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Abstract. Computational models for human decision making are typically based on the
properties of bistable dynamical systems where each attractor represents a different deci-
sion. A limitation of these models is that they do not readily account for the fragilities of
human decision making, such as “choking under pressure”, indecisiveness and the role of past
experiences on current decision making. Here we examine the dynamics of a model of two
interacting neural populations with mutual time–delayed inhibition. When the input to each
population is sufficiently high, there is bistability and the dynamics is determined by the
relationship of the initial function to the separatrix (the stable manifold of a saddle point)
that separates the basins of attraction of two co–existing attractors. The consequences for
decision making include long periods of indecisiveness in which trajectories are confined in
the neighborhood of the separatrix and wrong decision making, particularly when the effects
of past history and irrelevant information (“noise”) are included. Since the effects of delay,
past history and noise on bistable dynamical systems are generic, we anticipate that simi-
lar phenomena will arise in the setting of other physical, chemical and neural time–delayed
systems which exhibit bistability.
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Figure 1: Schematic representation of the potential, V (q), (right) for an ambiguous figure,
the Necker cube (left). The two different perceptions of the Necker cube each correspond to
a different well of the potential.

1. Introduction

An organism unable to make decisions is doomed forever to live at a crossroad. Thus it is
not surprising that even the lowest organisms, e.g. bacteria [10] and invertebrates [7], have
some form of decision making mechanism. A central element of contemporary cognitive
models of human decision making is the notion that every determined choice is one that
corresponds to the winner of a group of competing neuronal populations, each representing
a different decision [5, 8, 32, 53, 56]. Multimodal imaging techniques indicate that human
decision making involves a spatially distributed neural network [27, 38, 45, 47, 48, 52, 55].
The possibility that human decision making is a rational outcome of neural processes has
fostered the development of a new field, neuroeconomics [21]. However, human decision
making is anything but rational. Clearly decision making also depends on past history [55],
the emotional state [45] and the pressure that surrounds the decision making process [2, 3].
The fragile nature of human decision making reaffirms its dynamic basis [29].

Current mathematical models for decision making focus on decision making under ideal
conditions. Thus it is assumed that each neural population is selectively responsive to
components of the stimulus related to its decision and hence a winner can be chosen either
based on neural firing rates (“forced response paradigm”) or time to cross a threshold (“free
response paradigm”). Implicit in this interpretation is the assumption that the inputs to the
neural populations contain only information relevant for optimal decision making. However,
recent fMRI [37, 38] and behavioral [2, 3] studies suggest that when decision making breaks
down, e.g. “choking”, the inputs to both neural populations contain a high proportion of
irrelevant information. If, as a result, the inputs to each populations become sufficiently large
then it is possible that both decisions can co–exist, i.e. the decision making neural network
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becomes bistable. Indeed, recent studies indicate that the dependence of performance and
response time for monkeys on the degree of task difficulty in a perceptual decision making
task are consistent with dynamics in the vicinity of the unstable saddle–type steady state
which lies in the separatrix, i.e. the boundary between two attractors [54, 56].

An illustrative example is the changing perception of the Necker cube shown schematically
in Figure 1. Here, each of the two perceptions represents one of the two wells in a double
well potential and the ridge that separates the two wells is the separatrix [4, 6, 13, 29, 43].
In bistable dynamical systems which do not contain time delays, switches between the two
wells require the action of external perturbations, typically in the form of “noise”. However,
time delays are present in all spatially distributed neural networks since axonal conduction
velocities are finite. Consequently, decision making depends not only on the state of the
neural population at the time the stimulus was provided but also on the activity of the
network before the stimulus was presented [41, 42]. Thus it becomes possible in a time–
delayed bistable system for trajectories to cross the boundary separating two attractors even
in the absence of external perturbations such as noise. We hypothesize that at least some
aspects of the fragility of human decision making are related to the effects of the separatrix
in a time–delayed, bistable neural network.

Here we review the decision–making properties of a noisy time-delay differential equation
model of a decision–making neural network composed of two mutually inhibiting neurons.
Since this two–neuron network displays many of the same dynamical behaviors observed
in larger networks [42], it provides an excellent starting point to understand the effect of
delays and noise on decision making. For sufficiently high inputs there are three equilibria
(two stable, one unstable). Although the stability of these equilibria is independent of
the delay, the past history of the network nonetheless has an influence on current decision
making [42]. When the function which describes the previous history of the state, i.e. the
“initial function”, is chosen to force the dynamics across the separatrix, the network becomes
indecisive, i.e. the trajectories become transiently confined to the neighborhood of the
separatrix. In this situation the effect of noise is to cause the network to make decisions by
chance. Since time delays and noise are ubiquitous in the nervous system our observations
suggest that these phenomena may lie at the basis of the observed fragility of human decision
making.

