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ABSTRACT

Many software-intensive systems consist of components that
interact to fulfill complex functionality. Moreover, often
many variants of such systems have to be designed at once.
This adds complexity to the design task. Recently, we pro-
posed a scenario-based approach to design product lines,
which combines feature diagrams and Modal Sequence Dia-
grams. We proposed a consistency-checking technique based
on a dedicated product line model checker. One limitation
of this technique is that it is incomplete, i.e., it may fail
to show the consistency of some consistent specifications.
In this paper we propose a new game-based approach that
overcomes this incompleteness and, in addition, automati-
cally synthesizes controllers for the consistent product speci-
fications. We exploit the fact that many variants are similar
and efficiently synthesize product controllers incrementally.
We provide a prototype tool and evaluate the efficiency of
the approach.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications;

D.2.4 [Software Engineering]: Software/Program Verifi-
cation
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1. INTRODUCTION

Nowadays, software is part of a wide variety of safety-
critical systems, including cars, planes, and medical devices,
which typically consist of many components that provide
functionality through their interaction. These interactions
must often satisfy complex specifications, and the failure to
comply may have tragic consequences.

Moreover, often today engineers do not only develop a
single system, but rather build several variants (also called
products) of the same system—a Product Line (PL). The
differences between the variants (variability) are commonly
organized in terms of features, which are functions or compo-
nents that may or may not be present in a given variant. As
more features are added to the PL, the number of possible
variants grows exponentially, in the worst case.

Managing the variability and ensuring that each product
will correctly satisfy its specification is a major challenge
in PL engineering. In the first place this requires a precise
specification of each product. This implies that (a) the re-
quirements of each feature are precisely specified, and that
(b) there are mechanisms to compose the specification of a
product from the specifications of its constituent features.

Recently |14], we proposed to specify PLs using feature di-
agrams (FDs) [21] to model variability, and Modal Sequence
Diagrams (MSDs) [17] to specify the behavior of features.

The use of MSDs has several advantages. First, it is an
intuitive, yet precise visual formalism that allows engineers
to specify sequences of interactions that may, must, or must
not happen in a system. This also fits most development
processes that propose a scenario-based approach during the
early design. Second, with MSDs engineers can describe be-
havioral aspects of features that can extend or restrict the
behavior specified for other features. Third, MSD specifica-
tions for a product can be naturally composed by forming
the union of the MSDs specifying its constituent features.

A specification of allowed and forbidden behavior, how-
ever, can be unrealizable, i.e., it may be impossible to build
a product that is able to react to all possible sequences of
environment events in such a way that its specification is al-
ways satisfied. For the development of a PL this can require
costly iterations or in the end many desired products may
be unrealizable or intrinsically flawed.



In our recent work [14], we therefore developed a tech-
nique for checking the realizability of MSD PL specifications.
By using a dedicated PL model-checker [9], we can detect
which feature combinations are unrealizable. One limitation
of this technique is that, although it is capable to detect in-
consistencies, it is unable to derive an implementation of a
consistent specification. Moreover, our previous technique
is incomplete: it may report some realizable product speci-
fications to be unrealizable.

In this paper, we overcome the above limitations and
extend our scenario-based PL specification approach with
a novel consistency-checking and controller synthesis tech-
nique. In particular, this technique introduces the following
three key innovations:

(1) The technique is based on an on-the-fly game-solving
algorithm for synthesizing controllers from the MSD spec-
ifications of products in a PL. This has three advantages.
First and foremost, instead of the yes/no answer generated
by a model-checker, the synthesis algorithm will produce
for each product a controller that shows which sequences of
actions the system can do to implement the specification.
Second, the algorithm is complete as it never returns false
negatives. Third, being on-the-fly, the game-solving algo-
rithm is more efficient than the model-checking algorithm.
It typically only explores parts of the state space described
by an MSD specification.

(2) We apply the synthesis incrementally and specifically
optimized for PLs described by F'Ds. Typically many prod-
ucts in a PL are very similar, i.e., they share many com-
mon features and consequently share many common MSDs.
Therefore, if a controller for one product could be success-
fully synthesized, we can more efficiently, based on this con-
troller, synthesize a controller for a similar product. We
propose a strategy to systematically derive similar products
from FDs to exploit the benefit of the incremental synthesis.

(3) We support MSD specifications that not only specify
requirements of how the system components must react to
environment events, but also specify environment assump-
tions. That way engineers can specify what can or cannot
happen in the environment, or how the environment again
reacts to actions of the system. This is essential, e.g., in
mechatronic systems. As a running example we will con-
sider a production robot for which it is important to assume
that a robot arm, if ordered to move to a press, will eventu-
ally arrive at the press. Without these assumptions it would
be impossible for the system to fulfill its requirements.

We prototypically implemented this technique in SCENARIO-

TooLs, our new Eclipse/UML-based modeling, simulation,
and synthesis tool suite for MSD specifications.

This paper is structured as follows. We explain the foun-
dations and introduce our running example in Sect. 2] The
incremental synthesis algorithm is described in Sect. In
Sect.[d] we introduce the systematic strategy to derive prod-
ucts from FDs. We overview our tool implementation and
show evaluation results in Sect. [5} discuss related work in
Sect. [6] and finally conclude in Sect.

2. FOUNDATIONS

In this section we introduce the foundations of this paper,
FDs and MSDs. As a running example, we consider a simple
PL specification of a production cell, inspired by a case study
from Lewerentz et al. [22].

2.1 Example

Figure [1] shows an illustration of the production cell. It
consists of a production robot with two arms. One arm,
Arm A, picks up metal blanks that arrive from a feed belt
on a table and places them into a press. The press presses
the blanks into plates. The other arm, Arm B, picks up the
pressed plates and places them on a deposit belt, where they
are transported off again. The production cell is controlled
by a central controller. The requirements for the controller
and assumptions about the physical behavior of the system
are described informally below the sketch (R1-4, A1-6).
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Arm A:

R1) When a blank plate arrives at the table, Arm A must pick it up, move it to the
press, and release it into the press. The arm then has to move back to the table,
where it must arrive before the next blank arrives.

