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Abstract 

This paper proposes a unified framework for understanding creative problem solving, 

namely the Explicit-Implicit Interaction theory. This new theory of creative problem 

solving constitutes an attempt at providing a more unified explanation of relevant 

phenomena (in part by reinterpreting/integrating various fragmentary existing theories of 

incubation and insight). The Explicit-Implicit Interaction theory relies mainly on five 

basic principles, namely 1) The co-existence of and the difference between explicit and 

implicit knowledge; 2) The simultaneous involvement of implicit and explicit processes 

in most tasks; 3) The redundant representation of explicit and implicit knowledge; 4) The 

integration of the results of explicit and implicit processing; and 5) The iterative (and 

possibly bidirectional) processing. A computational implementation of the theory is 

developed based on the CLARION cognitive architecture, which is applied to the 

simulation of relevant human data. This work represents an initial step in the 

development of process-based theories of creativity encompassing incubation, insight, 

and various other related phenomena. 

 

Keywords: creative problem solving, implicit processing, computational modeling, 

simulation, creativity, cognitive architecture. 
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Introduction 

Many psychological theories of problem solving and reasoning have highlighted a 

role for implicit cognitive processes (e.g., Evans, 2006; Reber, 1989; Sun & Zhang 

2004). For instance, implicit processes are often thought to generate hypotheses that are 

later explicitly tested (Evans, 2006). Also, similarity has been shown to affect reasoning 

through processes that are mostly implicit (Sun, 1994; Sun & Zhang, 2006). Yet, most 

theories of problem solving have focused on explicit processes that gradually bring the 

problem solver closer to the solution in a deliberative way (Dorfman, Shames, & 

Kihlstrom, 1996). However, when an ill-defined or complex problem has to be solved 

(e.g., when the initial state or the goal state can lead to many different interpretations, or 

when the solution paths are highly complex), the solution is often found by sudden 

‘insight’ (Pols, 2002; Reber, 1989; Schooler & Melcher, 1995; Schooler, Ohlsson, & 

Brooks, 1993), and regular problem solving theories are for the most part unable to 

account for this apparent absence of deliberative strategy (Bowden, Jung-Beeman, Fleck, 

& Kounios, 2005).  

A complementary line of research on creative problem solving has tried to tackle 

complex problem solving for many years. However, theories of creative problem solving 

tend to be fragmentary and usually concentrate only on a subset of phenomena, such as 

focusing only on incubation (i.e., a period away from deliberative work on the problem; 

for a review, see Smith & Dodds, 1999) or insight (i.e., the sudden appearance of a 

solution; for a review, see Pols, 2002). The lack of detailed computational models has 

resulted in their limited impact on the field of problem solving (Duch, 2006).  
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In the present work, a general theory, the Explicit-Implicit Interaction (EII) 

theory, is proposed. The EII theory integrates Wallas’ (1926) high-level stage 

decomposition of creative problem solving with more detailed, process-based theories of 

incubation and insight (as detailed and implemented computationally later). Furthermore, 

the present paper shows how EII can be used to provide a natural, intuitively appealing 

reinterpretation of several existing theories of incubation (e.g., “unconscious” work 

theory, “conscious” work theory, recovery from fatigue, forgetting of inappropriate 

mental sets, remote association, opportunistic assimilation; as reviewed in Smith & 

Dodds, 1999), several existing theories of insight (e.g., constraint theory, fixation theory, 

associationistic theory, evolutionary theory; as reviewed in Mayer, 1995; Ohlsson, 1992; 

Pols, 2002; Schilling, 2005; Schooler & Melcher, 1995; Simonton, 1995; Smith, 1995), 

and several existing theories of creativity (e.g., GENEPLORE, evolutionary theory of 

creativity; as reviewed in Campbell, 1960; Finke, Ward, & Smith, 1992). While the EII 

theory cannot account for all instances of creative problem solving, it is more integrative 

and more complete than the above-mentioned theories. 

Another important characteristic of the EII theory is that the processes are 

specified with sufficient precision to allow their implementations into a quantitative, 

process-based, computational model using the CLARION cognitive architecture (Sun, 

2002; Sun, Merrill, & Peterson, 2001; Sun, Slusarz, & Terry, 2005). In the present work, 

CLARION is used to simulate, capture, and explain human data related to incubation and 

insight in tasks such as lexical decision (Yaniv & Meyer, 1987), free recall (Smith & 

Vela, 1991), and problem solving (Durso, Rea, & Dayton, 1994; Schooler et al., 1993). 

CLARION is also applied to conceptually capturing and explaining several 
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computational models of creativity from artificial intelligence (see, e.g., Boden, 2004; 

Hofstadter & Mitchell, 1994; Langley & Jones, 1988; Rowe & Partridge, 1993; Schank & 

Cleary, 1995). 

The remainder of this article is organized as follow. First, Wallas’ (1926) 

ubiquitous stage decomposition is introduced. Second, the existence of the two stages on 

which this paper focuses, namely incubation and insight, is justified through reviewing 

relevant experimental psychology literature. This discussion is followed by a review of 

the existing theories of incubation and insight, which serves to motivate the EII theory of 

creative problem solving. The new theory is then explained and the previously reviewed 

theories are re-interpreted in the new framework. This is followed by the implementation 

of EII using the CLARION cognitive architecture. Four tasks previously used to 

experimentally justify incubation and insight are then simulated with the proposed 

computational model. The paper concludes by discussing the implications of the EII 

theory and the CLARION model for psychological research on creativity as well as for 

computational models of creativity in artificial intelligence. 

Creative problem solving: Four stages 

The role of creativity in problem solving has been acknowledged since Wallas’ 

(1926) seminal work. According to Wallas, humans go through four different stages 

when trying to solve a problem: preparation, incubation, illumination (i.e., insight), and 

verification. The first stage, preparation, refers to an initial period of search in many 

directions using (essentially) logic and reasoning. If a solution is found at this stage, the 

remaining stages are not needed. However, if the problem is ill-defined and/or complex, 

the preparation stage is unlikely to generate a satisfactory solution. When an impasse is 
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reached, the problem solver stops attempting to solve the problem, which marks the 

beginning of the incubation phase. Incubation can last from a few minutes to many years, 

during which the attention of the problem solver is not devoted to the problem. The 

incubation period has been empirically shown to increase the probability of eventually 

finding the correct solution (e.g., Dodds, Ward, & Smith, 2003; Smith & Dodds, 1999). 

The following stage, illumination, is the “spontaneous” manifestation of the problem and 

its solution in conscious thought.1 The fourth stage, verification, is used to ascertain the 

correctness of the insight solution. Verification is similar to preparation, because it also 

involves the use of deliberative thinking processes (with logic and reasoning). If the 

verification stage invalidates the solution, the problem solver usually goes back to the 

first or second stage and this process is repeated. 

Even though the stage decomposition theory is general and not easily testable, it 

has been used to guide much of Gestalt psychologists’ early research program on 

problem solving (e.g., Duncker, 1945; Kohler, 1925; Maier, 1931). According to Gestalt 

psychology, ill-defined problems are akin to perceptual illusions: they are problems that 

can be understood (perceived) in a number of different ways, some of which allow for an 

easier resolution (Pols, 2002). Hence, the preparation stage would be made up of 

unsuccessful efforts on an inadequate problem representation, incubation would be the 

search for a better problem representation, and insight would mark the discovery of a 

problem representation useful for solving the problem. The verification phase would 

verify that the new problem representation is equivalent to the initial problem 

representation (Dunker, 1945). This Gestalt theory of problem solving provides a sketchy 
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high-level description of creative problem solving but no detailed psychological 

mechanism (especially process-based or computational mechanism) was proposed.  

More recent research has turned to finding evidence supporting the existence of 

the individual stages of creative problem solving. Because the preparation and 

verification stages are thought to involve mostly regular reasoning processes (Wallas, 

1926), not much effort has been devoted to these two stages (relevant results can be 

borrowed from the existing literature; see, e.g., Johnson-Laird, 1999; Simon, 1966; Sun, 

1994; Zadeh, 1988). In contrast, incubation and insight have received much attention; 

some of the most relevant results on incubation and insight are reviewed below.  

Incubation 

A recent review of experimental research on incubation shows that most 

experiments have found significant effects of incubation (Dodds et al., 2003). Those 

experiments investigated the effects of incubation length, preparatory activity, clue, 

distracting activity, expertise, and gender on participants’ performance. The review 

suggests that performance is positively related to incubation length and that preparatory 

activities can increase the effect of incubation. Presenting a clue during the incubation 

period also has a strong effect. If the clue is useful, the performance is improved; if the 

clue is misleading, the performance is decreased. Moreover, the effect of clues is stronger 

when the participants are explicitly instructed to look for clues (Dodds, Smith, & Ward, 

2002). (The other three factors, distracting activity, expertise, and gender, have not been 

studied enough to yield a stable pattern of results; but see Helie, Sun, & Xiong, 2008 for 

a discussion of the effect of distracting activity.) 
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In addition to being correlated to such factors (Dodds et al., 2003), incubation has 

been linked to well-known cognitive effects such as reminiscence (i.e., the number of 

new words recalled in a second consecutive free recall test; Smith & Vela, 1991) and 

priming (Yaniv & Meyer, 1987). For example, Smith and Vela showed that reminiscence 

in a free-recall task was increased by longer inter-test interval (i.e., the length of 

incubation). Furthermore, in relation to priming, Yaniv and Meyer showed that 

participants who rated their Feeling Of Knowing (FOK) as ‘high’ in a rare-word 

association task (i.e., which is suggestive of more efficient incubation) were primed for a 

related solution in a subsequent lexical decision task. In contrast, other participants who 

rated their FOK as either ‘medium’ or ‘low’ (i.e., which is suggestive of less efficient 

incubation) were not primed in the subsequent lexical decision task. Overall, the review 

by Dodds et al. (2003) and the results presented above (Smith & Vela, 1991; Yaniv & 

Meyer, 1987) support the existence of incubation in problem solving (and in other 

psychological tasks). 

Insight (illumination) 

In a recent review of the different definitions used in psychology to characterize 

‘insight’, Pols (2002) found three main elements. First, insight does not constitute just 

another step forward in solving a problem: it is a transition that has a major impact on the 

problem solver’s conception of the problem. Second, insight is sudden: It usually 

constitutes a quick transition from a state of ‘not knowing’ to a state of ‘knowing’. Third, 

the new understanding is more appropriate: Even when insight does not directly point to 

the solution, it leads to grasping essential features of the problem that were not 

considered previously. 
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In experimental psychology, insight is often elicited using ‘insight problems’ 

(e.g., Bowden et al., 2005; Dorfmann et al., 1996; Isaak & Just, 1996; Mayer, 1995; Pols, 

2002). Such problems are diverse and characterized by the absence of direct, incremental 

algorithms allowing their solutions. In many cases, they are selected because they have 

been shown to produce insight solutions in previous studies (Bowden et al., 2005). 

Empirically, insight is identified by a strong discontinuity in the feeling of knowing, the 

feeling of warmth, or the progress made in a verbal report (Pols, 2002). Some research 

has even shown a sudden increase of heart rate just before insight is reached (whereas 

regular problem solving is accompanied by a steady increase in heart rate; see Jausovec 

& Bakracevic, 1995). Overall, the existing data (e.g., Duncker, 1945; Durso et al., 1994; 

Jausovec & Bakracevic, 1995; Maier, 1931; Ohlsson, 1992) and the observed phenomena 

(Dunker, 1945; Durso et al., 1994; Kohler, 1925; Maier, 1931; Schooler et al., 1993; 

Schooler & Melcher, 1995) support the existence of insight in creative problem solving 

(see, e.g., Mayer, 1995; Pols, 2002 for further reviews). 

Existing theories 

Many process theories have been proposed to explain incubation and insight (as 

reviewed below). However, it should be noted that each of these theories can be used to 

explain only certain limited aspects of the data in the literature (Smith & Dodds, 1999). 

Furthermore, most existing theories did not attempt to explain insight and incubation 

simultaneously. Below, some of the better-known theories of incubation and insight are 

reviewed to provide the necessary background for the EII theory.2  
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Review of existing theories of incubation 

Unconscious work. The most natural process theory of incubation, stemming 

directly from Wallas’ (1926) intuition, is known as the unconscious work theory 

(Dorfman et al., 1996; Smith & Dodds, 1999). According to this theory, the problem 

solver continues to work “unconsciously” on the problem after abandoning “conscious” 

work. A creative solution to a problem is developed unconsciously and reaches 

consciousness as a whole. The unconscious work theory has the advantage of being 

consistent with most anecdotes in the history of science. However, the presence of 

“unconscious” work is difficult to assess experimentally (Smith & Dodds, 1999). 

Conscious work. The conscious work theory was proposed in light of the 

difficulties with the experimental assessment of “unconscious” processes (Smith & 

Dodds, 1999). According to the conscious work theory, a creative solution is found by 

working intermittently on the problem while attending to mundane activities (e.g., taking 

a shower, driving, etc). Because attention switching from the mundane activity to the 

incubated problem is very fast, the short episodes of work on the incubated problem are 

forgotten, and only the final step is remembered.  

Recovery from fatigue. The preparation phase in real-world situations can be 

very long and tiring. The problem solver might be cognitively drained and therefore 

unable to solve the problem (Smith & Dodds, 1999). According to this theory, the stage 

of incubation is a cognitive respite period, which allows rejuvenation of the problem 

solving skills.  

Forgetting of inappropriate mental sets. False assumptions are sometimes made 

during the preparation phase. These false assumptions erroneously constrain the possible 
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solution space and prevent the solver from producing certain solutions (Smith & Dodds, 

1999); the false assumptions must be forgotten to allow the problem solver to be creative 

(and access “productive” solutions). The incubation period serves this purpose. 

Remote association. Solutions to already solved problems are often stored in 

long-term memory. When a new problem is encountered, the (previously stored) 

solutions to similar problems are automatically retrieved. However, these solutions might 

be inappropriate and block the correct solution from being discovered. Less likely 

solutions are discovered only when the most likely solutions have all been investigated. 

The incubation phase is thus used to eliminate stereotypical solutions.  

Opportunistic assimilation. Unsolved problems are often encoded in long-term 

memory. As long as the problem remains unsolved, the resulting memory structure is 

primed and environmental clues that may be useful in solving the problem can easily 

activate the appropriate structure (Smith & Dodds, 1999). Incubation is the period in 

which environmental clues are assimilated. Such incubation makes the problem solver 

sensitive to details and hints that would have gone unnoticed without the priming from 

the unsolved problem in long-term memory (Langley & Jones, 1988). 

Review of existing theories of insight 

Constraint theory. The first theory assumes that insight problems involve the 

satisfaction of a large number of constraints (Mayer, 1995). Limits related to cognitive 

resources make it difficult to simultaneously satisfy a large set of constraints (Simon, 

1972), which explains the intense experience associated with insight. This constraint 

theory of insight has been used mainly to describe the problem solving process via 

schema completion (e.g., Schank & Cleary, 1995). In such a case, the problem solver 
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mentally constructs a structure that includes the initial condition (problem) and the goal 

state (solution), and fills in the gap between the initial condition and the goal state that 

may exist. 

Fixation theory. Although the constraint theory has been useful in explaining 

historical anecdotes and verbal reports of problem solving (Mayer, 1995), it is limited to 

cases where only the path between the initial state and the solution is missing. 

Unfortunately, this is not always the case. For example, the solution state is often 

unknown in advance. As such, the fixation theory (Mayer, 1995; Ohlsson, 1992; Pols, 

2002; Schilling, 2005; Schooler & Melcher, 1995; Smith, 1995) also assume that insight 

problems involve the satisfaction of constraints, but it does not assume that all the 

constraints are stated in the initial problem: problem solvers sometimes wrongly assume 

constraints that are not part of the problem, which limits the search process to a portion of 

the solution space (Isaak & Just, 1996). According to this theory, insight is experienced 

when these unwarranted constraints are relaxed and a new portion of the solution space 

becomes available for exploration. The rejection of these constraints is usually achieved 

by restructuring the problem (Smith, 1995).  

Associationistic theory. In the preceding theories, insight was interpreted as 

successfully satisfying a set of constraints (so as to break an impasse). However, not all 

theories assume that an impasse has to be reached or that constraints must be satisfied. 

The associationistic theory assumes that knowledge is encoded using a knowledge graph 

(Pols, 2002; Schilling, 2005). Accordingly, problems are solved by retrieving the correct 

association (path) using parallel search processes. Insight is nothing special (Mayer, 

1995; Schooler & Melcher, 1995): the only difference between insight and non-insight 
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solutions is the strength of the associations. Insight is experienced when an unlikely 

association solving the problem is retrieved. 

Evolutionary theory. The evolutionary theory of insight (Campbell, 1960; Pols, 

2002; Schilling, 2005; Simonton, 1995) is based on the three principles of Darwin’s 

theory of evolution: (1) blind variation/generation of solutions, (2) evaluation/selection of 

a solution, and (3) retention of the selected solution (Simonton, 1995; see also Hadamard, 

1954). According to the evolutionary theory of insight, knowledge is represented by 

nodes in a graph and associations (links) are formed using an evolutionary selection 

principle. Solution generation (i.e., the formation of associations) and selection are 

performed “unconsciously”, and only the selected solution (association) reaches 

consciousness. If the solution adequately solves the problem, insight is experienced. 

