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Abstract

I. N. Bernstein, 1. M. Gelfand and V. A. Ponomarev have recently shown that the bijec-
tion, first observed by P. Gabriel, between the indecomposable representations of graphs
(“quivers”) with a positive definite quadratic form and the positive roots of this form can be
proved directly. Appropriate functors produce all indecomposable representations from the
simple ones in the same way as the canonical generators of the Weyl group produce all posi-
tive roots from the simple ones.

This method is extended in two directions. In order to deal with all Dynkin diagrams
rather than with those having single edges only, we consider valued graphs (“species™). In
addition, we consider valued graphs with positive semi-definite quadratic form, i.e. extended
Dynkin diagrams.

The main result of the paper describes all indecomposable representations up to the
homogeneous ones, of a valued graph with positive semi-definite quadratic form. These inde-
composable representations are of two types: those of discrete dimension type, and those of
continuous dimension type. The indecomposable representations of discrete dimension type
are determined by their dimension vectors: these are precisely the positive roots of the corre-
sponding quadratic form. The continuous dimension vectors are the positive integral vectors
in the radical space of the quadratic form and are thus the positive multiples of a fixed di-
mension vector. The full subcategory of all images of maps between direct sums of indecom-
posable representations of continuous dimension type is an abelian exact subcategory, which
is called the category of all regular representations. It is the product of two categories U and
H, where H is the largest direct factor containing only representations of continuous dimen-
sion type. The representations in H are called homogeneous and their behaviour depends
very strongly on the particular modulation of the valued graph. One can reduce the study of
the category H to the study of the homogeneous representations of a simpler valued graph,
namely of a bimodule. On the other hand, the structure of the category U can be deter-
mined completely: it is the direct product of at most three indecomposable categories, each
of which has only a finite number of simple objects, is serial, and has global dimension 1.

The indecomposable representations which are non-regular can be described in the fol-
lowing way: there are two endofunctors C* and C™ on the category of all representations,
called the Coxeter functors, such that the list of all representations of the form C™"P and
C*7Q, where P is an indecomposable projective representation and Q is an indecomposable
injective representation, is a complete list of all non-regular indecomposable representations.
Also there is a numerical invariant, called the defect, which measures the behaviour of the
indecomposable tepresentations, and depends only on the dimension type. The defect of a
representation is negative, zero, or positive, if and only if it is of the form C~"P, regular, or
of the form C**Q, respectively.

The paper concludes with tables of all valued graphs with positive semi-definite qua-
dratic form. The tables provide, in condensed form, most of the information which is avail-
able about the representation theory of these valued graphs.
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Introduction

In a recent paper, I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev [2] have shown
that the bijection between the indecomposable representations of graphs (“quivers™) with a
positive definite quadratic form and the positive roots of this form observed by P. Gabriel
[8] earlier, can be proved directly. They have introduced certain functors which allow to
construct all the indecomposable representations from the one-dimensional ones in the same
way as the canonic generators of the Weyl group produce all positive roots from the basic
ones.

In this paper, we are going to extend this result in two directions. On one hand,
we shall consider valued graphs (and therefore “species” of [9], [4]) instead of graphs in or-
der to deal with all Dynkin diagrams rather than with those having single edges only; in this
way, we recover previous results of ours [4]. And, on the other hand, we shall consider also
valued graphs with positive semidefinite form (i.e. the extended Dynkin diagrams) and de-
scribe, up to the homogeneous ones, all their indecomposable representations. In the case of
extended Dynkin diagrams with single edges, this yields the previous results of L. A. Nazarova
[15] and P. Donovan and M. R. Freislich [7].

A valued graph (T, d) is a finite set I' (of vertices) together with non-negative integers
d; for all pairs 7, j € T" such that d;; = 0 and subject to the condition that there exist (non-zero)
natural numbers f; satisfying !

dyf; = dyf; forall i, jE€T.

In addition, we shall always assume that the valued graph (T, d) is connected in the sense
that, for every k, / €T, there is a sequence k, . . . , 7, j, ..., I of vertices of I" such that
d;; # 0 for each pair of subsequent vertices , /. Note that d;; may differ from dj;, but that
dy # 0 if and only if d;; # 0; let us call such pairs {i, j} the edges of (I", d), and the ver-

tices 7, j neighbours. In notation, we shall use the symbol ; — H for the edges of

I, d); if di,- =1= dﬁ, ;- Let us remark that one can prove easily
that every tree (graph without circuits) can be turned into a valued graph by choosing pairs
(djj, d;;) of arbitrary natural numbers (# 0) for all edges of that tree.

An orientation £ of a valued graph (T", d) is given by prescribing, for each edge {i, j}
of (I', d), an order (indicated by an arrow: ; — 7). Given an orientation £2 and a vertex
k €T, define a new orientation 5,2 of (I', d) by reversing the direction of arrows along all
edges containing k. A vertex k € T" is said to be a sink (or a source) with respect to  if
i < (or ; — ) for all neighbours i €T of k. And, an orientation Q of (T, d) is said to
be admissible if there is an ordering k, k,, . . ., k,, of T" such that each vertex &, is a sink

we write simply »

Received by the editors December 13, 1974.
1 Observe that there is a one-to-one correspondence between valued graphs and symmetrizable
Cartan matrices (see [12]).



2 VLASTIMIL DLAB AND CLAUS MICHAEL RINGEL

with respect to the orientation Skpq U7 skzskl.Q for all 1 < ¢ < n; such an ordering is
called an admissible ordering for 2. It is easy to see that an orientation §2 of the valued
graph (T, d) is admissible if and only if there is no circuit with orientation i — i, — A
e =i therefore, in particular, every orientation of a tree is admissible.
t—1 t™'1
A modulation M of a valued graph (T, d) is a set of division rings F;, i € T, together