A1) If Arm Ais ordered to move to the press, it will eventually arrive at the press
A2) If Arm A'is ordered to move to the table, it will eventually arrive at the table

A3) If Arm A picks up a blank, moves to the press, and returns to the table, the next
blank will not arrive before Arm A has returned to the table.

Press (roller-press or drop-hammer press):

R2) When Arm A releases the blank into the press, the press must press. The next
blank must not be released before the pressing finished.

A4) The press finishes pressing before Arm A returns to the table.
Press (drop-hammer press):

R3) After Arm A arrives at the press and before Arm A left the critical area, the press
must not have started pressing.

A5) If Arm A'is ordered to move to the table, it will leave the critical area before
arriving at the table

AB6) If Arm A'is ordered to move to the table before the press is ordered to press,
Arm A will leave the critical area before the press will have started pressing.

Arm B:

RA4) After the press has finished pressing, Arm B must pick up the pressed plate
and move to the deposit belt... [further specification omitted for brevity]

Figure 1: Sketch and informal requirements for the
production cell PL

We consider the following variability: (1) Arm B is op-
tional; pressed plates can also be picked up by workers. (2)
The press can be of two different kinds. Either the press
is a roller press, where the plates are pressed between two
cylinders, or the press is a drop-hammer press where plates
are formed by a falling hammer. In the latter case, Arm A
may be damaged if the pressing starts before the arm has
left a critical area.

2.2 Feature Diagrams

The variability of the production cell example can be de-
scribed by the FD in Fig.

A feature commonly designates a unit of difference be-
tween products that appears natural to stakeholders or engi-
neers. For example, a feature may model an optional compo-
nent, or aspects that crosscut many components. There of-
ten exist dependencies between features: some are exclusive
alternatives, others must co-exist, etc. FDs are commonly
used as a means of representing these interdependencies [5|.

FDs are tree-like structures that organize features in a hi-
erarchy. Nodes represent features, and edges model parent-
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Figure 2: The feature diagram of the production cell

child relationships that specify how a feature (the “parent”)
is decomposed into sub-features (the “children”). There usu-
ally exist three decomposition types: AND, XOR, and OR.
An AND decomposition means that if the parent feature is
enabled in some product, then all of its children must be
too. The only exception to this rule is the optional child-
feature, which may or may not be present when its parent
is enabled. A XOR (resp. OR) decomposition implies that
exactly (resp. at least) one child feature must be enabled
when the parent is. Whatever the decomposition type, a
child feature cannot be enabled if its parent is not. In addi-
tion to the hierarchy, one may specify cross-tree constraints
like feature ‘a’ requires feature ‘b’ and feature ‘c’ excludes
feature ‘d’. More generally, one may define any arbitrary
Boolean constraint over the set of features, but we do not
consider this in this paper. As Schobbens et al. [25], we
define the semantics of an FD as the set of the valid prod-
ucts, i.e. the combinations of features that satisfy all the
constraints imposed by the FD.

2.3 MSD Specifications of PLs

MSDs are a formal interpretation of UML sequence dia-
grams proposed by Harel and Maoz |17]. An MSD specifica-
tion describes the valid interaction behavior of components,
that, more generally, we call objects. The set of interact-
ing objects is called the object system. We consider open
systems where the objects are either environment objects or
system objects. The set of environment objects is called the
environment; the set of system objects is called the system.

We consider MSD specifications that not only formulate
requirements on the system, but also formulate assumptions
on how the environment behaves [13|. The requirements
and assumptions are two sets of MSDs that, together with a
definition of the object system, form an MSD specification.

According to our PL specification scheme [14], MSDs can
be associated to features. Figure [3| for example shows one
assumption and one requirement MSD associated to feature
ArmA of the production cell. The requirement and assump-
tion MSDs of a specification for a product are obtained by
the union of the requirement resp. assumption MSDs of the
features comprising the product. For simplicity, we assume
that there is one definition of the object system for all fea-
tures and products. If an object is not part of a particular
feature or product, for example Arm A is optional in the pro-
duction cell, there is simply no interaction with this object.
This is similar to the notion of a global world model in [26].

MSDs can be ezistential or universal. Existential dia-
grams specify sequences of interactions that must be possi-
ble. Universal MSDs describe properties that must be satis-
fied by every sequence of interactions. We only consider uni-
versal MSDs in this paper. Existential MSDs are currently

not supported by our synthesis algorithm; an extension is
planned as future work.

2.3.1 Objects, Lifelines, and Messages

Each lifeline in an MSD represents an object in the object
system. The objects can exchange messages; a message has
a name and sending and receiving objects. For brevity, we
only consider synchronous messages, where the sending and
receiving of a message are a single event, also called message
event. Our approach can also be applied if messages are
asynchronous.

In our specification approach, we model the object sys-
tem by a UML composite structure diagram (CSD). The
top-right of Fig. [3| shows the CSD for the production cell.
The objects are represented by roles in the CSD. System ob-
ject roles have a rectangular shape; the roles of environment
objects have a cloud-like shape. The connectors illustrate
which objects exchange messages. The roles are typed by
classes (shown on the top left of Fig. where operations
define which messages an instance can receive.

The messages in a universal MSD have a temperature and
an execution kind. The temperature can be either hot or
cold. The execution kind can be either ezecuted or mon-
itored. Figure [3] shows two MSDs. The temperature and
execution kind is annotated by labels (c,m), (ce), (h,m),
(h,e) next to the messages. In addition, the arrows of hot
messages are colored red; the arrows of cold messages are
colored blue. Monitored messages have a dashed arrow; the
arrows of executed messages have a solid line.

The temperature and execution kind of messages encode
safety resp. liveness properties (see bottom of Fig. . Intu-
itively, a monitored message may happen, whereas an exe-
cuted message must eventually happen. A hot message must
not be “violated”, but a cold message may be “violated”; we
explain this concept in more detail shortly.