EII: An integrative theory of creative problem solving 

The Explicit–Implicit Interaction (EII) theory, in part, attempts to integrate and 

thus unify (to some extent) existing theories of creative problem solving in two senses. 

First, most theories of creative problem solving have focused on either a high-level stage 

decomposition (e.g., Wallas, 1926) or on a process explanation of only one of the stages 

(see the previous subsections). None of the above-mentioned theories provides a stage 

decomposition along with a process explanation of more than one stages (Lubart, 2001). 

Second, the process theories of incubation (e.g., Smith & Dodds, 1999) and insight (e.g., 

Mayer, 1995; Ohlsson, 1992; Pols, 2002) are usually incomplete and often mutually 

incompatible. EII attempts to integrate the existing theories to makes them more 

complete in order to provide a detailed description of the processes involved in key stages 

of creative problem solving. EII starts from Wallas’ (1926) stage decomposition of 
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creative problem solving and provides a detailed process-based explanation sufficient for 

a coherent computational implementation. (This last point is important because most of 

the afore-mentioned process theories are not detailed enough to be implemented as 

computational models.) 

The basic principles underlying the EII theory are summarized in Table 1. As can 

be seen, EII is not just an integration/implementation of previously existing vague 

theories, but it is a new theory, which focus on the importance of implicit processing and 

knowledge integration in problem solving (see Sun et al., 2005). In the following 

subsection, the principles summarized in Table 1 are presented in more details. This 

description is followed by theoretical and empirical justifications of the principles. This 

section ends with a discussion of EII’s implications for psychological research on 

creative problem solving (i.e., explanation and integration of existing theories).  

Insert Table 1 about here 

Basic principles of the Explicit-Implicit Interaction theory 

Principle #1: The co-existence of and the difference between explicit and implicit 

knowledge 

The EII theory assumes the existence of two different types of knowledge, namely 

explicit and implicit (Dienes & Berry, 1997; Dienes & Perner, 1999), residing in two 

separate modules (Sun, 2002). Explicit knowledge is easier to access and verbalize, said 

to be often symbolic, crisper, and more flexible (Sun et al., 2001, 2005). However, using 

explicit knowledge requires more extensive attentional resources (Curran & Keele, 1993; 

Sun et al., 2005). In contrast, implicit knowledge is relatively inaccessible, harder to 
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verbalize, often “subsymbolic”, and often more specific, more vague, and noisier (Sun, 

1994, 2002). However, using implicit knowledge does not tap much attentional resources. 

As such, explicit and implicit knowledge is processed differently. According to the EII 

theory, explicit processes perform some form of rule-based reasoning (in a very 

generalized sense; Smith, Langston, & Nisbett, 1992; Sun 1994) and represent relatively 

crisp and exact processing (often involving hard constraints; Sun et al., 2001), while 

implicit processing is ‘associative’ and often represents soft-constraint satisfaction 

(Evans, 2008; Sloman, 1996; Smolensky, 1988; Sun, 1994). 

Principle #2: The simultaneous involvement of implicit and explicit processes in most 

tasks  

Explicit and implicit processes are involved simultaneously in most tasks under 

most circumstances (Smith & DeCoster, 2000; Sun, 2002). This can be justified by the 

different representations and processing used to describe the two types of knowledge. As 

such, each type of processes can end up with similar or conflictual conclusions that 

contribute to the overall output (Evans, 2007; see also Principle #4 below).  

Principle #3: The redundant representation of explicit and implicit knowledge 

According to the EII theory, explicit knowledge and implicit knowledge are often 

“redundant”: i.e., they frequently amount to re-descriptions of one another in different 

representational forms. For example, knowledge that is initially implicit is often later re-

coded to form explicit knowledge (through “bottom-up learning”; Sun et al., 2001, 2005). 

Likewise, knowledge that is initially learned explicitly (e.g., through verbal instructions) 

is often later assimilated and re-coded into an implicit form, usually after extensive 
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practice (top-down assimilation: Sun & Zhang, 2004).3 There may also be other ways 

redundancy is created, e.g., through simultaneous learning of implicit and explicit 

knowledge. Redundancy often leads to interaction (as described in Principle #4). 

Principle #4: The integration of the results of explicit and implicit processing 

Although explicit and implicit knowledge are often re-descriptions of one another, 

they involve different forms of representation and processing, which may produce similar 

or different conclusions (Sun & Peterson, 1998); the integration of these conclusions may 

be necessary, which may lead to synergy, that is, overall better performance.  

Principle #5: The iterative (and possibly bidirectional) processing 

Processing is often iterative and potentially bidirectional according to the EII 

theory. If the integrated outcome of explicit and implicit processes does not yield a 

definitive result (i.e., a result in which one is highly confident) and if there is no time 

constraint, another round of processing may occur, which may often use the integrated 

outcome as a new input. Reversing the direction of reasoning may sometimes carry out 

this process (e.g., abductive reasoning; Johnson & Krem, 2001; Pearl, 2000). Alternating 

between forward and backward processing has been argued to happen also in everyday 

human reasoning (Rips, 1994). 

Auxiliary principles 

In addition to the five principles presented so far, three auxiliary principles should 

be mentioned. These principles are less important because they are needed to account for 

the data, but alternative principles may be equally viable. Therefore they are not central 

to the fundamental theoretical framework of the EII theory. First, Principle #5 implies 
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that a ‘definitive result’ needs to be achieved in order to terminate the iterative process. 

This stopping criterion assumes a primitive form of meta-cognitive monitoring that can 

more or less accurately measure the probability of finding a solution (Bowers, Regehr, 

Balthazard, & Parker, 1990). In EII, this meta-cognitive measure is termed the Internal 

Confidence Level (ICL). Second, there must be a threshold that defines what is meant by 

‘definitive result’. This threshold can vary as a function of task demands, and there might 

even be several thresholds for different levels of confidence (Bowers et al., 1990). Lastly, 

a negative relationship between the ICL and the response time was assumed (as in, e.g., 

Anderson, 1991; Costermans, Lories, & Ansay, 1992). 

Justification of the principles 

Principle #1: The co-existence of and the difference between explicit and implicit 

knowledge 

There have been disagreements concerning what experimentally constitutes 

conscious accessibility (Dienes & Berry, 1997). It is also difficult to distinguish between 

explicit knowledge that is used when a task is being performed and explicit knowledge 

that is retroactively attributed to task performance (i.e., when verbal reports are given). 

Despite such difficulties, it is generally agreed that at least some part of performance is 

not consciously accessible under normal circumstances. Reber (1989) pointed out that 

“although it is misleading to argue that implicitly acquired knowledge is completely 

unconscious, it is not misleading to argue that implicitly acquired epistemic contents of 

mind are always richer and more sophisticated than what can be explicated” (p. 229). 

Voluminous experimental data testifying to this distinction can be found in Berry & 

Broadbent (1988), Cleeremans, Destrebecqz, & Boyer (1998), Dienes & Berry (1997), 
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Karmiloff-Smith (1992), Mathews et al. (1989), Reber (1989), Seger (1994), Stanley et 

al. (1989), and Sun et al. (2001, 2005). 

In general, explicit processing can be qualified as ‘rule-based’ in some way, 

whereas implicit processing is mostly ‘associative’ (as argued by, e.g., Sloman, 1996; 

Sun 1994). Explicit processing can involve the manipulation of symbols through the 

application of various explicit reasoning processes, e.g., logical reasoning (Rips, 1994) 

and explicit hypothesis testing (Evans, 2002, 2006). The abstract nature of symbol 

manipulation allows for the application of knowledge in different but categorically 

similar situations (i.e., systematicity: Fodor & Pylyshyn, 1988). In contrast, implicit 

processing involves mostly instantiated knowledge that is holistically associated 

(Smolensky, 1988; Sun et al., 2001, 2005). Hence, implicit processing is often more 

situation-specific and provides approximate matches in new situations (Sun, 1994), which 

limits the validity of its results. (Empirical evidence in support of these points can be 

found in the reviews cited above and thus will not be detailed here.) 

The above differences between explicit and implicit processing have important 

implications for the types of constraints that can be handled with each type of processing.  

Because explicit knowledge is often thought of as ‘rule-based’, explicit processing can be 

viewed as an algorithm that satisfies ‘hard’ constraints (as argued by, e.g., Sloman, 1996; 

Sun 1994). For example, the proof of a theorem is done by using the rules and the axioms 

of mathematics (i.e., hard constraints), which must be completely satisfied. Such a task 

necessarily requires the use of explicit processes (along with implicit processes possibly). 

In contrast, inferring that robins and blue jays are similar can be done by using soft 

constraints (e.g., a similarity metric; as argued by, e.g., Sun, 1994). This is also in line 
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with Dijksterhuis et al. (2006), which showed that an important reason for why 

“unconscious” thinkers often made superior decisions had to do with the way decision 

makers “weighed” the relative importance of various soft constraints. 

The last distinction between explicit and implicit processing, attentional 

difference, can be demonstrated, in particular, through a serial reaction time task 

involving a dual-task phase that cancels the beneficial effect of explicit knowledge while 

leaving implicit processing untouched (Curran & Keele, 1993). Similar effects have been 

found in artificial grammar learning tasks, dynamic control tasks (for reviews, see 

Cleeremans et al., 1998; Sun et al., 2005), and perceptual categorization (Waldron & 

Ashby, 2001). 

Principle #2: The simultaneous involvement of implicit and explicit processes in most 

tasks 

One of the ways to show the simultaneous nature of explicit and implicit 

processing is to create a conflict situation (Evans, 2007). Processing hard (explicit) and 

soft (implicit) constraints simultaneously can result in different inferences, which can 

lead to a ‘conflict’ (Evans, 2007; Smith & DeCoster, 2000). For instance, the similarity 

between the stimuli (implicit processing) has been shown to have a strong effect on rule-

based categorization (explicit processing), which can lead to a conflict that suggests 

simultaneous implicit and explicit processing (Allen & Brooks, 1991; but see Lacroix, 

Giguère, & Larochelle, 2005). Similar results have been found in a syllogistic reasoning 

task (Evans, 2007). 

Yet another line of evidence comes from research on skill acquisition. For 

instance, it was argued in Sun et al. (2005) that it was not necessary to select upfront 
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explicit or implicit processes to tackle a particular problem. Most tasks are processed 

simultaneously explicitly and implicitly, and the task demands (e.g., complexity, 

structure, prior instructions, etc.) can make explicit or implicit processes more efficient. 

Hence, although performance might seem to be the result of (mostly) explicit or implicit 

processing by an external observer, both types of processes are likely involved and the 

observable (i.e., measurable) behavior results mostly from the more efficient process in a 

particular task setting. (For a detailed argument and reviews, see Sun et al., 2005.) 

Principle #3: The redundant representation of explicit and implicit knowledge 

Redundancy is very important in providing fault tolerance in cognitive systems 

(Russell & Norvig, 1995; von Newmann, 1956). For example, the brain is composed of 

millions of neurons that are known to be individually very “noisy” (Ma, Beck, Latham, & 

Pouget, 2006). Yet, psychological processes are often “robust” (e.g., see Sun, 1994). 

Robustness can be achieved through redundancy.  

A natural way of creating redundancy is to re-describe one kind of knowledge 

into the other. Early memory experiments in the context of the “depth of processing” 

hypothesis showed this strategy to be efficient for later recall (Craik & Tulving, 1975). 

Re-description of implicit knowledge into explicit knowledge is termed ‘bottom-up 

learning’ (see, e.g., Sun et al., 2001), while the re-description of explicit knowledge into 

implicit knowledge is termed top-down assimilation (Sun & Zhang, 2004). Many 

psychological data have suggested the presence of bottom-up learning and top-down 

assimilation (as argued in Sun et al., 2005). Some of them are reviewed below. 

Sun et al. (2001) proposed the idea of bottom-up learning and gathered much 

empirical evidence for it. In many experiments, the participants’ ability to verbalize was 
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independent of their performance (Berry & Broadbent, 1988). Furthermore, performance 

typically improved earlier than explicit knowledge that could be verbalized by 

participants (Stanley et al., 1989). For instance, in dynamic control tasks, although the 

performance of participants quickly rose to a high level, their verbal knowledge improved 

far slower: Participants could not provide usable verbal knowledge until near the end of 

their training (e.g., as shown by Stanley et al., 1989; Sun et al., 2005). This phenomenon 

has also been demonstrated by Reber and Lewis (1977) in artificial grammar learning. A 

more recent study of this phenomenon (Sun et al., 2001) used a more complex minefield 

navigation task. In all of these tasks, it appeared easier to acquire implicit skills than 

explicit knowledge (hence the delay in the development of explicit knowledge). In 

addition, the delay indicates that implicit learning may trigger explicit learning, and the 

process may be described as delayed explication of implicit knowledge (Karmiloff-

Smith, 1992). Explicit knowledge is in a way “extracted” from implicit skills. Together, 

these data suggest the existence of bottom-up learning. 

Top-down assimilation may be demonstrated through data on automaticity (Helie, 

Waldschmidt, & Ashby, in press; Logan, 1988, 1992). For instance, explicit processing 

(letter counting) is abandoned in favor of an implicit strategy (memory retrieval) in 

alphabetic arithmetic tasks (Logan, 1988). This form of automaticity is possible only 

once the explicit knowledge has been assimilated into implicit knowledge. Similar results 

can also be found in a dot-counting task (Logan, 1992), several lexical decision tasks 

(Logan, 1988), categorization (Helie et al., in press), and “proceduralization” experiments 

(e.g., Anderson & Lebiere, 1998; Sun et al., 2001).  
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Redundancy may also be created when simultaneous implicit and explicit learning 

are taking place. There is evidence that implicit and explicit knowledge may develop 

independently under some circumstances. Willingham et al. (1989) reported data that 

were consistent with the parallel development of implicit and explicit knowledge. By 

using two different measures for assessing the two types of knowledge respectively, they 

compared the time course of implicit and explicit learning. It was shown that implicit 

knowledge might be acquired in the absence of explicit knowledge and vice versa. The 

data ruled out the possibility that one type of knowledge was always preceded by the 

other. Rabinowitz and Goldberg (1995) similarly demonstrated parallel development of 

procedural and declarative knowledge in some conditions of an alphabetic arithmetic 

task.  

Principle #4: The integration of the results of explicit and implicit processing 

Simultaneous processing of explicit and implicit knowledge often leads to an 

output that is a combination of the results of explicit and implicit processing (Sun et al., 

2001, 2005; Sun & Peterson, 1998). Such knowledge integration sometimes produces  

“synergy” (Sun & Peterson, 1998), which can lead to speeding up learning, improving 

performance, and facilitating transfer (Sun et al., 2005).  

Knowledge integration is supported by recent neurological findings in insight 

problem solving (Bowden et al., 2005). According to Bowden and his colleagues, 

problem solving is performed differently in the left and right brain hemispheres. The 

former is more closely related to language processing, and strongly activates a limited set 

of concepts, while the latter is more related to imagery and provide diffused activation to 

a wider range of concepts. Hence, each hemisphere holds a different problem 
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representation. Shortly before insight problems are solved, a neuronal burst sending a 

signal from the right hemisphere to the left hemisphere is observed, thus yielding an 

integrated problem representation leading to the solution (Bowden et al., 2005). Similar 

phenomena have been found (behaviorally) in many other psychological tasks, such as 

the serial reaction time task (Curran & Keele, 1993), the finite state grammar task 

(Mathews et al., 1989), the dynamic control task (Stanley et al., 1989), and the minefield 

navigation task (Sun et al., 2001). Many other similar indications exist to support the 

integration of explicit and implicit knowledge (see Sun et al., 2005, for a detailed 

review). 

Principle #5: The iterative (and possibly bidirectional) processing 

The often iterative/bidirectional processing assumed by the EII theory 

corresponds well with data, especially human reasoning data. For instance, forward and 

backward schemas were used to describe human performance in reasoning tasks (Rips, 

1994). One important form of backward processing in human reasoning is abductive 

reasoning (Pearl, 2000). In abductive reasoning, one tries to infer the possible cause(s) 

following a set of observations. For instance, the floor can be observed to be wet and one 

can infer that it might have rained earlier (i.e., the current hypothesis). Testing other 

effects that should be observed if this possible cause is correct can be used to refine the 

current hypothesis (e.g., if it rained earlier, other objects should also be wet). Johnson and 

Krems (2001) have shown that human participants use this strategy and often use the 

current hypothesis to interpret new data. According to these authors, the main purpose of 

abductive reasoning is to control the growth of the complexity of the hypothesis space, 

which can quickly become unmanageable (e.g., by restraining the size of the search space 
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by refining the current hypothesis). For this reason, abductive reasoning can be very 

useful in creative problem solving, because ‘insight problems’ are often overly complex 

and ill-defined (Bowden et al., 2005). Hence, this form of backward processing, which is 

also consistent with the Bayesian interpretation of the rational analysis of cognition 

(Anderson & Lebiere, 1998), is used to initiate subsequent rounds of processing in EII. 

In addition to the iterative nature of hypothesis refinement in abductive reasoning, 

iterative processing in EII is also supported by the heuristic-analytic theory (Evans, 

2006). According to Evans, participants repeatedly use ‘heuristics’ (implicit processing) 

to generate ‘models’ that are verified by analytic (explicit) processes in logical inference 

tasks. This generate-and-test algorithm is repeated until a satisfactory solution is found, 

which is consistent with EII’s assumption about iterative processing. The creative 

problem solving literature also provides countless examples of participants iteratively 

formulating and revising their hypotheses (through forward and backward processes; e.g., 

Bowden et al., 2005; Durso et al., 1994; Schooler et al., 1993).  

