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Abstract. For a discrete valuation ring R, let fr(R) be the supremum of the

ranks of indecomposable finite rank torsion-free .R-modules. Then fr(R) =

1,2,3, or co . A complete list of indécomposables is given if fr(i?) < 3, in

which case R is known to be a Nagata valuation domain.

Let R be a discrete valuation ring with prime p and quotient field Q,
and let R* be the p-adic completion of R with quotient field Q*. Define

fr(.R) = sup{rankX: X indecomposable torsion-free R-module of finite rank}.

In this paper, we show that fr(.R) = 1, 2, 3, or oo. This resolves a conjecture
by P. Va'mos that fr(R) = 1,2, or oo.

It is well known that fr(R) = oo in case [Q* : Q] is infinite and fr(.R) = 1

if [Q* : Q] = 1. Call R a Nagata valuation domain if 2 < [Q* : Q] is finite
[Z]. In this case charß* = q > 0; Q* - Q(u) for some unit u of R* with
un = A, a unit of R ; and [Q* : Q] is a power of q [V, R], Examples of Nagata

valuation domains are given in [N] and [V].
Zanardo [Z] shows that if [Q*: Q] — 2, then fr(R) = 2. Moreover, in this

case there are, up to isomorphism, only three indécomposables: R, Q, and
R*. His example showing that fr(R) > 6 for [Q* : Q] = 3 is in error.

Henceforth, assume [Q* : Q] — n > 2. Then Q* is a splitting field for each
finite rank .R-module X ; i.e., R* ® X is the direct sum of a free .R*-module

and a ß*-m°dule. Thus, quasi-homomorphism results of Lady [LI, L3] for
modules over a discrete valuation ring with a fixed splitting field are applicable.

As summarized in [LI, Theorem 1] and proved in [L3, Theorem 5.1], for:
n = 2, there are three strongly indécomposables: R, Q, and R* ;
n = 3, there are five strongly indécomposables: R, Q, R*, C~R (p-rank

1, rank 2), and C+R*  (p-rank 2, rank 3);
n = 4, there are strongly indécomposables of arbitrarily large finite rank, but

all strongly indécomposables are potentially describable (tame representation
type);

n > 5, there are strongly indécomposables of arbitrarily large finite rank, but
a description is generally regarded as hopeless (wild representation type).
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690 D. ARNOLD AND M. DUGAS

Since strongly indécomposables are indecomposable, Lady's theorem yields

fr(.R) = 00 for n > 4. We give an alternate proof by easily constructed examples

in §3. This is sufficient for our purposes and avoids the deep arguments used
in [L3].

The only unresolved case is n = 3. In this case, we show that fr(iî) = 3 and
give a complete list of indécomposables up to isomorphism: R, Q, R*, C~ R,

and infinitely many of p-rank 2, rank 3 (all quasi-isomorphic to C+R*). The

strongly indecomposable .R-module C+R* is the quasi-homomorphism dual of

R* defined in [A 1].

1. Preliminaries

The p-rank of an .R-module X is the R/pi?-dimension of X/pX. Funda-
mental properties of p-rank are given in [Al].

Lemma 1.1 [Al, Proposition 1.3, Lemma 1.5]. Two finite rank R-modules G
and H are quasi-isomorphic if and only if p-rank G = p-rank H, rank G =
rank H, and there is a monomorphism f: G^H. Moreover, quasi-isomorphism
implies isomorphism for modules of p-rank 1.

2. Indécomposables for [Q* : Q] = 3

As noted in the introduction, char g = 3 and Q* = Q(u) for some unit u

of R* with u3 = X, a unit of R. This notation is maintained throughout the
rest of this section.

Define A[u] to be the pure i?-submodule of R* generated by {1, u} . Then

■d[u] = (Q®Qu)nR* is strongly indecomposable with p-rank 1 and rank 2 and,
hence, is quasi-isomorphic to C~R by Lady's theorem. The following lemma
is proved in [Z, Proposition 5] using Kurosch matrix-invariant arguments from
[Al]. However, it can also be proved directly from the definition of A[u] (a

proof is not included).