ProductionCell J ProductionCellcSD)J __~ T TTTTTTh
Controller ArmA
+blankArrived() +pickUp()

c:Controller
ts:TableSensor

+arrivedAtPress() «nse»| | +moveToPress()
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[further classes are not shown for brevity]
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Figure 3: Two MSDs from the specification of fea-
ture Arm A

Let us consider as an example the MSD ArmATransport-
BlankToPress in Fig. [3] It models the requirement R1 de-
scribed informally in Fig. The first message says that
a blank may arrive on the table (blankArrived). The sec-
ond message says that, after the blank arrived, Arm A must



pick up the blank (pickUp). This message is ezecuted, which
means that this must eventually happen. Also the message
is hot, which means that before this happens no other mes-
sage described in the MSD must be sent, e.g., it is forbidden
for another blank to arrive. Similarly, the next message says
that next the Arm A must move to the press (moveToPress).
The fourth message models that next Arm A arrives at the
press (arrivedAtPress). The message is hot and monitored.
Being monitored, the message says that it is fine if this event
never occurs. Being hot, however, the message says that be-
fore the event occurs, no other event in the diagram may
occur. In short, the rest of the MSD specifies that after
Arm A arrives at the press, it must release the blank, move
back to the table where it may eventually arrive.

More specifically, the message semantics is the following.
A message event can be unified with a message in the MSD
if the event name equals the message name and the sending
and receiving objects of the message event are represented
by the sending and receiving lifelines of the diagram mes-
sage. When an event occurs that can be unified with the
first message of an MSD, an active copy of that MSD is cre-
ated, also called active MSD. (We assume that an MSD has
only one first message.) As further events occur that can
be unified with the subsequent messages in the MSD, the
active MSD progresses. This progress is captured by the cut
which marks for every lifeline the sent/received messages. If
the cut reaches the end of an active MSD, it terminates.

If the cut is in front of a message on its sending and re-
ceiving lifelines this message is enabled. If a hot message is
enabled, the cut is hot, otherwise the cut is cold. Similarly,
if an executed message is enabled, the cut is ezecuted, oth-
erwise the cut is monitored. The dashed horizontal line in
the MSD ArmATransportBlankToPress, see Fig. 3] represents
the cut after the occurrence of the message events blank-
Arrived, pickUp, and moveToPress. Now the hot, moni-
tored message arrivedAtPress is enabled. Since no other
message is enabled, the cut is also monitored and executed.
There can be multiple MSDs active at the same time. For
example Fig.|3|also shows the MSD ArmAMoveFromTableTo-
PressAssumption and a cut that an active copy of that MSD
would be in after the same sequence of messages.

A safety violation occurs in an active MSD if in a hot cut
a message event occurs that can be unified with a message in
the MSD that is not currently enabled. If this happens in a
cold cut, this is called a cold violation. Safety violations are
forbidden to occur. Cold violations are allowed to occur, but
lead to the termination of the active MSD. An active MSD
must not remain forever in an executed cut, otherwise this
is a liveness violation.

2.3.2  Environment Assumptions

Since the environment is uncontrollable, we must assume
that environment events can occur in an arbitrary order. For
the active MSD ArmATransportBlankToPress with the cut as
shown in Fig. [3] waiting for the environment event arrived-
AtPress, this means that this MSD can easily be violated by
the environment: instead of arriving at the press, the Arm
A could arrive at the table (arrivedAtTable) or the next
blank could arrive (blankArrived).

Often requirements cannot be fulfilled by a system with-
out making certain assumptions on what will or will not
happen in the environment [29]. In the case above, we want
to specify that if Arm A moves to the press and returns

to the table, blanks will not arrive before Arm A has re-
turned to the table (see A3 in Fig.[l). Furthermore, if Arm
A is ordered to move to the press/table, we assume that it
will eventually arrive at the press/table (see Al and A2 in
Fig. . We also imply that if Arm A is ordered to move to
the press/table it will not arrive at the table/press instead.

In order to specify such environment assumptions, we in-
troduced assumption MSDs [13]. Fig. [3| shows for example
the assumption MSD ArmAMoveFromTableToPressAssump-
tion, which describes that if Arm A is ordered to move to
the press, it will also eventually arrive at the press (Al).
Assumptions A2 and A3 can also be modeled with assump-
tion MSDs, which we omit for brevity. Technically, assump-
tion MSDs are annotated with a stereotype ((Environment-
Assumption)).

Another, novel extension to MSD specifications that we
introduce with this paper is that we distinguish environ-
ment events which can occur spontaneously from those that
only occur in reaction to other events in the system and/or
environment. We call these events non-spontaneous envi-
ronment events. Non-spontaneous messages can only occur
if there is an executed message enabled in an active assump-
tion MSD that can be unified with this event. This is called
the non-spontaneous events assumption. This concept al-
lows us to further constrain the description of meaningful
environment behavior.

Technically, to model this, we annotate the operations
that type non-sponaneous environment messages with the
stereotype ((nse)) on operations, see Fig.

2.3.3  Realizability, Consistent Executablility

In the following, we give definitions for different forms
of realizability of MSD specifications with environment as-
sumptions and non-spontaneous environment events.

We consider reactive systems that continuously react to
environment events. We call an infinite sequence of envi-
ronment and system events a run. A run is accepted by an
MSD if it does not lead to a safety or liveness violation of the
MSD. A run satisfies an MSD specification iff (1) it is ac-
cepted by all requirement MSDs or not accepted by at least
one assumption MSD and (2) it does not contain an infinite
sequence of system events, i.e., the system must periodically
listen for environment events.

We assume that the behavior of the system and the en-
vironment can be described by finite state controllers that
can be composed in such a way that the environment never
blocks system messages and will always eventually send a
next environment event. The composition of a system con-
troller together with an environment controller satisfies an
MSD specification iff every run produced by the composed
controllers satisfies the MSD specification.

We make the general assumption that the system is always
fast enough to send any (finite) number of system messages
before the next environment event occurs; this setting is typ-
ically assumed for LSC/MSD specifications [18, [17]. A sys-
tem controller is called an implementation of an MSD spec-
ification if the controller formed by the composition of the
system controller and any possible environment controller
respecting the non-spontaneous events assumption satisfies
the MSD specification. An MSD specification is realizable
or, synonymously, consistent, if an implementation exists.

The above definition of realizability also considers that
the system can send messages that are not currently ac-



tive (enabled executed in at least one active MSD). This,
however, is usually not the behavior that is desired by the
engineers, since no MSD states that these messages should
occur |13]. To consider systems that send only active events,
we introduce a more restrictive definition. We call a system
controller that only sends events that correspond to active
events a consistently executing controller. We call an MSD
specification consistently executable if there exists a consis-
tently executing implementation.

