, U∧ = U − {x∧}, x∧ ∈ X, X ⊆ U.
The lower and upper approximations of X∧ = X −
{x∧} by removing x∧ from X can be respectively up-
dated as follows.

Lower approximation: GR∧B(X∧)(xi) = 0, xi ∈
U∧−X∧, and GR∧B(X∧)(xi) =GRB(X)(xi), Y∧∗xi

= Y∧xi
,

xi ∈ X∧.
Upper approximation: If x j ∈ X∧, then

GR
∧
B(X∧)(x j) =GRB(X)(x j) = 1. If x j ∈U∧−X∧, we

have:
If GRB(X)(x j) =GRB(x j, x∧), then GR

∧
B(X∧)(x j)=

∨
y∈X∧

GRB(x j,y) and Y∨∗x j
= {y; ∨

y∈X∧
GRB(x j,y)}.

If ∃y ∈ Y∨x j
, such that GRB(X)(x j) =GRB(x j,y) ,

GRB(x j, x∧), then GR
∧
B(X∧)(x j) = GRB(X)(x j) and

Y∨∗x j
= Y∨x j

−{x∧}.
Algorithm 4.4 (Incremental algorithm for updat-

ing approximations when removing an object x∧

from X)
Step 1: Input the relation matrix Mn×m;

GRB(X)(xi), Y∧xi
, xi ∈ X; GRB(X)(x j, Y∨x j

, x j ∈ U −X.
Step 2: We get a new relation matrix M∗(n−1)×m.

// Delete GRB(x∧, x j), x j ∈ U − X from the relation
matrix Mn×m.

Step 3: Calculate the lower approximations xi ∈
X∧

GR∧B(X∧)(xi)=GRB(X)(xi), Y∧∗xi
= Y∧xi

. //Accord-
ing to the Proposition 10.

Step 4: Calculate the upper approximations x j ∈
U∧−X∧

If ∃y ∈ Y∨x j
, such that GRB(X)(x j) =GRB(x j,y) ,

GRB(x j, x∧), then GR
∧
B(X∧)(x j) = GRB(X)(x j) and

Y∨∗x j
= Y∨x j

−{x∧}.
Else GR

∧
B(X∧)(x j) = ∨

y∈X∧
GRB(x j,y) and Y∨∗x j

=

{y; ∨
y∈X∧

GRB(x j,y)}. // According to the Proposition

10.
Step 5: Output the relation matrix M∗(n−1)×m;

GR∧B(X∧)(xi), Y∧∗xi
, xi ∈ X∧; GR

∧
B(X∧)(x j), Y∨∗x j

,
x j ∈ U∧ − X∧; GR∧B(X∧)(xi) = 0, xi ∈ U∧ − X∧, and
GR
∧
B(X∧)(x j) =GRB(X)(x j) = 1, x j ∈ X∧.
The Algorithm 4.4 has a time complexity of

O(|U −X|), which is mainly decided by Step 2. In
the following Example 7, We use the results from
Example 6 to demonstrate how algorithm 4.4 update
the approximations when removing an object from
X.
Example 7 We consider the information system
given in Table 5. Let U = {x1, x2, x3, x5, x6, x7, x8}
be the universal set, B = {b1,b3,b4,b5} be the con-
ditional attribute set, X = {x2, x3, x6, x8} be the deci-
sion set. Removing x3 ∈ Φ from X, X∧ = X−{x3}.

Table 6.
b1 b3 b4 b5 d

x1 2 1 1 3 U −X
x2 2 1 2 2 X
x5 1 2 2 3 U −X
x6 1 2 2 2 X
x7 1 2 2 1 U −X
x8 2 1 2 2 X

Using the result of Example 6.

M4×3 =


x1 x5 x7

x2 2/4 1/4 1/4
x3 3/4 2/4 1/4
x6 0 3/4 3/4
x8 2/4 1/4 1/4


GRB(X)(x2) = 2

4 ,Y
∧
x2
= {x1}; GRB(X)(x3) = 1

4 ,Y
∧
x3
=

{x1}; GRB(X)(x6) = 1
4 ,Y

∧
x6
= {x5, x7}; GRB(X)(x8) =

2
4 ,Y

∧
x8
= {x1}; GRB(X)(xi) = 0, xi ∈ {x1, x5, x7}.
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GRB(X)(x1) = 3
4 ,Y

∨
x1
= {x3};GRB(X)(x5) =

3
4 ,Y

∨
x5
= {x6};GRB(X)(x7)= 3

4 ,Y
∨
x7
= {x6};GRB(X)(x j)=

1, x j ∈ {x2, x3, x6, x8}.
From the Step 2 of Algorithm 4.4 we have a new

relation matrix M∗3×3:

M∗3×3 =


x1 x5 x7

x2 2/4 1/4 1/4
x6 0 3/4 3/4
x8 2/4 1/4 1/4


The lower and upper approximations of X∧ =

{x2, x6, x8} by removing x3 from X be updated as fol-
lows:

From the step 3 of algorithm 4.4 we have the
lower approximations:

GR∧B(X∧)(xi) = GRB(X)(xi), Y∧∗xi
= Y∧xi

, xi ∈
{x2, x6, x8}, and GR∧B(X∧)(xi) = 0, xi ∈ {x1, x5, x7}.

From the step 4 of algorithm 4.4 we have the up-
per approximations:

GR
∧
B(X∧)(x1): Since GRB(X)(x1) = GRB(x1, x3),

then GR
∧
B(X∧)(x1) = ∨

y∈{x2,x6,x8}
GRB(x1,y) = 2

4 and

Y∨∗x1
= {y; ∨

y∈{x2,x6,x8}
GRB(x1,y)} = {x2, x8}.