Lemma 2.1 [Z, Corollary 12, Theorem 8]. The module A[u] is (strongly) inde-

composable. Moreover, if X is an indecomposable R-module of rank < 2, then
X is isomorphic to R, Q, or A[u].

Next let a, b £ R*\R and define A[a, b] to be the pure .R-submodule of

R* e R* generated by (1,0), (0, 1), and (a, b). In particular, QA[a, b] =
Q(l,0)@Q(0, l)®Q(a,b) and A[a, b] = QA[a, b]n(R* ®R*). Up to iso-
morphism, this definition of A[a, b] coincides with that of [Z]. Then A[a, b]
has p-rank 2 and rank 3. A routine argument shows that A[a, b] is (strongly)

indecomposable if and only if {1, a, b} is a Q-independent set. In this case,

A[a,b] is quasi-isomorphic to C+R* by Lady's theorem. Moreover, A[u, u2]
is the quasi-homomorphism dual of R*, noting that R* has p-rank 1 and rank

3.

Lemma 2.2. Suppose that (a, b) and (c, d) are R*-vectors.

(a) If (c, d) = s(a, b)M + P for an inverüble 2x2  R-matrix M, a Q-
vector P, and 0^ s £ Q, then A[a, b] « A[c, d].

(b) Alu^'u^ziAlp'u,^].
(c) If r is a unit of R and j > i, then A[u + p'ru2, pju2] « A[u, pju2].
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INDECOMPOSABLE MODULES OVER NAGATA VALUATION DOMAINS 691

Proof, (a) Define an .R*-automorphism <f> of R*®R* by (j)(x) = xM~x. Then

<j) induces a homomorphism A[c, d] -* A[a, b] since (Q@Q)M~X is contained

in Q © Q and (c, d)M~x — s(a, b) + PM~X. In fact, this is an isomorphism

since A[a, b] and cb(A[c, d]) are both pure rank-3 submodules of R* © R*.
(b) Let A = A[u,p'u2] and B = A[p'u, u2] with i > 1. There is an

.R*-endomorphism <f> of R* © R* defined by

#1,0) = (1,1) = (1,0) + (0,1) €¿,

<f>(0, 1) = (-IT2, -p'w-1 +p2') = -A-H«, P'w2) +P2'(0, 1) £ A,

recalling that w3 = X. Now 0 is an automorphism as

\-u-2   -p'w-'+p2']

has determinant d s -u~2 (mod pR*), a unit of R*. Moreover, cj>(B) is

contained in ^4 since

¿O'm . "2) = />'"(! » 1) + "2(-w-2, -P'w"1 +P2i) = (P'u - 1, p2iu2)

= pi(u,piu2)-(\,0)£A.

It follows that <b: B ^ A is an isomorphism.
(c) Let A = ,4[m , pJu2] and 5 = A[u + p'ru2, pju2], and assume that either

i > 1 or else z = 0 and ru is not congruent to 1 modulo pR*.
Define an R*-endomorphism (/> of R* © R* by

#1, 0) = (1 -p'rw, -p'+;>M2 +p2i+^2A)

= (1,0) -p'r(M,y«2) +p2'+>r2A(0, 1) g ^,

0(0, 1) = (0, 1 -pVA) = (1 -p3'r3A)(0, l)£A.

Then </> is an automorphism if z > 1, since the coefficient determinant d =
(1 -p'Vm)(1 -p3ir3X) s 1 (mod pR*). If i = 0, then ¿ = (1 - ru)(l - Xr3).
Since charQ* = 3,  1 - Ar3 = 1 - (ru)3 = (1 - r«)3, whence rf = (1 - rw)4.
Thus, <j> is an automorphism, as ru is not congruent to 1 mod pR*.

