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Abstract 

In this paper, we report our recent development of a novel 
discriminative learning technique which embeds the concept 
of discriminative margin into the well established minimum 
classification error (MCE) method. The idea is to impose an 
incrementally adjusted “margin” in the loss function of MCE 
algorithm so that not only error rates are minimized but also 
discrimination “robustness” between training and test sets is 
maintained. Experimental evaluation shows that the use of the 
margin improves a state-of-the-art MCE method by reducing 
17% digit errors and 19% string errors in the TIDigits 
recognition task. The string error rate of 0.55% and digit error 
rate of 0.19% we have obtained are the best-ever results 
reported on this task in the literature. 
Index Terms: discriminative training, margin, minimum error 

1. Introduction 
Discriminative training has been a prominent theme in 

recent speech recognition research and system development; 
e.g., [2][3][5][6][10][12][13][14][15]. The essence of these 
discriminative training algorithms is the adoption of the cost 
functions that are directly or indirectly related to the empirical 
error rate in the training data. These cost functions serve as 
the objective functions for optimization, and the related 
empirical error rate may be either at the sentence string level  
[6][10], at the super-string level [3], at the sub-string level  
(i.e., word or phone in a sentence) [13], or at the isolated 
word/phone token level [10][14].  

One key insight from modern machine learning research 
(e.g., [9][1][16]) is that when the empirical training error rate 
is optimized by a classifier or recognizer, only a biased 
estimate of the true error rate is obtained. How large the bias is 
depends on the complexity of the recognizer and the task (as 
quantified by the VC dimension). The analysis and 
experimental results reported in this paper show that this bias 
can be quite substantial even for a simple HMM recognizer 
applied to a simple digit recognition task. Another key insight 
from machine learning research suggests that one effective 
way to reduce the above bias for improving generalization 
performance is to increase “margins” in the training data; i.e., 
making the correct samples classified well away from the 
decision boundary. It is desirable to use such large margins for 
achieving lower test errors, even if this may result in higher 
empirical errors in training.  

Prior to the work presented in this paper, most 
discriminative learning techniques in speech recognition 
research have focused on the issue of empirical error rates, and 
not on the issue of “margins” and related generalization. One 
notable exception is the recent work of [5], where margins 
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ined from the Gaussian HMM for positive samples are 
imized with constraints, while throwing away negative 
ples. Standard MCE (minimum classification error) 
ning [6] was carried out before margin optimization, 
ucing the impact of negative examples. While the technique 
5] may not generalize to more difficult tasks than had been 
luated, the positive experimental results published in [5] 
 the related insights suggest a fruitful direction to explore 
effect of large margins in the overall speech recognition 
eralization performance.  
In this paper, we present an alternative technique to [5] for 
rporating margins in the discriminative training. In 
trast to [5] where the MCE-trained HMMs are used as the 
ial model for the subsequent large-margin HMM training 
h positive samples only (i.e., throwing away all negative 
ples), we integrate both error rate minimization and 
gin enhancement into a single framework. Significant 
formance improvement over [5] has been achieved using 
identical recognition task. 
The rest of the paper is organized as follows. In section 2, 
introduce our novel technique that incorporates the 
riminative margin in a generalized version of the MCE 
ning. Detailed experimental evaluation of this technique is 
sented in Section 3. Finally, we summarize and conclude 
paper in section 4, with a discussion on the ongoing work 
further validate the effectiveness of the new training 
nique. 

MCE Incorporating Discriminative Margin 
The integrated technique for both error rate minimization 
 margin enhancement presented in this paper is 
lemented in the MCE framework with modification. In this 
tion, we will review the conventional MCE framework 
t, and then describe the modification. 

. MCE technique and its implementation 

Conventional MCE learning [6][10][14] minimizes the 
othed sentence or string-level error rate. We use r=1,…,R 
he index for “token” or “string” (e.g., a single sentence or 
rance) in the training data, and each token consists of a 
ing” of a vector-valued observation data sequence: Xr=xr,1, 
 xr,Tr, with the corresponding label (e.g., word) sequence: Sr 
r,1,…, wr,Nr. That is, Sr denotes correct label sequence for 
en r. Further, we use sr to denote all possible label 
uences for the r-th token, including the correct label 
uence Sr and all other incorrect label sequences.  
In MCE, a loss function for a single utterance Xr is 
ined. The loss function has the desirable property that it is 
e to zero if the string is correctly recognized and close to 
 if it is incorrectly recognized. The most popular smooth 
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function that gives this property is the following sigmoid 
function.  