Auxiliary principles 

First, iterative processing ends when the Internal Confidence Level (ICL) reaches 

a certain level according to EII. Empirically, the ICL can correspond to the feeling of 

knowing (or feeling of warmth) that has been measured in the metacognition literature 

(Bowers et al., 1990; Yaniv & meyer, 1987) and is assumed by many theories of problem 

solving (e.g., Dorfman et al., 1996; Sun, Zhang, & Mathews, 2006) and many theories of 

memory search (e.g., Metcalfe, 1986; Metcalfe & Wiebe, 1987). These existing data and 

theories support the use of an ICL in EII. Second, Bowers et al. (1990) directly tested the 

presence of a ‘hunch’ threshold and a ‘solution’ threshold on FOKs.  In addition, Dienes 
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and Berry (1997) have argued in favor of the presence of absolute and subjective 

thresholds to differentiate knowledge that is included in verbal reports from knowledge 

that is not included in verbal reports. This is consistent with the assumption of multiple 

thresholds on ICLs in EII. Also, when a response is output by a problem solver, the ICL 

may be used to estimate the confidence level that one reports (Costermans et al., 1992; 

Miner & Reder, 1994). Third, Costermans et al. (1992) have shown that confidence levels 

are negatively related to response times, and their results suggest that this relation might 

be linear. Hence, EII assumes that response times are a negative (and possibly linear) 

function of the ICL when a response is output (see also Anderson, 1991). In addition to 

being consistent with empirical data, the linear relation is the simplest possible relation 

between the ICLs and the response times. 

Accounting for creative problem solving using EII 

The preceding assumptions allow for a conceptual model that captures the four 

stages of Wallas’ (1926) analysis of creative problem solving (see Figure 1). First, Wallas 

described the preparation stage as involving “the whole traditional art of logic”. Hence, 

the preparation stage is mainly captured by explicit processing in the EII theory. This is 

justified because explicit knowledge is usually rule-based in some sense (Principle #1 of 

EII), which includes logic-based reasoning as a special case. Also, the preparation stage 

has to be explicit in EII because people are responding to (explicit) verbal instructions, 

forming representations of the problem, and setting goals (although implicit processes 

may also be involved to some lesser extent).4  

Insert Figure 1 about here 



Incubation, insight, and creative problem solving 26

In contrast, incubation relies more heavily on implicit processes in EII. According 

to Wallas, incubation is the stage during which “we do not voluntarily or consciously 

think on a particular problem”. This is consistent with our hypothesis regarding the 

difference of conscious accessibility between explicit and implicit knowledge (Principle 

#1 of EII). Moreover, incubation can persist implicitly for an extended period of time in 

Wallas’ theory (see also Hadamard, 1954). This characteristic of incubation corresponds 

well with the above-mentioned hypothesis concerning the relative lack of attentional 

resource requirement in implicit processing. However, sometimes, explicit processing can 

occur in relation to the problem to be solved during incubation (see the conscious work 

theory of incubation, as reviewed in Smith & Doods, 1999), and the EII theory is also 

consistent with this possibility (Principle #2 of EII). 

The third stage, insight, is “the appearance of the ‘happy idea’ together with the 

psychological events which immediately preceded and accompanied that appearance” 

(Wallas, 1926). In EII, insight is obtained by the crossing of a confidence threshold by 

the Internal Confidence Level (ICL), which makes the output available for verbal report 

(an auxiliary principle of EII). It is worth noting that the intensity of insight is often 

continuous (Bowden et al, 2005; Bowers et al., 1990; Hadamard, 1954; see also the 

associationistic theory of insight as reviewed in, e.g., Pols, 2002). Correspondingly, in the 

EII theory, the ICL is continuous. In particular, when the ICL of an output barely crosses 

the confidence threshold, the output is produced but does not lead to an intense “Aha!” 

experience. In contrast, when the ICL of an output suddenly becomes very high and 

crosses the confidence threshold, a very intense experience can result (which, for 

example, can lead to running naked in the street as Archimedes did). According to the EII 
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theory, intense insight experiences most likely follow the integration of implicit and 

explicit knowledge, as it can lead to a sudden large increase of the internal confidence 

level (Principle #4 of EII). 

Finally, the verification phase “closely resembles the first stage of preparation” 

(Wallas, 1926): it should thus involve mainly explicit processing according to the EII 

theory. In addition, environmental feedback can be used in place of rule-based 

verification (when available). Regardless of how verification is accomplished, if it 

suggests that the insight solution might be incorrect, the whole process may be repeated 

by going back to the preparation stage (Finke et al., 1992; Hadamard, 1954; Wallas, 

1926). In that case, EII predicts that the preparation stage can produce new information, 

because the knowledge state has been modified by the previous iteration of processing 

(e.g., some hypotheses may have been discarded as ‘inadequate’ or abductive reasoning 

might bring a new interpretation of the data).  

A few example predictions (phenomena accounted for) by the EII theory are 

summarized in Table 2. Most of these predictions are explained in detail in the 

Simulations section of this paper (while others may be found in, e.g., Helie et al., 2008). 

Insert Table 2 about here 

Reinterpretation of existing theories of incubation using EII 

Unconscious work. Pure incubation is often essentially implicit (or 

“unconscious”; see Figure 1). In EII, information is simultaneously spread in explicit and 

implicit memories, with the latter being mostly responsible for incubation. As a result, the 

proposed theory provides a natural embodiment of the unconscious work theory of 

incubation (Dorfman et al., 1996; Smith & Dodds, 1999).  
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Conscious work. The assumed implicitness of incubation does not prevent EII 

from providing an interpretation of the conscious work theory of incubation (Smith & 

Dodds, 1999). As stated by Principle #2, most tasks are processed both explicitly and 

implicitly. Hence, incubation is in some sense partly a result of explicit processing.  In 

addition, the result of the explicit processing can be below threshold (an auxiliary 

principle of EII), which would result in the problem solver being somewhat blind to this 

form of explicit processing (Karmiloff-Smith, 1992; Smith & Dodds, 1999). 

Recovery from fatigue. EII assumes that explicit processes require more 

extensive attentional resources, whereas implicit processes are often effortless (Principle 

#1 of EII). Hence, according to EII, the preparation stage, which extensively involves 

explicit processing, can cause mental fatigue. In contrast, implicit processes do not wear 

out the problem solver as easily; incubation may proceed even when one is relaxing. 

Following a respite period (while incubating), the problem solver can again explicitly 

search for a solution to the problem. However, the state of its knowledge has been altered 

by the implicit processing that took place during incubation (Principle #5 of EII). The 

integration of implicit and explicit processing from this point on may lead to insight. This 

process re-interprets the recovery from fatigue hypothesis (Smith & Dodds, 1999).  

Forgetting of inappropriate mental sets. According to the forgetting of 

inappropriate mental sets hypothesis, false assumptions are made during the preparation 

period; these assumptions must be forgotten in order to solve the problem. In the EII 

theory, the assumptions made during the preparation stage are used to contextualize 

subsequent processing (e.g., in the incubation phase). This contextualization can be 

altered by involvement in other problems, which can provide interference that speeds up 
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the forgetting of past assumptions (Ashcraft, 1989). Thus, EII can account for the 

forgetting of inappropriate mental sets theory by re-contextualizing its knowledge using 

explicit and/or implicit processing (depending on the interference task demands; see 

Helie et al., 2008). 

Remote association. In EII, problem solving is performed simultaneously by 

explicit and implicit processes (Principle #2 of EII), and implicit associations are 

continuously being retrieved during the incubation phase (mostly without awareness, 

according to Principle #1 of EII). Hence, if the problem solver is doing an ‘intelligent’ 

search (i.e., s/he does not blindly retrieve the same association over and over again), a 

longer incubation period will cover more fully the space of associations and make the 

retrieval of remote associations more likely. This provides a natural correspondence to 

the remote association theory of incubation (Smith & Dodds, 1999). 

Opportunistic assimilation. When an iteration of processing does not generate a 

solution for the problem, the provisional result is used to initiate another iteration of 

processing (Principle #5 of EII; Evans, 2006). New environmental information can be 

considered (if available) and contribute to the next iteration of processing.  The 

provisional result can be interpreted as a memory trace encoding the unsolved problem 

(from the previous iteration of processing) and can affect the processing of newly 

available environmental information. Together, they may lead to the solution of the 

problem. This form of priming provides an explanation for the opportunistic assimilation 

theory of incubation (Smith & Dodds, 1999). 
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Reinterpretation of existing theories of insight using EII 

Constraint theory. In some sense, EII views explicit and implicit processing as 

hard and soft constraint satisfaction algorithms (Principle #1 of EII). Explicit processing 

is responsible mainly for the satisfaction of hard constraints (following hard rules), 

whereas implicit processing is responsible mainly for the satisfaction of soft constraints 

(Smolensky, 1988; Sun, 1994). When a large number of constraints are simultaneously 

satisfied, a higher ICL is produced (because it represents a better interpretation of the 

problem; Bowers et al., 1990). As argued earlier, insight is produced by the sudden 

crossing of a confidence threshold by the ICL (an auxiliary principle of EII) and, 

furthermore, this is more likely to happen after (and as a result of) implicit-explicit 

knowledge integration (Principle #4 of EII). The afore-described process captures the 

constraint theory of insight (e.g., Mayer, 1995; Schooler & Melcher, 1995). 

Fixation theory. According to EII, when the associations that were initially 

retrieved did not lead to congruency of explicit and implicit processing, an impasse is 

likely to be reached (because the ICL is likely to be below the threshold). As postulated 

by the fixation theory (Smith, 1995), this impasse must be broken by knowledge 

restructuration (Ohlsson, 1992; Schilling, 2005). In EII, knowledge restructuration 

amounts to re-contextualization of subsequent processing. Restructuration can be 

achieved by either or both explicit and implicit processing (in an iterative way). When the 

conclusions from the previous iteration of processing are used to initiate a subsequent 

round of processing, the knowledge used in the subsequent iteration of processing is in 

some sense re-contextualized and restructured, which may remove unwarranted 

constraints. 
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Associationistic theory. In EII, implicit and explicit memories are searched in 

parallel, which can lead to the retrieval of many (including unlikely) associations. This 

process is akin to what was described by the associationistic theory (Pols, 2002; see also 

the spreading activation theory of insight: Yaniv & Meyer, 1987).  

Evolutionary theory. The evolutionary theory of insight involves the formation 

of previously non-existent associations (Campbell, 1960; Simonton, 1995). In EII, this 

can be accomplished by randomly probing implicit knowledge structures (without 

considering the existing associations, e.g., by randomly selecting representations and 

assuming that they are related). This procedure is in line with the principles underlying 

the EII theory and captures the blind variation process essential to “evolution” (Darwin’s 

first principle). Once formed, these assumed implicit associations are evaluated and one 

of them is selected by the explicit processes (according to their ICL; an auxiliary 

principle of EII and Darwin’s second principle). The selected association is either output 

to effector modules (e.g., such as motor module; if a threshold is crossed) or used as the 

input for the subsequent iteration of processing (if the threshold is not crossed; an 

auxiliary principle of EII). This use of the selected association captures the retention 

process (which is Darwin’s last principle). 

Summary 

Having reinterpreted some existing theories of incubation (six theories in total) 

and some existing theories of insight (four theories in total), we now proceed to a 

computational model that captures existing human data. Developing a computational 

model ensures the consistency of the theory, allows the possibility of testing alternate 
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versions of the theory (e.g., by varying the parameters), and makes the proposed 

representations and processes clear and unambiguous.  

A connectionist model implementing the EII theory 

The computational modeling implementing the EII theory is based on the 

CLARION cognitive architecture (Sun, 2002; Sun et al., 2001, 2005; Sun & Peterson, 

1998; Sun & Zhang, 2004, 2006). In previous work, the Non-Action-Centered Subsystem 

of CLARION has already been used extensively for capturing data of human reasoning 

(e.g., Sun, 1994; Sun & Zhang, 2004, 2006). Because it is assumed in EII that the 

preparation and verification stages of creative problem solving are mainly captured by 

explicit rule-based reasoning of some form, the Non-Action-Centered Subsystem in 

CLARION can readily provide the model and thus explanations for these two stages 

(based on the previous work). Hence, the following modeling and simulations focus 

instead on Wallas’ (1926) two other stages of creative problem solving, namely, 

incubation and insight. 

Modeling incubation and insight using CLARION 

In this subsection, details of the computational model for capturing incubation and 

insight are presented, based on the Non-Action-Centered Subsystem of CLARION (Sun 

et al., 2005; Sun & Zhang, 2006). As noted earlier, the preparation and verification stages 

are not included in the present model. Therefore, explicit processing in the model is 

presented only to the extent sufficient for simulating the incubation and insight stages in 

these tasks. More complex rule-based reasoning has been covered in previous work on 

CLARION (e.g., logical reasoning, variable binding, hypothesis testing; see Sun, 1992, 
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1994; Sun & Zhang, 2006), and the interested reader is referred to these earlier papers. 

Also, because incubation and insight do not involve much procedural knowledge, the 

Action-Centered Subsystem of CLARION is not included in the model, but details 

concerning this subsystem can be found in, for example, Sun et al. (2001, 2005). 

This section presents an overview of the computational model along with some 

key equations. The reader may skip the technical details in this section on first reading 

without losing the thread of the discussion. A more complete mathematical specification 

is provided in the Appendix using matrix notation.  

The Top level 

A sketch of the model is shown in Figure 2. In the top level, explicit knowledge is 

represented with localist representations: that is, each node represents a different concept 

or hypothesis, and a link between two nodes stands for an explicit rule between the two 

represented entities. Overall, the top level may be viewed as a linear connectionist 

network (with two layers, i.e., two sets of nodes, in this particular case). The 

implementation of rule-based processing is rudimentary here, but sufficient for our 

purpose -- to capture many data sets pertaining to creative problem solving (as shown in 

the Simulations section later). Unlike in most other connectionist networks, neither layer 

in the top level of the model is the input or the output; both can be used to fill either role. 

In the following discussion, we assume that information initially enters the model from 

the left in Figure 2 and exits from the right (for similar equations describing the flow of 

information in the opposite direction, see the Appendix). 

Insert Figure 2 about here 
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Often, concepts are (redundantly) encoded in the bottom level (using distributed 

representations; Sun, 1994) and in the top level (using localist representations) of 

CLARION. If only the top-level representation is activated, a top-down signal may be 

sent to activate the corresponding representation in the bottom level (known as 

“implicitation”). Likewise, if the bottom level is activated, a bottom-up signal may be 

sent to activate the corresponding representation in the top level (known as 

“explicitation”). Hence, a stimulus is often processed both in the top and bottom levels in 

CLARION. The following equations describe the case where the top and bottom levels of 

CLARION are both activated to begin with. (Details of other cases are given in the 

Appendix.) 

It should be noted that redundancy of representation (having 'equivalent' forms of 

knowledge at the two levels) does not always implies co-existence or mutual activation 

across the two levels. Here, some alternative possibilities need to be pointed out. First, if 

the knowledge only exists at one level, there will be no mutual activation. Second, if 

equivalent knowledge does exist at the two levels, but the link between them has not been 

established (i.e., the representational equivalence has not been established), there will be 

no mutual activation. Third, even when the representations across the two levels are 

linked, the links may not be used (e.g., due to distraction, lack of attention, low activation 

level, etc.). However, it is often the case that the 'equivalent' forms of knowledge co-exist 

at the two levels, and that they will be able to access or activate each other (as generally 

hypothesized in CLARION; Sun et al., 2001, 2005; see also Sun 1994 for detailed 

justifications). When mutual activation happens, complex insights are more likely to 
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happen (as detailed later; see also Principle #4). These are the cases emphasized in this 

work. 

When the left layer of the top level is activated, the activations are propagated in 

the top level using the following weighted sum: 

 y  i =
1

k1i

vij x j
j=1

n

∑  (1) 

where y = {y1, y2, …, ym} represents the activations of nodes in the right layer in the top 

level, x = {x1, x2, …, xn} represents the activations of nodes in the left layer in the top 

level, V = [vij] represents the (simplified) explicit rules (connecting xj and yi), and k1i is 

the number of nodes in the left layer that are connected to yi (k1i ≤ n). Top-level node 

activations are binary (i.e., x j ∈ {0,1} and yi ∈ {0,1}). Each node (xj or yi) represents an 

individual concept (using localist representations).5 This transmission (node activation) 

rule ensures that the activation of yi is equal to the proportion of its associates in the left 

layer (xjs) that are activated.6 

The Bottom level 

In the bottom level of CLARION, implicit knowledge is represented by 

distributed activation patterns over a set of nodes and processed using a non-linear 

attractor neural network (known as NDRAM; Chartier & Proulx, 2005). Computationally 

speaking, this network uses a non-linear transmission function that allows the model to 

settle/converge into real-valued attractors (Helie, 2008). The bottom-level representations 

are patterns (vectors) of “bipolar” node activations (i.e., zi = ±1), and they are linked to 

the corresponding top-level representations by a set of linear equations (as detailed in the 

Appendix: Eq. A16 and Eq. A17).  
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The transmission in the bottom-level network is described by: 

 
 
zi t +1[ ] = f ( wijz j t[ ]

j=1

r

∑ ) (2) 

where z[t] = {z1[t], z2[t], …, zr[t]} is the state of the attractor neural network at time t (i.e., 

the activations of all the nodes in the network at time t), W = [wij] is a weight matrix that 

encodes the implicit associations among the nodes, and f(●) is a non-linear function (as 

defined in the Appendix). Computationally speaking, this transmission rule is a regular 

synchronous update rule for attractor neural networks, and it ensures the 

convergence/settling of the model to a stable state (Helie, 2008). 