GR
∧
B(X∧)(x5): Since Y∨x5

= {x6}, GRB(X)(x5) =

GRB(x5, x6) , GRB(x5, x3), then GR
∧
B(X∧)(x5) =

GRB(X)(x5) = 3
4 and Y∨∗x5

= Y∨x5
−{x3} = {x6}.

GR
∧
B(X∧)(x7): Since Y∨x7

= {x6}, GRB(X)(x7) =

GRB(x7, x6) , GRB(x7, x3), then GR
∧
B(X∧)(x7) =

GRB(X)(x7) = 3
4 and Y∨∗x7

= Y∨x7
−{x3} = {x6}.

GR
∧
B(X∧)(x j) =GRB(X)(x j) = 1, x j ∈ {x2, x6, x8}.

5. Incrementally updating approximations
when changing the attribute value of the
object

In practical situation, the attribute values of the ob-
ject are likely to change, as well. In this section,
we discuss the methods of incrementally updating
approximations based on the grade indiscernibility
relation when changing the decision attribute value
and the conditional attribute value of the object, re-
spectively.

5.1. Incrementally updating approximations
when changing the decision attribute value
of the object

Proposition 11 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, X ⊆ U, x∨ ∈ U and x∨ < X. The
lower and upper approximations of X∨ = X ∪ {x∨}
by changing the decision attribute value of x∨ from
U −X to X can be updated respectively as follows.

Lower approximation: If xi ∈ U − X∨, we have
GRB(X∨)(xi) =GRB(X)(xi) = 0. If xi ∈ X∨, we have:

If ∃y ∈ Y∧xi
, such that GRB(X)(xi) = 1 −

GRB(xi,y) , 1 −GRB(xi, x∨), then GRB(X∨)(xi) =
GRB(X)(xi) and Y∧∗xi

= Y∧xi
−{x∨}.

If GRB(X)(xi) = 1−GRB(xi, x∨) or xi = x∨, then
GRB(X∨)(xi) = ∧

y∈U−X∨
(1 − GRB(xi,y)) and Y∧∗xi

=

{y; ∨
y∈U−X∨

GRB(xi,y)}.

Upper approximation: If x j ∈ X∨, we have
GRB(X∨)(x j) = 1. If x j ∈ U −X∨, we have:

If GRB(x j, x∨)>GRB(X)(x j), then GRB(X∨)(x j)=
GRB(x j, x∨) and Y∨∗x j

= {x∨}.
If GRB(x j, x∨)=GRB(X)(x j), then GRB(X∨)(x j)=

GRB(X)(x j) and Y∨∗x j
= Y∨x j

∪{x∨}.
If GRB(x j, x∨)<GRB(X)(x j), then GRB(X∨)(x j)=

GRB(X)(x j) and Y∨∗x j
= Y∨x j

.
Algorithm 5.1 (Incremental algorithm for updat-

ing approximations when changing the decision at-
tribute value of x∨, x∨ ∈ U −X to x∨ ∈ X)

Step 1: Input the relation matrix Mn×m;
GRB(X)(xi), Y∧xi

, xi ∈ X; GRB(X)(x j, Y∨x j
, x j ∈ U −X.

Step 2: We get a new relation matrix
M∗(n+1)×(m−1). // Delete GRB(x∨, xi), xi ∈ X from the
relation matrix Mn×m and calculate GRB(x∨, x j), x j ∈
U −X∧.

Step 3: Calculate the lower approximations xi ∈
X∨

If ∃y ∈ Y∧xi
, such that GRB(X)(xi) = 1 −

GRB(xi,y) , 1 −GRB(xi, x∨), then GRB(X∨)(xi) =
GRB(X)(xi) and Y∧∗xi

= Y∧xi
−{x∨}.

Else GRB(X∨)(xi) = ∧
y∈U−X∨

(1 −GRB(xi,y)) and

Y∧∗xi
= {y; ∨

y∈U−X∨
GRB(xi,y)}. // According to the

Proposition 11.
Step 4: Calculate the upper approximations

x j ∈ U −X∨
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If GRB(x j, x∨)>GRB(X)(x j), then GRB(X∨)(x j)=
GRB(x j, x∨) and Y∨∗x j

= {x∨}.
If GRB(x j, x∨)=GRB(X)(x j), then GRB(X∨)(x j)=

GRB(X)(x j) and Y∨∗x j
= Y∨x j

∪{x∨}.
If GRB(x j, x∨)<GRB(X)(x j), then GRB(X∨)(x j)=

GRB(X)(x j) and Y∨∗x j
= Y∨x j

. // According to the
Proposition 11.

Step 5: Output the relation matrix M∗(n+1)×(m−1);
GRB(X∨)(xi), Y∧∗xi

, xi ∈ X∨; GRB(X∨)(x j), Y∨∗x j
,

x j ∈ U −X∨; GRB(X∨)(xi) = 0, xi ∈ U − X∨, and
GRB(X∨)(x j) = 1, x j ∈ X∨.

The Algorithm 5.1 has a time complexity of
O(|U −X| |B|), which is mainly decided by Step 2. In
the following Example 8, We use the results from
Example 7 to demonstrate how algorithm 5.1 up-
date the approximations when changing the decision
value of the object from U −X to X.
Example 8 We consider the information system
given in Table 6. Let U = {x1, x2, x5, x6, x7, x8} be
the universal set, B = {b1,b3,b4,b5} be the condi-
tional attribute set, X = {x2, x6, x8} be the decision
set. Changing the decision attribute value of x5 to X
from U −X, X∨ = X∪{x5}.