2. Fragility of human decision making

What are the mechanisms that lead to suboptimal decision making? Neuro–cognitive science
offers two theories for suboptimal decision making (for a review see Reference [3]). Each
of these theories is based on the empirical suggestion that there is an “upside–down U”
dependence of performance on attention [17]. In other words, optimal performance requires
optimal attention. Self focus or explicit monitoring theories posit that performance becomes
suboptimal because the pressure of the situation causes too much attention to be given to
performance processes and procedures. In contrast, distraction theories posit that pressure
fills working memory with distracting information so that attention to those details of the
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situation essential for optimal performance decreases.
The difficulty with these interpretations is the lack of mechanistic explanations for the

relation between performance and attention. Here we draw analogies between decision mak-
ing in motor and cognitive tasks in order to obtain a possible mechanistic explanation for
the relationships between performance and attention. Our interpretations are motivated by
recent studies related to the performance of complex motor tasks, such as stick balancing
at the fingertip and the maintenance of balance during quiet standing [9, 36, 39]. Deci-
sions made for motor [26, 38, 39] and cognitive [47, 52] tasks both emerge from distributed
neural networks. Although the details of the involved networks differ, we anticipate that
the underlying organizational principles for decision making share similar features. An ad-
vantage offered by the investigations of motor performance is that precise measurements
of movements can be made using modern motion capture technologies. This greatly facili-
tates comparisons between observations and predictions of models based on Newton’s laws
of classical mechanics.

At issue is the distinction between skill and expertise [16, 37]. Skill refers to the variability
measured when the same motor task is repeated over and over by an individual, whereas the
term expertise refers to the ability to maintain a given skill level over a range of situations.
The decision making aspect of motor control arises because movements are controlled both
by passive mechanisms related to biomechanical properties of the musculoskeletal system
and the environment as well as actively by intentional corrective movements programmed
by the nervous system (for reviews see References [35, 37]). How is the relative proportion
of passive and active control decided upon? Several lines of investigation suggest that the
development of expertise involves two steps [37, 39]: 1). an increasing reliance on the passive
controlling mechanisms, and 2) a minimization of the role of active control mechanisms.
The interplay between these two processes implies that, at a given skill level, performance
decreases whenever active control becomes dominant. In the words of athletic coaches,
performance decreases as the focus of the player shifts from goal to process [16, 17].

An often overlooked, but important reason for the trade-off between performance and the
relative balance between passive and active control stems from the fact that neural control
mechanisms for the regulation of motor tasks are time–delayed. In particular, there are
fundamental limitations for control in the presence of time delays and noise [36, 50]. The
problem can be readily appreciated by considering how those fluctuations in the controlled
variable that must be acted upon by the controller can be distinguished from those which do
not. This is because, by definition, there is a finite probability that any displacement from
the set point will be counter–acted by a displacement towards the set point just by chance.
Since there is a time delay, too quick a response by the controller to a given deviation
can lead to the phenomenon of over–control leading to destabilization, particularly when
the time delays are appreciable. On the other hand, waiting too long runs the risk that
corrective movements are applied too late to be effective. Consequently when active control
mechanisms are employed they will be ineffective and hence performance decreases. One
way to overcome these problems is to use a switch–like, or discontinuous, feedback controller
which is activated only when dynamical variables cross pre–set thresholds [36]. In other
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words, for small deviations of the control variable away from the set point, the control is
passive, with active control exerted only once a threshold is crossed.

Insight into the nature of those aspects of attention that affect motor performance have
been obtained from studies that compare novice and elite athletes [25, 38]. We illustrate these
issues through a recent fMRI study that compared neural activity of novice and elite golfers
during the preparatory period (“pre–shot routine”) that precedes their golf shot [37, 38].
Overall central motor programs are more efficiently organized for elite golfers than novices,
i.e. they require less energy [24]. However, this does not tell the whole story. The networks
of novice and elite golfers are structurally different indicating that the novice brain seems
to be solving a different, and likely more complex, problem than the expert [39]. Indeed
behavioral observations of novice golfers during their pre-shot routine suggest that they are
unnecessarily preoccupied with details that were irrelevant for this task [38]. Consistent with
this interpretation was the observation that novice golfers activated brain regions associated
with this type of filtering task, such as the posterior cingulate. Thus the poor performance
of novice golfers may arise because too much attention is being placed on irrelevant details
and hence they are trying a program a much more difficult task. This type of stress, i.e. an
increase in the relative amount of irrelevant information, is very different from definitions of
stress that emphasize the degree of activation of the autonomic nervous system [40].