with an F-F;-bimodule M; and an F}-F, -bimodule ]-M,- for all edges {i, j} of (I, d) such tha
(i) there are F;-F;-bimodule isomorphisms :
M= Hompi(,-Mj, F)=~ HomF]_(l-M]-, F)
and
(i) dim GMy)p, = d;.
A realization (M, Q) of a valued graph (T", d) is a modulation M of (', d) together with
an admissible orientation Q2. A representation X = (X;, ;¢;) of a realization (M, Q) of
(T', d) is a set of finite-dimensional right F-spaces X;, i € T', together with F-linear map-
pings
19 X; ®Fi M; — X;
for all oriented edges? gt A morphism a: X — X' from a representation X = X; ]-gpi)
to X' = (X], ;¢;) is defined as a set a = (a;) of F;-linear mappings a;: X; — X;, i €T,
satisfying
70i(0 ® 1) = o0, for all edges ; — I
One can see easily that the representations of (M, ) form an abelian category which we
shall always denote by LR, Q).
Given a valued graph (T', d), denote by QT the vector space of all x = (xl-)i op over the
rational numbers. In particular, for each k € T", k € Q' denotes the vector with x, =1
and x; = 0 otherwise. Also, for each k € T, define the linear transformation s, :Q" — QT
by s;x =y, where y; = x; for { # k and
Ve =Xt Y dgex;.
i€r
The symbol W = W will always denote the Weyl group, i.e. the group of all linear trans-
formations of QF generated by the reflexions s,, k €. A vector x € of satisfying wx = x
for all w € W will be called stable. A vector x € Q' is called a root (of (T, d)) if there ex-
ists Kk €' and w € W such that x = wk. A root x is said to be positive (or negative) if
x; 20 (orx; <0)foralli €.
Given a representation X = (X, j¢i) of a realization (I, Q), we may define the map-
ping
dim: (M, Q) — QT
by dim X = (x;,), where x; = dim (X, i)F,- forall i €T'. The vector dim X is called the dimen-
sion type of the representation X.
The main result of this paper is the following

THEOREM. Let (T, d) be a valued graph. Let (R, Q) be a realization of (T, d).

2 I . o
We shall show tater that % corl:esponds (bijectively) to an Fplinear mapping ]«pi:X i X g @F]. fMi’
and thus, our definition of a representation coincides with that of P. Gabriel in [9]. Of co

urse, realiza-
tions are called species in [9].



REPRESENTATIONS OF GRAPHS AND ALGEBRAS

(a) Then L(M, Q) is of finite type if and only if (', d) is a Dynkin diagram, i.e. a
valued graph of one of the forms
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Moreover, the mapping dim : L(M, ) — QT induces a bijection between the isomorvhism
classes of indecomposable representations of (M, Q) and the positive roots of (', d).
(b) If (T, d) is an extended Dynkin diagram, i. e. a valued graph of one of the forms
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then the category L(M, ) has two kinds of indecomposable representations: those of dis-
crete dimension types and those of continuous dimension types. The mapping dim: L(M, )
— QF induces a bijection between the isomorphism classes of indecomposable representa-
tions of (M, Q) of discrete dimension types and the positive roots of (I', d). The continuous
dimension types are the positive integral multiples of the least stable positive integral vector
of QY. Moreover, the indecomposable representations of continuous dimension types can be
derived from the indecomposable representation of continuous dimension type of a suitable
realization of the graph 7\11 or 312,

In fact, in the case of an extended Dynkin diagram, we can give a more detailed de-
scription of the category L(IN, ) as follows:

The full subcategory of all direct sums of indecomposable representations of co~ntinu~
our dimension type is closed under images, kernels and cokernels only for diagrams A, and
Ku- However, the full subcategory of all images of maps between direct sums of indecom-
posable representations of continuous dimension type is an abelian exact subcategory of
L(M, ) which will be called the category R(M, Q) of regular representations of (M, 2).
The largest direct factor of R(IMM, ) containing only representations of continuous dimen-
sion type will be called the category H = H(IM, Q) of homogeneous representations. The
category U satisfying R(M, ) = H x U can be described completely: It is an abelian cate-
gory with a finite number of simple objects, and every indecomposable representation be-
longing to U is serial (i.e. has a unique composition series in (/). In fact, U is the direct
product of at most three indecomposable categories, and each of these has global dimension
one. Furthermore, given (MM, Q2), there exists a realization (M', Q') of either Kx L Of Klz
which determines all indecomposable representations of continuous dimension type of
L(M, ) in the following sense: There exists a full exact embedding 7: L(M’, Q) —
L(M, 2) and (at most three) representations X in L(IM', ©') such that the full subcategory
of L(IM', ) of all regular representations without subobjects of the form X is equivalent
to H(IM, Q).

The indecomposable representations of (MM, Q) which are non-regular can be de-
scribed in the following way: There are two endofunctors C* and C~ on the category
L(M, Q) called the Coxeter functors, having the property that the list of all representations
C~™P and C*™Q where m > 0, P is an indecomposable projective representation and Q is
indecomposable injective representation, is just a complete list of all non-regular indecompos-
able representations. The dimension types of these representations correspond to ¢~ ™ (dim P)
and ¢ (dim Q), where ¢ is the corresponding Coxeter transformation. Also, there is a nu-
merical invariant, called the defect, characterizing the behaviouy of indecomposable represen-
tations X in L(IN, ©2): the defect of X is negative, or zero, or positive if and only if X is of
the form C™™P, or X is regular, or X is of the form C*™Q, respectively.

Let us observe that a change in orientation of a valued graph results in a change of the
indecomposable projective and injective representations, as well as the Coxeter functors. Thus,
also the dimension types of the regular representations depend on the orientation. However,
the categories R(M, ©) and R(M, Q) with an arbitrary modulation M and orientations $2
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and £, are equivalent except in the case of the diagram K ; in fact, the equivalences are
glven by furictors similar to the Coxeter functors. For the dtagram A , the category

R(Av\, ) is determined by the number of arrows pointing in one dlrectlon in the orientation
2. Thus, in summary, we may consider in the tables of Chapter 6 a fixed orientation.

The results on the representations of valued graphs can be translated to the theory of
representations of finite-dimensional associative algebras over a field or, more generally, to
certain classes of artinian rings. Indeed, given an artinian ring R, we obtain a valued graph
I = (I, &), of R as follows: Assuming, without loss of generality, that R is basic, we have
R/Rad R =1, ., , F; and Rad R/(Rad R)? = n1<,.’ j<n iV; with uniquely determined di-
vision rings F; and F-Fbimodules ;N;; let {1, 2, . . ., n} be the set of vertices of the graph

d' d" " .
Ty and let, for each ;N # 0, ; €22 - with d' = dim(;N))g; and d° = dimp, (;N;) be a