Transmission in the bottom level is iterative and remains in the bottom level until 

convergence/settling or a time limit is reached. Once one of these two criteria is met, the 

information is sent bottom-up (“explicitation”) for the integration of the two types of 

knowledge. Note that, following Sun and Zhang (2004), it has been estimated that each 

application of Eq. 2 (called a ‘spin’) takes roughly 350 ms of psychological time. 

Bottom-up “explicitation” 

After the implicit processing is completed, the information is sent bottom-up in 

the following way: 

 y bottom−up[ ] i = k2i( )−1.1 f jiz j
j=1

r

∑  (3) 

where y[bottom-up] = {y[bottom-up]1, y[bottom-up]2, …, y[bottom-up]m} represents the bottom-up 

activations of the nodes in the right layer of the top level (in Figure 2), zj represents the 

activation of the jth node in the bottom level, k2i is the number of nodes in the bottom 

level (in z) that are connected to y[bottom-up]i (k2i ≤ r)7, and F = [fij] is a weight matrix 
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connecting the distributed bottom-level representations to their corresponding top-level 

representations (in the right layer of the top level: y).8 In words, Eq. 3 ‘translates’ the 

bottom-level activations into top-level activations (by reducing their dimensionality to 

m). 

Integration 

Once the bottom-up activation has reached the top level (y[bottom-up]), it is 

integrated with the activations already present in the nodes of the right layer (y) of the top 

level using the Max function: 

 y integrated[ ]i = Max yi,  λ × y bottom−up[ ]i[ ] (4) 

where y[integrated] = {y[integrated]1, y[integrated]2, …, y[integrated]m} is the integrated activations of 

the nodes in the right layer of the top level and λ is a scaling parameter that determines 

how implicit the task processing is.9  

  The integrated activation pattern (vector) is further transformed into a Boltzmann 

distribution, which serves as the final activations of the corresponding nodes in this layer: 

 P(y integrated[ ]i) =
ey integrated[ ]i α

ey integrated[ ] j α

j
∑  (5) 

where α is a noise parameter (i.e., the temperature). The transformation above generates 

normalized activation patterns. In CLARION, each top-level node represents a 

hypothesis, and their normalized activation (the Boltzmann distribution) is the probability 

distribution of the hypotheses represented by these nodes. From this distribution (this set 

of final node activations), a hypothesis (a node) is stochastically chosen. Low noise levels 

in the equation above tend to exaggerate the probability differences, which lead to a 
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narrow search of possible hypotheses and favor stereotypical responses. In contrast, high 

noise levels tend to reduce the probability differences, which lead to a more complete 

search of the hypothesis space (thus the value assigned to α is constrained to be equal or 

larger during the incubation phase, compared with the preparation and verification 

phases; see, e.g., Martindale, 1995). 

The statistical “mode” of the Boltzmann distribution (i.e., the probability of the 

most likely hypothesis, or equivalently, the activation of the most highly activated node) 

is used as the Internal Confidence Level (ICL) as stipulated in EII. 

Assessment 

 If the ICL (the statistical “mode” of the Boltzmann distribution) is higher than a 

predetermined threshold (i.e., ψ), the chosen hypothesis (represented by the chosen node) 

is output to effector modules (e.g., a motor module) and the response time of the model is 

computed: 

 RT = a − b × ICL  (6) 

where a and b are the maximum response time and the slope of the RT curve 

respectively. (Computationally, this equation was adopted because it was the simplest 

possible negative relation between the ICL and the response times, as found in 

Costermans et al., 1992; Miner & Reder, 1994; and as previously used in, e.g., Anderson, 

1991.) 

If no response was output by the model (i.e., if the ICL was less than the 

predetermined threshold ψ), a new iteration starts with the chosen hypothesis (the chosen 

node) as the top-level stimulus. The result of previous implicit processing is treated as 

residual activations that are added to the bottom-up activations during the next iteration.  
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Specifically, the information in the right layer of the top level is sent back to the 

left layer of the top level: 

 xi = v jiy selected[ ] j
j=1

m

∑  (7) 

where xi is the activation of the ith node in the left layer of the top level (see Figure 2), 

y[selected] = {y[selected]1, y[selected]2, …, y[selected]m} is the “bifurcated” Boltzmann distribution in 

the right layer of the top level after a hypothesis has been chosen [i.e., the chosen 

hypothesis (node) has activation one and the remaining hypotheses (nodes) have 

activation zero], and vji is the explicit rule connecting yj  to  xi. Next, the result of Eq. 7 is 

sent top-down to activate the bottom level (through “implicitation”; see the Appendix for 

mathematical details), and the processing starts anew (with a new iteration in the same 

way as described above). Intuitively, propagating the activation backward (from right to 

left in the top level) corresponds to abductive reasoning (i.e., if the chosen hypothesis in y 

is correct, what are the possible causes in x?). “Implicitation” amounts to incorporating 

such possible causes into intuition (implicit processing). Starting a new iteration of 

processing after “implicitation” in both the top and bottom levels allows for inferences 

taking into consideration such possible causes (along with other information in the form 

of residual activations in the bottom level). This cumulating of inference processing is not 

random (even in high noise conditions), because each new iteration of processing relies 

on the result from the previous iterations. The basic algorithm of CLARION is 

summarized in Table 3. 

Insert Table 3 about here 
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An example 

We examine a prototypical insight problem solving experiment using CLARION. 

In such an experiment, the participant provides an explanation for an ill-defined problem, 

such as follows (Schooler et al., 1993): 

 

“A giant inverted steel pyramid is perfectly balanced on its point. Any 

movement will cause it to topple over. Underneath the pyramid is a $100 

bill. How would you remove the bill without disturbing the pyramid?” 

 

To capture and computationally explain this experiment with CLARION, the 

concepts (e.g., steel, pyramid, $100 bill, etc.) included in the problem description are 

represented in the left layer of the top level (see Figure 2), while the possible 

explanations are represented in the right layer of the top level. Because this is an open-

ended problem, a large number of possible explanations (prior knowledge) are included 

in the model. Each concept and each explanation is represented by a different top-level 

node (in the left and the right layer respectively) and these nodes are linked to form rules 

(representing culturally shared prior knowledge). Together, these nodes and links 

represent the explicit knowledge in the model. 

In the bottom level of CLARION, each concept represented by a top-level node is 

also represented by a set of bottom-level nodes. Exemplars of the culturally shared 

explanatory rules coded in the top level are redundantly encoded in the bottom level (i.e., 

the attractor neural network is trained with these exemplars to create its corresponding 

attractors), which represent implicit knowledge in the model.  
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To simulate this task, the nodes representing the initial problem (in the left layer 

of the top level and the corresponding bottom-level representation) are first activated. 

This information is then transmitted to the right layer in the top level; in the meantime, 

the bottom-level activations are allowed to settle (converge). The stable state reached by 

the bottom level is sent bottom-up (“explicitation”) to be integrated with the top-level 

activations (in the right layer). The integrated activations are then transformed into a 

Boltzmann distribution (the final activations) and an explanation node is stochastically 

chosen on that basis. The statistical “mode” of the Boltzmann distribution is used to 

estimate the internal confidence level, which is compared to a threshold. If the internal 

confidence level is higher than the threshold, the chosen explanation is output to effector 

modules and the process is over. Otherwise, the chosen explanation is sent backward to 

activate the left layer in the top level to infer possible causes for the chosen explanation 

(abductive reasoning). The activation in the left layer of the top level is used as the new 

‘stimulus’ to initiate another iteration of processing (to allow new inferences based on the 

possible causes). This iterative process ends when an explanation is output or the model 

runs out of time (if a time limit is given in the experiment). 

Discussion  

The CLARION model captures well the basic principles of the Explicit-Implicit 

Interaction (EII) theory. First, the explicit knowledge in CLARION is represented in a 

localist fashion (i.e., one node = one concept), while implicit knowledge is represented 

using distributed representations. This is consistent with Principle #1 of EII (see Table 1), 

because this representational difference captures, to some extent, the difference of 

accessibility of explicit and implicit knowledge (see, e.g., Sun, 2002; Sun et al., 2001, 
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2005). Also, the top level of CLARION may carry out rule-based processing (of a 

rudimentary form in this particular work), because the links among the nodes (i.e., the 

connection matrix) may encode explicit rules of various forms (see, e.g., Sun 1994; Sun 

et al., 2001). In contrast, the bottom level of the CLARION model implements a soft-

constraint satisfaction algorithm, because implicit knowledge in the bottom level is 

processed by an attractor neural network (Hertz, Krogh, & Palmer, 1991; Hopfield & 

Tank, 1985). These characteristics are exactly what was prescribed by EII (Principle #1 

of EII). 

Second, in line with Principle #2 of EII, most tasks are processed simultaneously 

in the top and bottom levels in CLARION. Simultaneous processing in CLARION is 

facilitated by the inter-level connections linking top- and bottom-level representations, 

which ensure that the corresponding representations in both levels are usually activated 

simultaneously (see the Appendix for further technical details). Hence, notwithstanding 

the location of initial activation, top- and bottom-level representations are usually 

simultaneously activated and processed in CLARION. 

Third, each top-level node in CLARION corresponds to many bottom-level 

nodes; it is possible to encode (in different ways) the same associations in the bottom 

level and the top level. This characteristic of CLARION is in line with Principle #3 of 

EII. This redundant coding of information in CLARION is facilitated by the presence of 

top-down and bottom-up learning processes. For details of top-down learning and 

bottom-up learning in CLARION, which have been used to simulate a wide range of 

learning data, see Sun (2002) and Sun et al. (2001, 2005). 
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Fourth, because the top and bottom levels of CLARION process information 

differently, the results of top-level and bottom-level processing are integrated in 

CLARION. This integration process is in line with Principle #4 of EII, and has been 

useful in modeling a wide range of human data in past simulations (e.g., Sun, 2002; Sun 

et al., 2001, 2005). Moreover, the integration function may lead to synergy as amply 

demonstrated before (e.g., Sun & Peterson, 1998; Sun et al. 2005), which is in line with 

much human data in the implicit learning literature (e.g., Mathews et al., 1989; Stanley et 

al., 1989; Sun et al., 2001, 2005). 

Fifth, processing in CLARION is iterative and bidirectional. The equations 

described in the preceding subsection go from left to right to left and so on (see Figure 2), 

although information flow can be reversed (see the corresponding equations in the 

Appendix). This is consistent with Principle #5 of EII. Moreover, the reasoning cycle in 

CLARION constitutes a generate-and-test process: hypotheses are generated by the 

bottom level and made available by the “explicitation” process. Knowledge integration 

yields a Boltzmann distribution of hypotheses, and its “mode” is compared with 

predefined thresholds. This is the evaluation prescribed by EII. 

In addition, the auxiliary principles included in EII are all incorporated into the 

CLARION model (see Table 1). Specifically, the “mode” of the Boltzmann hypothesis 

distribution is used to measure the ICL (Internal Confidence Level), as defined in the 

auxiliary principles of EII. Thresholds on the ICL (as discussed before) are used to 

choose between outputting a response and restarting the process. Response times in the 

CLARION model are a negative linear function of the ICLs, consistent with the auxiliary 
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principles of EII and as suggested by empirical research (e.g., Costermans et al., 1992; 

Miner & Reder, 1994). 

Simulations 

Some experiments  (i.e., Durso et al., 1994; Schooler et al., 1993; Smith & Vela, 

1991; Yaniv & Meyer, 1987) that were mentioned at the beginning of this paper to justify 

the notions of incubation and insight were simulated using the CLARION model. These 

experiments draw on well-established psychological paradigms (e.g., free recall, lexical 

decision, and problem solving) and are thus highly reliable. Given the broad scope of the 

approach in this paper, the emphasis cannot be on extremely fine-grained modeling of the 

tasks involved. Hence, the simulations are coarser by necessity, which is inevitable given 

the nature of this approach. 

All the simulation parameters are in Tables 4 and 5. Table 4 contains the task-

related parameters, which were directly determined by the task input/output. Table 5 

contains the free parameters, which, although not optimized, were tuned by hand using 

reasonable values. (It should be noted that λ is constrained to be higher than 1 in the 

simulations below because the tasks were chosen to show the effect of incubation, which 

is mostly implicit.) Finally, because the verbal instructions (provided to participants 

before each experiment) and the preparation stage (as mentioned before) lead to 

contextualization of later processing of the incubation and insight stages (Wallas, 1926), 

only knowledge relevant to the simulated task was included in each simulation. 

Insert Table 4 about here 

In each subsection below, an experiment is first reviewed in detail along with the 

resulting human data. Following each set of empirical data, the simulation setup is 
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presented along with complete conceptual and mechanistic explanations of the task in the 

EII/CLARION framework. This is followed by the simulation results and a discussion of 

the implications of the simulation for creative problem solving in general and the EII 

theory in particular. A statistical threshold of α = .01 has been adopted throughout the 

paper. 

Insert Table 5 about here 

Incubation in a lexical decision task 

Yaniv and Meyer (1987) used a rare-word association task and a lexical decision 

task to test the unconscious work theory of incubation (Dorfman et al., 1996; Smith & 

Dodds, 1999). These tasks are detailed below. 

Experimental setting  

In Yaniv and Meyer’s (1987) Experiment 1, each trial was initiated by the 

presentation of a definition to the participant, who had fifteen seconds to find the 

associated word (the rare-word association task). If the participant was able to produce 

the associated word, the lexical decision task started. If the participant did not find the 

associated word, s/he was asked to estimate the feeling of knowing (FOK) prior to 

starting the lexical decision task.  

In the lexical decision task, the participant’s task was to identify strings of letters 

as ‘words’ or ‘non-words’. Each rare-word association trial was followed by a block of 

six lexical decision trials. The block was composed of three types of strings: unrelated 

words (distractors), non-words, and the response to the rare-word association trial (the 

target word). The prediction was that the participants who were unable to provide an 
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answer in the rare-word association task but had a high FOK would be primed for the 

target word in the lexical decision task (leading to faster response times), but not those 

who had a low FOK. Likewise, correct responses in the rare-word association task would 

prime the target but incorrect responses would not. If these were the cases, one might 

interpret these results as an indication that incubation is a form of unconscious processing 

and that incomplete (unconscious) processing might be sufficient to prime a target word 

(despite the failure to produce the target word). 

Experimental results 

Forty-four participants were tested in 52 rare-word association trials and 

associated 52 × 6 = 312 lexical decision trials. The results of interest were those obtained 

in the lexical decision task, factorized by the performance in the rare-word association 

task. As predicted, correct responses in the rare-word association task primed the target 

word in the lexical decision task t(2100) = 8.5, p < .001. In contrast, incorrect responses 

in the rare-word association trial did not affect the performance of the subsequent lexical 

decision task [i.e., no priming for the target word; t(2100) = 0.7, n.s.].10 In trials in which 

no response was given in the preceding rare-word association task, analyses of the 

response times showed a significant interaction between the FOK and the type of stimuli 

[targets vs. distractors; t(1648) = 2.28, p < .05]. Gamma correlation coefficients 

(provided by Yaniv and Meyer, 1987) suggested that targets were faster than distractors 

when the FOK was high; this relation was reversed when FOK was low (see Figure 3). 

Insert Figure 3 about here 
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Simulation setup 

In the top level of the CLARION model, the left layer was used to represent the 

words while the right layer represented the definitions (see Figure 2). Each word and 

each definition was represented by a different node (i.e., using localist representations), 

and each word was associated to its definition by a link within the top level. In the bottom 

level of the CLARION model, half of the nodes were used to represent the words while 

the remaining was used to represent the definitions (both with distributed 

representations). Each word/definition was represented by randomly generated activation 

patterns in the bottom level.11 The bottom-level network was pre-trained to encode the 

associations between the words and their corresponding definitions. The values given to 

the task-related parameters were as shown in Table 4.12 

To simulate a rare-word association trial, a stimulus activated the right 

(definition) layer in the top level and the corresponding representation in the bottom 

level. Explicit rules were applied in the top level (in this case, amounting to retrieving 

definition-word association), and the information in the bottom level was processed for 

42 spins13 (with roughly 350 ms per spin as hypothesized earlier; see also Libet, 1985), 

approximating the fact that human participants had 15 s. Following this processing, the 

outputs from both levels were integrated using the parameters shown in Table 5 and 

transformed into a Boltzmann distribution (which served as the activations of the nodes 

in the left layer of the top level). The statistical “mode” of the distribution (the maximum 

activation of the left-layer nodes in the top level) was used to estimate the Internal 

Confidence Level (ICL). Because there was no time for further iteration, a response was 

output if the ICL was higher than the first threshold in Table 5. Otherwise, no answer was 
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provided and the FOK was estimated using the ICL (as in the human experiment). If the 

ICL was higher than the second threshold in Table 5 the FOK was estimated as ‘high’ 

and if the ICL was lower than the last threshold in Table 5, the FOK was estimated as 

‘low’. The remaining range was rated as ‘medium’.  