( )
r rr r r - d (X ,Λ)

1l d (X ,Λ) =
1+e α

,   (1) 

where ),( Λrr Xd  is called the misclassification measure and 
Λ is the model parameters to be trained. For the popular one-
best MCE training when only top one incorrectly recognized 
string is used as the “competitive candidate” for discriminative 
training, dr (Xr , Λ) is the log-likelihood distance between  the  
correct  string,  Sr,c,   and   the incorrect or competitive string, 
denoted as Sr,e, i.e.,  

r r Λ r r,c Λ r r,ed (X ,Λ)= - log p (X ,S )+log p (X ,S ) .             (2)

Substituting (2)  into (1) gives 

( ) )r r,e
r r r

r r,e r r,c

 p (X ,S
l d (X ,Λ) =

 p (X ,S |Λ)+p (X ,S |Λ)

α

α α
Λ

Λ Λ

  (3) 

     For the more general N-best MCE training where top 
N>1 (instead of only one) incorrectly recognized string is used 
as the “competitive candidates”, a soft-max function has been 
widely used. In our implementation, we have approximated the 
soft-max by a simpler form. This leads to the loss function for 
the N-best version of MCE of 

( ) r r r

r

MCE r Λ r r
s ,s S

r r r
MCE r Λ r r

s

w (s )p (X ,s )
l d (X ,Λ) =

w (s )p (X ,s )

α

α

≠
∑

∑

                 (4)       

where wMCE(sr) is a weighting factor of sr ≠ Sr,c, and we assign 
wMCE(Sr,c) ≡1. Next, the loss function at the string level is 
defined to be the sum of the loss functions of individual string 
tokens: 

( )R

MCE r r r
r=1

L (Λ)= l d (X ,Λ)∑     (5) 

Now, minimizing the string level loss function of LMCE(Λ)  
in (5) is equivalent to maximizing the MCE objective function 
(R is the total number of training sentences):   

r

R Λ r r,c
MCE MCE

r=1 s MCE r Λ r r

p (X ,S |Λ)
O (Λ)=R-L (Λ) =  

w (s )p (X ,s )

α

α∑
∑

         (6) 

We have implemented the MCE algorithm that maximizes 
(6) not by gradient ascend (as in generalized probabilistic 
descent or GPD [6]) but by a special technique of optimization 
via growth transformation. This implementation is an 
improved version upon that as originally proposed in [3]. The 
improvement lies in converting the super-string-level objective 
function in [3] into a normal string-level objective function for 
MCE. This conversion is accomplished via a non-trivial 
mathematical framework (see details in [4]), which results in a 
rational function that is then subject to optimization by growth 
transformation or extended Baum-Welch algorithm. We found 
that in our growth transformation based optimization, much 
fewer iterations are required for empirical convergence than 
those typically required by the gradient based GPD [6][14]. 

2.2. Incorporating discriminative margin in MCE 

Given a fixed classifier or recognizer which defines 
decision boundaries for all possible pairs of classes, a 
“margin” is defined for each training token as the difference 
between the score of this token by the correct class and that by 
the most competitive class. A positive difference gives a 
positive sample, and a negative one gives a negative sample. A 
large (positive) margin implies a wide tolerance gap. A 
recognizer with a larger margin in magnitude gives more 
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ust discrimination than that with a smaller one, but it may 
 give lower empirical error rates in the training data 
ecially for multi-class tasks such as in speech recognition. 
The concept of margin interpreted as the tolerance gap can 
readily incorporated into MCE by using a negative 
rementally adjusted or iteration (I)-dependent) parameter 
) 0I <  in the more general definition of the loss function:  

( ) (I)r rr r r - d (X ,Λ)+

1l d (X ,Λ) =
1+e α β

   (7) 

In the conventional MCE, β  has been invariably set to be 
 (e.g., [6][3][10][14]), which gives (1). And since the 
gin provided by ( )Iβ  is a component of the loss function 
7) that determines the empirical discrimination power, we 
 it “discriminative margin”.  
 In (7), the “iteration” argument I in ( )Iβ  signifies that the 
al value of β  at iteration I  is regulated by incremental 
stment from a smaller (in magnitude) negative value to a 
er one. Small-magnitude negative values ofβ  in early 
ations provide low margins while not sacrificing significant 
uction in empirical errors in training. Once the error pattern 
omes adjusted to the new one at the iteration, an increment 
β  from ( )Iβ  to ( 1)Iβ + at the next iteration will have a 
ilarly small effect on the empirical errors while achieving 
tively larger margins that help reduce test errors. In 
ition, the incrementally adjusted margins help bring 
rrectly classified training tokens that are far away from the 
ter of the sigmoid function across the center faster than 
hout using such margins. This is because the slopes of the 
oid corresponding to these tokens are small and thus 
ld be moved slowly by MCE without incremental margins. 
We now use Fig. 1 with a two-class special case to 
strate the use of discriminative margins in MCE. Tokens 
ped as circles in Fig. 1 are from class 1 and those as 
ngles are from class 2. Without a margin (upper two sub-
res for class 1 and class 2, respectively), as in the 
ventional MCE, the circle token near d=0 for class 1 will 
tribute to model adjustment since it incurs some loss and it 
ear the decision boundary where the slope of the sigmoid is 
e. But after model adjustment which moves that token to 
left, the slope of the sigmoid becomes much smaller and 
ce model adjustment soon stops. (The same process applies 
he triangle token near d=0 for class 2).   