3. Decision making neural network

In this paper, we consider a decision making neural network consisting of two mutually
inhibitory neurons as depicted in Figure 2. A time–delayed differential equation model for
this network is given by

T1ẋ = −x− S2(y(t− τ2)) + I1(t)
T2ẏ = −y − S1(x(t− τ1)) + I2(t)

(3.1)

where x, y are the firing rates of the neurons, T1, T2 are the neural time constants, I1, I2
represent external inputs, τ1, τ2 are the conduction time delays between the two neurons,
and

Sj(u) =
cju

nj

θ
nj

j + unj
j = 1, 2

describe sigmoidal functions representing inhibitory influences. Note that these functions
are nonnegative on u ≥ 0 and increasing. All constants in the model are positive except
the delays which are nonnegative. The stability of this model has been discussed previously,
particularly in the bistability regime with respect to the nature of the boundary, or separatrix,
that separates the basins of attractors [41, 42]. Here our interest concerns the effects of the
initialization of this network on its behavior. For this purpose it is convenient to define
both the initial conditions at t = 0, i.e. x(0) = X0 and y(0) = Y0, and the initial functions
x(s) = X(s) and y(s) = Y (s) for s ∈ [−τ, 0), where τ = max(τ1, τ2). In this way the decision
problem is represented by (X0, Y0) and the past decision making history of the network is
represented by (X(s), Y (s)), s ∈ [−τ, 0).
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Figure 2: Schematic representation of a neural network with mutually inhibitory neurons.
The ‘-’ indicates an inhibitory connection and ‘+’ indicates an excitatory connection. See
text for discussion.

3.1. Existence of Equilibrium Points

We illustrate our hypothesis using constant inputs. In this case the system admits equilib-
rium points. An equilibrium point (x∗, y∗) of (3.1) must satisfy

x∗ = I1 − S2(y
∗) = f2(y

∗) (3.2)

y∗ = I2 − S1(x
∗) = f1(x

∗). (3.3)

Substituting (3.3) in (3.2) yields a single equation for x∗

F (x)
def
= I1 − S2(I2 − S1(x

∗))− x∗ = 0. (3.4)

Now limx→∞ F (x) < 0 since S2 is nonnegative. Thus if F (0) = I1 − S2(I2) > 0, then F (x)
will have at least one root with 0 < x∗ < I1. Consideration of (3.3) shows that the root will
also have y∗ > 0 if I2 − S2(I1) > 0. Thus, if these two conditions are satisfied there will be
at least one equilibrium in the first quadrant. Note that the same argument also holds for
any nonlinearities, Sj, which are nonnegative and increasing.

With the nonlinearity we have chosen, when the conditions defined above are satisfied,
we observe that there can be one, two or three equilibria in the first quadrant. We focus
on the situation when there are three equilibria in the first quadrant (Figure 3). This
corresponds to assuming that the mean value of I1 and I2 is sufficiently high as a result of
input containing a high proportion of information that is not required for optimal decision
making, but nonetheless is detected by the neural population (Section 2).
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Figure 3: Determination of the equilibria for (3.1). The solid line corresponds to y∗ = f1(x
∗)

and the dashed line to x∗ = f2(y
∗) (see (3.2)–(3.3)). There are three positive equilibria

for this choice of parameters: the unstable equilibrium is labeled ‘U’, and the two stable
equilibria are ‘A’ and ‘B’. Parameter values: T1 = T2 = 1, c1 = 0.4, c2 = 0.6, I1 = 0.5,
I2 = 0.4, n1 = 2, n2 = 2, θ1 = 0.2, and θ2 = 0.2.

3.2. Stability

Consider an equilibrium point (x∗, y∗) of (3.1). The linearization of (3.1) about this equation
is given by

T1ẋ = −x− S ′2(y∗)y(t− τ2)
T2ẏ = −y − S ′1(x∗)x(t− τ1).