Now (¡>(B) is contained in A since

0(M + p'r«2,p-'w2)

= (u +piru2)<i>(l, 0) +pJu2<j>(0, I)

= (u+p'ru2)(l -p'ru, -pi+jru2 +p2i+Jr2X) +pju2(0, 1 -p3ir3X)

= (u-p2ir2X,pju2-pi+jrX)

= (u,pju2)-p2ir2X(l, 0)-pi+hX(0, l)£A,

recalling that u3 = X. As in the proof of (b), B « cfi(B) = A.
It remains to show that it is sufficient to assume that either z > 1 or else

í = 0 and u is not congruent to 1 modulo pR*. To see this, assume that

z = 0 and ru = I +ps for some s = so + sxu + s2u2 £ R*. Then u + ru2 =
(2 + pso)u + psxu2 + ps2X. Since ps2X £ Q, it follows from (a) that B =
A[u + ru2, pJu2] « A[(2 + ps0)u + psxu2, pju2]. As charQ = 3, 2 + ps0 =

-1 -I-pío is a unit of R*. Thus, B « A[u+ptu2, pju2] for t = (2 -r-pso)-1^
by (a). If i' = p-height(pi) > /, an application of (a) shows that B « A.

Otherwise, j < i' and i' > 1, as desired.
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692 D. ARNOLD AND M. DUGAS

Theorem 2.3. // X is an indecomposable R-module of rank 3, then X is iso-

morphic to R* or A[u,pju2] for some j.

Proof. Note that p-rank X ^ 0 or 3, as X is reduced with no free summands
(see [Al]). If p-rank X — 1, then X embeds in its completion which is

isomorphic to R*. Since R* also has p-rank 1 and rank 3, X « R* by
Lemma 1.1.

Now assume that X is indecomposable with p-rank 2 and rank 3. Then X «

A[a, b] with (a, b) = (u, u2)M for some 2x2 .R-matrix M with detM ^
0 [Z]. We outline another proof that avoids matrix invariants. Let Rx © Ry
be a basic submodule of X and extend to a maximal free submodule Rx © Ry

®Rz of X. Then X embeds as a pure submodule of R*x © R*y « (R* ® X)/

d(R*®X), where d(R*®X) is the maximal divisible submodule. It follows that
X « A[a, b], where image z = ax © by for a, b £ R*. Since Q* = Q(«) =

ß © Qu © gw2 , we may write (a, 6) = (m , w2)Af + R for some .R-matrix Af
and R-vector R. Apply Lemma 2.2(a) to see that, up to isomorphism, R may

be chosen to be 0.
In view of Lemma 2.2(a), the isomorphism class of A[a, b] is preserved by

invertible .R-column operations on M. In particular, it suffices to assume that

M is of the form
(Pk    0\

W   Pj)
with z < j and r either 0 or a unit of R. This follows from the observation that

if an element in a row has least p-height, then the other entry in its row can be

set to 0 using an invertible .R-column operation. Moreover, column interchange
and multiplication of a column by a unit are invertible R-operations.

We now have X « A[a, b] with (a, b) = (pku+p'ru2, pJu2), j > i and r

either 0 or a unit of R.
First, assume k < i. Then X « A[u + p'~kru2, pj~ku2] by Lemma 2.2(a).

Moreover, A[u + p'~kru2, pj~ku2] « A[u, pJ~ku2] via Lemma 2.2(c). Thus,

XKA[u,pJ~ku2].

Now assume k > i. Factor out p' and apply Lemma 2.2(a) to assume, up

to isomorphism, that [a, b] = [pk~'u + ru2, pj~'u2]. If r = 0, then X «
A[a, b] « A[u, p'u2] for some t, obtained by factoring out p^Mk-i,j-i} ano\

applying Lemma 2.2(b) in the case k - i > j - i.
Finally assume that r is a unit. Then X « A[a, b] — A[ru2 +pk~'u, pj~'u2]