Table 7.
b1 b3 b4 b5 d

x1 2 1 1 3 U −X
x2 2 1 2 2 X
x5 1 2 2 3 X
x6 1 2 2 2 X
x7 1 2 2 1 U −X
x8 2 1 2 2 X

Using the result of Example 7.

M3×3 =


x1 x5 x7

x2 2/4 1/4 1/4
x6 0 3/4 3/4
x8 2/4 1/4 1/4


GRB(X)(x2) = 2

4 ,Y
∧
x2
= {x1};GRB(X)(x6) = 1

4 ,Y
∧
x6
=

{x5, x7};GRB(X)(x8) = 2
4 ,Y

∧
x8
= {x1};GRB(X)(xi) =

0, xi ∈ {x1, x5, x7}.
GRB(X)(x1) = 2

4 ,Y
∨
x1
= {x2, x8};GRB(X)(x5) =

3
4 ,Y

∨
x5
= {x6};GRB(X)(x7)= 3

4 ,Y
∨
x7
= {x6};GRB(X)(x j)=

1, x j ∈ {x2, x6, x8}.

From the Step 2 of Algorithm 5.1 we have a new
relation matrix M∗4×2:

M∗4×2 =


x1 x7

x2 2/4 1/4
x6 0 3/4
x8 2/4 1/4
x5 1/4 3/4


The lower and upper approximations of X∨ =

{x2, x5, x6, x8} by changing the decision attribute
value x5 ∈ U −X to x5 ∈ X are updated as follows:

From the step 3 of algorithm 5.1 we have the
lower approximations:

GRB(X∨)(x2): Since Y∧x2
= {x1}, GRB(X)(x2) =

1−GRB(x2, x1), then GRB(X∨)(x2) = GRB(X)(x2) =
2
4 and Y∧∗x2

= Y∧x2
−{x5} = {x1}.

GRB(X∨)(x6): Since ∃x7 ∈ Y∧x6
, such that

GRB(X)(x6) = 1−GRB(x6, x7), then GRB(X∨)(x6) =
GRB(X)(x6) = 1

4 and Y∧∗x6
= Y∧x6

−{x5} = {x7}.
GRB(X∨)(x8): Since Y∧x8

= {x1}, GRB(X)(x8) =
1−GRB(x8, x1), then GRB(X∨)(x8) = GRB(X)(x8) =
2
4 and Y∧∗x8

= Y∧x8
−{x5} = {x1}.

GRB(X∨)(x5): GRB(X∨)(x5) = ∧
y∈{x1,x7}

(1 −

GRB(x5,y)) = 1
4 and Y∧∗x8

= {y; ∨
y∈{x1,x7}

GRB(x5,y)} =
{x7}.

GRB(X∨)(xi) =GRB(X)(xi) = 0, x ∈ {x1, x7}.
From the step 4 of algorithm 5.1 we have the up-

per approximations:
GRB(X∨)(x1): Since GRB(x1, x5) < GRB(X)(x1),

then GRB(X∨)(x1) = GRB(X)(x1) = 2
4 and Y∨∗x1

=

Y∨x1
= {x2, x8}.
GRB(X∨)(x7): Since GRB(x7, x5) = GRB(X)(x7),

then GRB(X∨)(x7) = GRB(X)(x7) = 3
4 and Y∨∗x7

=

Y∨x7
∪{x5} = {x5, x6}.
GRB(X∨)(x j) = GRB(X)(x j) = 1, x j ∈

{x2, x5, x6, x8}.
Proposition 12 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, X ⊆ U, x∧ ∈ X. The lower and
upper approximations of X∧ = X−{x∧} by changing
the decision attribute value of x∧ from X to U − X
can be updated respectively as follows.

Lower approximation: If xi ∈ U − X∧, we have
GRB(X∧)(xi) = 0; If xi ∈ X∧, we have:
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If 1 − GRB(xi, x∧) > GRB(X)(xi), then
GRB(X∧)(xi) =GRB(X)(xi) and Y∧∗xi

= Y∧xi
.

If 1 − GRB(xi, x∧) = GRB(X)(xi), then
GRB(X∧)(xi) =GRB(X)(xi) and Y∧∗xi

= Y∧xi
∪{x∧}.

If 1 − GRB(xi, x∧) < GRB(X)(xi), then
GRB(X∧)(xi) = 1−GRB(xi, x∧) and Y∧∗xi

= {x∧}.
Upper approximation: If x j ∈ X∧, we have

GRB(X∧)(x j) = GRB(X)(x j) = 1; If x j ∈ U −X∧, we
have:

If ∃y ∈ Y∨x j
, such that GRB(X)(x j) = GRB(x j,y),

then GRB(X∧)(x j) = GRB(X)(x j) and Y∨∗x j
= Y∨x j

−
{x∧}.

If GRB(X)(x j) = GRB(x j, x∧), or x j = x∧,
then GRB(X)(x j) = ∨

y∈X∧
GRB(x j,y) and Y∨∗x j

=

{y; ∨
y∈X∧

GRB(x j,y)}.

Algorithm 5.2 (Incremental algorithm for updat-
ing approximations when changing the decision at-
tribute value of x∧, x∧ ∈ X to x∧ ∈ U −X)

Step 1: Input the relation matrix Mn×m;
GRB(X)(xi), Y∧xi

, xi ∈ X; GRB(X)(x j, Y∨x j
, x j ∈ U −X.