The synthesis technique presented in the next section is
able to check the consistency and consistent executability
of MSD specifications and synthesize respective implemen-
tations if they exist.

Given that a feature adds one or more MSDs to the specifi-
cation, it may happen that the specifications of two features
are consistent when considered separately, but inconsistent
when combined together. Conversely, the addition of a third
feature may also resolve the conflict arisen from the inter-
action of the former two features, for example because it
introduces assumption MSDs. Thanks to its capability of
identifying inconsistent feature combinations, our synthesis
algorithm is therefore apt to detect feature interactions.

3. ON-THE-FLY SYNTHESIS

Our previous consistency-checking approach [14] employs
model-checking to check the consistent executability of the
MSD specifications of products. Roughly, the approach checks
for an MSD specification (containing only requirement MSDs)
if always in reaction to a next possible environment event the
system can send a sequence of messages so that no safety vi-
olation occurs and no active messages remain (and so never
a liveness violation occurs).

If a negative result is returned by the model-checker for a
product specification, however, this does not always imply
that the MSD specification was not consistently executable.
It could also be that, if after an environment event a safety
or liveness violation is inevitable, this state could have been
avoided by choosing another sequence of system steps in
reaction to an earlier environment event. In this case, our
previous approach thus returns a false negative.

In the following, we first introduce an example where such
a false negative would occur in our previous model-checking
approach. We then introduce our new synthesis technique.

3.1 Avoiding False Negatives (Example Cont.)

Figure [d] shows the MSDs for the features Press and Drop-
HammerPress as stated informally in Fig.

The problem with this specification is the following. In
combination with the MSD ArmATransportBlankToPress, the
MSD PressPlateAfterArmAReleasesBlank specifies that after
releaseBlank, Arm A must return to the table (moveTo-
Table) and the press must press the blank (press); the order
of these events is not determined.

The MSD ArmALeavesCritical AreaBeforePressingStarts mod-
els the assumption that if first Arm A is ordered to move
to the table (moveToTable) and after that the press presses
the blank (press), then Arm A will have left the critical
area (leftCriticalArea) before the pressing process starts
(pressingStarted).

If, however, the system chooses, after releaseBlank, to
first order the press to press (press) and then to order Arm
A to move to the table (moveToTable), it is not guaranteed
that Arm A will have left the critical area before the pressing
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Figure 4: The MSDs specifying the features Press
and DropHammerPress

starts. This will violate the requirement MSD NoPressing-
WhenArmAlsAtTable (which shall prohibit that Arm A is
crushed by the drop-hammer). Parts of a violating and a
non-violating event sequence, starting with releaseBlank,
are shown at the bottom of Fig. [4]

In this example, after the “bad choice” of sending move-
ToTable after press, the system cannot guarantee to avoid
a violation that may occur after a subsequent environment
event. Our model-checking-based approach |14] would not
be able to find that sending press before moveToTable is
an admissible solution. The reason for this is that model-
checking approaches cannot determine whether a violation
in reaction to environment events, or by an environment
event, can be avoided by choosing a particular reaction to
an earlier environment event. (See our discussion in [14].)

3.2 On-the-fly Synthesis Algorithm

Instead of viewing the realizability-checking problem as a
model-checking problem, we view it as the problem of finding
a strategy in an infinite two-player game [1} |6].

In the game, the player is the system and the opponent
is the environment. The game structure is a graph where
the nodes, also called states, are the reachable combinations
of cuts of active MSDs. The initial state corresponds to no
active MSDs. Edges between the states, also called transi-
tions, are labeled with the message events appearing in the
MSD specification. They represent “moves” by the system
or the environment. A move may or may not cause a state
change (if not, we have a self-transition). Transitions la-
beled with system events are called controllable; transitions
labelled with environment events are called uncontrollable.

In our objective to check the consistent realizability of an
MSD specification as explained in Sect. 2] we can make the
following restrictions in the game graph. First, in states
where there are executed cuts in active requirement MSDs,
there will only be controllable transitions with events corre-



sponding to active messages. Second, otherwise there will be
only uncontrollable transitions with (a) environment events
that can occur spontaneously or (b) non-spontaneous events
if they are active in assumption MSDs.

For checking the realizability of MSD specifications, we
have to check if the system, by choosing controllable transi-
tions in the graph, can guarantee to reach infinitely often a
state where the following condition holds: (1) There was no
safety violation in any requirements MSD (this information
is also retained in the states) and (2) there are no active
requirement MSDs with executed cuts or (3) there was a
safety violation of an assumption MSD or (4) there is at
least one active assumption MSD in an executed cut. Such
an objective, where a condition must be satisfied infinitely
often, is called a Btichi objective. States where the condition
is satisfied are called goal states.

If there exists a strategy for the system to fulfill this ob-
jective regardless of the moves of the environment, the MSD
specification is consistently executable. A strategy is a func-
tion that for every (reachable) state in the game specifies a
set of transitions that the system can choose to guarantee
the objective. (For states with only uncontrollable outgo-
ing transitions, this set is empty.) From a strategy, we can
derive a consistently executable controller for the system.

We developed a new on-the-fly algorithm for finding strate-
gies in Biichi games. On-the-fly means that the algorithm
will only explore parts of the game graph. The algorithm
is based on an on-the-fly algorithm described by David et
al. |11} Sect. 6.4.5] (see also Cassez et al. [8]). Our algorithm
is novel in two aspects. One novelty is its incremental ex-
tension (described in Sect. . Another novelty is that our
algorithm often explores even less of the game graph.

In the scope of this paper, we cannot account for the lat-
ter claim in detail. Roughly, however, the difference is as
follows. If the algorithm by David et al. finds that from a
goal state the system can guarantee reaching another goal
state, this goal state is marked winning, and so are all other
states where the system can guarantee reaching a goal state.
If the initial state is winning and all encountered goal states
are winning, the algorithm returns true. If, however, it turns
out that an encountered goal state is not winning, then first
the entire game graph is explored to find all goal states. Sec-
ond, it is then again checked for all winning goal states if
from there it can be guaranteed to reach another winning
goal state. Whenever in this process a goal state loses its
winning status, this process is repeated. If finally the initial
state is winning, the algorithm returns true, otherwise false.