(3.5)

The stability of the equilibrium point may be found as follows. Consider the nontrivial
solutions of (3.5), which are of the form (x(t), y(t)) = e−λt(v, w), where v, w and λ are
constants. Substituting this form into (3.5) yields a linear system for v and w. Requiring
that that this system has nontrivial solutions, i.e., v 6= 0, w 6= 0, yields the characteristic
equation

T1T2λ
2 + (T1 + T2)λ+ 1− S ′1(x∗)S ′2(y∗)e−λ(τ1+τ2) = 0. (3.6)

Any λ which is a root of this equation will determine a solution of the form given above. If
all such solutions satisfy Re(λ) < 0 then the equilibrium point is asymptotically stable. If
at least one solution satisfies Re(λ) > 0 then the equilibrium point is unstable.

For simplicity, we define τ12 = (τ1 + τ2)/2 and, since S ′j(u) ≥ 0 for all u, we define
γ2 = S ′1(x

∗)S ′2(y
∗). Then the characteristic equation becomes

T1T2λ
2 + (T1 + T2)λ+ 1− γ2e−2λτ12 = 0. (3.7)

When τ12 = 0, (3.7) can be solved for the two roots

λ± =
−(T1 + T2)±

√
(T1 + T2)2 − 4(1− γ2)T1T2

2T1T2

. (3.8)
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It is easy to see that both roots will have negative real parts if γ2 < 1, while there will be
one positive and one negative real root if γ2 > 1. Thus we conclude that for zero delay, the
equilibrium point will be asymptotically stable if

S ′1(x
∗)S ′2(y

∗) < 1. (3.9)

and unstable if
S ′1(x

∗)S ′2(x
∗
2) > 1. (3.10)

On the graphical representation of the equilibrium points given in Figure 3, S ′1(x
∗) is the

magnitude of the slope of the solid curve at the intersection point and 1/S ′2(y
∗) is the

magnitude of the slope of the dashed curve at the intersection point. Thus simple graphical
conditions for stability are

• (x∗, y∗) is asymptotically stable if the magnitude of the slope of the solid curve is less
than the magnitude of the slope of the dashed curve at (x∗, y∗).

• (x∗, y∗) is unstable if the magnitude of the slope of the solid curve is greater than the
magnitude of the slope of the dashed curve at (x∗, y∗).

From this, it is clear that in Figure 3 the middle equilibrium point is unstable, while the
other two are asymptotically stable.

In fact the situation shown in Figure 3 is always the case when there are three equilibrium
points in the first quadrant, as we now show. Recall the function F (x) given by (3.4). At
an equilibrium point (x∗, y∗), we have

F ′(x∗) = S ′2(I2 − S1(x
∗))S ′1(x

∗)− 1

= S ′2(y
∗)S ′1(x

∗)− 1.

Thus the equilibrium point will be asymptotically stable if F ′(x∗) < 0 and unstable if
F ′(x∗) > 0. Now suppose that the conditions given in section 3.1 for the existence of an
equilibrium point in the first quadrant are satisfied and there are three equilibrium points
with x coordinates 0 < x∗1 < x∗2 < x∗3. A simple geometric argument shows that necessarily
F ′(x∗1) < 0, F ′(x∗2) > 0 and F ′(x∗3) < 0, so the inner equilibrium point is unstable and the
other two are stable.

In the situation where there are two co-existing asymptotically stable equilibrium points
in the system, the question arises: Given an initial condition (X0, Y0) for equation (3.1) with
no delay (τ1 = τ2 = 0), which equilibrium point will the corresponding solution approach?
For a two dimensional system such as (3.1) this question is easily answered. The stable
manifold of the saddle–type equilibrium point (U in Figure 3) is a separatrix, i.e. it separates
the x, y plane into regions. Initial conditions which lie to the left of the the separatrix yield
solutions which asymptotically approach equilibrium point A and those which lie to the right
approach B. These regions are called the basins of attraction of the equilibrium points A
and B.
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If τ12 > 0 there are a countable infinity of roots of the characteristic equation (3.7), thus
one must use other means to study the stability of equilibrium points. In particular, we will
use the following result [28, 49]: As τ12 is increased from zero, the number of roots of (3.7)
with positive real parts can only change if some roots pass through the imaginary axis.

Consider first the case γ2 < 1. When τ12 = 0 both roots of (3.7) have negative real
parts and the equilibrium point, (x∗, y∗) is asymptotically stable. Using the result above, we
conclude that there can only be a change of stability of the equilibrium point at a value of
τ12 such that λ = iω is a root of (3.7). Substituting this into (3.7) and separating the result
into real and imaginary parts yields the following equations

1− T1T2ω
2 = γ2 cos 2ωτ12,

(T1 + T2)ω = −γ2 sin 2ωτ12.