“valued” edge {i, j}. Now, if for each pair {j, j}, le =0 or N 0, this graph is a valued

graph and M= {F;, ; ]} i<n is a modulation of this graph provided that there exist
numbers f; with d,;f; = f and that the dualization conditions HomF GV, F) =
HomF (;V, I F}) hold. In particular, these are satisfied in the case that R is a finitely gener-

ated algebra over a central field K; then, also the numbers f; can be interpreted as the in-
dices [F;: K]. Define the orientation £ of I'p by : — H if ;N; # 0. In this way, one can
assign to many artinian rings a modulation of a valued graph and an orientation. Conversely,
given a modulation M of a valued graph and an orientation £, the category L(IN, Q) is
equivalent to the category of all right modules over the tensor ring R = Ry, ) defined as
follows: R =@, o N, where § = N® =TI, (., F,, NO) =TI, . . :N;, and N =
NE-D & N for t > 2, with the component-wise addition and the multiplication in-
duced by taking tensor products. If € is, in addition, an admissible orientation, then
R(~JJJ Q) is always an artinian hereditary ring. From here, one can deduce the fact that a
hereditary finite-dimensional K-algebra R if of finite representation type if and only if
(T, d) is a disjoint union of Dynkin diagrams. In fact, through the above translation, one
can obtain in this case a complete description of the category of R-modules. In a similar
way, a complete description can be also given for the category of all modules over a finite-
dimensional K-algebra R with (Rad R)? = 0 using the so-called separated diagram of R. For
a more detailed account on these questions, we refer to [9] and [4].

The definition of a valued graph excludes graphs with loops and multiple edges. Also,
we consider only orientations which are admissible. In particular, the graphs

and A (n > 1) with the cyclic orientation

T~

* —> = — s —> -

0 1 2 n
do not appear explicitly in the paper. Some of these are of importance in applications; in-
deed, the classification of representations of A, leads to Jordan normal forms of square
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matrices and the classification of representations of - leads to the Kronecker’s classifica-

tion of matrix pairs. However, it is easy to see that the representations of A (n > 0) with
respect to the orientation

— > . >

0 1 2 n

can be identified with the representations X of A, , with respect to the orientation

. 3 o —

> o

0 1 2 n n+1
such that the mapping X, «<— X,, . is the identity. Also, the category of all representations
of the graph

;. dy) 1 P

* with respect to the realization F,

d,p )

is precisely the category of all representations of the valued graph

Ed, 2 d) eaFleF2
» —————— + with respect to the realization F;

F,.

The above theorem improves the previous results of P. Gabriel [8, 9], M. M. Kleiner,
L. A. Nazarova and A. V. Roiter [16, 11], the authors [4], W. Miiller [13] and 1. N. Bern-
stein, I. M. Gelfand, and V. A. Ponomarev [2] in the part (a) and those of L. A. Nazarova
[14, 15], I. M. Gelfand and V. A. Ponomarev [10] and P. Donovan and M. R. Freislich [7]
in the part (b). It has been announced at the “Workshop on Indecomposable Representa-
tions”, Universitit Bonn, November 1973 and a summary appeared in [S]. A preliminary
version of this paper appeared as Carleton Mathematical Lecture Notes [6]; a major change
is the addition of the fifth chapter. The idea of describing the category R(W, Q) by find-
ing its simple objects and their extensions is due to P. Gabriel [unpublished]. In fact, he
used this method to present the results of [10] (i.e. the representations of the extended
Dynkin diagram D 4) in his course of lectures at Carleton University, Summer 1972. The
authors wish to express their gratitude to him for introducing them to the subject.

The first chapter of the paper deals with the theory of valued graphs and provides a
listing of all positive roots of valued graphs with a positive (definite or semidefinite) quadrat-
ic form by means of a given Coxeter transformation. In particular, in the semidefinite case,
a general definition of the defect of a vector in QT is given. As counterpart to the Coxeter
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transformations, the Coxeter functors are defined and studied in the second chapter. The re-
sults of these chapters furnish, in particular, the arguments for the proof of part (a) and the
description of all indecomposable representations of non-zero defect in part (b) of the Theo-
rem. The third chapter deals with the theory of indecomposable representations of zero de-
fect which is then applied to determine all simple representations of zero defect in the follow-
ing fourth chapter and to advance the proof of part (b) of the Theorem. Moreover, the re-
sults of Chapters 3 and 4, provide a further refinement of the part (b) which is stated in
Theorem 3.5. The description of the homogeneous representations in terms of representa-
tions of the graphs Kl , and KIZ is given in Chapter 5. And, finally, the results on extended
Dynkin diagrams are tabulated in Chapter 6.

1. VALUED GRAPHS: COXETER TRANSFORMATIONS, DEFECT AND LISTING OF ROOTS

Let (T, d) be a valued graph and QT the corresponding rational vector space. Define a
symmetric bilinear form B = B on QT as follows: For x,y € QF,

B(x,y) = Z fixyi — % gdiffixiyi'
Thus, the corresponding quadratic form @ = Q. can ’be expressed in the form
O(x) = B(x, x) =;f,xl2 - {Z} dyfix;%;.
Note that B and Q are defined up to a positive ration;i]multiple.
One can easily verify the following

LEMMA 1.1. For every k €T and every x € QF, the linear transformation S of Qr
defined in Introduction has the form
B(x, k) "
Bk, k)

Consequently, s2 = 1 and B (s;x, s;y) = B(x, y) for all x,y of QF.

skxzx—2

The following proposition can be easily derived from Theorems 1 and 4 of N. Bourbaki
[3], VL, 4.

ProrositioN 1.2. (a) (T, d) is a Dynkin diagram if and only if its quadratic form is posi-
tive definite.

(b) (T, d) is an extended Dynkin diagram if and only if its quadratic form is positive semi-
definite.

For the benefit of the reader, we give a brief proof of Proposition 1.2. First, if (T', d) is
a Dynkin, or an extended Dynkin diagram, then a direct calculation shows that Q. is positive
definite or semidefinite, respectively. (The quadratic forms Q. of extended Dynkin diagrams
are listed in Tables, Chapter 6.)