« A[u2 + p'r'u, pJ'u2] for i' - k - i, f = j - i, and r' - r~x (Lemma

2.2(a)). Since (w2)2 = uX, substituting v for u2 in the latter term and rela-

beling exponents and units gives X ss A[v +p'rv2, pJv] for a unit r = r'/X of

R. Invertible .R-column operations on

(\     PJ)\p'r    OJ

reduce to the case that X « A(v+p'rv2, pi+jv2). However, Q* = Q(u) - Q(v)
with v3 = X2, a unit of R. Thus, Lemma 2.2, with u replaced by v, is

true. The argument of the first case then shows that X « A[v , p'v2] for some

/. Hence, by Lemma 2.2, X « A[u2, p'Xu] « A[u2, p'u] « A\p'u, u2] «
A[u, p'u2], as desired.

For finite rank torsion-free .R-modules G and H, define Sc(H) to be the
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INDECOMPOSABLE MODULES OVER NAGATA VALUATION DOMAINS 693

image of the evaluation map Hom(t7, H)®r G -> H. Fundamental properties
of SG(-) are given in [A2, Chapter 5] for torsion-free abelian groups of finite

rank.

Proposition 2.4. (a) If A[u, p'u2} « A[u, p'u2}, then i = j.
(b) There are embeddings A[u,p'u2] -► A[u,p'~xu2] and A[u,p'~lu2] -*

A[u, p'u2]. In each case the image has index p.

(c) If G and H are indecomposable with p-rank 2 and rank 3, then Sg(H) =

H.

Proof, (a) can be proven as in [Z, Proposition 16] for the case i = 0, j - 1.
We outline an alternate proof that avoids matrix invariants. An ^-isomorphism
cf>: A - A[u,p'u2] -> B - A[u,pju2] lifts to an R*-isomorphism of com-

pletions (f>*: A* = R* ®R* -* B* = R* © R*. Since tf>(u,p'u2) £ B and
cj>~x(u, p'u2) £ A, it follows from a computation of p-heights that i — j.

(b) There is a monomorphism /: A[u, p'~xu2] -* A[u, p'u2] induced by an

R*-endomorphism <f> of R* ©R* with 0(1, 0) = (1, 0) and <f>(0, I) = (0, p).
Moreover, there is a monomorphism /': A[u,p'u2] —» A[u, p'~xu2] induced

by <f>'(l, 0) = (p, 0) and <f>'(0, 1) = (0, 1). Note that ff'=p and f'f = p.
Hence, if H¡ = A[u,p'u2], then pH¡ is contained in image/. But p-rank

Hi —2 and H¡ is not isomorphic to H¡-\ by (b). It follows that //¿/image/ «

R/pR. Similarly, //,_, /image /'« R/pR.
(c) For i > 1 and for </>' and <f> defined as in the proof of (b), there is g :

A[p'~xu, u2] -* A[p'u, u2] induced by </>' and g': A[p'u, u2] —► A[p'~xu, u2]

induced by </> with gg' = p and g'g = p. It now follows that if G¡ -
A[p'u, u2], then G,/imageg « R/pR « G¡-X/image g'.

In view of Theorem 2.3, it is sufficient to show that

/ © SigS-_\ : Hi-, © Hi., - Hi   and   /' © ¿,_,g'ô~'://,© //, -» //,_,

are onto, for S¡ the isomorphism (7, = A[p'u, u2] -* A[u, p'u2] = H¡ given in

Lemma 2.2(b). Assume that f®Sigô~_\ is not onto. Since Hi/pH,: w R/pR®

R/pR and p//, is properly contained in both the image of / and the image

of ôjgô~_\ , it follows that image/ = imageôigS~}x. Hence, /«$,-_i(G,-_i) =

o¡g(Gi-x) ■ But this is a contradiction, as can be seen by observing that / is

a restriction of tf> and g is a restriction of cf>'. The proof that f ®ô~lg' is
onto is analogous.

Lemma 2.5. Assume that X is a finite rank R-module with submodule K such

that A = XIK « A[u] or A[u, p'«2] for some i>0. If SA(X) = X, then K
is a summand of X.