Squaring and adding these equations yields the following condition on ω

1 + (T 2
1 + T 2

2 )ω2 + T 2
1 T

2
2ω

4 = γ4.

Since γ2 < 1. This implies that the condition cannot be satisfied for any ω. We conclude
that there are no pure imaginary roots of (3.7) for any value of τ12 > 0 and the equilibrium
point must remain asymptotically stable for all τ12 > 0.

Now consider the case γ2 > 1. for τ12 = 0, one root of (3.7) is positive and thus (x∗, y∗)
is unstable. Consider just the real roots, λ, of (3.7) when τ12 > 0. These must satisfy
g(λ) = 0 where g(λ) = T1T2λ

2 + (T1 + T2)λ + 1 − γ2e−2λτ12 . Now g(0) = 1 − γ2 < 0 and
limλ→∞ g(λ) > 0. Hence, since g(λ) is continuous, there must be a λ > 0 such that g(λ) = 0
for all τ12 > 0. Thus (x∗, y∗) is unstable for all τ12 > 0.

Finally, we note that when γ2 = 1 the characteristic equation (3.7) has a zero root for
τ12 ≥ 0, thus the stability is not determined by the linearization.

In summary, for γ2 6= 1, the stability of equilibrium points is unaffected by the presence
of the delay and can determined for any τ1 ≥ 0, τ2 ≥ 0 by the slopes of the nonlinearities at
the equilibrium point.

It should be noted that when there are three equilibria in the first quadrant it is possible
to write (3.1) in the form of two mutually excitatory neural populations [41, 42]. In this case
it was shown by Pakdaman et al. [42], using the theory of monotone dynamical systems,
that the stability of the three equilibria is independent of the delay.

While the stability of the equilibrium points is unaffected by the presence of the delay,
describing the basins of attraction of the equilibrium points becomes considerably more
complex. To see this, note that when the delays are zero, the basins are subsets of the plane.
However, when at least one delay is not zero, the basins are subsets of an infinite dimensional
space consisting of the set of all initial functions for the delay differential equation. Pakdaman
et al. [42] have studied the basins of attraction for (3.1) by considering a restricted set of
initial functions. Even with this restriction they found that the delay could have profound
effects on the basins of attraction. In the following we will explore the implications of this
when (3.1) is interpreted as a model for decision making.
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Figure 4: Dynamics of (4.1) as a function of time delay under conditions when three equi-
libria co–exist. When τ = 0 the initial condition was either (0.19, 0.19) (solid line) or
(0.199999, 0.199999) (dotted line). When τ 6= 0 the initial condition was (0.19, 0.19) and the
initial function was (X(s), Y (s)) = (0.19, 0.19) for s ∈ [−τ, 0). Values of the parameters are
the same as in Figure 3. In order to facilitate comparison to the no delay case in a) in b),
c), and d) we multiplied the time unit by τ .

4. Decision making

In the remainder of the paper we focus on the case where three equilibria co–exist. For
simplicity we take τ ≡ τ1 = τ2. Using the change of independent variable t→ t/τ , (3.1) can
be re–written as

ẋ = −τ ′x− τ ′S2(y(t− 1)) + τ ′I1
ẏ = −τ ′y − τ ′S1(x(t− 1)) + τ ′I2

(4.1)

where we have taken T ≡ T1 = T2 and τ ′ = τ/T .

4.1. Past history and decision making

When τ = 0 the decision made by the network corresponds to the choice of the initial
condition (X0, Y0). Thus if (X0, Y0) lies to the left of ‘U’ in Figure 3 the decision will be A,
and if (X0, Y0) lies to the right the decision will be B. We choose (0.19, 0.19) to be close, but
left of ‘U’, and ask how long does it takes the solution to settle onto decision A. Figure 4a
shows that it takes 25–35 time units for the solution corresponding to this initial condition
to settle on decision A. It should be noted that since the separatrix is the stable manifold of
a saddle-type equilibrium point, the closer we choose (X0, Y0) to the separatrix the longer it
takes the network to settle on a decision (see dotted line in Figure 4a).