Step 2: We get a new relation matrix
M∗(n+1)×(m−1). // Delete GRB(x∧, x j), x j ∈ U −
X from the relation matrix Mn×m and calculate
GRB(x∨, xi), xi ∈ X∨.

Step 3: Calculate the lower approximations xi ∈
X∧

If 1 − GRB(xi, x∧) > GRB(X)(xi), then
GRB(X∧)(xi) =GRB(X)(xi) and Y∧∗xi

= Y∧xi
;

If 1 − GRB(xi, x∧) = GRB(X)(xi), then
GRB(X∧)(xi) =GRB(X)(xi) and Y∧∗xi

= Y∧xi
∪{x∧};

If 1 − GRB(xi, x∧) < GRB(X)(xi), then
GRB(X∧)(xi) = 1 −GRB(xi, x∧) and Y∧∗xi

= {x∧}. //
According to the Proposition 12.

Step 4: Calculate the upper approximations x j ∈
U −X∧

If ∃y ∈ Y∨x j
, such that GRB(X)(x j) = GRB(x j,y),

then GRB(X∧)(x j) = GRB(X)(x j) and Y∨∗x j
= Y∨x j

−
{x∧};

Else GRB(X)(x j) = ∨
y∈X∧

GRB(x j,y) and Y∨∗x j
=

{y; ∨
y∈X∧

GRB(x j,y)}. // According to the Proposition

12.
Step 5: Output the relation matrix M∗(n+1)×(m−1);

GRB(X∧)(xi), Y∧∗xi
, xi ∈ X∧; GRB(X∧)(x j) and Y∨∗x j

,

x j ∈ U − X∧; GRB(X∧)(xi) = 0, xi ∈ U − X∧, and
GRB(X∧)(x j) = 1, x j ∈ X∧.

The Algorithm 5.2 has a time complexity of
O(|X| |B|), which is mainly decided by Step 2. In
the following Example 9, We use the results from
Example 8 to demonstrate how algorithm 5.2 update
the approximations when changing the decision at-
tribute value of the object from X to U −X.
Example 9 We consider the information system
given in Table 7. Let U = {x1, x2, x5, x6, x7, x8} be the
universal set, B = {b1,b3,b4,b5} be the conditional
attribute set, X = {x2, x5, x6, x8} be the decision set.
Changing the decision attribute value of x8 from X
to U −X, X∧ = {x2, x5, x6}.

Table 8.
b1 b3 b4 b5 d

x1 2 1 1 3 U −X
x2 2 1 2 2 X
x5 1 2 2 3 X
x6 1 2 2 2 X
x7 1 2 2 1 U −X
x8 2 1 2 2 U −X

Using the result of Example 8.

M4×2 =


x1 x7

x2 2/4 1/4
x6 0 3/4
x8 2/4 1/4
x5 1/4 3/4


GRB(X)(x2) = 2

4 ,Y
∧
x2
= {x1}; GRB(X)(x6) = 1

4 ,Y
∧
x6
=

{x7}; GRB(X)(x8) = 2
4 ,Y

∧
x8
= {x1}; GRB(X)(x5) =

1
4 ,Y

∧
x5
= {x7}; GRB(X)(xi) = 0, xi ∈ {x1, x7}.

GRB(X)(x1) = 2
4 ,Y

∨
x1
= {x2, x8}; GRB(X)(x7) =

3
4 ,Y

∨
x7
= {x5, x6}; GRB(X)(x j) = 1, x j ∈ {x2, x5, x6, x8}.

From the Step 2 of Algorithm 5.2 we have a new
relation matrix M∗3×3:

M∗3×3 =


x1 x7 x8

x2 2/4 1/4 4/4
x6 0 3/4 2/4
x5 1/4 3/4 1/4


The lower and upper approximations of X∧ =

{x2, x5, x6} by changing the decision attribute value
x8 ∈ X to x8 ∈ U −X,are updated as follows:
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From the step 3 of algorithm 5.2 we have the
lower approximations:

GRB(X∧)(x2): Since 1 − GRB(x2, x8) <
GRB(X)(x2), then GRB(X∧)(x2) = 1−GRB(x2, x8) =
0 and Y∧∗x2

= {x8}.
GRB(X∧)(x6): Since 1 − GRB(x6, x8) >

GRB(X)(x6), then GRB(X∧)(x6) = GRB(X)(x6) = 1
4

and Y∧∗x6
= Y∧x6

= {x7}.
GRB(X∧)(x5): Since 1 − GRB(x5, x8) >

GRB(X)(x5), then GRB(X∧)(x5) = GRB(X)(x5) = 1
4

and Y∧∗x5
= Y∧x5

= {x7}.
GRB(X∧)(xi) =GRB(X)(xi) = 0, x ∈ {x1, x7, x8}.
From the step 4 of algorithm 5.2 we have the up-

per approximations:
GRB(X∧)(x1): Since ∃x2 ∈ Y∨x1

, such that
GRB(X)(x1) = GRB(x1, x2), then GRB(X∧)(x1) =
GRB(X)(x1) = 2

4 and Y∨∗x1
= Y∨x1

−{x8} = {x2}.
GRB(X∧)(x7): Since ∃x6 ∈ Y∨x7

, such that
GRB(X)(x7) = GRB(x7, x6), then GRB(X∧)(x7) =
GRB(X)(x7) = 3

4 and Y∨∗x7
= Y∨x7

−{x8} = {x5, x6}.
GRB(X∧)(x8): GRB(X)(x8)= ∨

y∈{x2,x5,x6}
GRB(x8,y)=

4
4 and Y∨∗x8

= {y; ∨
y∈{x2,x5,x6}

GRB(x8,y)} = {x2}.