Thus, let Qr. be a positive quadratic form of a connected graph (T, d). Clearly, every
edge {j, k} of (I', d) satisfies djye * dy; < 4; for, taking x € Ql with x; = %dy, x =1 and
x; = 0 otherwise, O(x) = %/, (4 — d;; x dy;). By a similar argument, every pair of edges
{j, k} and {k, I} with dje x dy; = 3 satisfies dy; x dj = 1: o(x) = f(1 —dy,; x dy) for
x € QT with X;=dy; X dpy X = 2dy, x;,=landx; =0 otherwise. Also, every circuit
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contained in (I, d) is of type /N\m, m<n; for,if iy, iy, ..., 1, =i, are its vertices, then,
for x € Q" withx; =1 (0 <r <m)andx; = 0 otherwise, Q(x) = Tt -4, )
Therefore, all d,-H_ vy = 1 and subsequently also all d"rir+1 =1,

Now, in order to complete the proof, it is sufficient to show that the quadratic form
O, of every (full) subgraph (I",d’) of (I", d) is necessarily positive definite. For, as a conse-
quence, no extended Dynkin diagram can appear as a proper subgraph of (T", d) and a
straightforward combinatorial argument establishes both (a) and (b) of Proposition 1.2. Thus,
assume that (I, d') be a minimal subgraph with the property that Q. is not positive definite.
Let {j, k} be an edge of (T, d) such that j EI” and k € I". Let 0 # x’' € QT satisfy
Qp«(x") = 0. Then, in view of minimality of (I, d'), x; # 0 for all i €T". In fact, since
the vector x” whose components are |x;|, i € ", always satisfies Qr.(x") < QpA(x"), we de-
duce that all components of x' are positive or that all are negative. Assume that x} > 0 for
all i €T, and consider the vector x € QT defined by x; = x} for all i € I, X = %dikx;-
and x; = 0 otherwise. Then

w1 1 '
Qr(x) = Qr'(x )~ kadka,-z - _2—12 fka}'kdik»xjx,-,
where the summation runs through all edges {i, X} with i € I'. Thus Qr(x) <0 in contra-

diction to our assumption and the proof is completed.
Following N. Bourbaki [3], the elements of the Weyl group W which are of the form

€= Sp, "t Sk,Skys

where ky, k,, . .., k, are all vertices of T" (in a certain order) will be called Coxeter trans-
formations. Obviously if ¢ is a Coxeter transformation, so is ¢~ '. Note that given ¢ = Sk,
"t* Sy, Sk, » We may prescribe a unique orientation £2, to (T', d) such that the ordering k,,
ky, ..., k, is admissible. On the other hand, to every admissible orientation Q of (T, d),
there exists (in an obvious way) a Coxeter transformation ¢ such that Q, = £, and c is again
uniquely determined. For, if k, k,, ..., k, and k|, k,, . . . , k,, are two admissible order-
ings of I' with respect to £, then s, *-* SkpSky = Sky " SkySky s since s; and s; commute
for any pair of vertices #, j € I' which are not neighbours.

LEMMA 1.3. Let (T, d) be a valued graph and z € QF. Then the following statements
are equivalent:

(i) cz = z for a Coxeter transformation c;
(i) s,z =1z forall Kk ET (. e. wz = z for all w € W);
(iii) B(z,y) = 0 forally € QF.

If, moreover, the corresponding quadratic form Q is positive, then the above statements are
equivalent to

(iv) Q(z) =0.

Proof. letc = Sk """ SkpSky - The fact that (i) implies (ii) follows inductively from
the equality

zi, = (8, ** skr+1sktz)kt forall 1 <:t<n

The latter yields immediately that SkyZ = SkpZ = =8y 2 =12 Also, using Lemma 1.1,
n
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we see that s,z =z is equivalent to B(z, k) = 0. Consequently, since the vectors k form a
basis of QT the statements s,z=zforallk €T and B(z,y) =0 forally € QT are equiva-
lent. And, the equivalenee of (iii) and (iv) is obvious.

DEFINITION. Given a valued graph (I, d), define its radical subspace by

N=N.={x€QF wx=x forall we w)

Thus, if (I, d) is a Dynkin diagram, then N = {0}. And, if (T, d) is an extended Dyn-
kin diagram, then o is a one-dimensional subspace of Q! generated by the “canonic” vector
n = np; these vectors are listed in the tables of Chapter 6. Note that all components of the
vectors n are positive and that, in each case, at least one component of n equals 1. More-
over, it has been shown in [1] that the existence of a positive vector in NV implies that (", d)
is an extended Dynkin diagram.

Notice that the set R = {x € QL |x = wk for some w € W and & € T'} of all roots
satisfies the defining properties (but the finiteness condition) for a reduced root system of
[3]: R generates QT'; for y € R, the linear transformation

_B(x,y)
B(y,y)”
maps R into R; for X,y € R, 2B(x, y)/B(y, y) is an integer; and, if x € R, then 2x ¢ R.
In particular, if x € QT is a root and x = wk, then — x = w(— k) = (ws )k is also a
root. Furthermore, as an immediate consequence of the following more general result, one
of the roots x or — x is always positive (i.e. x; >0 for all i € I').

—x

LEMMA 1.4. Let (I', d) be a valued graph such that the corresponding quadratic form
Q is positive. If x is a positive root and k € T, then either s, x is positive or x = k.

Proof. Let x = wj for a certain j € I'. Since 0 < B(x £ k, x * k) = B(x, x) + B(k, k)
* 2B(x, k), we get . |

Thus, we have for the integer 2B(x, k) the following inequality
= (fy +[H<2BX k) <[+

First, if 2B(x, k) =f, + f;, then B(x — k, x —k) = 0, and thus x —k € N. Thus, if
(T, d) is a Dynkin diagram, then x = k. Otherwise, x = k + An with a suitable integer A.
Therefore, in case that # # 0, s,x = hn — k > 0, because all components of n are > 1.
Second, if 2B(x, k) < 0, then

5 B(x, k)
X=X—4—— .
* B(k, k)

has all components greater or equal to those of x, and is therefore positive..

Finally, let 1 < 2B(x, k) <f, + f] Then, calculating the kth component of
2B(x, k)k = (x — 5. x)B(k, k),

k

we get
1 <2B(x,K) = filxy +x, = 30 djyx)s
N i
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hence, x; > 0, and therefore x; = 1.
Now, 2B(x, k)/B(k, k) <1 + f/f;, and therefore, if f; < fi, 2B(x, k)/B(k, k) < 1. Con-

sequently,

¥ B(x, k)

B(k,k) k

SEx=x—12
is positive.
Thus, we have so far proved our Proposition in the case that f; < f;. If f; > fi. we
shall reduce the problem to this case as follows:

Consider the valued graph (I, d') defined by I = T and d}; = d;;. Note that we may
choose f] = 1/f;. Further, define the delation A :QF — Q' by Ax =y, where

¥; = (Ax); = f;x; for each i €T.
We are going to show that
As, = 5. A
(where s} denotes the involutions of QT"). Indeed, for i #k,

(5, Ax); = (Ax); = fix; = (As;x);5
and,

(5xAX) = = frxy +Zdikfixi
= fr(=x, +Z:d1.kxi) = (A X)-

Now, x = wj, where w is a product of suitable involutions s, ; consider the vector x = w'j,
where w' is the corresponding product of the involutions s;c. Thus

l

1
'Aj=+A
f fid = f, WA J; *
is a positive root in QT'. Since
Op: (x) = Or(j) = <f = Qr.(k),

we see immediately that, according to the first part of the proof,
either X" = k or s, x' is positive.