For simulating the lexical decision task, three types of stimuli had to be 

represented. The target was the same word used in the corresponding rare-word 

association trial, and the distractors were the words used in other trials of the rare-word 

association task. Non-words used randomly generated representations (real values within 

[0, 1]). Note that words (either distractors or targets) were represented explicitly in the 

top level (in the left layer) whereas non-words were not.  

Following each rare-word association trial, six lexical decision trials were 

conducted. Because the stimuli were presented rapidly, a normally distributed noise 

pattern (a noise vector) was added to each stimulus (µ = 0, σ = 0.05). The information 

was transmitted within the CLARION model as follow. First, a stimulus activated a node 

in the left layer of the top level of the CLARION model and the corresponding implicit 

(bottom-level) representation. Activations were transmitted simultaneously in the top 

level and the bottom level. The bottom level underwent six spins, as human participants 

had a maximum of two seconds (6 × 350 = 2,100 ms). Residual activations from the end 

of the rare-word association trial were present in the bottom level, which added to the 

result of current bottom-level processing (for technical details, see the Appendix). The 

output from the bottom level was integrated with the activations in the right layer of the 

top level using the Max function and transformed into a Boltzmann distribution (which 

served as activations for the nodes in the right layer of the top level). A response was 
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stochastically selected and the ICL was computed (as explained before) and used to 

estimate the response time of the model (with a = 1530 and b = 1380). Note that no 

threshold was used on the ICL because a response had to be output. 

Rationale and explanations 

Conceptual explanation based on EII. According to the Explicit-Implicit 

Interaction (EII) theory, a rare-word association trial produces a simultaneous search at 

the explicit and the implicit levels (Principle #2 of EII). Because the target association is 

rare, explicit memory search is not likely to yield a satisfactory solution within the 

allotted time (i.e., the existing set of hard constraints does not necessarily lead to 

solutions). In contrast, according to EII, implicit memory search is more likely to retrieve 

the desired association if given enough time, because soft constraint satisfaction can 

allow partial match that can be iteratively improved. However, implicit memory search is 

often cut short by the experimenter who then asks the participant to take part in lexical 

decision trials (for the ‘no response’ participants). At the beginning of the lexical decision 

trials, implicit knowledge is still in the same state as it was at the end of the 

corresponding rare-word association trial. Hence, if the association was retrieved or 

nearly retrieved during the rare-word association trial (i.e., with high FOK), the memory 

search is not wasted and the target word is primed for the lexical decision trials. In 

contrast, the correct recognition of unrelated words (distractors) is not affected by the 

previous state of implicit knowledge in the lexical decision trials, because the cognitive 

work during the corresponding rare-word association trial was irrelevant. This conceptual 

explanation by EII is in line with Yaniv and Meyer’s (1987) results. 
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Mechanistic explanation based on CLARION. In the CLARION-based 

computational simulation, the feeling of knowing from the rare-word association trial 

should have a strong effect on the response time to the target during the subsequent 

lexical decision trials, because the feeling of knowing is represented by the ICL (which 

estimates the efficiency of processing toward the target word during the rare-word 

association trial). Hence, in a sense, the residual activations determine the amount of 

priming in the lexical decision trials. If the priming is relevant to a lexical decision trial 

(i.e., if the stimulus in the lexical decision trial is the target), the residual activations 

reduce the response time, because the new bottom-level processing is consistent with the 

result of previous bottom-level processing, and additively combining the activations 

magnifies the effect. In contrast, when the stimulus in the lexical decision trial is not the 

target (i.e., it is a distractor or a non-word), the priming is irrelevant and the residual 

activations can increase the response time, because previous processing (toward the 

target) can result in more noise in the Boltzmann response distribution. This mechanistic 

explanation leads directly to Yaniv and Meyer’s  (1987) results. 

Simulation results 

Three thousand simulations were run (each corresponding to a human participant 

in the experiment), each containing 52 rare-word association trials (each stimulus was 

seen once during the rare-word association trials), each followed by six lexical decision 

trials, exactly as in the human experiment. Figure 4a shows the response times in the 

lexical decision trials split by performance in the rare-word association trials (correct vs. 

incorrect) and stimulus type. As can be seen, targets were recognized faster than 

distractors in the lexical decision task when the correct response was provided in the rare-
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word association task (as predicted). Targets and distractors also slightly differed when 

an incorrect response was given in the rare-word association task, but the RT difference 

was much smaller in this case.  

Insert Figure 4 about here 

The same statistical analyses as in Yaniv & Meyer (1987) were performed on the 

simulated participants. Target recognition was significantly faster than distractor 

recognition when a correct response was given in the rare-word association task t(2976) = 

6.87, p < .0001, as in Yaniv and Meyer’s (1987) results. As in Yaniv and Meyer’s results, 

this difference between targets and distractors was not statistically significant when an 

incorrect response was given in the rare-word association task t(2221) = 1.91, n.s.. This 

suggests that the small difference between target and distractors when an incorrect 

response was produced in the rare-word association task may be attributed to random 

variation (especially considering the high statistical power from several thousand 

simulated participants). These simulation results above are all in line with the results 

from Yaniv and Meyer’s (1987) Experiment 1.14  

Of more interest are the trials in which no response was given in the rare-word 

association task. Figure 4b shows the response times in the lexical decision trials split by 

FOK and stimulus type. As can be seen, the FOK (from the corresponding rare-word 

association trial) had a strong effect on the difference between response times to targets 

and distractors. As predicted, targets were faster than distractors when the FOK was high, 

but this relation was reversed for low FOK. The interaction in a (Stimulus Type × FOK) 

ANOVA reached statistical significance F(2, 5998) = 42.87, p < .0001. Further 

decomposition of the analysis showed that targets were faster than distractors when the 
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participants rated their FOK as high F(1, 2999) = 12.51, p < .0001. The opposite effect 

was found for low FOK: distractors were faster than target words F(1, 2999) = 67.85, p > 

.0001. These statistically significant differences were not present for medium FOK, F(1, 

2999) = 5.05, n.s.. All these results are in line with Yaniv and Meyer’s (1987; see Figure 

3). 

Discussion 

The simulation results obtained with the CLARION model matched well the 

human data of Yaniv and Meyer (1987). The reproduction of these qualitative and 

quantitative results support the psychological plausibility of the proposed model and the 

adequacy of the Explicit-Implicit Interaction theory. Several effects were simultaneously 

reproduced without varying the free parameters across tasks. The model was not designed 

specifically to simulate this task, but well supported by fundamental theoretical 

considerations (Sun, 2002). Overall, CLARION captured and mechanistically explained 

the human data demonstrating the effect of incubation in a lexical decision task. 

Incubation in a free recall task 

Smith and Vela (1991) studied the effect of incubation on the number of new 

words recalled during the second free recall phase in a two-phased free recall experiment. 

This measure is referred to as ‘reminiscence’. 

Experimental setting 

The participants had five minutes to memorize 50 line drawings. Following this 

study phase, the participants took part in the first free recall test, which lasted 1, 2, or 4 

minutes. Once the first free recall test was completed, the participants had a 0-, 1-, 5-, or 
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10-minute break (which constituted the incubation phase). After the incubation phase, all 

the participants took part in a second free recall test. The length of the second free recall 

test was the same as the first (and based on the same set of line drawings seen earlier, 

without re-studying them). Two hundred twenty-one participants were tested in this 3 × 4 

design and the dependant variable was reminiscence. 

Experimental results 

A Test Duration × Incubation Interval ANOVA was performed on reminiscence 

(see Figure 5a). There was no effect of Test Duration, F(2, 209) = .27, n.s., but 

Incubation Interval had a significant effect on reminiscence, F(3, 209) = 9.4, p < .01. The 

mean reminiscence scores for each Incubation Interval were 2.90, 3.15, 3.72, and 5.00. 

Post hoc tests (α = .05) showed that the first two Incubation Intervals (0 and 1 minute) 

yielded similar reminiscence scores, and that these scores were smaller than those 

obtained for longer incubation intervals (5 and 10 minutes respectively, which did not 

differed statistically). Subsequent experiments showed that the effect of the Incubation 

Interval on reminiscence was significant only during the first minute of the second free 

recall test (Smith & Vela, 1991). 

Insert Figure 5 about here 

Simulation setup 

To simulate this task, only the right layer was used in the top level of CLARION 

(see Figure 2) and each node represented a different line drawing (word).15 In the bottom 

level of CLARION, all the concepts (each represented by a top-level node) were encoded 
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with a common pool of nodes using distributed representations, and a different bottom-

level distributed representation was randomly generated for each line drawing (word). 

To simulate the first recall test, a random pattern activated the bottom level, and 

the activations were propagated within the bottom level until convergence of the attractor 

neural network. The resulting stable activation state activated the top-level right-layer 

nodes through bottom-up “explicitation”, and the top-level activations were transformed 

into a Boltzmann distribution (using the first noise level value from Table 5). The 

“mode” of the distribution (the maximum activation of the right layer of the top level) 

was used to estimate the ICL, which was compared with the threshold. If the ICL was 

sufficiently high, a word (node) was stochastically chosen for recall. Otherwise, no 

response was output, and a new random pattern was used to activate the bottom level to 

start the process again. As in all other simulations, each spin in the bottom level took 350 

ms of psychological time. Hence, the durations of recall were 171, 343, and 686 spins 

(for 1, 2, and 4 minutes respectively).  

Simulation of the incubation period was basically the same as that of the first 

recall test except for the following: (a) the noise level in the Boltzmann response 

distribution was increased to the second value in Table 5. (b) If an item was recalled, it 

was stored in a buffer memory (Anderson & Milson, 1989). The incubation intervals 

were 0, 171, 857, and 1,714 spins (for 0, 1, 5, and 10 minutes respectively).  

The second free recall test was identical to the first, except that items in the buffer 

memory were output at the beginning of this period. This represented the fact that in the 

human experiment of Smith & Vela (1991), most words were recalled during the first 
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minute of the second test (as mentioned earlier). The CLARION parameter values were 

as shown in Tables 4 and 5. 

Rationale and explanations 

Conceptual explanation based on EII. According to the Explicit-Implicit 

Interaction (EII) theory, parallel memory searches are conducted in explicit and implicit 

memories during the free recall tests (Principle #2 of EII). However, the incubation 

period is different: Principle #1 of the EII theory stipulates that explicit memory search 

requires more attentional resources whereas implicit memory search is mostly automatic. 

Thus, mostly implicit processes are deployed during the incubation phase, and words are 

being retrieved from implicit memory during that period (but not much from the explicit 

memory). These additional words are output at the beginning of the second test, 

increasing the number of words recalled in this second test (but not the first test). 

According to the EII theory, reminiscence increases as the number of words recalled in 

the second test becomes larger compared with the number of words recalled in the first 

test (on the average, i.e., by statistical facilitation). This conceptual explanation is in line 

with Smith and Vela’s (1991) results. 

Mechanistic explanation based on CLARION. In CLARION, words are being 

generated (recalled) from the bottom level during the recall tests. Because the eventual 

effect of incubation is to increase the number of words recalled during the second recall 

test (but not the first; see the previous conceptual explanation), the likelihood of recalling 

new items in the second test should be increased due to incubation. In contrast, test length 

should affect the total numbers of recalled items during both the first and second tests 

(i.e., the effects of test length should be roughly the same for the two recall tests). This is 
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different from the effect of incubation, because it does not change much the likelihood of 

recalling new (additional) words during the second recall test (because the key to 

increasing the likelihood of recalling new words is the difference between the numbers of 

words recalled during the two recall tests). As a result, only incubation should increase 

reminiscence in the CLARION simulation, which is consistent with Smith and Vela’s 

(1991) human data. 

Simulation results 

Twelve thousand simulations were run (1000 in each of the 12 conditions). The 

results are shown in Figure 5b. As predicted, the mean reminiscence scores were 

positively affected by the incubation length. The mean reminiscence scores were 1.73, 

2.03, 3.04, and 3.81 for the 0-, 1-, 5-, and 10-minute incubation intervals respectively, 

which is similar to the human data. However, the duration of the recall tests did not show 

such a clear pattern. In particular, test duration seemed to have a positive effect on 

reminiscence when there was no incubation interval, no effect for moderate incubation 

intervals (1 and 5 minutes), and a negative effect for a long incubation interval (10 

minutes). However, unlike the effect of incubation interval, all these effects of test 

duration are small: the biggest group difference within each incubation level is smaller 

than 1 word (0.739). A Test Duration × Incubation Interval ANOVA was performed on 

the reminiscence scores to confirm these observations. First, the incubation length had a 

significant effect on reminiscence F(3, 11998) = 1661.34, p < .0001, as in the human 

data. Post hoc Tukey analyses showed that all incubation levels were statistically 

different (p < .0001). Second, the main effect of Test Duration did not reach statistical 

significance F(2, 11988) = 0.78, n.s., as in the human data.16  
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Discussion 

CLARION was able to reproduce the effect of incubation on reminiscence found 

by Smith and Vela (1991). The main difference between the simulation and the human 

experiment was that the simulation made the simplifying assumptions that (a) words are 

recalled independently during each recall test and, (b) the two recall tests are 

independent. This does not seem to be the case with human participants as many effects 

of words and test dependencies (e.g., priming) have been observed (e.g., Cohen, 1963). 

These differences could probably be resolved by modeling the dependencies between the 

words (e.g., by using top-level rules or the correlation between the bottom-level 

representations) and by adding a recency-based base-level activation (Anderson & 

Milson, 1989). However, the focus of this simulation was not to capture the minute 

details of free recall.17 Overall, CLARION was successful in capturing the data 

concerning the effect of incubation on reminiscence in a free recall experiment. 

Insight in problem solving 

Experimental setting 

Many theories of insight assume that insight is the consequence of knowledge 

restructuration (e.g., Mayer, 1995; Ohlsson, 1992; Pols, 2002; Schilling, 2005; Schooler 

& Melcher, 1995; Smith, 1995). Because declarative knowledge has often been modeled 

using graphs (Schilling, 2005), Durso et al. (1994) hypothesized that insight could be 

observed by constructing and comparing participants’ knowledge graphs before and after 

insight had occurred. To test this hypothesis, the participants were asked to explain the 

following story: 
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“A man walks into a bar and asks for a glass of water. The bartender 

points a shotgun at the man. The man says ‘thank you’, and walks out.” 

 

The participants’ task was to explain why the sight of the shotgun replaced the 

man’s need for a glass of water (i.e., because he had the hiccup). To explain this story, 

the participants had two hours to ask the experimenter yes/no questions. After this 

questioning period, the participants were split into two groups (solvers and non-solvers), 

and asked to rate the relatedness of pairs of concepts using a Likert scale (Likert, 1932). 

These ratings were used to construct the solvers’ and non-solvers’ knowledge graphs (via 

the Pathfinder scaling algorithm; Schvaneveldt, Durso, & Dearholt, 1989). 

Experimental results 

Twelve participants tried to explain the story, and only half of the participants 

successfully accomplished the task. The resulting aggregated knowledge graphs were as 

shown in Figure 6. As can be seen, the solvers’ knowledge graph (top) differed from the 

non-solvers’ (bottom) by twelve edges. These differences reflected a shift of the focal 

points of the graph (i.e., the center and median of the graph) from ‘Bartender’ to 

‘Relieved’. Furthermore, the correlation between the two graphs was essentially zero 

(Durso et al., 1994). (Note that no further statistical analysis was provided by Durso et al. 

1994.) 

Insert Figure 6 about here 
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Simulation setup 

To simulate this task, each concept was represented by a separate node in each 

layer in the top level of CLARION. The non-solvers’ graph (Figure 6b) was assumed to 

represent common prior knowledge (i.e., common prior semantic associations) and was 

thus pre-coded as rules in the top level (linking corresponding nodes across the two layers 

of the top level) before the simulation started. In the bottom level, each concept was 

represented using ten nodes (with distributed representations, which were randomly 

generated). The explicit rules (in the top level) were also coded as implicit associations in 

the bottom level (i.e., the idea of redundant encoding) through pre-training the bottom-

level network using example stimuli consistent with the top-level rules. The values given 

to the parameters were as shown in Tables 4 and 5. 

As in the simulation of the free recall task (Smith & Vela, 1991; see the 

subsection Incubation in a free recall task), hypothesis generation was initiated by a 

random activation pattern in the bottom level of CLARION. This pattern was further 

processed by the neural network (by repeatedly applying the nonlinear transmission 

function) until convergence (settling) of the bottom-level neural network. The resulting 

stable state was sent bottom-up to activate the right layer of the top level (through 

“explicitation”), and integrated with the result of explicit processing (although the scaling 

parameter was set to ignore the effect of rule-based processing due to the absence of rules 

relevant to finding the solution to this problem). The integrated result was transformed 

into a Boltzmann distribution, which served as activations for the right-layer nodes in the 

top level. The “mode” of the distribution (the maximum activation in the layer) was used 
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to estimate the ICL to determine if a question was to be asked of the simulated 

experimenter.  