 
 
Figure 1. Illustration of the use of discriminative margins 
CE and its desirable effects for a two-class case.  

 
After the margin is introduced (lower two sub-figures for 



class 1 and class 2, respectively, in Fig. 1) by shifting the 
sigmoid function to the left with the magnitude of m, the circle 
token and the triangle token for class 2 (both near d=0) tend to 
move to the left over a distance at least m units longer than in 
the earlier case. Further, when the shift of the sigmoid function 
is done incrementally, a greater final distance or discriminative 
margin can be achieved.   

3. Experimental Results 
We have evaluated our technique described in Section 2.2 
above using the TIDIGITS corpus [8],  in a standard 
experimental setup consistent with the prior work on this task 
[6][5]. This corpus contains utterances from 326 speakers 
(111 men, 114 women, and 101 children) collected from 21 
regions of the United States. There are a total of eleven words 
(digits) in the corpus vocabulary (digits of “1” to “9”, plus 
“oh” and “zero”). Each utterance is a connected-digit string, 
with the number of digits in the string varying between one 
and seven (except with no six-digit strings). In our 
experiments, we only use the adult portion of the corpus, 
which makes up a standard training set of 8623 digit strings 
(from 55 men and 57 women) and a standard test set of 8700 
digit strings (from 56 men and 57 women).  

In our experiments, all data are sampled at a rate of 16K 
Hz. The 33-dimentional acoustic feature vectors are 
composed of the normalized energy, 10 MFCCs (Mel-
Frequency Cepstrum Coefficients) and their first and second 
order time derivatives. The models used in our experiments 
are head-body-tail CDHMMs with a different number of 
Gaussian mixture components for each state. The total 
number of Gaussian mixture components used in the system is 
3284, which is roughly the same as in a nine-state whole word 
CDHMMs with 32 Gaussian mixtures per state. 

The models are trained first using the Maximum 
Likelihood (ML) criterion. Then, MCE training methods 
before and after incorporating discriminative margins are 
applied, both using the ML-trained models to initialize the 
MCE training. The word error rate (WER) and string error 
rate (SER) in the test set using the initial ML-trained models 
are 0.28% and 0.78%, respectively, using tuned insertion 
penalty of -14.5 and language model weight of -13.25. During 
the MCE training, α value in (7) is tuned to be 1/120, and all 
HMM model parameters (except transition probabilities) are 
updated.  This setting gives us the best MCE baseline (i.e., no 
discriminative margin used or β(I)=0), with WER of 0.23% 
and SER of 0.68% (as shown in Table 1).  This represents 
17.86% relative WER reduction and 12.82% relative SER 
reduction over the initial ML-trained models. 

 
We then train the digit HMMs, also initializing from the 

ML models, with incrementally regulated discriminative 
margins β(I)<0 in the MCE training paradigm. We keep the 
same α (=1/120) and use three different methods for setting 
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Table 1: Summary of the Experimental Results 
Margin WER SER 

 Absolute Relative 
reduction Absolute Relative 

reduction 
β=0 0.23% baseline 0.68% baseline 

Method 1 0.20% 13.04% 0.57% 16.18% 
Method 2 0.20% 13.04% 0.57% 16.18% 
Method 3 0.19% 17.39% 0.55% 19.12% 
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schedule that regulates β(I). The three methods are tested 
er otherwise identical experimental conditions.  
In the first method, β(I) is set to a fixed value over the 
ge of [-1, 0] in all iterations. That is, β(I) is set to be 
ependent of the iteration number I. We obtain the best 
lt when setting β(I)= -0.8. Details of the results are plotted 
ig. 2, where the recognition error rates (WER and SER) 
shown as a function of the fixed β value over MCE 
ning iterations. These error rates for training and test sets 
plotted separately. The initial HMMs for the MCE 