When τ 6= 0 the decision by the network is determined by the initial condition (X0, Y0)
and the initial function (X(s), Y (s)), s ∈ [−τ, 0). There are two consequences. The first
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consequence is that the behavior close to the separatrix is changed. This can be illus-
trated by choosing (X0, Y0) = (0.19, 0.19) as in Figure 4a and the constant initial function
(X(s), Y (s)) = (0.19, 0.19), s ∈ [−τ, 0) and then varying τ . When τ = 1 the time it kaes the
solution to settle monotonically onto decision A is slightly longer, about 55− 60τ time units
(compare Figure 4a to Figures 4b,c,d). However when τ is larger the transient state becomes
oscillatory and it takes longer to settle on a decision; in this case decision B (compare Fig-
ure 4b to Figure 4c,d). The length of the oscillatory transients, or metastable states [23, 41],
increases (compare Figure 4c to Figure 4d). These oscillatory metastable states correspond
to a type of indecisiveness in which the network wavers between two decisions before finally
choosing one. A surprising observation that the time spent wavering can be much longer
than the delay τ .

Figure 5: Influence of past history on the decision making behavior of (3.1). As discussed in
the text, the initialization has been divided for convenience into the an initial condition at
t = 0 and an initial function for t ∈ [−τ, 0). a) The initial function is chosen to be constant
near the ‘A’ decision, (0.02, 0.4), (see Figure 3) and the initial condition is taken to be near
the ‘B’ decision, (0.43, 0.07). b) The initial function is chosen to be constant near the ‘B’
decision, (0.43, 0.07), and the initial condition is taken to be near the ‘A’ decision, (0.02, 0.4).
The solid line is y(t) and the dashed line is x(t).

The second consequence is that the past history affects the decision making process
described by (4.1). This can be illustrated by choosing (X(s), Y (s)) to place the network in
one basin of attraction and then determining the effect of different choices of (X0, Y0) in the
other basin of attraction. The important point is that by choosing (X0, Y0) and (X(s), Y (s))
to correspond to different sides of the separatrix, the solution trajectories are forced to cross
the separatrix. In Figure 5a the initial function is close to A and the initial condition is close
to B. In this situation, the network still reaches the decision A, unlike what would occur
with τ = 0. We refer to such a situation as an incorrect decision. In Figure 5b the initial
function is chosen to be close to decision B and the initial condition to be close to decision
A. In this case the network obtains the same solution as would be obtained when τ = 0,
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Figure 6: Relationship between the initial function, the initial condition, and decision making
by (4.1). The initial functions were constructed using (4.2). For each choice of the initial
function constructed by choosing ts, the initial values of x and y were varied in order to
locate the position of the separatrix. The area to the right of each separatrix corresponds to
initial conditions that resulted in decision B, i.e. as ts increases the initial choices of x and
y that result in B increases. The solid line shows the separatrix when τ = 0.

namely A. It should be noted that in each case the solution initially becomes confined near
the boundary than separates the two decisions, i.e. (0.19, 0.19), and thus it takes 30 − 35τ
for the network to settle on its decision.

Figure 6 summarizes the decision making behavior of (4.1) as a function of constant past
histories of the type used in Figure 5. This figure was constructed by the choosing initial
function

(X(s), Y (s)) =

{
A if −1 ≤ s < ts
B if ts ≤ s < 0

(4.2)

where ts is a time that divides the initial function into two parts, and then running simula-
tions varying the initial condition (X0, Y0). For each value of ts a separatrix is shown, which
divides the initial conditions into those which lead to decision A (left of the separatrix) from
those which lead to decision B (right of the separatrix). When ts = −0.5 the location of
the separatrix is approximately the same to that obtained when τ = 0 (dotted line). As
ts → −1, the separatrix shifts towards the A decision. For any ts < −0.5, incorrect decisions
(i.e. B) are made when (X0, Y0) are chosen within the area between the separatrix for the
current ts and that for ts = −0.5.