Proof. It suffices to prove that End(/i[w]) and End(A[u, p'u2]) are commu-

tative. This is a consequence of [AR2, Theorems 5.6 and 5.8] as the abelian
group proof therein carries over to modules over discrete valuation rings. Recall
that A[u] has p-rank 1 and is reduced. Hence its completion is isomorphic to
R*. In particular, End(/i[w]) is isomorphic to a subring of R*. Moreover,

A[u, p'u2] is quasi-isomorphic to A[u, u2] which is the dual of R*, as noted

above. Thus, ßEnd(^[«, p'u2]) = QEnd(A[u, u2]) = QEnd(R*) = QR*. It
follows that End(v4[w,p'w2]) is commutative.

Theorem 2.6. If X is a finite rank R-module, then X is the direct sum of

modules of rank < 3.
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694 D. ARNOLD AND M. DUGAS

Proof. Choose pure strongly indecomposable submodules X¡ of X with
X/(XX © • • • © Xm) pfc-bounded. Each X¡ is isomorphic to R, R*, Q, A[u],

or A[u, pru2] for some r > 0 by Lady's theorem, Lemma 2.1, and Theorem

2.3. If Xj is isomorphic to the pure injective module R* or Q, then X¡ is a

summand of X. Moreover, if X,m R, then X has a cyclic summand, since
X modulo the pure submodule generated by {Xj : j ¿ i} is isomorphic to R.

We may now assume that each Xj is isomorphic to A[u] of some A[u, p'u2].

By induction on rankX and \X/(XX © • • • © Xm)\, it suffices to further assume

that X/(XX ©• • -®Xm) ss R/pR and prove that X has a summand of rank < 3.

Write X = (X\ ® ■ ■ ■ ® Xm) + R(xx H-1- xm)/p. Let K be the pure submodule
of X generated by {Xj : j / 1} and A — X/K, quasi-isomorphic to Xx. Then
A has p-rank 1, rank 2 or p-rank 2, rank 3 and has no free summands, being

quasi-isomorphic to a strongly indecomposable X\. Hence, A is indecompos-
able [Al, Proposition 4.1].

It is now sufficient to prove that Sa(X) = X, in which case X has a sum-
mand isomorphic to A of rank < 3 by Lemma 2.5. There is some Y = X¡,

say i = 1, with Sy(Xj) = Xj for each j . This follows from the natural exact

sequence A[u, pru2] -» A[u] -> 0, Proposition 2.4(c), and the assumption that

each Xj « A[u] or A[u,pru2]. Moreover, for A — X/K « Xx +R(xx/p),

Sa(Xj) = Xj for each j, again by Proposition 2.4(c) or Lemma 2.1 and the
fact that A is indecomposable.

Write X\ = pXi + Rx¡, an indecomposable module for the same reason that
A is. For each i, there is y,■ £ A, a unit r, of R, and f i : A -* X\ with
fiiyi) = r¡Xi (mod pX¡). This is because if X\ = SA(X¡) is contained in pX¿,
then Xi £ pXi and letting r, = 1 will do. Note, for future reference, that we
may as well assume that f¡(y¡) = x¡ (mod pX¡). To see this, choose a unit i,

of R with 1 = r¡s¡ +pt¡, t¡ £ R. Then Sifi(y¡) = x¡ (mod pX¡), as desired.
We begin with the case m = 2 and find x £ A and g,■: A —► X[ with gx (x) =

xx (modpXi) and g2(x) = x2 (modp^). If either fx(y2) = sxxx (modpA"i) or
y^CVi) = s2x2 (mod pX2) for units 5i, s2 of R, then let a: = y2, respectively,
x = Vi. Otherwise, /i(v2) £ pXx and ^(yi) € pX2. In this case, let x =

yx+y2. In any case, there are units U of R with /(jc) = t¡x¡ (mod pX,). As

above, choose g¡ to be an appropriate .R-unit multiple of / .
Next let A' = pA + Rx, an indecomposable submodule of A for the same

reason that A is indecomposable. Restriction induces a well-defined (f> = gx®
g2: A' -+ pX — pXx®pX2+R(xx®x2) with cß(x) £ (xx®x2) +pXx®pX2. Since
Sa(A') = A' by Proposition 2.4(c) and SA(X¡) = X¡ for each z, it follows that
SA(pX) = pX and so SA(X) — X. This completes the proof for m = 2.