In our variant of the algorithm, instead of marking states
winning, we map every state to a set of goal states that
the state requires to be also winning in order justify its own
winning status. This way, we know which goal states rely on
which other goal states. If now a goal state turns out not to
be winning, we then know which goal states we have to re-
evaluate, i.e., for which goal states we have to find another
way of reaching other goal states. In many cases, this map
greatly helps to reduce the number of such re-evaluation
steps. The worst-case time complexity, however, which is
quadratic in the size of the game graph, is not changed.

The algorithm is shown in pseudo-code in Alg. [1| and
The OTFB procedure (On-The-Fly Biichi algorithm) checks
if from a given start state, the system can guarantee reaching
goal states infinitely often. It relies on the OTFR procedure
(On-The-Fly Reachability algorithm), which checks if, from

a given start state, the system can guarantee reaching goal
states. The global map reqG is the aforementioned map.
In the global set goal, the algorithm stores states that it
encounters and identifies as goal states by using the isGoal
method. The global set lose is used to mark states losing
if the algorithm finds that from there the system cannot
guarantee reaching another goal state.

Algorithm 1 On-the-fly Algorithm for Biichi Games
(Part 1, OTFB procedure)

global variables:

Set<State> goal; > goal states added during calls of isGoal
Set<State> lose; > states where Biichi cond. not guaranteed
Map<State, Set<State>> reqG; > states to req. goal states

procedure OTFB(qo)
!IOTFR(qo) : return false;
Stack<State> reeval = getUndecidedGoals();
while !reeval.isEmpty() do
State g = reeval.pop();
10: if |IOTFR(g) then
11: g == qo : return false;
12: lose.add(g);
13: end if
14: reeval.isEmpty() : reeval = getUndecidedGoals();
15:  end while
16: return true;
17: end procedure

We call OTFB with the initial state of our MSD specifica-
tion game graph. OTFB then first checks whether from the
initial state, the system can guarantee reaching a goal state.
If not, it returns false immediately. Then the method getUn-
decidedGoals computes all goal states which are not winning
or losing. A state is winning if it has an entry in the reqG
map where no goal state in the value set is losing. We call
OTFR again on all states that are not winning nor losing as
long as such states exist. In every iteration of the loop goal
states will be either marked winning or losing. A winning
state may become losing, but a losing state remains losing.
In this process, the initial state of the game graph may turn
out to be losing, and we return false (1. , or the initial
state is among a set of goal states that remain winning, and
we return true.

The procedure OTFR (see Alg. [2)) is based on the reacha-
bility algorithm described by Cassez et al. |8]. From a given
start state, the algorithm performs a depth-first forward ex-
ploration, using the waiting stack. Already visited states
are stored in the passed set. The depend map stores for
every state the transitions by which it was visited.

In the while-loop, after the next transition is popped from
the stack, there are the following cases. First, if the target
state was not visited yet (1. , the transition is added to the
passed set and the outgoing transitions of the target state
will be pushed on the waiting stack (1. . If, however,
the target state is a goal state or is a winning state (has an
entry in regG), or is a losing state, instead the transition
is pushed on the waiting stack again (1. . This has the
effect that it is popped again in the next iteration.

If a transition is popped that is already in passed, the
algorithm enters the else branch (1.[36). Here the algorithm
performs a re-evaluation of the losing resp. winning status
of the source state: if the source state was not marked los-
ing before and the state has no outgoing transitions or the
system cannot avoid reaching a losing direct successor (de-



Algorithm 2 On-the-fly Algorithm for Biichi Games
(Part 2, OTFR procedure)

18: procedure OTFR(qo)
19: Set<State> passed; > a set of visited states
20: Stack<Transition> waiting; > transitions to be explored
21: Map<State, Set<Transition>> depend; > for bwd. reeval.
22: pushOutTransitions(qo, waiting);

23:  while lwaiting.isEmpty() A !reqG.containsKey(qo) do
24 Transition ¢ = waiting.pop();
25: State gsre = t.getSourceState();
26: State qig¢ = t.getTargetState();
27: if !passed.contains(gtg¢) then

> forward exploration

28: passed.add(gegt);
29: depend.get(qtqt).add(t);
30: clean(reqG, gig¢t); > Remove gig¢ entry from reqG if
qtgt is mapped to goal states prev. marked losing
31: if isGoal(gtgt) V reqG.containsKey(gigt)
V lose.contains(gtg¢) then

32: waiting.push(t);
33: else
34: pushOutTransitions(gi4¢, waiting);
35: end if
36: else > re-evaluation
37: if llose.contains(gsrc) A isLose(gsrc) then
38: lose.add(gsrc);
39: waiting.pushAll(depend.get(gsrc));
40: removeOutTrans(gsrc, waiting); > optimization
41: else if !reqG.containsKey(gtgt) > no entry curr. but

A update(reqG, gsrc)) then > new one created
42: waiting.pushAll(depend.get(qsrc)); > for bwd re-eval
43: removeOutTrans(gsrc, waiting); > optimization
44: end if
45: if !reqG.containsKey(qig¢) A llose.contains(gsgt)) then
46: depend.get(qigt).add(t);
47: end if
48: end if

49:  end while
50: return reqG.containsKey(qo);
51: end procedure

termined by the method isLose), then the state is marked
losing and all the incoming transitions stored on the depend
map for the source state are scheduled for reevaluation. The
same happens if the source state was non-winning initially,
but its winning status gets updated (L. .

The method update checks for a state whether the system
can guarantee to reach a winning successor state and, if
so, will create a new reqG entry for the state and return
true. If a winning successor can be reached via a controllable
transition, the reqG entry value for the source state will be
set to the same value as stored in reqG for the target state.
If winning successors can be reached via (all) uncontrollable
transitions, the reqG entry value for the source state will be
set to the union of the values stored in reqG for all these
transitions’ target states.