ning with each of the fixed β values are from the ML 
ning. A total of 15 MCE growth-transformation iterations 
used for each of the fixed β values. 
In the second method, β(I) is scheduled to change from 
tral (no margin or β =0) to β = -1, with a step size of -0.1 
ing the MCE. That is, β(I)= -0.1*(I-1), for I=1,…,11. Fig. 
ows the WER and SER results (for both training and test 
) as a function of the incrementally reduced β(I) value. 
en β =0 (rightmost set of the results in Fig. 3), the HMMs 
initialized in the MCE training (4 iterations) from the ML-
ned models. As β(I) becomes incrementally reduced from 
o 11, the previously MCE-trained models serve as the 
ial models and additional 4 MCE iterations are used for 
h new  β value. 
In the third method, β(I) is scheduled to change from +0.4 
0.5, with a step size of -0.1 also. That is, β(I)= 0.4 - 0.1*(I-
for I=1,…,10. Fig. 4 shows the results in the format 
ilar to Fig. 3, with slightly lower errors. 
A close examination of the results of Figs. 2-4 reveals a 
er consistent trend about the effects of increasing the 
riminative margin on the recognition errors. As the 
gin enlarges (more negative of β), errors tend to reduce 
t, and then to reverse the direction as the margin further 
eases. So the largest margin does not correspond to the 
est error. The figures also show that the lowest training 
 test error rates do not occur at the same β value. The 
rall experimental results using the three methods discussed 
ve are summarized in Table 1. In the table, relative error 
uction is calculated upon the MCE baseline where the 
riminative margin β(I) is set to zero. We observe 13.04% 
tive WER reduction and 16.18% relative SER reduction 
r the baseline MCE models with Methods 1 and 2. By 
g Method 3, we have achieved 0.19% absolute WER and 

5% absolute SER, which translate to 17.39% relative WER 
 19.12% relative SER reduction over our MCE baseline. 
 gain has been tested to be statistically significant. 
To the best of our knowledge, the best published results 
the TIDIGITS task in the literature [6] have been 0.24% 
ER) and 0.72% (SER) using the standard MCE with no 
gin (β=0). These are very close to our MCE baseline, with 
erences likely due to the GPD vs. growth-transformation 
he optimization procedure. 

4. Summary and Conclusions 
Use of large margins to improve robustness and 
eralization performance of pattern recognition has been 
l motivated and is a standard practice for discriminative 
ning in machine learning [9][16]. Yet most practices of 
riminative training in speech recognition have not 
raced the concept of large margins and have been 
cerned mainly with empirical error rates in the training set 
3][6][13][14]. The recent work of [5] introduced large 



margins in training HMMs for speech recognition, after the 
HMMs are pre-trained by the standard zero-margin MCE 
method based on GPD. (We noted recently that this important 
issue of the generalization ability to test data was also 
discussed in [7][10] in the context of smoothness of the MCE 
loss function.) This paper reports an alternative method where 
margins and empirical errors are jointly optimized in a 
generalized version of MCE. Superior recognition results on 
the identical task are obtained by our new method.  

The idea behind our new method is the incorporation of 
incrementally adjusted “margin”, over the MCE training 
iteration, in the loss function of the MCE algorithm. In this 
way, empirical error rates and the discriminative margins are 
simultaneously optimized. The tradeoffs of introducing the 
new “margin” parameter are: 1) increased margins help 
generalization from the training set to the test set; 2) increased 
margins also create potential danger of sacrificing 
discrimination on the training set and of possibly sacrificing 
discrimination on the test set as well. To strike a balance 
between these two factors working against each other, we 
have developed a heuristic technique of incrementally 
regulating the change of the “margin” parameter over the 
MCE iterations. Experimental results show that the use of 
these incrementally changed margins significantly improves 
the prior art.  

We are currently investigating several issues for further 
validating the effectiveness of the new training method 
discussed in this paper. First, our MCE training is based on 
the growth-transformation optimization, more efficient than 
the conventional gradient-descent GPD optimization. It is not 
clear whether this difference affects the performance 
improvement we have observed when incorporating the 
margins. Second, TIDIGITS is a task with a very low error 
rate. The strategies that we have developed to balance the 
empirical error rate and the robustness in generalization 
performance need to be validated with more complex tasks 
having a higher error rate. Our preliminary results along these 
lines have been promising. 
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ig. 1: Recognition error rate as a function of β, which is 

fixed over MCE training iterations (Method 1). 
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. 2: Recognition error rate as a function of β, which varies 
r MCE training iterations from 0 to -1 with a decrement of 

0.1 (Method 2).  
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. 3: Recognition error rate as a function of β, which varies 
over MCE training iterations from 0.4 to -0.5 with a 

decrement of 0.1 (Method 3). 