However, if x' = k, then Ax = f;k implies that x = (f;/f; )k, a contradiction. If s} x' is
positive, then

fisexX —fsk?-Ax = As.x,

and therefore also s, x is positive.
The proof is completed.
V\OHN BQ%G‘HVQ

ProrositioN 1.5. Let (T, d) be a valued graph with a uadratic form. Then
the group W of all linear transformations of QF /N induced by the transformations of Wis
finite.

Proof. Let f be a natural number with fi<fforalli €T. Let M be the set of all

integral vectors x € Q' such that Q(x) <f Let P be a regular matrix which transforms Q
into a diagonal form:
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t
0(x) =Z ¢;y?, where y =xP and 0<¢,;€EQ for 1 <i<r<n

Thus, NP consists of all vectors y = (v;) with y; = 0 for 1 </ <t Let h be the common
denominator of the entries in P; hence, 2P is an integral matrix. Consequently, if x € M,
then hy is an integral vector and, moreover |y;| < \/f/_c for 1 €i <t Therefore, under the
transformation P, M is mapped into a set which is modulo VP finite. Thus, also the set M=
M + N/N is finite.

Now, the group W of the automorphisms on QT/N induced by W transforms M into
itself. And, since M contains a basis of QP/N, W can be embedded into the symmetric
group on M and thus is finite, as required.

Let (T, d) be an extended Dynkin diagram. Proposition 1.5 allows us to introduce a
very important concept, that of the defect 9 .x of a vector x € Q" with respect to a Coxeter
transformation ¢ € W (or, what is the same, with respect to an admissible orientation of
([, d)): If ¢ € W is of order m, then, given x € QF,

¢™x = x+(9,x)n, where 3,x € Q

In this fashion, 9, : Q" —> Qdefines a linear form and thus, for the defect vector 9, =
(0,1) € QF, we have

3.x =Z(6ci)xi.

Notice that, since one of the integral components of n equals 1, all i are integral. Also,

one can se¢ easily that
d,(cx) = a,x.

LEMMA 1.6. Let x = 0 be a positive root of (I', d) whose quadratic form ls—peetﬁve
and let ¢ = Sk, Tt Sk, Sky be a Coxeter transformation of QF. Then

(i) cx } 0 if and only X =Py, for a suitable 1 <t <n, where

Pr, = SkySka 0" Sy Ke
(i) ¢ x $0ifand only if x = U, for a suitable 1 <t < n, where

= k..
e, = knShp_y Skeprt

Proof. This is an immediate consequence of Lemma 1.4.

LEMMA 1.7. Let x be a positive root of (', d) whose quadratic form is positive and
let ¢ = sy " 8,8, bea Coxeter transformation of QY. Then either there exists an inte-
ger r such that ¢"x # 0, or (T", d) is an extended Dynkin diagram and 9 x = 0.

Proof. If (T, d) is a Dynkin diagram, then c is of finite order, say m, and y = =L, ¢'x
satisfies cy = y. Consequently, y = 0 and thus there exists 1 <7 < m — 1 such that
x#0.

If (T, d) is an extended Dynkin diagram, then by Proposition 1.5, the order of ¢ € W
is finite; denote it again by m. Now, if 3,x # 0, then

c*™x = x + s(3,x)n for every integer s.
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From here it follows that, for a suitable » = sm (such that s(d.x) is negative and large in ab-
solute value), ¢"x 2 0.

The following more general results cover the remaining case of a root of defect zero
(see R. V. Moody[12]).

Lemma 1.8. Let (T, d) be an extended Dynkin diagram. Then there exists a natural
number g, 1 < g < 3, (called the tier number) such that the positive roots x of (I', d) are
just the vectors of the form

X = Xg +rgn
with a hon-negative integer r and a positive root X, of (', d) satisfying x4, < gn.

The tables in Chapter 6 provide the values of g and, for a particular admissible orienta-
tion which will be used throughout the paper, the value of 3. For each oriented extended
Dynkin diagram, there exist roots x, < gn with d,x, = 0 such that the other roots x, < gn
with 3_,x, = O are just the vectors of the form

z c'xy, 7,820,
FSt<r+s
which do not belong to the radical space & (and which satisfy the inequality < gn). These
vectors X, can be found in the tables (Chapter 6): They are the dimension types of the first
indecomposable representation in each orbit listed there.

Thus, we may summarize the preceding results and list all positive roots of a valued

graph with a positive quadratic form, '

ProrosiTION 1.9. Let (T, d) be a valued graph and let ¢ be a Coxeter transformation
of QL.
(a) If (T, d) is a Dynkin diagram and m is the order of ¢, let, for each 1 <t <n,
a, be the largest integers such that all ¢c=" Py, with 0 < r < a, are positive. Then the vectors
x=c_'pkt, 0<r<a, 1<t<n
are just all positive roots of (', d). Similarly, if b, is the largest integer such that ail c’qkt
with 0 <r < b, are positive, then the vectors
x=c’qkt, 0<r<b, 1<t<n,
are just all positive roots of (I", d).
(b) If (T, d) is an extended Dynkin diagram, then

(1) the vectors x = c"pkt, 0<r, 1<1<n,are just all positive roots of (I, 4) of
negative defect with respect to c;

(2) the vectors x = ¢’ P 0<r, 1<t <n, are just all positive roots of (T, d) of
positive defect with respect to c;

(3) the vectors x = x, + rgn, r > 0, where Xo < gn with 0,x, = 0 can be derived
from the tables of Chapter 6, are just all positive roots of defect zero with respect to c.

Proof. (a) follows immediately from Lemma 1.7 (with r chosen so that |r| is minimal)
and Lemma 1.6.

(b) is a consequence of Lemmas 1.6, 1.7 and 1.8.
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REMARK. Using the obvious relation
Pk, =~ A, forall 1 <r<n,

and the fact that the number of roots of a Dynkin diagram is mn, (see, e.g. [3]), we deduce
that the set

{x=c"pkt10<r<m—l,0<t<n} ={xzc’qkt|0<r<m—l,0<t<n}

is the set of all roots and thus that the sets defined in Proposition 1.9 (a) have % mn ele-
ments.

Let us conclude this chapter with a remark giving another characterization of positive
roots of an extended Dynkin diagram of defect zero.