GRB(X∧)(x j) =GRB(X)(x j) = 1, x j ∈ {x2, x5, x6}.

5.2. Incremental updating approximations when
changing the conditional attribute value of
the object

Proposition 13 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, b ∈ B, changing the condi-
tional attribute value f (x∗,b) to f ∗(x∗,b), f ∗(x∗,b),
f (x∗,b), x∗ ∈ U. For any y ∈ U,

GR∗B(x∗,y) =

 |B|·GRB(x∗,y)+1
|B| , f ∗(x∗,b) = f (y,b);

|B|·GRB(x∗,y)−1
|B| , f ∗(x∗,b) , f (y,b).

Proposition 14 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, X ⊆ U, x∗ ∈ X. The lower and
upper approximations of X by changing the con-
ditional attribute value of x∗, f (x∗,b) to f ∗(x∗,b)
( f (x∗,b) , f ∗(x∗,b)) can be updated respectively as
follows.

Lower approximation: If xi ∈ U − X, then
GR∗B(X)(xi) = 0. If xi ∈ X, we have

If xi ∈ X − {x∗}, then GR∗B(X)(xi) = GRB(X)(xi)
and Y∧∗xi

= Y∧xi
.

If xi = x∗, then GR∗B(X)(x∗) = ∧
y∈U−X

(1 −
GR∗B(x∗,y)) and Y∧∗xi

= {y; ∨
y∈U−X

GR∗B(x∗,y)}.
Upper approximation: If x j ∈ X, then

GR
∗
B(X)(x j) = 1. If x j ∈ U −X, we have:
If GRB(X)(x j) =GRB(x j, x∗), then GR

∗
B(X)(x j) =

∨
y∈X

GR∗B(x j,y) and Y∨∗x j
= {y; ∨

y∈X
GR∗B(x j,y)} .

If ∃y ∈ Y∨x j
, such that GRB(X)(x j) = GRB(x j,y),

we have:
If GRB(X)(x j) >GR∗B(x j, x∗), then GR

∗
B(X)(x j) =

GRB(X)(x j) and Y∨∗x j
= Y∨x j

−{x∗}.
If GRB(X)(x j) =GR∗B(x j, x∗), then GR

∗
B(X)(x j) =

GRB(X)(x j) and Y∨∗x j
= Y∨x j

∪{x∗}.
If GRB(X)(x j) <GR∗B(x j, x∗), then GR

∗
B(X)(x j) =

GR∗B(x j, x∗) and Y∨∗x j
= {x∗}.

Algorithm 5.3 (Incremental algorithm for updat-
ing approximations when changing the conditional
attribute value f (x∗,b) to f ∗(x∗,b), x∗ ∈ X)

Step 1: Input the relation matrix Mn×m;
GRB(X)(xi), Y∧xi

, xi ∈ X; GRB(X)(x j), Y∨x j
, x j ∈U−X;

The changing attribute value of x∗: f (x∗,b).
Step 2: We get a new relation matrix M∗n×m.

Changing the value GRB(x∗,y) to GR∗B(x∗,y)
of the relation matrix Mn×m, GR∗B(x∗,y) = |B|·GRB(x∗,y)+1

|B| , f ∗(x∗,b) = f (y,b);
|B|·GRB(x∗,y)−1

|B| , f ∗(x∗,b) , f (y,b).
y ∈ U − X //

According to Proposition 13.
Step 3: Calculate the lower approximations xi ∈

X
If xi ∈ X − {x∗}, then GR∗B(X)(xi) = GRB(X)(xi)

and Y∧∗xi
= Y∧xi

.
If xi = x∗, then GR∗B(X)(x∗) = ∧

y∈U−X
(1 −

GR∗B(x∗,y)) and Y∧∗x∗ = {y; ∨
y∈U−X

GR∗B(x∗,y)}. // Ac-

cording to Proposition 14.
Step 4: Calculate the upper approximations x j ∈

U −X
If ∃y ∈ Y∨x j

, such that GRB(X)(x j) = GRB(x j,y),
we have:

If GRB(X)(x j) >GR∗B(x j, x∗), then GR
∗
B(X)(x j) =

GRB(X)(x j) and Y∨∗x j
= Y∨x j

−{x∗}.
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If GRB(X)(x j) =GR∗B(x j, x∗), then GR
∗
B(X)(x j) =

GRB(X)(x j) and Y∨∗x j
= Y∨x j

∪{x∗}.
If GRB(X)(x j) <GR∗B(x j, x∗), then GR

∗
B(X)(x j) =

GR∗B(x j, x∗) and Y∨∗x j
= {x∗}.

Else GR
∗
B(X)(x j) = ∨

y∈X
GR∗B(x j,y) and Y∨∗x j

=

{y; ∨
y∈X

GR∗B(x j,y)} . // According to Proposition 14.

Step 5: Output the relation matrix M∗n×m;
GR∗B(X)(xi), Y∧∗xi

, xi ∈ X; GR
∗
B(X)(x j), Y∨∗x j

, x j ∈ U −
X; GR∗B(X)(xi) = 0, xi ∈ U −X, and GR

∗
B(X)(x j) = 1,

x j ∈ X.
The Algorithm 5.3 has a time complexity of

O(|U −X| |B|), which is mainly decided by Step 2. In
the following Example 10, We use the results from
Example 9 to demonstrate how algorithm 5.3 up-
date the approximations when changing the attribute
value f (x∗,b) to f ∗(x∗,b), x∗ ∈ X.
Example 10 We consider the information system
given in Table 8. Let U = {x1, x2, x5, x6, x7, x8} be
the universal set, B = {b1,b3,b4,b5} be the condi-
tional attribute set, X = {x2, x5, x6} be the decision
set. Changing f (x5,b3) = 2 to f ∗(x5,b3) = 1.