On the correctness of the algorithm: (1) The OTFR pro-
cedure always terminates and it returns true iff the start
state is winning (i.e., an entry in regG exists or could be
created). Our extensions do not change the procedure in
principle: the idea of backward-evaluating the losing status
of states (1. and the optimizations in lines [{0] and [43] are
already discussed by Cassez et al. [8]. Instead of marking
winning states by inclusion in a winning set, they are keys
in the reqG map in our case. Since the procedure is not
changed in principle, the correctness of the OTFR proce-
dure can be argued along the lines of [8, [11].

(2) The OTFB procedure always terminates and it returns

true iff from the start state the system can guarantee to
reach goal states infinitely often, which thus means that the
MSD specification is realizable. The while-loop terminates
for the following reason: Either eventually all goal states are
losing, then getUndecidedGoals returns an empty stack. If
instead at some point no more goal states are added to lose,
this means that all states in reeval will be winning, and then
again getUndecidedGoals returns an empty stack. Since in
our case the initial state is a goal state, we can immediately
return false if we find that it is losing. Conversely, if finally
the initial state is not found losing, it means that it is among
a set of winning goal states, from where the system can
always guarantee to reach another (winning) goal state.

3.3 Incremental Extension

Transitions that form part of a possible winning strategy
for the system are called winning mowves of the system. If a
winning strategy exists, the above algorithm may by chance
explore the state graph in such a way that all explored con-
trollable transitions are winning moves. If it explores non-
winning moves, e.g. by first sending moveToTable and then
press in the production cell example (see Fig. []), the al-
gorithm will eventually have to backtrack, and will require
more time to complete.

Since the products of a PL likely share commonality, our
idea is to synthesize controllers incrementally, which means
helping the synthesis of one controller avoid non-winning
moves by remembering winning moves in the controller syn-
thesized previously for a similar product. In the production
cell, if a controller was already synthesized for the product
with the drop-hammer press and without Arm B, this con-
troller could help avoid the non-winning move during the
synthesis of the controller for the product with Arm B.

The incremental extension of the algorithm plugs into the
previous synthesis algorithm in two ways. First, during the
exploration of a new transition in the game graph, correspon-
dences to similar states in a controller for another product
(called base controller hereafter) are maintained. Intuitively,
states are similar if they can be reached by the same event
sequence. Formally, let ¢ be a state of the base controller
that corresponds to a state ¢’ in the game graph, ¥ be the
set of message events labeling transitions in the base con-
troller, and ¥’ be the set of events specified in the MSD
specification. Then, correspondences are formed according
to the following rules:

1. If ¢ and ¢’ both have outgoing transitions labeled with
the same event, the target states of these transitions
are also corresponding. This also applies if these tran-
sitions are self-transitions.

2. If an outgoing transition of ¢ is labeled with an event
that is not element of X', the target state of the tran-
sition leaving ¢ also corresponds to ¢’.

3. If an outgoing transition of ¢’ is labeled with an event
that is not element of X, the target state of the tran-
sition leaving ¢’ also corresponds to q.

Second, the incremental extension plugs into the method
pushOutTransitions (1. to modify the order in which tran-
sitions are pushed on the waiting stack, which determines
the order in which they are explored. A transition has pri-
ority if its source state has a corresponding base controller
state with an outgoing transition labeled with the same mes-
sage event and if it is not safety-violating. pushOutTransi-
tions pushes transitions with priority last onto the stack.



4. SYNTHESIS FOR PRODUCT LINES

In order to synthesize a controller for each product, we
need to derive all products from the feature diagram. In
order to exploit the benefit of the incremental synthesis, we
require a method that determines which controllers should
serve as a basis for the synthesis of other controllers.

‘We propose an automated strategy to enumerate and syn-
thesize all the variants from an FD. It consists in starting
from the backbone, which is the set of features that appear
in every valid product, and then adding more and more fea-
tures until we obtain a valid product, for which we then
synthesize a controller. The synthesis is scheduled accord-
ing to a top-down exploration of the FD.

Algorithm [3| implements our strategy. We first consider
the product that contains the root feature and all the fea-
tures required by it (line 4). By “required” we mean not only
features that the root directly requires, but also the features
required by those (e.g., their parent). Together, all these
features form the backbone. We also compute the set of fea-
tures that the root excludes. These are dead features, which
are part of no valid product since the root is mandatory.
As for inclusion, the exclusion is not limited to features di-
rectly excluded by the root. Given that require and exclude
are the only cross-tree constraints, the computation of the
set of features required/excluded by a given feature comes
down to parsing the constraints and exploring the FD.

Once we have computed the backbone, we begin the ex-
ploration (lines 6-19). At each iteration, for each feature f
newly added, we compute the subsets of its child features
that satisfy the decomposition relationship (line 9). Intu-
itively, each subset represents a choice in the child features
to add next. For example, if the decomposition type is XOR
then the choices are singletons, one per child feature. In
(resp. for) every subset, we also add (resp. compute) the
features required (resp. excluded) by the features in the
subset. We obtain a set of choices, which is a set of features
to add and another set of features to exclude. We then pur-
sue the exploration for each of these choices (lines 11-13),
subsequently adding more choices to consider.

Each time features are added to the included or excluded
feature sets, the algorithm checks that the two sets have
an empty intersection (line 8). This ensures that only valid
products are considered. Once there is no more choice to
make (lines 14-17), that is, every feature is either included
or excluded, we synthesize the product defined by the set
Inc of included features (line 15). The resulting controller
will serve as a basis for the next synthesis (line 16).

For the production cell FD in Fig. [2| the top-down strat-
egy first computes the set of features required by the root,
that is, {ProductionCell, Feed, ArmA, Press, Deposit }. The
algorithm then computes which set of features can be added
next. Regarding feature Press, it may choose to add either
RollerPress or DropHammerPress. For feature Deposit, it may
add ArmB or not; since it is optional, the algorithm excludes
it at first. The strategy selects the feature to include in a
non-deterministic fashion. If RollerPress is selected, we ob-
tain the product {ProductionCell, Feed, ArmA, Press, Depo-
sit, RollerPress }, for which then a controller is synthesized.
The algorithm then backtracks to its unique previous point
of choice. As before, it does not include ArmB. Then the
algorithm adds DropHammerPress and discards RollerPress.
Finally, the algorithm backtracks to its first point of choice,
includes ArmB, and repeats the same process.