REMARK. Given a valued graph (I", d) with a positive form, and a Coxeter transforma-
tion ¢, define in QF a partial order <, as follows:

x <, y if and only if ¢’x < ¢’y for all integers .
Obviously, this order is trivial if and only if (I, d) is a Dynkin diagram. In case of an ex-
tended Dynkin diagram, we can speak about c-positive roots: these are those roots x for

which x 2, 0. Minimal c-positive roots will be called simple c-positive roots.
(a) For a root x of an extended Dynkin diagram (T", d), the following assertions are

equivalent:
(i) x is c-positive;
(i) 9,x = 0;

(iii) c-orbit of x is finite.
This follows immediately from Lemma 1.7. From the tables in Chapter 6, one can see that
in each case, there are at most three orbits of simple c-positive roots. The simple c-positive
roots are labelled there dim Ef’). They are precisely the roots denoted in the remark pre-
ceding Proposition 1.9 by ¢’x,, t 2 0. That remark can be reformulated as follows.

(b) Every c-positive root is a (uniquely determined) sum of simple c-positive roots

from the same orbit.

2. REALIZATION OF VALUED GRAPHS: THE COXETER FUNCTORS

Let F;, F;, Fy, be fields. An FyF;-bimodule ;M; is said to have a dual bimodule if the

F;-F; -bimodules
HomFl,(,.Mj,ﬂ.) and Hoij(,-M]—, Fy)
are isomorphic. For example, if K is a common central subfield of F; and F; such that K
operates centrally on ,-Mj, and if dimg iM]- is finite, then iMi has a dual bimodule. Note
that the F;-F;-bimodule ;Mf; is a dual bimodule to ;M; if and only if there exist nondegen-
erate bilinear forms
e’,::,.Mfngi — F;, €: jMI-gZ; M; — F,.

Given ;M;, the dual bimodule M, (if it exists) is unique (up to an isomorphism), whereas the
bilinear forms €/ and ¢; may vary.3

3 Although they are used in the construction of the Coxeter functors, the category L(I, £1), as
well as all results are, of course, independent of a particular choice of these forms.
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If both bimodules (,-M-) and p.(ka)p have a dual bimodule, then so has the F;-
i
Fk-bimodule ( M) ® ( Mk) .* For, given ;M,, e,, e] and M ek, one considers

My @ iM; together w1th the mappmgs

1®e]®1

€
M; ® ;M @ M ® My ——— M; @ F; @ M~ M; ® ;M — — F;
and e{, 1e e} ® 1), which are obviously nondegenerate.
Now, let ;M; be an F;-F;-bimodule with the dual bimodule ;M;. If (X, i)Fi and (X i)Fi
are vector spaces, then there is a natural isomorphism_

Homp (X; ® ;M;, X)) ~ Homp (X, X; ® ;M.

For, there is the well-known isomorphism

HomF(, M;, X;) ~ X®HomF(, M, F)) =~ X; ® ;M;;

hence, the adjointness of ® and Hom ylelds

Hoij(X,- Q M;, X;)~ HomF X;, HomF (M iy Xj)) ~ HomFi(Xt-, X; ® ;‘Mi)'

Thus, for each F-linear mapping % X & M; — X;, we have attached canonically an
F;-linear mapping ja,?i 1 X; — X; ® ;M;; conversely, for Vit Xy — X; ® ;M;, there corre-
spond a unique ,-113,. . X; ® ;M; — X, and we have jgf,. = jy; and ].Ei = ;¥;. This notation
will be used throughout this paper.

REMARK. Let G be a subfield of F, and assume that the bimodule ¢ Fr has a dual
bimodule. Note that this dual bimodule has to be F;. Denote by K the kernel of the
multiplication mapping F; @ Fp ~“—>FFF. We claim that also ;Fg, g Fg ® o Fp
c\F/G)g and pKy. have dual bimodules. This is obvious for ;Fg = o F, ® pF, and
rFg @ ¢ Fp; both are self dual. There exists a nondegenerate bilinear form Fp ® oF,

— G, but this is just a nonzero map €: o Fg — ;Ggo. Let oL be the kernel of e.
The nondegenerate bilinear form for ; F; is

en: gFg ® Fg = ¢l

and since eu(;Gg ® oLy) =0 = en(gLg ® ;Gg), we conclude that ey induces a non-

degenerate bilinear form on (F/G)g ® 5L, and on gL, ® (F/G)s. Now, for Ky, we
consider the nondegenerate bilinear form

A1 Be®1):pFy ® Fp ® oF, ® cFr — pFr.
Letw=1:F r > Fg ® oFp be the mapping canonically attached to the identity
1:Fp ® pFgz — F, with respect to e; thus, by construction, the map

w®1 ,
FomFp® pFg 20 Fy ® oFy ® pFg —2S Fy ® (Gg ~ Fg

is the identity. Note that w is an F-F-bimodule mapping. We claim that

41n dealing with tensor products of the form
M ® M
we shall usually omit the letter F} ]

i
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p(1® e ® N((gFr) ® pKp)=0=p(1 ® ¢ ® 1)(zKp @ w(xFp)).
For, let Z;x, ® y; be in K C pF; @ ;Fp; then

I ® e® N(w1)®x; @y) =ul(1 ¥ e)(w® N(1Bx) @yl =ux; ®y)=xy,

I

and therefore
Zi:u(l ®e® D(w(l) ®x;®y) =2 x;»; = 0.
!
As a consequence, u(l ® ¢ ® 1) defines a nondegenerate bilinear form on
(pFg ® gFp)lw(pFp) ® pKp,
as well as on Ky ® (pF ® o Fp)w(pFp).

If dimg F = dim F; =2, ;Fp has a dual bimodule if and only if there exists f € F\G
such that either all the commutators [f, g] =fg —&f, £ € G, belong to G or all {f, g], g€G,
belong to fG (i.e. fG = Gf). For, a nondegenerate bilinear form €: ; Fp ® pF, — G is
simply a nonzero bimodule mapping €: , F, — ;G,. Now, either ,(F/G); =~ ;G which
is equivalent to saying that there is f € F\G with [f, g] CG, or ;F; = ;G & gH for
some complement A, and this means that # = Gf = fG for some f € F\G.

Now let (3)i, £2) be a realization of a given valued graph (I", d). Let X = (X;, ;¢;) be a
representation of (YN, £2). Given a sink, or a source, k of the realization (M, ), we are
going to define functors

St LM, @) — LM, 5,9),
or

Se t L(M, ) — L(M, 5,.8),
respectively.