4.2. Choking

Our hypothesis is that choking occurs when inputs to both neural populations involved in
the decision making process are high and the inputs contain both relevant and irrelevant
information (see Section 2). It is reasonable to model the irrelevant information as additive
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random perturbations, i.e. “noise”, and thus (4.1) becomes

ẋ = −τ ′x− τ ′S2(y(t− 1)) + τ ′I1 + σξ(t)
ẏ = −τ ′y − τ ′S1(x(t− 1)) + τ ′I2 + σξ(t)

(4.3)

where ξ(t) describes uniformly distributed “white” noise.
The dynamics exhibited by bistable, retarded dynamical systems acting under the influ-

ence of noise are very complex (see, for example, [9, 15, 19, 23]), and are not yet completely
understood. Here we draw attention to the effects of noise for different choices of the initial
function and condition (Figure 7). Overall noise does not eliminate the indecisive state,
but can affect the decision outcome. Figure 7a shows consecutive realizations of (4.3) when
the initial condition and function are chosen for the case when the decision making network
makes the incorrect decision (Figure 5a). Although high intensity noise (σ = 0.3) can cause
the network to make the correct decision (3 out of 14 consecutive trials) it remains biased
towards making the incorrect decision. A bias towards the solution determined by the choice
of initial function is also seen when the network continues to make the correct decision even
in the presence of high noise (σ = 0.3; Figure 7b). However, a very different result is ob-
tained when the initial function and condition are chosen to place the trajectories near the
boundary separating the two basins of attraction for at least time τ , i.e. during the period
of time when the network is indecisive (Figure 7c). In this case the effect of the irrelevant in-
formation during this critical period is to cause the network to randomly reach its decisions:
sometimes it chooses A, other times B. Overall the number of times the network chooses
A is about the same number of times it chooses B, i.e. the decision making ability of the
network under these conditions is no better than chance.

5. Discussion and conclusions

Our observations suggest a scenario for the failure of a decision making neural network. A
condition for failure is that the stimulus for both neural populations (I1 and I2) must be
greater than the magnitude of the inhibitory interactions between them (given, respectively,
by c2 and c1). Consequently the decision making neural network exhibits bistability, i.e. both
decisions (attractors) co–exist. In the context of this hypothesis, the changing interpretation
of ambiguous figures, such as the Necker cube in Figure 1, would arise because the input
to both neural populations is simultaneously high enough. A mathematical requirement for
the existence and uniqueness of solutions in a bistable dynamical system is that every pair
of attractors must be separated by an unstable object. Typically this takes the form of a
saddle–type object, with the stable manifold of this object forming a separatrix between
the basins of attraction of the two attractors. Since the decision making neural network is
time–delayed, it is possible that the initial condition and the initial function can lie, at least
in part, on opposite sides of the separatrix. As a result the decision making behaviors of
the network become dominated not only by the presence of the attractors, but also by the
presence of the saddle object. In particular the trajectories can become transiently confined
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Figure 7: Effect of irrelevant information on decision making for different choices of the
initial function and initial condition: a) the initial function and condition as in Figure 5a;
b) the initial function and condition as in Figure 5b; and c) the indecisive regime, i.e. the
initial function and condition are both (0.19.0.19), i.e. close to ‘U’ in Figure 3. The irrelevant
information consists of additive white noise, uniformly distributed on [−0.5, 0.5] with σ = 0.3
in a) and b) and σ = 0.1 in c). Remaining parameters are the same as used in Figure 5.

for times longer than τ in the near neighborhood of the separatrix (see also Reference [23]),
i.e. the network becomes temporarily indecisive. When the noise level is very low, the effect
is to cause history–dependent errors in current decision making. When the noise level is
sufficiently high and depending on the choice of initial function and condition, it becomes
possible that decisions are made by chance. This is in contrast to bistable systems with no
delay (τ = 0): in this case even low noise can blur the boundary between basins of attraction
of the stable states thus effectively eliminating the influence of the initial condition. Our
results suggest that for bistable dynamical systems with delay the influence of past history
is not necessarily destroyed by noise.

Central neural conduction time delays are typically of the order of 10–100 milliseconds,
see, for example, [22, 33]. However, psycho–physical and neurophysiological measurements
suggest that decision making takes much longer, for example hundreds of msec [5, 54, 56].
One explanation for the long time to make decisions is that it reflects slow dynamics of certain
receptors, such as the NMDA receptor [56]. However, our modeling efforts emphasize that
the slowness of the decision making process may be related to the properties of a time–
delayed and bistable dynamical system. A consequence of time delays in a bistable system
is the generation of long–lived metastable states [41] and hence the time it takes to make
a decision can be very much larger than the time delay. Thus decision making provides an
example of a neural network behavior that is largely shaped by the effects of the unstable
steady states. Other examples in which dynamics are shaped by similar instabilities occur
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in stick balancing at the fingertip [9] and reverse accommodation of neurons [1, 44]. These
effects become particularly important when there is an interplay between time delays and
noise [36].