Table 9.
b1 b3 b4 b5 d

x1 2 1 1 3 U −X
x2 2 1 2 2 X
x5 1 1 2 3 X
x6 1 2 2 2 X
x7 1 2 2 1 U −X
x8 2 1 2 2 U −X

Using the result of Example 9.

M3×3 =


x1 x7 x8

x2 2/4 1/4 4/4
x6 0 3/4 2/4
x5 1/4 3/4 1/4


GRB(X)(x2) = 0,Y∧x2

= {x8}; GRB(X)(x6) = 1
4 , Y∧x6

=

{x7}; GRB(X)(x5) = 1
4 ,Y

∧
x5
= {x7}; GRB(X)(xi) =

0, xi ∈ {x1, x7, x8}.
GRB(X)(x1) = 2

4 , Y∨x1
= {x2}; GRB(X)(x7) =

3
4 , Y∨x7

= {x5, x6}; GRB(X)(x8) = 4
4 , Y∨x8

= {x2};
GRB(X)(x j) = 1, x j ∈ {x2, x5, x6}.

From the Step 2 of Algorithm 5.3 we have a new
relation matrix M∗3×3:

M∗3×3 =


x1 x7 x8

x2 2/4 1/4 4/4
x6 0 3/4 2/4
x5 2/4 2/4 2/4


The lower and upper approximations of X =

{x2, x5, x6} by changing f (x5,b3) to f ∗(x5,b3) are up-
dated as follows.

From the step 3 of algorithm 5.3 we have the
lower approximations:

GR∗B(X)(xi) =GRB(X)(xi), Y∧∗xi
= Y∧xi

,xi ∈ {x2, x6}.
GR∗B(X)(x5) = ∧

y∈{x1,x7,x8}
(1−GR∗B(x5,y)) = 2

4 and

Y∧∗x5
= {y; ∨

y∈{x1,x7,x8}
GR∗B(x5,y)} = {x1, x7, x8}.

From the step 4 of algorithm 5.3 we have the up-
per approximations:

GR
∗
B(X)(x1): Since ∃x2 ∈ Y∨x1

, GRB(X)(x1) =
GRB(x1, x2), and GRB(X)(x1) = GR∗B(x1, x5), then
GR
∗
B(X)(x1) = GRB(X)(x1) = 2

4 and Y∨∗x1
= Y∨x1

∪
{x5} = {x2, x5}.

GR
∗
B(X)(x7): Since ∃x6 ∈ Y∨x7

, GRB(X)(x7) =
GRB(x7, x6), and GRB(X)(x7) > GR∗B(x7, x5), then
GR
∗
B(X)(x7) = GRB(X)(x7) = 3

4 , and Y∨∗x7
= Y∨x7

−
{x5} = {x6}.

GR
∗
B(X)(x8): Since ∃x2 ∈ Y∨x8

, GRB(X)(x8) =
GRB(x8, x2), and GRB(X)(x8) > GR∗B(x8, x5), then
GR
∗
B(X)(x8) = GRB(X)(x8) = 4

4 , and Y∨∗x8
= Y∨x8

−
{x5} = {x2}.
Proposition 15 Let S = (U,A,V,F) be an informa-
tion system, B ⊆ A, X ⊆ U, x∗ ∈ U − X. The lower
and upper approximations of X by changing the con-
ditional attribute value of x∗, f (x∗,b) to f ∗(x∗,b)
( f (x∗,b) , f ∗(x∗,b)) can be updated respectively as
follows.

Lower approximation: If xi ∈ U − X, then
GR∗B(X)(xi) = 0. If xi ∈ X, we have

If GRB(X)(xi) = GRB(xi, x∗), then GR∗B(X)(xi) =
∧

y∈U−X
(1−GR∗B(xi,y)) and Y∧∗xi

= {y; ∨
y∈U−X

GR∗B(xi,y)} .

If ∃y ∈ Y∧xi
, such that GRB(X)(xi)=GRB(xi,y), we

have:
If GRB(X)(xi) > GR∗B(xi, x∗), then GR∗B(X)(xi) =

GRB(X)(xi) and Y∧∗xi
= Y∧xi

−{x∗};
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If GRB(X)(xi) = GR∗B(xi, x∗), then GR∗B(X)(xi) =
GRB(X)(xi) and Y∧∗xi

= Y∧xi
∪{x∗};

If GRB(X)(x j) <GR∗B(x j, x∗), then GR∗B(X)(x j) =
GR∗B(x j, x∗) and Y∧∗x j

= {x∗}.
Upper approximation: If x j ∈ X, then

GR
∗
B(X)(x j) = 1. If x j ∈ U −X, we have:
If x j ∈ U − X − {x∗}, then GR

∗
B(X)(x j) =

GRB(X)(x j) and Y∨∗x j
= Y∨x j

.

If x j = x∗, then GR
∗
B(X)(x∗) = ∨

y∈X
GR∗B(x∗,y) and

Y∧∗x∗ = {y; ∨
y∈X

GR∗B(x∗,y)}.

Algorithm 5.4 (Incremental algorithm for updat-
ing approximations when changing the conditional
attribute value f (x∗,b) to f ∗(x∗,b), x∗ ∈ U −X)

Step 1: Input the relation matrix Mn×m;
GRB(X)(xi), Y∧xi

, xi ∈ X; GRB(X)(x j, Y∨x j
, x j ∈ U −X;

The changing attribute value of x∗: f (x∗,b).
Step 2: We get a new relation matrix M∗n×m.