First, let k be a sink and X = (X;, ;¢,) € L(M, Q). Define S{ X =Y = (¥}, ;) as
follows:

Y, =X, forall i #k;
let Y, be the kernel in the diagram 5

i
(.K ). B} (k‘p.).
0— Y, % @ X, ® M~ X,,

jer

Also, if @ = (o;): X —> X' is a morphism in L(M , ), then S,f a =g = (f;) is defined by
B; = a; fori # k and B, : Y, — Y, as the restriction of
D @®):D X, M — @ X O M,
JET jET jEr
Note that S§ X € L(M, 5, £2) with changed (!) orientation.
Similarly, if & is a source of (M, Q) and X = (X}, ;¢,) € L(M, Q), define S X =
Y =(Y;, ,.xp,.) as follows:

5 Here, and elsewhere, put ktp,— = 0 for all j € T" which are not neighbours of k.
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Y, =X, forall {#k;
let Y, be the cokernel in the diagram

(o) G, ‘
X, — eg X, ® M, ——Y, —0;
i
b= for j#k

i
and
)W = 70 X @ My — Y

In this way, we get S, X € L(M, 5, £), again with a changed orientation. And, ifa: X —
X' is a morphism in L(N, §2), then S @= g = (B;), where 8; = o; for i # k and 3 is the
map induced by &;0; ® 1.

It can be easily seen that S, is left adjoint to St however, this fact will not be used
in the paper.

Now, for each k € T, define the representation F,_ € L(M, ) by F, = (X;, i«p,-),

where
X, =0 for i # k, X; = F; and allicp,.=0.

Observe that the representations F are just the simple objects of L(IM, Q).

PROPOSITION 2.1. Let (M, Q) be a realization of (T, d). Let X € L(M, ).
(i) Let k €T be a sink. Then there is a canonical monomorphism
pSg S,J{ X—X
In fact, u(Sy, S,‘: X) has a complement in X which is a direct sum of copies of F,. Thus, if
X is indecomposable, then either
X~F, and SFX=0,
or | is an isomorphism in which case
End (S X) ~ EndX and dim(S] X) = s,(dim X).
(ii) Let k €T be a source. Then there is a canonical epimorphism
e:X—SFs,X
Again, € has a section € :S§ S,y X — X and X is a direct sum of € (S§ S X) and of copies
of Fy. Thus, if X is indecomposable, then either
X=F,and S X =0,
or € is an iSsomorphism in which case
End(S; X) ~ End X and dim (S, X) = s,(dim X).
Proof. (i) In the diagram
0 — (5§ X), "’]%BP X; ® ;M — (S, S X), — 0,
(k ‘Pj_)j' .’
. ‘ “k
®
X



REPRESENTATIONS OF GRAPHS AND ALGEBRAS 17

jii is obviously always a monomorphism. Now, if (;¢;); is not surjective, then X is a direct
sum of the representation Y = (¥;, ;¥;), where Y; = X, fori # k, Y, = Im[(k¢f)j] and all
j¥i = j¥;, and of copies of Fy. Thus, if X is indecomposable, then X =~ F, (and then
SFX=0)or (x;); s surjective. In the latter case, y, is an isomorphism, and we have
Sy S,fX =~ X. Consequently, also S;’Sk" S;X ~ S;’ X, and therefore the composition of any

two maps in
S¢ A Sk
End X — End (S} X) — End (S, S{ X) — End (S{ S, S7 X)
is a bijection. Hence, End(S} X), =~ End X.
Finally, the exact sequence
0 =X — D X, M, — X, —0

i€r
yields the formula

dim [(S§ X)e 1, = ,ESF dim (X; ® ;My)p, — dim(X,)p,
1 ~
I

thus, since dimd(,My)g, = dy, and (S{X); = X; for i # k, we get dim(S¥ X) = 5;(dim X).
(ii) The second part of Proposition 2.1 can be proved in a similar way as (i) consider-
ing the diagram
X

€, . -
k. (21 );

i’4
0—(SES X)e = @ X, ® ;M — (S X), — 0.
i€l

Let us illustrate the use of Proposition 2.1 on the following example.

EXAMPLE. Let G be a subfield of F' with dim, F' = dim F; = d such that there exists
a nontrivial bimodule mapping ¢ :  Fz — ;G;. Then M= (F, =G, F, =F, M, =
cFr» ;M = pFg) is 2 modulation of (T', d) = 4.4 5- Let Qbe the orientation ; — 3
Now, ¢ defines a bimodule embedding w : zFp — pFg ® 5 Fy (such that (1 ® €)(w ® 1)
is the identity of F; = Fp ® pFg = Fg ® cGg)- If Ug is a G-subspace of a vector F-
space Vg, then the mapping U; < V. determines a representation of (M, Q). We claim
that there exists a unique indecomposable representation X = (Ug, Vi, @) of (I, Q) of

dimension type (d, d — 1) given by the canonical mapping
Ug =Fg ® oGg — (Fg ® oFp)w(F) =V,

and that this mapping is an inclusion. Moreover, the endomorphism ring of X is F, which
operates on F, ® ;Gg and (Fg ® GFp)/(w(pFg) from the left canonically.

For, consider the obvious representation Y = (F, Fg, Fg LF r ® pFg) of
(M, s,%) and apply the functor S, . Thus, we consider the mapping w = 1: Fg —
Fg ® ;Fp, and form the cokemel F; ® ;Fp — (Fg ® Fp)/w(F). This shows that
X =S8 Y. Since we know that S, 'Y is indecomposable, the mapping Ug; — ¥V has to be
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an inclusion. Since End Y = F with the canonical operation from the left, the same is true
for X. Also the representation X is uniquely determined because of the fact that
X =§;ST X = S]Y. Here, we make use of the fact that the only indecomposable represen-
tation of dimension type dim ST Xis Y.

Later, in Proposition 2.4, we shall determine the indecomposable objects of L(t, £2)
which are projective or injective. The first step in this direction is the following rather obvious

LEMMA 2.2. Let (M, Q) be a realization of (T, d).
(i) If k € U is a sink, then F,_ € (M, Q) is projective.
(i) If k € T is a source, then F. € L(M, Q) is injective.

ProOPOSITION 2.3. Let X and X' be indecomposable representations in L(IM, ).

(i) If k €T is a sink and S X' # 0, then S induces an isomorphism Ext'(X, X') —
Ext!(SF X, SF X)).

(ii) If k €T is a source and S;, X # 0, then S, induces an isomorphism Ext!(X, X)
— Ext! (S X, S; X).

Proof. Let k €T be asink. If S{X =0, then X = F,_ is projective and therefore
Ext!(X, X) = 0. Thus, we may assume that S7 X # 0.