If the ICL was higher than a chosen threshold, a question was to be asked of the 

simulated experimenter. Questions concerned a direct link between a node in the right 

layer and a node in the left layer (both in the top level). A node in the right layer was first 

stochastically chosen based on the Boltzmann distribution in place; then abductive 

reasoning was performed to activate the left layer in the top level; the activations in the 

left layer were also transformed into a Boltzmann distribution (which served as 

activations of the left-layer nodes), and a node from the left layer was stochastically 

chosen. A question was then asked concerning the existence of a link between the chosen 

node in the right layer and the chosen node in the left layer (both in the top level). If the 

answer was “yes” (i.e., when the link was present in the solvers’ graph as shown in 

Figure 6a), a new rule (link) was added to the top level (i.e., to the explicit knowledge of 

the simulated participant); otherwise, the corresponding rule (if existed in the top level) 

was removed from the top level. If the ICL was too low to come up with a question to the 

experimenter, the same procedure was used, except that the top-level weight matrix 

(explicit knowledge) was not modified. 

In all cases, the activations present in the left layer of the top level were sent top-

down (i.e., “implicitation”) for another iteration of processing (see the Appendix for 

mathematical details). This iterative process ended if a solution was found (i.e., the top-

level explicit knowledge of the simulated participant was identical to the solvers’ graph; 

Figure 6a), or 20,571 iterations had occurred in the bottom level (20,571 × 350 ms = 

7,199,850 ms ≈ 2 h, as in the human experiment). 
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Most associationistic theories of insight argue that a more diffused search in 

memory is more likely to yield a creative solution (e.g., Campbell, 1962; Martindale, 

1995; Mednick, 1960). In CLARION, this phenomenon may be captured using the noise  

(temperature) parameter in the Boltzmann distribution (see the Modeling incubation and 

insight using CLARION subsection). The present simulation served to test the adequacy 

of this hypothesis. The noise (temperature) level, used for selecting a node based on the 

Boltzmann distribution, was varied between 10-2 and 105 (with an increment of 1 for the 

exponent). One thousand simulations were run with each of these noise levels. 

Rationale and explanations 

Conceptual explanation based on EII. After the participant is read the story, 

s/he engages in explicit memory retrieval and implicit memory search (incubation). 

However, explicit processing is mostly rule-based (Principle #1 of EII), which only 

brings up stereotypical semantic associations from the words included in the story. In 

contrast, the gradient of associations is flatter in implicit memory (Martindale, 1995; 

Mednick, 1962): the search is more diffused, and thus more remote (“creative”) 

associations can be retrieved using soft constraint satisfaction (Hadamard, 1954). Hence, 

according to the EII theory, implicit processing allows the retrieval of approximate 

hypothetical associations that differ from those retrieved explicitly. These implicit 

associations are then integrated with the result of explicit processing (Principle #4 of EII). 

If the chosen integrated association is deemed plausible (i.e., if the ICL is high enough), a 

question concerning the validity of this association is put to the experimenter. If the 

experimenter confirms the association, it is added into explicit knowledge; otherwise, it is 

removed. This process is iterated and explicit and implicit processing are reinitiated with 



Incubation, insight, and creative problem solving 62

the new state of the knowledge. This iterative process ends when the participant finds the 

correct solution or the allowed time elapses. 

Mechanistic explanation based on CLARION. During the questioning period, a 

random activation pattern is used to initiate processing and randomly sample the implicit 

associations (i.e., the pre-existing implicit knowledge; Figure 6b). However, each time an 

implicit association is sent bottom-up (through “explicitation”), noise is added in 

constructing the Boltzmann distribution and a hypothesis is stochastically chosen. Low 

noise should result in a higher probability of choosing the most likely hypothesis 

according to the existing knowledge structure, which tends to be uncreative (and often 

counterproductive in this particular context). However, when more noise is added during 

the construction of the Boltzmann distribution, hypotheses that are somewhat inconsistent 

with the currently existing knowledge structure are more likely to be sampled. This can 

lead to altering the connection patterns of the top-level explicit knowledge structure 

(through questions and answers as described earlier), which may eventually lead to 

something resembling the correct solution (the solvers’ knowledge graph; Figure 6a). 

This process constitutes a typical generate-and-test algorithm (Russell & Norvig, 1995). 

This mechanistic explanation is in line with the human results obtained by Durso et al. 

(1994). 

Simulation results 

The mean performance by noise level was as shown in Figure 7.  As can be seen, 

the CLARION model was generally able to modify its explicit representations based on 

yes/no questions to the experimenter. As predicted, this ability to produce a new explicit 

representation of the problem was positively related to the noise level (α) in low noise 
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conditions, but levels off with a reasonable amount of noise. This was confirmed by a 

between-subject analysis of variance. The effect of the noise level on the mean number of 

edges differing between the solution proposed by CLARION and the solvers’ graph 

(Figure 6a) was highly significant, F(7, 7992) = 12193.40, p < .0001. More precisely, 

Tukey post hoc analyses showed that low noise levels resulted in poor performance, and 

that each increment between 10-2 and 100 significantly improved the performance of the 

model (p < .01). From that point on, increasing the noise level did not significantly 

improve the performance of the model. Overall, the noise (temperature) parameter in 

CLARION changed the probability of correctly solving an insight problem, which is in 

line with associationistic theories of insight. [Note that the absence of statistical analysis 

in Durso et al. (1994) limited our ability to compare the simulated data with the human 

data. However, the simulated results clearly showed the shift of the problem 

representation in the model, as in the human data.] 

Insert Figure 7 about here 

Discussion 

The preceding analysis showed that the performance of CLARION improved as 

the noise level was increased. Martindale (1995) equated creativity to a more thorough 

exploration of the solution space, which increased the probability of finding creative 

solutions to ill-defined problems. This can be modeled by altering the noise level (i.e., 

temperature, stochasticity) in the search process. A lower noise level suggests a more 

timid exploration of the solution space and thus the generation of common, uncreative 

solutions (which may not solve ill-defined problems). Adding more noise (increasing 

stochasticity) initiates a more complete investigation of the possible solutions, thus 
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allowing less frequent solutions to be sampled. These infrequent solutions might be 

responsible for insight (see also the associationistic theory of insight; e.g., Pols, 2002). 

In particular, this interpretation of the simulation results is in line with the 

evolutionary theory of insight (e.g., Campbell, 1960; Simonton, 1995). According to this 

theory, noisy hypotheses are implicitly generated and explicitly evaluated (somewhat 

similar to the Heuristic-Analytic theory; Evans, 2006). According to this theory, more 

creative individuals would implicitly generate a greater number of hypotheses. In 

modeling, this amounts to creative and uncreative people having different noise 

(temperature/stochasticity) levels (with the former being modeled with a higher noise 

level). To summarize, CLARION was successful in simulating the search process leading 

to insight in problem solving, and the simulation results were in line with previous 

theories of insight and creativity. This constitutes converging evidence for the EII theory. 

Overshadowing in problem solving 

The implicit learning literature has repeatedly shown that explicitly looking for 

rules and regularities can impair performance when none exists or when they are difficult 

to extract (Berry & Broadbent, 1988; Reber, 1989; Sun et al., 2005). This overshadowing 

of implicit processing by explicit processing is robust and also present in insight problem 

solving (Schooler et al., 1993; Schooler & Melcher, 1995). A typical insight problem is 

addressed below. 

Experimental setting 

Schooler et al. (1993) asked participants to solve the following problem: 
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“A dealer of antique coins got an offer to buy a beautiful bronze coin. 

The coin had an emperor’s head on one side and the date 544 B.C. 

stamped on the other. The dealer examined the coin, but instead of 

buying it, he called the police. Why?” 

 

Each of the 82 participants had two minutes to solve this problem. Following this 

initial problem solving period, half of the participants were assigned to an unrelated task 

while the remaining half were asked to verbalize their problem solving strategies. In both 

cases, the interruption period lasted 90 seconds and was followed by another four-minute 

attempt to solve the initial problem. The dependant variable was the proportion of insight 

problems solved by the participants. 

Experimental results 

The results were as shown in Figure 8 (gray bars). After the participants spent the 

interruption period working on an unrelated task, 45.8% of the insight problems were 

solved. In contrast, only 35.6% of the problems were solved after the participants 

verbalized their problem solving strategies. This constitutes a decrease of nearly 30% in 

the proportion of solved problems. According to Schooler et al. (1993), this statistically 

significant difference, t(74) = 2.13, p < .05, was the consequence of an overly verbal 

mode of problem solving, which prevented the participants from reaching an insight. 

Insert Figure 8 about here 
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Simulation setup 

As argued earlier, the participants only relied on the information present in the 

problem following the preparation period: the coin material, the carved pattern, the coin 

date, and the dealer’s decision. The first three features were independent while the last 

feature was a function of the first three (i.e., the antique dealer only buys high-quality 

items). In addition, the relative sizes of bottom-level (implicit) representations were made 

to reflect the task constraints. For instance, the dealer’s decision was to be explained and 

thus should not be changed by the neural network settling (convergence) process in the 

bottom level. Hence, the dealer’s decision was represented by more nodes in the bottom 

level. Accordingly, other features were represented by fewer nodes in the bottom level (in 

particular, the emphasis on the ‘antique’ nature of the coin in the original problem 

suggested that the date might be problematic and thus the date was represented by even 

fewer nodes). 

More precisely, each of the problem features (i.e., coin material, carved pattern, 

coin date, dealer’s decision) was represented by two nodes in the left layer of the top 

level (see Figure 2): the date (good, bad), the material (good, bad), the carved pattern 

(good, bad), and the dealer’s decision (buy, don’t buy). In the right layer of the top level, 

eight abstract explanations were locally represented (using eight nodes in total).18 In 

addition, the dependency between the dealer’s decision and the other features was coded 

into the top level: when all the coin features were good, the dealer bought the coin; 

otherwise, the dealer did not buy the coin. 

In the bottom level of the CLARION model, each concept (represented by each 

top-level node) was represented by a randomly generated distributed pattern. As 



Incubation, insight, and creative problem solving 67

previously indicated, the problem constraints suggested that some features were more 

relevant or more reliable than others, which led to the use of distributed representations 

of variable sizes: The coin date was represented by 30 bottom-level nodes, the dealer’s 

decision was represented by 100 bottom-level nodes, and the remaining features (and the 

explanations) were represented using 50 bottom-level nodes each (all with distributed 

representations). Eight training stimuli (i.e., one for each explanation, thus representing 

all the possible cases) were generated by concatenating the random representations (the 

training served to re-encode the top-level rules in the bottom level).  

To simulate this task, a stimulus was first presented to the left layer in the top 

level as well as to the bottom level, representing a good date, good material, a good 

carved pattern, but a refusal of the dealer to buy the coin. This stimulus did not 

correspond to any exemplar used to pre-train the bottom level and is inconsistent with the 

pre-coded rules in the top level (in the cases used for pre-training, coins with all the good 

features were bought). The stimulus was transmitted through the top-level connections 

and the bottom-level neural network settling (convergence) process. As in all the other 

simulations, the resulting bottom-level stable state was sent bottom-up (through 

“explicitation”), integrated with the result of top-level processing in the right layer of the 

top level, and transformed into a Boltzmann distribution (using the first noise value from 

Table 5). A node was stochastically chosen based on the distribution (as the model 

response) and the statistical “mode” of the distribution was used to estimate the ICL. If 

the ICL was higher than a predefined threshold, the response was output to effector 

modules. Otherwise, the response was used to initiate another round of processing (by 

transmitting the activation backward from the right layer to the left layer in the top level 
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and then “implicitation”, as discussed before). As explained earlier, this constituted a 

form of abductive reasoning to infer possible causes of the selected explanation. These 

possible causes were used for the next iteration of processing. As in all the other 

simulations, each spin in the bottom level took approximately 350 ms of psychological 

time, so the first period of problem solving lasted a maximum of 343 spins (because 

human participants had two minutes).  

The interruption period lasted 257 spins in the simulation (because the 

interruption period lasted 90 seconds for human participants). During this time, the 

participants who were assigned to an unrelated task continued to generate implicit 

hypotheses to explain the initial problem, because implicit processing did not require 

much attentional resources and thus might go on during the performance of the unrelated 

task. The simulation runs representing these participants continuously worked on the 

problem (with the second noise value from Table 5). In contrast, the verbalization group 

did not have this incubation period, because verbalization prevented the participants from 

working on the task and forced them into an explicit mode (Schooler et al., 1993).  

Finally, both conditions had another 4-minute period of implicit and explicit 

processing to solve the initial problem (i.e., a maximum of 686 spins). During this final 

problem-solving period, the noise parameter of the simulated unrelated interruption 

participants was reset to its initial value (to refocus the search). The dependent variable 

was the proportion of simulations that selected the correct explanation for the insight 

problem. The values of all the parameters were as shown in Tables 4 and 5. 
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Rationale and explanations 

Conceptual explanation based on EII. According to the Explicit-Implicit 

Interaction (EII) theory, both explicit and implicit processing are initiated by the problem 

(Principle #2 of EII). However, insight problems are more likely to be solved by the 

implicit processes, because rule-based processes are ineffective in solving such problems 

(Bowden et al., 2005). The same as in the earlier explanation of Durso et al.’s (1994) 

experiment, implicit hypotheses are generated using implicit knowledge and then verified 

using explicit knowledge. When the participants were interrupted to take part in an 

unrelated activity, hypotheses were still being generated implicitly [the same as in the 

explanation of Smith and Vela’s (1991) reminiscence data]. In contrast, participants who 

had to verbalize their problem solving strategies could not generate implicit hypotheses 

easily (because they were likely stuck in an explicit processing mode). When the 

participants went back to working on the problem, the verbalization group had fallen 

behind, so the overall probability of solving the problem by the verbalization group was 

lower than that of the control group.  

Mechanistic explanation based on CLARION. In this simulation, only the 

bottom level of the CLARION model can generate the correct explanation, because the 

top level can only produce stereotypical responses that are the direct consequences of its 

pre-coded explicit rules. In contrast, the bottom level involves a neural network settling 

(convergence) process that can be viewed as performing soft-constraint satisfaction (as 

discussed before; see Hertz et al., 1991; Hopfield & Tank, 1985). Because more nodes 

were used to represent the dealer’s decision than the other features in the bottom level, 

the dealer’s decision was considered a stronger constraint. Hence, the activation pattern 
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(vector) was more likely to be pulled toward existing attractors that satisfy this constraint 

(which are likely to be the correct explanations for this task). The verbalization group did 

not benefit as much from this soft-constraint satisfaction process, because the implicit 

processes were disengaged during the interruption period. This explanation clarifies the 

mechanistic processes underlying overshadowing in human insight problem solving 

(Schooler et al., 1993).  

Simulation results 

Five thousand simulations were run in each condition. The simulation results were 

as shown in Figure 8 (black bars). As predicted, simulations of the verbalization 

condition were less likely to select the appropriate solution to the coin problem than the 

simulations of the unrelated interruption condition. Only 35.3% of the simulation runs in 

the verbalization condition selected the correct explanation for the problem, whereas 

45.3% of the simulation runs in the unrelated problem condition selected the correct 

explanation (compared with 35.6% and 45.8% in the human data, respectively). This 

difference between the simulated verbalization and unrelated interruption conditions was 

reliable according to a binomial test B(5000, 0.353) = 2265, p < .0001.19 The fit to the 

human data was also excellent: the difference between the human and the simulation data 

was smaller than 0.5%. CLARION thus successfully simulated the data related to 

overshadowing in insight problem solving. (More detailed statistical analysis comparing 

the simulated data with human data was impossible due to the unavailability of the 

complete human data.) 
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Discussion 

CLARION did a good job of simulating the overshadowing effect of explicit 

processes on implicit processes (Schooler et al., 1993). In CLARION, overshadowing 

was captured by disengaging implicit processing (under proper circumstances). The data 

were captured because the bottom level carries out soft-constraint satisfaction (Hertz et 

al., 1991; Hopfield & Tank, 1985) that can weigh some constraints (e.g., the dealer’s 

decision) more heavily than others (e.g., the coin date). The activation pattern (the 

activation vector) was pulled toward existing attractors that satisfied the stronger 

constraint, which was a natural explanation of the phenomenon. 

General Discussion 

In the literature, creative problem solving has been used as an umbrella term that 

encompasses research on incubation and insight in problem solving (Bowden et al., 

2005). As a result of the diversity of the field, existing theories of creative problem 

solving are notably fragmentary and often contradictory to each other (Lubart, 2001). The 

main goal of this work was to provide a new theory of creative problem solving that 

allows a somewhat coherent integration and unification (to some extent) of abstract 

theories of creative problem solving (e.g., stage decompositions; Wallas, 1926) with 

process theories that focus on the detailed explanations of particular stages (e.g., 

Dorfman et al., 1996; Mayer, 1995; Ohlsson, 1992; Pols, 2002; Schilling, 2005; Schooler 

& Melcher, 1995; Simon, 1966; Simonton, 1995; Smith, 1995; Smith & Dodds, 1999). 

Furthermore, the proposed theory aimed at integrating and unifying the existing process 

theories by performing a reinterpretation of their assumptions, operations, and 

predictions.  
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The Explicit-Implicit Interaction (EII) theory is an initial attempt at such a theory. 

EII relies mainly on five basic principles, and each of the principles was motivated by 

psychological as well as theoretical considerations (see the EII: An integrative theory of 

creative problem solving section). In this paper, we have shown how the EII theory may 

be used to capture Wallas’ (1926) stage decomposition of creative problem solving and 

have re-interpreted six process theories of incubation and four process theories of insight. 

In addition, the EII theory was able to capture and provide an explanation for many data 

sets that support the notions of incubation and insight in human cognition, including the 

four detailed in this paper. The conceptual explanations provided by the EII theory were 

intuitively appealing.  