Changing the value GRB(x∗,y) to GR∗B(x∗,y)
of the relation matrix Mn×m, GR∗B(x∗,y) = |B|·GRB(x∗,y)+1

|B| , f ∗(x∗,b) = f (y,b);
|B|·GRB(x∗,y)−1

|B| , f ∗(x∗,b) , f (y,b).
y ∈ X // Ac-

cording to Proposition 13.
Step 3: Calculate the lower approximations xi ∈

X
If ∃y ∈ Y∧xi

, such that GRB(X)(xi)=GRB(xi,y), we
have:

If GRB(X)(xi) > GR∗B(xi, x∗), then GR∗B(X)(xi) =
GRB(X)(xi) and Y∧∗xi

= Y∧xi
−{x∗};

If GRB(X)(xi) = GR∗B(xi, x∗), then GR∗B(X)(xi) =
GRB(X)(xi) and Y∧∗xi

= Y∧xi
∪{x∗};

If GRB(X)(x j) <GR∗B(x j, x∗), then GR∗B(X)(x j) =
GR∗B(x j, x∗) and Y∧∗x j

= {x∗}.
Else GR∗B(X)(xi) = ∧

y∈U−X
(1 − GR∗B(xi,y)) and

Y∧∗xi
= {y; ∨

y∈U−X
GR∗B(xi,y)} . // According to Propo-

sition 15.
Step 4: Calculate the upper approximations x j ∈

U −X
If x j ∈ U − X − {x∗}, then GR

∗
B(X)(x j) =

GRB(X)(x j) and Y∨∗x j
= Y∨x j

.

If x j = x∗, then GR
∗
B(X)(x∗) = ∨

y∈X
GR∗B(x∗,y) and

Y∧∗x∗ = {y; ∨
y∈X

GR∗B(x∗,y)}. //According to Proposition

15.

Step 5: Output the relation matrix M∗n×m;
GR∗B(X)(xi), Y∧∗xi

, xi ∈ X; GR
∗
B(X)(x j), Y∨∗x j

, x j ∈ U −
X; GR∗B(X)(xi) = 0, xi ∈ U −X, and GR

∗
B(X)(x j) = 1,

x j ∈ X.
The time complexity of the Algorithm 5.4 is

O(|X| |B|), which is mainly decided by the time cost
of building the information system matrix in Step
2. In the following Example 11, We use the re-
sults from Example 10 to demonstrate how algo-
rithm 5.4 update the approximations when changing
the conditional attribute value f (x∗,b) to f ∗(x∗,b),
x∗ ∈ U −X.
Example 11 We consider the information system
given in Table 9. Let U = {x1, x2, x5, x6, x7, x8} be
the universal set, B = {b1,b3,b4,b5} be the condi-
tional attribute set, X = {x2, x5, x6} be the decision
set. Changing f (x8,b4) = 2 to f ∗(x8,b4) = 1.

Table 10.
b1 b3 b4 b5 d

x1 2 1 1 3 U −X
x2 2 1 2 2 X
x5 1 1 2 3 X
x6 1 2 2 2 U −X
x7 1 2 2 1 U −X
x8 2 1 1 2 U −X

Using the result of Example 10.

M3×3 =


x1 x7 x8

x2 2/4 1/4 4/4
x6 0 3/4 2/4
x5 2/4 2/4 2/4


GRB(X)(x2) = 0,Y∧x2

= {x8}; GRB(X)(x6) = 1
4 ,

Y∧x6
= {x7}; GRB(X)(x5) = 2

4 ,Y
∧
x5
= {x1, x7, x8};

GRB(X)(xi) = 0, xi ∈ {x1, x7, x8}.
GRB(X)(x1) = 2

4 , Y∨x1
= {x2, x5}; GRB(X)(x7) =

3
4 , Y∨x7

= {x6}; GRB(X)(x8) = 4
4 , Y∨x8

= {x2};
GRB(X)(x j) = 1, x j ∈ {x2, x5, x6}.

From the Step 2 of Algorithm 5.4 we have a new
relation matrix M∗3×3:

M∗3×3 =


x1 x7 x8

x2 2/4 1/4 3/4
x6 0 3/4 1/4
x5 2/4 2/4 1/4


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The lower and upper approximations of X =
{x2, x5, x6} by changing f (x8,b4) to f ∗(x8,b4) are up-
dated as follows.

From the step 3 of algorithm 5.4 we have the
lower approximations:

GR
∗
B(X)(x2): Since GRB(X)(x2) = GRB(x2, x8),

then GR∗B(X)(x2)= ∧
y∈{x1,x7,x8}

(1−GR∗B(x2,y))= 3
4 and

Y∧∗x2
= {y; ∨

y∈{x1,x7,x8}
GR∗B(x2,y)} = {x8};

GR
∗
B(X)(x6): Since ∃x7 ∈ Y∧x6

, such that
GRB(X)(x6) = GRB(x6, x7), and GRB(X)(x6) >
GR∗B(x6, x8) then GR∗B(X)(x6) =GRB(X)(x6) = 1

4 and
Y∧∗x6
= Y∧x6

−{x8} = {x7};
GR
∗
B(X)(x5): Since ∃x7 ∈ Y∧x5

, such that
GRB(X)(x5) = GRB(x5, x7), and GRB(X)(x5) >
GR∗B(x5, x8) then GR∗B(X)(x5) =GRB(X)(x5) = 2

4 and
Y∧∗x5
= Y∧x5

−{x8} = {x1, x7}.
From the step 4 of algorithm 5.4 we have the up-

per approximations:
GR
∗
B(X)(x j) = GRB(X)(x j), Y∨∗x j

= Y∨x j
, x j ∈

{x1, x7}.
GR
∗
B(X)(x8)= ∨

y∈{x2,x5,x6}
GR∗B(x8,y)= 2

4 and Y∧∗x8
=

{y; ∨
y∈{x2,x5,x6}

GR∗B(x8,y)} = {x1, x7}.