We illustrate an induction argument with m = 3. From the m = 2 case

Sa(Xx2') = Xx2i for Xi2' = p^i ©p^2 + R(*i © x2). Consequently, there is

x £ A and gx2: A ^ Xx2< with gx2(x) = (xx®x2) (modpXx®pX2). Otherwise,
x\ ®x2 £ SA(XX2>) — Xx2t is contained in pXx ®pX2. Recall that there is y^ = A

and fi: A -» X\ with h(y-f) = x3 (modpX3). If f¡(x) = 53X3 (modpX3) for
some unit S3 of R, then let a - x. If ^12(^3) = s(xi©X2) (modpXiSp^) for
some unit s of R, then let a = y3. Otherwise, let a = x + y3. It follows that

a £ A with gx2(a) = r(xx ®x2) (modpA") ®pX2) and /3(a) = r3^3 (modp^)
for units r and r3 of R. As in the m = 2 case, we may assume that r =

r3 = 1  and construct <f>: A' — pA + Ra -* pX with <j>(a) = (xx ® x2 ® jc3)
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INDECOMPOSABLE MODULES OVER NAGATA VALUATION DOMAINS 695

(mod pXx ®pX2 ®pX3). It follows, as above, that SA(X) - X.
The proof is concluded by an induction on m ; the argument for passing

from m to m + 1 is analogous to that of the preceding paragraph.

3. INDECOMPOSABLES FOR  [Q* : Q] = « > 4

The following are examples showing that fr(R) — 00 for [Q*: Q] = n >

4. The detailed computations needed to verify that the modules are actually
strongly indecomposable are omitted.

Example 3.1. Assume n > 4. Given m > 2, there is a strongly indecomposable

.R-module with p-rank m and rank 2m.

Proof. Case I: char Q* > 5. Since Q* is purely inseparable over Q, there
is u £ R* such that 1, u, u2, u3, and z/4 are ß-independent. Let M be an
m x m simple Jordan block .R-matrix, i.e., the diagonal elements of M are a
fixed unit X of R, the super diagonal elements are all l's, and the remaining

entries are 0. Define X = A[T] = (R*)m n (Qm © ß"T), where T = uM+u2Im ,

and .R-module with p-rank m and rank 2m.
It can be shown that End(X) is represented by the set of 2m x 2m R-

matrices ("n) ^th TIM-Mil. This can be seen by equating ß-coefficients

1, u, u2, u3, and w4. Consequently, ß End(Z) « Q[M] « Q[x]/((x - X)m) is
a ring with no nontrivial idempotents, whence X is strongly indecomposable.

Case II: char Q* = 3. If there is u £ R* with 1, u, u2, u3, and u4 Q-
independent, the construction of Case I suffices. Otherwise, there are u,v £ R*
with u3, v3 £ R and 1, u, v, u2v, v2u, u2v2, u2, and v2 are ß-independent.
Choose M as in Case I, and define X — A\T] for Y = uM + vl. An argument
similar to that of Case I shows that ßEnd(^T) « Q[X]/((x - X)m) and X is

strongly indecomposable.
Case III: char Q* = 2. We are left with two possibilities not covered in Case

I: there is u £ R* with 1, u, u2 , and u3 ß-independent and w4 e R, or there

is u,v £ R* with u2,v2 £ R and {1, u, v, uv} ß-independent. In the first
case, define X = A[T] for T = uM + u3I. An argument similar to that of Case

I shows that X is strongly indecomposable.
For the second case, define X = A[T] for T = uM + vl. Once again, it can

be shown that QEnd(X) has no nontrivial idempotents, but the argument is
slightly more complicated than the previous cases.
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