In addition to providing high-level conceptual explanations, the formulation of 

EII was sufficiently precise to be implemented as a computational model based on the 

CLARION cognitive architecture (Sun, 2002; Sun et al., 2001, 2005). This 

implementation led to quantitative simulation results that closely matched human data, 

including the data showing the effect of incubation in a lexical decision task (Yaniv & 

meyer, 1987), the data showing the effect of incubation in a free recall task (Smith & 

Vela, 1991), the data showing the effect of knowledge restructuration in achieving insight 

(Durso et al., 1994), and the data showing the effect of overly explicit processing on 

insight problem solving (overshadowing; Schooler et al., 1993). 

It should be mentioned that the emphasis of the above-mentioned simulations was 

not on fine-grained modeling of each task involved, but a broad-stroke coverage of a 

variety of tasks, thus making the model coarser by necessity. As a result, the simulations 

may have overlooked a few phenomena in these tasks that we consider to be of secondary 
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importance (e.g., fitting the exact number of recalled words in Smith & Vela, 1991), or 

may focus on only a few data sets of a task instead of all (e.g., ignoring the data related to 

hypermnesia in Smith & Vela, 1991). This “oversight” may actually be beneficial. As in 

any function approximation or data fitting situations, a balance has to be stricken between 

fitting data faithfully and avoiding fitting noise in the data (i.e., overfitting). Coarser-

grained modeling may be beneficial in this regard. Finally, very importantly, a broad-

scoped but coarse-grained synthesis of a range of data is essential to the goal of 

understanding the general principles of cognition (Newell, 1990). 

This being said, the formulation of the EII theory and the development of the 

CLARION model to capture human data in creative problem solving have important 

implications beyond the scope of creative problem solving. In particular, implications for 

other research on creativity are examined below. 

Implications for psychological theories of creativity 

Empirical phenomena  

The notion of creativity has been defined almost as many times as there are 

published papers on creativity (for reviews, see, e.g., Mayer, 1999). However, there are 

two common themes in most definitions: novelty and usefulness. In order to be deemed 

‘creative’, an idea must be novel to the individual who generated it, and useful according 

to some set of criteria.  

Many different approaches have been used to study creativity (Mayer, 1999). For 

instance, research in the psychometric tradition, which focuses on the comparison of 

people who score high and low in creativity tests, has found that creative individuals 

work hard, prefer to make their own agenda, strive for originality, and are more flexible 
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than uncreative individuals (Hayes, 1989). While the psychometric tradition has been 

around for nearly a century, most current research efforts belong to the ‘psychological 

approach’.  This approach is mainly experimental (or quasi-experimental; Runco & 

Sakamoto, 1999), and focuses on the processes involved in creative thinking. Mostly, this 

line of research involves studying creative problem solving and the factors that affect 

such problem solving (Mayer, 1999). For instance, research suggested that the 

information provided to the participants could either increase or decrease the creativity of 

their solutions (Runco & Sakamoto, 1999). Also, there seems to be an optimal level of 

expertise for creative work: Novices rarely contribute significant creative work but high 

levels of expertise often lead to the automatic production of over-learned solutions 

(Runco, 2004). In addition, focused attention, anxiety, and rewards tend to decrease 

creativity (Runco, 2004; Runco & Sakamoto, 1999). Consistent with the personality traits 

found to be associated with creativity by psychometric research, intrinsic motivation 

seems to be the most important factor leading to creativity (for full reviews and for other 

factors, see Runco, 2004; Runco & Sakamoto, 1999).  

The EII theory can provide intuitively appealing explanations for the cognitive 

factors found to affect creativity. First, most creative solutions in EII are explained by 

implicit processing, or by its integration with explicit processing (as hypothesized by 

Runco & Sakamoto, 1999; for a neuropsychological argument, see Dietrich, 2004). The 

effect of task instructions on creativity can sometimes be explained with inducing more 

or less explicit modes of processing. For example, we have shown that relying mostly on 

explicit processes in insight problem solving can lead to the overshadowing effect found 

in human participants (see the explanation of the simulation of Schooler et al., 1993). 
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Second, experimental instructions can also affect the content of explicit knowledge (see 

the explanation of the simulation of Durso et al., 1994), and tasks that rely mainly on 

newly acquired explicit knowledge, which has not yet been re-coded into implicit 

knowledge (Principle #3 in EII) can also produce an overly explicit mode of processing 

(and consequently uncreative solutions). Third, however, too little explicit knowledge 

would also produce low-quality responses because the context for implicit processing, 

which follows from mostly explicit processing in the preparation stage, could be 

erroneous or insufficient. Fourth, the effect of focused attention, anxiety, and rewards 

may all be accounted for by EII. According to Runco and Sakamoto (1999), all these 

factors are one and the same: anxiety focuses the participants’ attention on the stress-

generating stimulus while rewards focus their attention on whatever leads to rewards. 

Hence, they all amount to focused attention, which is represented by an overly explicit 

mode of processing in EII (Principle #1 of EII). To summarize, according to the EII 

theory, implicit processing plays a major role in the explanation of most creative 

solutions and the cognitive factors known to decrease creativity often lead to an overly 

explicit mode of processing (and hence the decrease of creativity).  

Theoretical considerations 

The EII theory of creative problem solving is not the earliest theory that proposes 

an explanation for the cognitive processes involved in creativity (see, e.g., Campbell, 

1960; Finke et al., 1992; Johnson-Laird, 1988; Mednick, 1962). One of the most 

successful previous theories of creativity is GENEPLORE (Finke et al., 1992). According 

to this theory, the creative process is composed of two distinct processing components: a 

generative process and an exploratory process. First, the generative processes (such as 
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memory retrieval, association, and analogical transfer) are used to construct mental 

representations known as ‘preinventive structures’. When several preinventive structures 

have been generated, the exploration processes (such as attribute finding, conceptual 

interpretation, and hypothesis testing) are employed to interpret and evaluate these 

structures. If one or a combination of preinventive structures is sufficient to solve the 

problem at hand (i.e., it meets all the constraints), the creative product is output and work 

on the problem is over. Otherwise, the cycle starts anew.  

While this theory provides a useful high-level description of the creative process, 

it does not include a more fine-grained analysis of the realization of the processing 

components. The evolutionary theory of creativity (Campbell, 1960; Johnson-Laird, 

1988), which is very similar to the evolutionary theory of insight, can be used to explain 

the formation of preinventive structures (the generative process) and their 

interpretation/evaluation (the exploratory process). Like the evolutionary theory of 

insight, the evolutionary theory of creativity assumes Darwin’s three principles (i.e., 

blind variation, evaluation/selection, and retention), which roughly map onto the 

generation, exploration, and output of a creative solution in GENEPLORE. Also, as in 

the evolutionary theory of insight, solution generation and selection are assumed to be  

“unconscious” in the evolutionary theory of creativity (and only the selected solution 

reaches “consciousness”, as reviewed earlier). Hence, using the evolutionary theory of 

creativity to enhance GENEPLORE would lead to the prediction that creative individuals 

are generally unaware of the underlying process. This can account for the apparent 

suddenness of creative ideas. 
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The EII theory can capture the GENEPLORE theory of creativity, similar to EII’s 

re-interpretation of the evolutionary theory of insight (Campbell, 1960). According to the 

EII theory, the generative process can be captured by implicit processing, because it 

captures both memory retrieval and association (via soft-constraint satisfaction). 

Furthermore, “explicitation” and knowledge integration in EII can be used to capture the 

exploratory process. These processes have been used in EII to provide an intuitive 

explanation for attribute finding (see the simulation of Schooler et al., 1993), conceptual 

interpretation (see the simulation of Smith & Vela, 1991), and hypothesis testing (see the 

simulation of Durso et al., 1994). Finally, in EII, the integrated output is used to estimate 

the internal confidence level. High internal confidence levels indicate that the proposed 

solution meets most constraints whereas low internal confidence levels indicate important 

violations. In the former case, a creative solution is output, while in the latter case, 

information is sent top-down for another iteration, which captures the re-initialization of 

the generative process in GENEPLORE.  

Implications for computational theories of creativity 

Early on, we argued that an important contribution of EII was its precision, which 

allowed for a computational implementation of the theory. EII and its implementation (in 

CLARION) thus have important implications for computational research on creativity. 

Here, we present a few examples of artificial intelligence models along with a rough 

description of how CLARION could capture the related phenomena. 

One of the acknowledged sources of creativity in artificial intelligence is 

analogies in problem solving (Langley & Jones, 1988). According to most theories, 

analogies are found by matching the structure of a new problem with the structure of 
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previously solved problems (Gentner & Markman, 1997). Langley and Jones (1988) 

assumed that the search for an adequate analogy would be performed implicitly, and the 

identification of a useful analogy would produce an insight. While Schank and Cleary 

(1995) did not acknowledge the existence of implicit processes, they argued that this 

theory could be implemented by using “explanation patterns” (e.g., plans, scripts). Using 

these knowledge structures in unusual contexts violates top-down expectations, which 

constitutes creativity (Schank & Cleary, 1995). Accordingly, Schank and Cleary (1995) 

argued that research on creativity should focus on finding the explanation patterns that 

are shared in a culture, how they are normally accessed, and how they are (creatively) 

“misapplied”. For a computational model to be creative, a set of heuristics to access 

explanation patterns, a set of heuristics to adapt old patterns to new situations, and a set 

of heuristics to keep seemingly useless hypotheses alive are needed (Schank & Cleary, 

1995). These ideas have been applied in commonsense adaptive planners such as 

PLEXUS (Alterman, 1988). 

According to EII (and CLARION), it appears that finding analogies by applying 

previously encoded scripts and plans is a constraint satisfaction problem. Implicit 

knowledge in CLARION is captured by using an attractor neural network in the bottom 

level, which has been shown to constitute a parallel soft-constraint satisfaction algorithm 

(Hertz et al., 1991; Hopfield & Tank, 1985). Hence, if the explanation patterns were 

encoded as attractors in the bottom level of CLARION, it would naturally apply existing 

explanation patterns to new situations by the neural network settling (convergence) 

process. The resulting stable state would then be sent bottom-up (via “explicitation”) for 

integration and, if the bottom-up activation were somehow in line with the top-level 
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activation, integration would likely lead to crossing the insight threshold. This insight 

would represent the application of a known explanation pattern in a novel situation 

(described by the input information that entered the system). This CLARION-based re-

interpretation has the advantage of avoiding the use of psychologically dubious memory 

representations and processes (such as symbolic indexing and symbolic local memory 

retrieval; see Schank & Cleary, 1995). Also, soft-constraint satisfaction appears to be a 

natural substrate for the flexible use of explanation patterns (although the issue of 

representing complex structural relationships in connectionist networks is still a difficult 

one; see, e.g., Sun, 1992, 1994). 

A second example of creativity research in artificial intelligence involves the use 

of connectionist networks (e.g., Boden, 2004; Duch, 2006; Martindale, 1995). According 

to Martindale (1995), a “noisy” neural network, where a random signal is added to the 

connection weights or inserted in the activation function, can be used to model an 

‘evolutionary’ theory of creativity. Also, the noise level can be used to represent the 

‘flatness’ of the associative hierarchy in creative individuals by making the activation 

more homogeneous (Mednick, 1962). Hence, more creative individuals could be modeled 

by using more noise whereas less creative individuals would be modeled by using less 

noise. This addition of noise in neural networks is essentially similar to Duch’s (2006) 

‘chaotic’ activation and Boden’s R-unpredictability (i.e., pragmatic unpredictability). 

This line of computational models of creativity is compatible with EII and its 

implementation in CLARION. In CLARION, both explicit and implicit knowledge are 

modeled using connectionist networks and responses are stochastically chosen through a 

Boltzmann distribution. This distribution includes a noise parameter that has been shown 
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to affect the probability of solving insight problems (see the simulation of Durso et al., 

1994). Hence, the EII theory and its implementation in CLARION are fully compatible 

with the afore-mentioned connectionist theories of creativity. 

To summarize, CLARION is able to roughly capture some computational models 

of creativity (at a conceptual level). In addition, theoretically, CLARION can also 

provide similar high-level conceptual re-interpretations for computational models of 

scientific discovery (e.g., Newell, Shaw, & Simon, 1962; for reviews, see Boden, 2004; 

Rowe & Partridge, 1993) and creative analogy (e.g., Hofstadter & Mitchell, 1994; Rowe 

& Partridge, 1993). However, implementation of these computational theories constitutes 

a major undertaking by itself in terms of time and effort.  Because this is tangential to the 

focus of the present paper, we will not delve into it here.  

Future work 

While proposing a unified framework to study creative problem solving is an 

important step, the EII theory needs to address a more fundamental problem -- the role of 

implicit processes in problem solving. The role of implicit processes has been suggested 

by several studies in both deductive reasoning (e.g., Evans, 2006; Sun, 1994) and 

inductive reasoning (Heit, 1998; Osherson et al., 1990; Sun 1994). In both cases, the 

similarity between the entities involved affects rule application and rule generation, 

through ‘softening’ the hard constraints involved in rule-based processing. The 

simulations in this paper mostly captured the effect of similarity through bottom-up 

knowledge integration. We have shown in this paper that this knowledge integration 

process can be used to capture empirical human data related to creative problem solving. 

Future work should be devoted to capturing the effect of similarity (through bottom-level 
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processing) on inductive and deductive reasoning, as well as the complementary effect -- 

the effect of explicit knowledge (e.g., explicit rules in deductive or inductive reasoning) 

on similarity (Tenenbaum & Griffiths, 2001).  
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Appendix 

This Appendix is a technical description of the Non-Action-Centered Subsystem 

of CLARION in a matrix algebra form (using the implementation known as CLARION-

H). An overview of the algorithm is presented in Table 3. 

The top level 

In the top level, explicit knowledge is locally represented using binary vectors xi = {0, 

1}n, yj = {0, 1}m, and ||xi|| = ||yj|| = 1 (in Figure 2, xi and yj are vectors describing the 

activation in the left and right layers of the top level respectively), and ||●|| is the 

Euclidean norm. These layers are connected using the matrix V, and the associations can 

be exactly retrieved using the following linear transmission rule: 

 
y i = VN1( )x i

x i = VTN2( )y i

 (A1) 

where N1 and N2 are defined as: 

 

N1 =

v1

−2
0 ... 0

0 v2

−2
0 0

... ... ... ...

0 ... 0 vn

−2

 

 

 
 
 
 
  

 

 

 
 
 
 
  

N2 =

v1
T −2

0 ... 0

0 v2
T −2

0 0

... ... ... ...

0 ... 0 vm
T −2

 

 

 
 
 
 
  

 

 

 
 
 
 
  

 (A2) 
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where xi = {xi1, xi2,…, xin} is the activation in the left layer, yi = {yi1, yi2,…, yim} is the 

activation in the right layer, and V = {v1, v2, …, vn} is the matrix containing the rules 

(see Eq. A14). 

The N1 and N2 matrices are used to normalize the activation so that the activation 

of a node cannot be higher than one (it is equivalent to the kjis in the main text). To do 

that, the number of associates of each node must be determined, and used to divide the 

summed activation (the dot product). This number can be obtained by counting the 

number of non-zero elements in each row of the V matrix (to find the number of 

associates for each node in xi) or in each column (to find the number of associates for 

each node in yj). Because the V matrix is binary, this can be calculated using the squared 

norm. As a result, if proportion p of the associates of yij are activated in xi, the activation 

of yij is p. Note that, following Sun & Zhang (2004), it has been estimated that each 

application of Eq. A1 takes roughly 1,500 ms of psychological time. 

The bottom level 

In CLARION, the bottom level has been implemented by an attractor neural 

network (Anderson, Silverstein, Ritz, & Jones, 1977; Hopfield, 1982) using NDRAM 

(Chartier & Proulx, 2005). Each top-level association is redundantly encoded using a 

random vector zi = t1i + t2i, where t1i ={-1, 1}s ∪ {0}r-s is a vector representing the first s 

nodes in the bottom level, which are connected to the left layer in the top level using 

matrix E, while t2i = {0}s ∪ {-1, 1}r-s is a vector representing the remaining r – s nodes in 

the bottom level, which are connected to the right layer in the top level using matrix F 

(see Figure 2).  
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The distributed representation of the stimulus (zi) is transmitted in the bottom 

level using this non-linear transmission rule (Chartier & Proulx, 2005): 

  zi t +1[ ] = f (Wzi t[ ])  (A3) 

 ∀ j ,  1 ≤ j ≤ r :   f zij t[ ]( )=

+1                  ,  zij t[ ] > 1

(δ +1)zij t[ ] −δzij t[ ]
3 ,   -1 ≤ zij t[ ] ≤1

−1                  ,  zij t[ ] < −1

 

 
 

 
 

 (A4) 

where zi[t] = {zi1[t], zi2[t], …, zir[t]} is the distributed representation after t spins in the 

network (there is a total of p spins per trial) and 0 < δ < 0.5 is the slope of the 

transmission function. This network is guaranteed to settle in a stable state (Helie, 2008). 

Following Sun & Zhang (2004), we assumed that each spin in the bottom level takes 

roughly 350 ms of psychological time. 

Bottom-up transmission (“explicitation”) 

Once the bottom-level processing is completed, the information is sent bottom-up 

using the following equations. If the initial stimulus first activated the left layer in the top 

level, the bottom-up activation is transmitted to the right layer of the top level: 

 y bottom−up[ ] = F TN3( )z i p[ ]  (A5) 

where y[bottom-up] is the bottom-up signal sent to the right layer in the top level and zi[p] is 

the bottom-level activation after p spins.  