Decisions made by the nervous system are thought to be made on the basis of both
internally–guided and externally–guided influences [11, 46]. A vexing problem has been to
understand why decision errors arise when these two influences are in conflict. This is par-
ticularly true in human subjects with frontal lobe dysfunction who perseverate, i.e. subjects
who continue to repeat a previously appropriate response even though the repeated response
is no longer appropriate [12, 34]. Qualitatively similar, but typically much less severe, re-
sponses arise in many decision making contexts ranging from the interaction between visual
and anticipatory biases in adaptive decision making tasks in primates [11] to the voting
trends in presidential elections [55]. Previous explanations have either attributed these phe-
nomena to the role played by different anatomical loci [11, 34] or, in the context of neural
networks, to the weakening of signals between sensory and reinforcement loci [30]. Here we
have used a simple decision making neural network with delay to argue that past history
can effect current decision making behaviors, particularly when multiple decisions co–exist.
In the context of a delay differential equation model such as ours, the past history is repre-
sented by the initial function. Unfortunately the effects of the choice of initial function on
the behavior of delay differential equations have received surprisingly little attention. No-
table exceptions are the work of Foss et al. [18, 19], Losson et al. [31], Milton et al. [36],
Pakdaman et al. [41, 42], and Takác [51]. Thus an important first step in translating from
this simple model to experimental investigations at the benchtop will be the development
of mathematical tools to explore the role of the initial function in shaping the behavior of a
retarded dynamical system. One difficulty is that software packages for integrating delay dif-
ferential equations are typically capable of handling only a constant–valued initial function.
An exception is the software package, XPPAUT [14]; however, for this program the manner
in which an arbitrary initial function can be incorporated is not well documented. In the
Appendix we show how this is done. The goal in developing such tools will be to identify
strategies that exploit the dependence on the initial function of the dynamics of time–delayed
mathematical models in order to devise experiments to determine whether effects similar to
those described here can be demonstrated experimentally.

The effects of past history and noise arise in any real spatially distributed dynamical
system in which time delays are a necessary component. Moreover, behaviors, even more
complex than we have discussed here, can arise in situations in which decisions are not
represented by equilibria, but rather correspond to other types of bounded, time–dependent
states such as a limit cycle (see, for example, References [15, 20, 23]). In any case we suggest
that studies of decision making under conditions where this process become fragile are likely
to be important for determining the underlying mechanisms for human decision making.
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Appendix

Here is the XPPAUT program used to study the effects of changes in the initial condition
and function on the behavior of (4.1). The XPPAUT software can be downloaded without
charge from the website http://www.math.pitt.edu/~bard/xpp/xpp.html.

# Equations (3.2)

dx/dt=-x-(c2*(delay(y,tau))^N2)/((t2^N2)+((delay(y,tau))^N2))+i1

dy/dt=-y-(c1*(delay(x,tau))^N1)/((t1^N1)+((delay(x,tau))^N1))+i2

# Define the values of the parameters

par i1=0.5,c2=0.6,t2=0.2,N2=2,i2=0.4,c1=0.4,t1=0.2,N1=2,tau=1

# load in the tables which define the initial function for x (dfr.tab)

# and y (dgr.tab)

table df c:/xppall/dfr.tab

table dg c:/xppall/dgr.tab

# Assign tabulated initial function to initial delay initial function

# Note that it is necessary to enter the initial conditions using the

# IC window for XPPAUT

x(0)=df(-t)

y(0)=dg(-t)

#

# Note that the initial conditions at t=0 must be entered using the IC window

#

# The auxiliary functions are useful in order to check the initial function

aux dlx=delay(x,tau)

aux dgx=delay(y,tau)

# Choose parameters for numerics, plotting, etc.

# Note that it is important to set ‘delay’ to a value larger than tau

@ total=100,dt=0.05,delay=10,xlo=0,xhi=100,ylo=0,yhi=0.5

done

#

# It is necessary to open up three windows in XPPAUT: ICs, Delay, and Param.

# To run program click enter the initial conditions in the ICs window and

# click ’OK’, then click ’OK’ in the Delay window, then ’OK’ in the Param

# window, and then ’GO’ in the Param window. If you have not changed parameter

# values then you can omit clicking in the Param window.

The x and y values for the initial function are stored separately in files names *.tab. The
structure of the *.tab files is as follows:

A # number of pts in the initial function = time delay (tau)/time step

B # integer smaller that the smallest value in the initial function
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C # integer greater than the largest value in the initial function

t - dt

t - 2dt

.

.

.

t- tau
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