6. Algorithm analysis

The time complexities of all the incrementally up-
dating algorithms proposed in this paper are list in
the Table 11 as follow.

From the Table 11 we can see that the proposed
incrementally updating algorithms has lower time
complexity for every operation on data. In addition
to the time cost, it is obviously that every incremen-
tally updating algorithm will use less memory space
to get the information updated, because there is no
need to rebuild the whole relation matrix in an incre-
mentally updating algorithm.

The incrementally updating algorithms could be
seen as a group of functions to update the existing re-
sults to keep the relation matrix, approximation and
the set of Y∨x j

and Y∧xi
changing in right way when the

information system changed. And we can use differ-
ent types of the incrementally updating algorithms
in any order and with any number of times to adapt

to any possible changing in the information system.
For example, we can use Algorithm 3.2 once and
then use Algorithm 4.1 or 4.2 twice when the basic
data need a changing of adding two objects and re-
moving an attribute. And we should note that putting
the removing type Algorithm before others will also
make the time cost reduced a bit more.

7. Experimental evaluation

In this section, we compare the computational time
of the non-incremental algorithm and the proposed
incremental algorithms on different data sets shown
in Table 12. The three data sets used herein came
from the University of California, Irvine (UCI) Ma-
chine Learning Repository (www.ics.uci.edu/). In
data set Dermatology, we delete some attributes with
missing values. Experiments were performed on a
2.40GHz Pentium Server with 8GB of memory, run-
ning Windows 10. Algorithms were code in Matlab
r2012a.

From the following experimental results, it is
clear that the incremental algorithm outperform
the traditional non-incremental algorithm in dif-
ferent cases, Table 13 ( Where NIA is the non-
incrementally updating algorithm and IA is the in-
crementally updating algorithm ) shows that the pro-
posed methods can effectively update approxima-
tions when the information system changes.

8. Conclusion

This paper discusses the approaches of incremen-
tally updating of the rough approximations based on
the grade indiscernibility relation when complete in-
formation system is varied. Taking full use of the
existing information make the time cost of the ap-
proaches reduced a lot especially when dealing with
the large-scale data. In the future, we will discuss
the methods of dynamic updating of the rough ap-
proximations based on the grade indiscernibility re-
lation in incomplete information system. Moreover,
the incremental updating approaches of the decision
rules with respect to grade indiscernibility relation
is another important and interesting issue to be ad-
dressed.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 212–233
___________________________________________________________________________________________________________

231



Table 11.

Operation
Non-incremental Time Incremental Time

algorithm Complexity algorithm Complexity
Adding an attribute b

Algorithm 2.1 O(|X| |U −X| |B|)

Algorithm 3.1 O(|X| |U −X|)
Removing an attribute b Algorithm 3.2 O(|X| |U −X|)

Adding an object x ∈ U −X Algorithm 4.1 O(|X| |B|)
Adding an object x ∈ X Algorithm 4.2 O(|U −X| |B|)

Removing an object x ∈ U −X Algorithm 4.3 O(|X|)
Removing an object x ∈ X Algorithm 4.4 O(|U −X|)

x ∈ U −X→ x ∈ X Algorithm 5.1 O(|U −X| |B|)
x ∈ X→ x ∈ U −X Algorithm 5.2 O(|X| |B|)

f (x,b)→ f ∗(x,b), x ∈ X Algorithm 5.3 O(|U −X| |B|)
f (x,b)→ f ∗(x,b), x ∈ U −X Algorithm 5.4 O(|X| |B|)

Table 12.

ID Data set Number of objects Number of attributes Decision classes Missing value

1 Zoo 101 17 7 No
2 Dermatology 366 33 7 Yes
3 Chess 3196 36 2 No

Table 13. Comparisons of computational time between non-
incremental algorithm and incremental simplified algorithm
when objects and attributes increase simultaneously(s).

Operation
Zoo Dermatology Chess

NIA IA NIA IA NIA IA
Adding an attribute b 0.0115 0.0083 0.1735 0.0064 15.8108 0.2609

Removing an attribute b 0.0115 0.0077 0.1774 0.0065 15.8190 0.2316
Adding an object x ∈ U −X 0.0123 0.0030 0.1582 0.0052 15.9404 0.1340

Adding an object x ∈ X 0.0120 0.0081 0.1485 0.0074 16.2771 0.1263
Removing an object x ∈ U −X 0.0101 0.0044 0.1708 0.0049 15.9115 0.1308

Removing an object x ∈ X 0.0114 0.0067 0.1697 0.0057 16.0953 0.1302
x ∈ U −X→ x ∈ X 0.0117 0.0055 0.1726 0.0054 15.9011 0.1641
x ∈ X→ x ∈ U −X 0.0112 0.0099 0.1744 0.0067 15.7100 0.1548

f (x,b)→ f ∗(x,b), x ∈ X 0.0120 0.0079 0.1795 0.0067 15.9708 0.1184
f (x,b)→ f ∗(x,b), x ∈ U −X 0.0115 0.0030 0.1623 0.0060 15.8709 0.1442
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