Otherwise, if the initial stimulus first activated the right layer in the top level, the 

bottom-up activation is transmitted to the left layer of the top level: 

 x bottom−up[ ] = ETN4( )z i p[ ] (A6) 

where x[bottom-up] is the bottom-up signal sent to the left layer in the top level. N3 and N4 

are the following square diagonal matrices:
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N3 =

f1
T −2.2

0 ... 0
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 (A7) 

where F = {f1, f2, …, fr} and E = {e1, e2, …, er} are the matrices linking the top and 

bottom level representations (see Eq. A16 and Eq. A17). Like N1 and N2, the N3 and N4 

matrices are counting the number of non-zero elements in each column of matrices F and 

E so that if a node in the top level is associated to d nodes in the bottom level, its total 

activation is divided by d1.1. The exponent, which is not present in top-level activation, 

was added to bottom-up activation to capture similarity-based processing (Sun, 1994).  

Top-down transmission (“implicitation”) 

If the left layer in the top level is activated, the corresponding distributed 

representation is activated in the bottom level: 

 
z i = Ex i

= t1 i

 (A8) 

Likewise, if the right layer in the top level is activated, the corresponding 

distributed representation can be activated in the bottom level: 

 
z i = Fy i

= t2i

 (A9) 
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Integration 

Once the bottom-up activation has reached the top level, it is integrated with the 

activation already present in this level using the Max function. Hence, if the initial 

stimulus activated the left layer of the top level, the integrated activation vector is located 

in the right layer of the top level: 

 ∀ j ,  1≤ j ≤ m :   y integrated[ ] j = Max (yij ,λ × y bottom−up[ ] j + λr × residual j[ ] (A10) 

where y[integrated] = {y[integrated]1, y[integrated]2,…, y[integrated]m} is the integrated activation 

vector, y[bottom-up] = {y[bottom-up]1, y[bottom-up]2,…, y[bottom-up]m} is the bottom-up activation (Eq. 

A5), λ is a scaling parameter that determines how implicit the processing is, residualj is 

the bottom-up activation resulting from the final state of the bottom level at the end of the 

previous processing iteration at node j, and λr is a scaling parameter. λr is set to 1 in the 

Yaniv & Meyer (1987) simulation (because of the two-task sequence) and 0 in all the 

other simulations reported here (because there is no task sequence). 

Likewise, if the initial stimulus activated the right layer in the top level, the 

integrated activation vector is located in its left layer: 

 ∀ j ,  1≤ j ≤ n :   x integrated[ ] j = Max xij ,λ × x bottom−up[ ] j + λr × residual j[ ] (A11) 

where x[integrated] = {x[integrated]1, x[integrated]2,…, x[integrated]n} is the integrated activation 

vector, and x[bottom-up] = {x[bottom-up]1, x[bottom-up]2,…, x[bottom-up]n} is the bottom-up activation 

(Eq. A6). 

In all cases, the integrated activation vector is further transformed into a 

Boltzmann probability distribution: 
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P(y integrated[ ]i) =
ey integrated[ ]i α

ey integrated[ ] j α

j
∑

,     or

P(x integrated[ ]i) =
ex integrated[ ]i α

ex integrated[ ] j α

j
∑

 (A12) 

where α is the temperature (randomness parameter). Eq. A12 is also called the 

‘hypothesis distribution’ in the main text and replaces the activation in the integrated 

activation vector. In other words, each y[integrated]i or each x[integrated]i represents a 

hypothesis, and Eq. A12 represents the probability distribution of the hypotheses. The 

statistical mode of Eq. A12 is used to estimate the Internal Confidence Level (ICL). 

Assessment 

The statistical mode of the hypothesis distribution is used to estimate the internal 

confidence level (ICL) of the model and a hypothesis is stochastically chosen. If the ICL 

is higher than a predetermined threshold (ψ), the chosen hypothesis is output to effector 

modules; else, the iterative process continues with the chosen hypothesis as the top-level 

stimulus (Eq. A1) and the scaled previous bottom-up activation as the new residual 

activation in the bottom level (Eq. A5 or Eq. A6, scaled by λ).  

If a response is output, the response time of the model is computed as follow: 

 RT = a − b × ICL  (A13) 

where a and b are the maximum response time and the slope respectively. 



Incubation, insight, and creative problem solving 101

Learning 

In the top level, explicit knowledge is represented using weight matrix V = [vij], 

which was trained to encode the explicit rules using standard Hebbian learning 

(Kohonen, 1972): 

 V = y ix i
T

i
∑  (A14) 

where X = {x1, x2, … xk} and Y = {y1, y2, … yk} are the sets containing the stimuli (k ≤ n 

and k ≤ m), and xi is associated to yi. The use of Hebbian learning to encode the rules 

ensures that vij = 1 if xi is associated to yj and zero otherwise (because of the restriction 

on the stimuli; see the Top level section). 

 In the bottom level, implicit knowledge is represented by the W weight matrix, 

which is pre-trained to encode the implicit associations using a contrastive Hebbian 

learning rule (Chartier & Proulx, 2005): 

 W t[ ] = ζW t−1[ ] + η z i 0[ ]z i 0[ ]
T − z i p[ ]z i p[ ]

T( ) (A15) 

where W[t] is the weight matrix at trial t, 0 < < ζ ≤ 1 is a memory efficiency parameter, 

and 0 < η <
1

2(1− 2δ)r
 is a general learning parameter (for a demonstration, see Chartier 

& Proulx, 2005). Note that Eq. A15 is the only iterative learning algorithm in this 

implementation of CLARION. 

The associations between the top- and bottom-level representations are encoded 

using the E and F weight matrices. These matrices are trained using the same linear 

Hebbian rule as V: 

 E = t1 ix i
T

i
∑  (A16) 
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 F = t2 jy j
T

j
∑  (A17) 

where T1 = {t11, t12, …, t1k} and T2  = {t21, t22, …, t2k} are the sets containing the 

distributed representations (defined in the Bottom level section). 
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Tables 

Table 1. Principles of the Explicit-Implicit Interaction theory 

Basic principles 

1. The co-existence of and the difference between explicit and implicit knowledge; 

2. The simultaneous involvement of implicit and explicit processes in most tasks; 

3. The redundant representation of explicit and implicit knowledge; 

4. The integration of the results of explicit and implicit processing; 

5. The iterative (and possibly bidirectional) processing. 

Auxiliary principles  

1. The existence of a (rudimentary) meta-cognitive monitoring process; 

2. The existence of subjective thresholds; 

3. The existence of a negative relation between confidence and response time. 
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Table 2. Predictions of the EII theory 

Phenomena Gist of mechanistic predictions/explanations 

1. Incubation primes lexical 

decision (Yaniv & Meyer, 1987). 

Incubation leads to implicit processing 

(contextualized by preparation), which activates 

certain words used in subsequent lexical 

decision tasks. 

2.  Incubation increases 

reminiscence in free recall (Smith 

& Vela, 1991). 

Incubation increases the number of words 

recalled in the second free recall test due to 

implicit retrieval during incubation. 

3.  Not all participants can solve 

insight problems (Durso et al., 

1994); solvers’ and non-solvers’ 

knowledge structures differ. 

Some participants generate more diverse 

hypotheses, which increase their probability of 

solving insight problems. 

4.  Implicit processing is 

overshadowed by explicit 

processing (Schooler et al., 1993). 

An overly explicit mode of processing can 

reduce the amount of implicit processing (e.g., 

by reducing the weight of implicit processing in 

knowledge integration). 

5.  Incubation is differently affected 

by distracting activities (Helie et al., 

2008). 

The distracting activity and the main task may 

involve a variety of cognitive processes, and 

may or may not use the same cognitive 

processes. 

Note. The conceptual and mechanistic explanations (predictions) of the first four 

phenomena are detailed in the Simulations section of this paper. The explanation 

(prediction) of the last phenomenon is presented in Helie et al. (2008). 
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Table 3. Algorithm of the CLARION model 

 

1. Observe the current input information; 

2. Simultaneously transmit the observed information in both levels (Eq. 1 and Eq. 

2); 

3. Compute the integrated activation vector (Eq. 4) and the hypothesis distribution 

(Eq. 5); 

4. Stochastically choose a response and estimate the ICL using the “mode” of the 

hypothesis distribution: 

a. If the ICL is higher than a predefined threshold, output the chosen 

response to effector modules; 

b. Else, if there is time, go back to step 1 and use the chosen response as the 

input; 

5. Compute the response time of the model (Eq. 6).  
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Table 4. Task-related parameters used in the simulations. 

 Yaniv & Meyer 

(1987) 

Smith & 

Vela (1991) 

Durso et 

al. (1994)

Schooler et 

al. (1993) 

n 52 0 14 8 

m 52 50 14 8 

r 200 500 140 280 

s 100 0 * 230 

p 3 10 3 1 

δ 0.10 0.49 0.40 0.40 

Epochs 15 15 100 150 

Note. n is the number of nodes in the left layer of the top level (x), m is the 

number of nodes in the right layer in the top level (y), r is the number of 

nodes in the bottom-level network (z), s is the number of nodes in the 

bottom-level network that are connected to the left layer in the top level, p is 

the number of spins used to pre-train the bottom-level network, and δ  is the 

slope of the transmission function in the bottom-level network. Other 

NDRAM parameters (i.e., the learning rate and memory efficiency) used to 

pre-train the bottom-level network were set to their default values 

throughout (η = 0.001, and ζ = 0.9999; Chartier & Proulx, 2005). * In the 

simulation of Durso et al. (1994), the same concepts were represented twice 

in the top level (once in each layer). Hence, a unique pool of bottom-level 

nodes was used.  
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Table 5. Free parameters used in the simulations. 

 Yaniv & Meyer 

(1987) 

Smith & Vela 

(1991) 

Durso et al. 

(1994) 

Schooler et al. 

(1993) 

λ 1.5 * * 1.1 

α 0.2 {0.06, 0.085} {10-2 - 105} {0.12, 0.16} 

ψ {0.715, 0.71, 0.69} 0.896 0.90 0.70 

Note. λ scales the importance of implicit processing in the integrated activation, α is the 

temperature (randomness) in the Boltzmann distribution, and ψ is the threshold on the ICL. * 

When no stimulus is presented to the model, processing has to be initiated from random 

activation in the bottom level. In these cases, the result of top-level processing is initially 

ignored by setting λ to a large value (e.g., λ = 50, or λ = 500). 
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Footnotes

                                                 

1 This moment is often referred to as the “Aha!” experience or the “Eureka!” (of 

Archimedes). In modern literature, illumination has been called ‘insight’ (Bowden et al., 

2005; Pols, 2002; Schooler & Melcher, 1995). 

2 While there have been other theories proposed over the years, they have had more 

limited impact compared with the theories reviewed here (e.g., they were not included in 

the Encyclopedia of Creativity, 1999). Hence, we have chosen to limit the discussion to 

those “high impact” theories. 

3 This phenomenon is also referred to as automaticity (Helie & Ashby, 2009; Helie, 

Waldschmidt, & Ashby, in press; Logan, 1988, 1992) or “proceduralization” (Anderson 

& Lebiere, 1998; Sun et al., 2001). 

4 The authors would like to thank an anonymous reviewer for pointing this out. 

5 Computationally speaking, this transmission rule is linear and represents the simplest 

case of neural networks. The normalizing factor (k1i) prevents nodes with more incoming 

links from being more activated (on average). 

6 Note that, following Sun & Zhang (2004), it has been estimated that each application of 

Eq. 1 takes roughly 1,500 ms of psychological time. However, top-level processing is 

done in parallel with bottom-level processing, so only the longest processing time is used 

(because the fastest process has to wait for the slowest for knowledge integration). In all 

the following simulations, the bottom-level processing time is slower (and used), because 

several iterations of bottom-level processing are performed before knowledge integration. 
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7 The non-linearity of the normalizing factor (k2i) is used for capturing similarity-based 

processes not relevant to the present work. For detailed mathematical derivations, see Sun 

(1994). 

8 Note that in Eq. 3, the transposition of the F weight matrix is used. This is because top-

down processing (“implicitation”) uses the actual F weight matrix, whereas bottom-up 

processing (“explicitation”) uses the transposition of the F weight matrix (the same 

applies to the E weight matrix). Likewise, top-level processing from the left layer to the 

right layer uses the V weight matrix, whereas top-level processing from the right layer to 

the left layer uses the transposition of the V weight matrix. This use of transpositions to 

reverse the direction of processing substantially reduces model complexity (Kosko, 

1988). 

9 The Max operator is often used to represent “disjunction” in fuzzy logic (Zadeh, 1988). 

Therefore, in a sense, the results of bottom-level and top-level processing are individually 

considered in the integrated activation vector. 

10 It should be noted that mean response time data in the lexical decision task following 

correct and incorrect responses in the rare-word association task were not available in 

Yaniv and Meyer (1987); only the test statistics were reported. 

11 Note that random representations were generated each time. One seed representation 

was generated once (randomly generated). However, a Gaussian noise vector (µ = 0, σ = 

0.01) was added each time to the definitions to represent individual differences. This 

corresponds to people (say, from the same linguistic community) using words relatively 
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consistently in communication but possibly with some relatively minor individual 

variations.  

12 Note that the number of epochs used to pre-train the bottom level was kept to a 

minimum to represent the rareness of the associations. This increased the number of spins 

necessary for convergence in the bottom level during performance. If the associations 

used had not been rare, more epochs would have been used to pre-train the bottom level, 

convergence would have been faster during performance, and all the definitions would 

have been found within the allotted time.  

13 A spin is a round of synchronous updating of all the nodes in the bottom-level neural 

network (i.e., an application of Eq. 2; see The Bottom Level subsection). 

14 While we could not directly compare the simulated response times with human data, 

the estimates were reasonable and all the statistical effects were reproduced. 

15 This can be accomplished in the CLARION model by setting the number of nodes in 

the left layer to zero and the knowledge integration parameter to a large value (causing 

top-level rules to be ignored). 

16 The interaction between the factors also reached statistical significance F(6, 11988) = 

59.70, p < .0001). This interaction indicates that the effect of test duration is different for 

short and long incubation intervals. Yet, the statistical significance of the difference is 

mainly due to the large number of degrees of freedom in the statistical analysis (i.e., 

number of simulations). This difference could probably be resolved by directly modeling 

the upper limit of short-term memory capacity using an extra parameter (to avoid a 

ceiling effect caused by the upper limit of short-term memory being set by the complex 
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interaction of several free parameters) and adding more short-term memory details (see 

also Footnote 17). 

17 It should be noted that the emphasis of this simulation was on simulating the effect of 

incubation on reminiscence, not free recall per se. A more complete simulation of this 

experiment would require more complex memory processes (such as short-term memory) 

and more parameters. Although available in the CLARION cognitive architecture (Sun, 

2002), these detailed memory processes and parameters were not included here for the 

sake of focus and clarity. As a result, a detailed comparison of the simulated numbers of 

recalled words with corresponding human data is not attempted here. 

18 This number of explanations was determined by the Cartesian product of the first three 

features (recall that the dealer’s decision was assumed dependent on the three other 

features). Each explanation represented one configuration of activation in the left layer. 

The correct explanation represented a good material, a good carved pattern, a bad date, 

and a refusal to buy the coin. 

19 A binomial statistic was used here because each simulation produced a single output 

classified as correct or incorrect. 
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Figure captions 

Figure 1. Information flow in the EII theory. The top level (explicit processing) is more 

heavily relied upon in the preparation and verification stages. The bottom level (implicit 

processing) is more heavily relied upon during incubation. Insight corresponds to the 

transfer of a solution from the bottom level to the top level. 

Figure 2. General architecture of the Non-Action-Centered Subsystem of CLARION. The 

letters refer to the connection matrices (see the Appendix for details). 

Figure 3. Lexical decision task response times from Yaniv & Meyer’s (1987) Experiment 

1 when no response was produced in the rare-word association task. The x-axis represents 

the feeling of knowing as measured after the rare-word association task, and the y-axis 

represent the response times in the lexical decision task. 

Figure 4. (a) Simulated response times in the lexical decision task when an answer was 

given in the rare-word association task. The x-axis represents the performance in the rare-

word association task (correct vs. incorrect), and the y-axis represent the response times 

in the lexical decision task. (b) Simulated response times in the lexical decision task 

when no answer was given in the rare-word association task.  The axes are the same as in 

Figure 3. In both panels, error bars indicate standard errors. 

Figure 5. (a) Reminiscence effect found in Smith & Vela’s (1991) Experiment 1. (b) 

Simulated reminiscence effect. Error bars indicate standard errors. In both panels, the 

black bars represent 1-minute tests, the white bars represent 2-minute tests, and the grey 

bars represent 4-minute tests.  

Figure 6. Knowledge graphs inferred by the participants in Durso et al.’s (1994) 

Experiment 1. 
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Figure 7. Number of edges differing between the solutions found by the CLARION 

model and the solvers’ knowledge graph (Figure 6a). The x-axis represents the noise level 

(temperature) in the Boltzmann distribution. 

Figure 8. Proportion of correct explanations selected by the participants in Schooler et 

al.’s (1993) Experiment 1 (gray bars) and by the CLARION model (black bars). The x-

axis represents the distracting activity during the interruption period. 
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