Algorithm 3 Top-down exploration strategy.

1: procedure TOPDOWN(root)

2:  Stack stack;
3:  Map<Set<Feature>, Controller> controllers;
4:  stack.push({root}.addAll(requires(root)),
excludes(root), {root}.addAll(requires(root)));
5:  Controller previous = L
6: while !stack.isEmpty() do
7 (Set<Feature>, Set<Feature>, Set<Feature>)
(Inc, Exe, LastInc) = stack.pop();
8: if Inc.intersect(Exzc).isEmpty() then
9: Set<(Set<Feature>, Set<Feature>)>
Choices = computeChoices(LastInc);
10: if |Choices.isEmpty() then
11: for (ToInc,ToExc):Choices do
12: stack.push(Inc.addAll(Tolnc), Ezc.addAll(ToExc),
TolInc.removeAll(Inc));
13: end for
14: else
15: controllers.put(Inc, synthesize(Inc, previous));
16: previous = controllers.get(Inc);
17: end if
18: end if

19:  end while
20: end procedure

S. IMPLEMENTATION & EVALUATION

We implemented the on-the-fly synthesis algorithm (cf.
Sect. , including the incremental variant, and the top-
down strategy for product line synthesis (cf. Sec. |4 as part
of our Eclipse-based tool suite SCENARIOTOOLS. SCENARIO-
TooLs supports modeling of feature diagrams and MSD
specifications by providing suitable UML profiles. This al-
lows engineers to model product lines and system specifica-
tions with any Eclipse-based UML editor.

SCENARIOTOOLS also supports an interactive simulation
of MSD specifications. The simulation and the synthesis
both rely on a common implementation of an execution logic
which interprets the MSD specification |7]. The tool and the
examples presented in this paper can be downloade(fl

For our production cell example, SCENARIOTOOLS suc-
cessfully synthesizes controllers for all four realizable prod-
ucts. We avoid the false negatives (see Sect. as pre-
dicted. For this example, the incremental synthesis only
shows insignificant improvements. When comparing one sin-
gle run of the incremental and non-incremental synthesis,
the non-incremental synthesis may even be faster. This is
because the order in which transitions are pushed on the
waiting stack is non-deterministic and the non-incremental
synthesis can be lucky and avoid non-winning moves. The
incremental synthesis can be unlucky if products are derived
in an order where incrementality is not beneficial.

For example, if the two products with the drop-hammer
press are synthesized consecutively, incrementality is bene-
ficial for the second synthesis run. If however, a product
with the drop-hammer press is synthesized after a product
with a roller press, the incremental extension of the synthesis
algorithm may even force it to pursue non-winning moves.
(Here: moveToTable after press). Comparing 100 synthesis
runs of the incremental and non-incremental algorithm, we
observe in average 95 states visited by the first, and 96 vis-
ited by the second, which is an insignificant improvement.
The synthesis takes between 150 and 250 milliseconds.

"http://scenariotools.org
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To further evaluate the benefit of our incremental synthe-
sis approach, we use a technical example (named the “cas-
cading example” hereafter), which we systematically extend
to create new examples with larger state spaces.

The structure of our example is presented in Fig. [f] In
these specifications, each feature has at most two child fea-
tures connected with an OR-relationship. To increase the
size of the example, we raise the number of features. For
i > 1, there exist only features at depth ¢ in the FD if all at
depth ¢ — 2 already have two child features. Each feature is
connected with one MSD named after the feature. In these
MSDs, the first message is a cold message and is followed by
two hot messages. Only the first message in the MSD of the
root feature is an environment message. The first message
of a child feature is named like the two hot messages of its
parent’s MSD. The activation of an MSD of a feature thus
triggers two activations of an MSD for each child feature. In
addition to this MSD, every feature at depth 3 from the root
has an additional MSD that introduces a non-winning move
for the system, where the synthesis may run into a “dead
end” from which it must backtrack (see Bad3_1 in Fig. [5]).
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Figure 5: The evaluation example

Bad3_1 introduces a non-winning move as follows. Con-
sider the specification of a product that consists of the fea-
tures Cascadel, Cascade2_1, and Cascade3_1. Note, that in-
cluding Cascade3_1, according to what we said above, would
imply including Cascade2_2, but we ignore this now. As-
sume that the following sequence of events occurred: do,
ml, m2_1, m3_1, m3_1, m2_1, m3_1. Then, the system is in
the state shown at the top of the state-graph shown at the
bottom in Fig. [5] There are two options for the next event:

m1 A cold violation occurs in Bad3_1, which results in
the termination of this scenario. The only sequence
of events permitted to occur next is m3_1, m2_1, m3_1,
m3_1, m2_1, m3_1, m3_1. This sequence will cause a
cold violation in Bad3_1, which will result in its termi-

nation. This strategy satisfies the MSD specification.

m3_1 We reach the hot cut of Bad3_1 and m1 must occur,
which activates Cascade2_1 and Bad3_1 anew. Then
the only admitted sequence of events is m2_1, m3_1,
m3_1, m2_1, m3_1, m3_1, which enables again ml in
Bad3_1. The process is repeated ad infinitum; since
there is always an active MSD in an executed cut, this
implies a liveness violation.

The non-winning moves shall pose a challenge for the in-
cremental synthesis to avoid some of the backtracking. The
examples are designed to be highly challenging even with a
small set of features and MSDs, due to the exponentially in-
creasing number of MSD activations. Also, the “dead-ends”
from which the synthesis must backtrack may be huge com-
pared to the controller that will finally be produced.

Based on that example, we compare the performance of
our incremental algorithm combined with the top-down strat-
egy exploration with respect to synthesizing every product
controller from scratch. We test examples with 3 to 15 fea-
tures and evaluate the scalability of the two approaches with
respect to the number of features and MSDs.

We found that the examples are already very challenging
for our tool, which was thus far not optimized for perfor-
mance. Models with more than 9 features were too com-
plex to be considered. To nevertheless provide results, we
instead consider a feature diagram with OR child feature re-
lationships, but XOR child feature relationships at level 2.
Furthermore, we considered experiments where all feature
relationships are XOR.

All benchmarks were run on a Windows PC with a 3,3
GHz Intel Core i5 processor and 8 GB of DDR3 RAM. To
avoid variations due to non-determinism in the synthesis al-
gorithm, we repeated each experiment 20 times and com-
puted the average of the synthesis times.

The benchmark results are shown in Table [l For each
experiment, we describe the parent-child relationship, the
number of features and products, and for each approach
the average number of explored states, the average number
of explored losing states, the average synthesis time, and
finally the speedup provided by the incremental approach.

We observe that the incremental approach is more effi-
cient in most of the cases. In the OR experiments, the
two approaches perform equally well on the 3-feature model.
This is expected, since this example does not introduce non-
winning moves. However, as the number of products in-
creases, the incremental approach becomes more efficient.

In the XOR experiments the speedup ranges from 1.04 to
2. The only exception is the 15-feature model, for which the
non-incremental approach is slightly better. But the results
vary. We ran another set of trials for the same model, which
had contrary results, in favor of the incremental approach.

Our interpretation of the results is that the incremental
algorithm brings improvements for examples where the num-
ber of products grows more than linearly with the number
of features; for such examples the speedup also increases
with the number of features. These conclusions are, how-
ever, preliminary, and we plan to run more experiments in
the future to support it. There are examples where the im-
provement of the incremental algorithm is only marginal; in
some cases the incrementality also forces the algorithm to
pursue non-winning moves first (as above). We will explore
smarter ways of deriving products from FDs to avoid this.



Table 1: Synthesis times for the cascading example.

avg(#States) || avg(#Losing) Time (ms)
Example kind #Features || #Products Inc. N-inc. Inc. N-inc. Inc. N-inc. || Speedup
XOR 3 2 14 14 0 0 4 8 2
XOR 5 3 38 40 1 3 13 16 1.23
XOR 7 4 63 70 3 10 19 25 1.31
XOR 9 5 109 113 2 6 29 33 1.13
XOR 11 6 155 164 1 10 38 43 1.13
XOR 13 7 201 203 0 2 43 45 1.04
XOR 15 8 248 256 0 8 54 51 0.94
OR+XOR(level2) 3 3 25 25 0 0 6 6 1
OR+XOR(level2) 5 5 79 96 4 21 22 107 4.86
OR+XOR(level2) 7 8 638 730 470 562 316 360 1.13
OR+XOR(level2) 9 14 4419 5158 3921 4660 3551 3992 1.12
OR+XOR(level2) 11 20 7909 10111 7081 9283 6509 8400 1.29
OR+XOR(level2) 13 34 18811 | 24118 16925 | 22232 18555 | 25016 1.35
OR+XOR(level2) 15 48 41738 | 55502 38794 | 52558 43072 | 57930 1.34

6. RELATED WORK

There are many approaches for consistency-checking and
synthesizing controllers from formal scenario specifications
128, 115, 6, |16} |13} |23]. Also the relationship between scenar-
ios and goals was studied in the past [10]. However, there
are but a few approaches that consider formal scenario-based
specification of PLs.

Ziadi et al. synthesize statecharts from sequence diagrams
where interaction fragments can be annotated to be active
only in certain variants [30]. They thus model variability in
an annotative fashion, whereas ours is compositional. An-
other difference is that they do not consider that inconsis-
tencies may arise between the scenarios or the features.

Ghezzi and Molzam propose an approach to verify non-
functional requirements of SPLs [12]. They model the sys-
tem’s behavior with sequence diagrams where fragments can
be annotated to be active only in certain products. However,
they do not consider concurrent scenarios.

The relationship between FDs and structural as well as
behavioral UML models was studied, e.g., in |20} [27} |2, 26].
Shaker et al. recently proposed to model PL behavior with
a combination of FDs and a feature-aware extension of stat-
echarts [26], where features are introduced as a new parallel
region, and may change the priorities or the triggering con-
ditions of transitions. None of these methods is equipped
with consistency checking or synthesis mechanisms.

Apel et al. 3] extended Alloy with collaboration-based
design and feature composition. In their extension, features
are defined as refinements of modules. The specification of
a feature consists of predicates describing assumptions and
assertions. Based on these specifications, the Alloy Ana-
lyzer can detect structural and semantic dependences be-
tween the features. However, Alloy cannot express complex
behavioral interactions and detect inconsistencies in them.
SPLVerifier [4] is a feature-aware verification tool for verify-
ing inconsistencies and harmful feature interactions in C or
Java code. There, features are specified in isolate modules.
Safety properties are inserted into the code in the form of
assertions; liveness properties are, however, not supported.

Harhurin and Hartman propose an approach for model-
ing and consistency checking families of service-oriented sys-
tems [19]. They model possible service compositions and for-
mally specify constraints on the input and output sequences
of the ports of a service. Then combinations of input/output

ports that are incompatible in a certain product can be de-
tected by using a theorem prover. In comparison, our ap-
proach allows the requirements engineer not only to consider
the input/output behavior of a single service, but the inter-
actions between multiple components.

7. CONCLUSION

In this paper, we presented a novel technique for synthe-
sizing controllers from scenario-based product line specifica-
tions. We introduced a new game-based synthesis algorithm
that overcame the limitations of our previous approach. We
also provided an extension for the incremental synthesis of
controllers, which exploits the similarities between product
specifications in PLs. We implemented the approach proto-
tyically. Evaluations show that the incremental variant of
the algorithm could outperform the non-incremental variant
in many cases. Altogether, we pave the way for the intuitive
and rigorous design of PLs of reactive systems.

In the future, we will design new heuristics that further
improve the performance of the incremental algorithm. In
particular, we will investigate alternative strategies to ex-
plore the FD, and thus to schedule the products to syn-
thesize. A new strategy could be to perform a bottom-up
exploration, starting from a product including all the fea-
tures and successively removing features. Other variants of
the top-down strategy can be defined by changing how OR-
relationships are dealt with. For instance, we can choose
the next features to include based on how much the MSDs
connected to its features conflict (that is, share events) with
the MSDs connected to the already added features.

A limitation of our approach is that it cannot cope with
arbitrary Boolean constraints between the features. We can
extend our feature-tree exploration algorithm to support any
Boolean feature constraints; in this case, however, we have
to combine it with backbone computation algorithms [24].
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