We want to show that S;: carries exact sequences 0 — X' 4> E > X — 0 into exact
sequences. Obviously, we need only to verify that the kth component of

+ +
ois;x'f"—is,‘ga-bf»s;x—» 0

is exact. To this end, consider the following commutative diagram

0 ] 4)
1’ + ! + |
(s S
0— (57X, — e (g GE oy

l D, @1 J« De, ®1 l

0 —BX; ® ;M DE; ® M, - Bx;, @ M, —0
, P €

0— X! E, u > X, 0
0 0 0

By assumption, the middle and the lower rows are exact. The first and the third columns
are exact, because X and X' are indecomposable and S} X # 0 # ST X'; therefore, also the
second column is exact (the extension of two epimorphisms is an epimorphism). Finally, the
upper row is exact because the formation of kernels is left exact, and a dimension argument
implies that (S €), is surjective.

In this way, S; defines a map Ext!(X, X') — Ext!(S} X, 5{X"), and obviously S,

defines the inverse map. This proves (i). The second part of Proposition 2.3 follows in a
similar fashion. '
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Now, let &, k,, ..., k,, be an admissible ordering of I with respect to the orienta-

tion . Then
Ct =8« 8,8, and C™ =Sg S, - Sp

are functors from L(M, £2) to L(IM, ) (the same orientation!) and are called the Coxeter
functors of L(M, §). Note that both C* and C~ depend only on the orientation £ and

not on a particular admissible ordering of I'. Obviously, they depend on a particular choice
of the bimodule mappings

fMi ~ HOmF{([%, Fx) ~ Hompj(iﬂli’ 1?/)’

however, the choice of these mappings is irrelevant for the theory.
Also, for 1 <t < n, we introduce the representations Pkr and th from L(Mt, ) by

P, =Sk, Sk, =" Sk, Fp where Fy € LM, Sk Skppy 0 Sk, s
and
= g+ ¢t ses §F ver
Qu, =Sk, Skn_y =" Skpy, Fip where Fy € L(M, 5 5, ++" 5 Q).

PROPOSITION 2.4. Let CT and C™ be the Coxeter functors for L(M, §2) and ¢ the
corresponding Coxeter transformation. Let X be an indecomposable representation from
L(M, Q). Then the four statements, both in (i) and (ii), are respectively equivalent.

(i) (1) X s projective;

(2) X~ P, for some k €T
(3) C*X = 0;
(4) c(dim X) £ 0.

(ii) (1) Xis injective;

(2) X~ Q, for some k €T,
B) C"X=0;
4) ¢~ 1(dim X) #0.

Proof. letk,, k,, ..., k, be an admissible ordering of I" with respect to Q. Using

Proposition 2.1, we get

C*Py, =S5, ** Sk, Sk, Skq Siy " Skp_y

Fp, =S¢ = S§F =0
Conversely, if C*X = 0 and if ¢ is the smallest index such that S, -+ Si S§ X = 0, then
Sy | vt Sk, Sk X~ Fy,, and therefore X ~ 8 Sy, +++ Sy, Fy, =Py . The relations
between the corresponding dimension types result immediately in the equivalence of (3) and (4).
Now, if we show that all P,, k €T, are projective, then these n pair-wise nonisomor-
phic indecomposable representations must be just all indecomposable projective objects of
L(M, ). Indeed, L(M, ) is equivalent to the category of all right R-modules, where
R =R g, q) is the tensor algebra constructed from the corresponding realization (IR, )
(see [9] or [4]), and since there are no circuits with cyclic orientation, R is semiprimary.
Therefore, the indecomposable projective representations are precisely the projective covers
of the simple representations. ‘
Thus, let X' be an indecomposable representation of (M, Q). First, assume that
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gt st X iti
Skt_1 SszkIX # 0. Then, by Proposition 2.3,

Ext! (P, X) = Ext! (S, S, ==+ S,

"N ~ 1 +
o Fep X) ~ Ext! . S

v gt gt X
eSS XD,

and this is zero because Fkr € L(M, Sk,
2.2 (k, is a sink with respect to s .

Skpeq T Sk ,S8) 18 projective according to Lemma
Skpyy T Sk But if S e Sk, S5, X =0,
then X' = Pk.v with s < r, and making use of Proposition 2.3 again, we get

Extl(l’kr, XY = Extl(Pkt, Pks) ~ Extl(Sk_s S,:t_zS;t__l Fk,’ st).

Thus, assume (without loss of generality) that s = 1 and consider an extension 0 — Fk1
— E — P, — 0 with E = (£, ;¢;). We claim that the mapping Dicr £; @ ;M|
— K ) is not surjective; this follows from the fact that it is an extension of the corre-
sponding map in Fkl’ which is zero, by the corresponding map in Pkt' which is an iso-
morphism. This shows that E has a direct summand of the form Fkl’ and, in this way,

we get a splitting of the given sequence, as required. The second part of Proposition 2.4
can be proved by dual arguments.

PROPOSITION 2.5. Let (MM, ) be a realization of (T, d). Let C*, C™ be the
Coxeter functors and c the Coxeter transformation with respect to 2. Let X € L(I, )
be indecomposable. Then

(i) either
X~P, forsome k€T and crX =0
or
X~CC*X, End(C*X) ~ End X and dim(C*X) = c(dim X);
(ii) either _
X = Q, forsome k€T and C"X =0,
or

X~ C*C7X, End(C™X) ~ End X and dim(C~X) = ¢~ !(dim X).

Proof. Both statements follow immediately from Proposition 2.1 and 2.4.
The preceding Proposition 2.5 together with Proposition 1.9 imply further

PROPOSITION 2.6. Let (M, Q) be a realization of a valued graph (T, d).

(a) If (T, d) is a Dynkin diagram, then the mapping dim: (M, Q) — QF provides
a one-to-one correspondence Between all positive roots of (', d) and all indecomposable
representations in L(IN, Q).

(b) If (T, d) is an extended Dynkin diagram, then the mapping dim provides a one-
to-one correspondence between all positive roots of (', d) of nonzero defect and all inde-
composable representations in [ (M, Q) of nonzero'defect.

In the final part of this chapter, we want to study in greater detail the End X — End X-
bimodule structure of Ext!(X, X') for certain representations X and X'.

ProrosiTioN 2.7. Let (I, Q) be a realization of (T', &) and Ct, C™ the correspond-
ing Coxeter functors.

() If k €T is a sink, then Ext'(C"Fy, F) = g, (F)p, -

(i) If k € T is a source, then Ext!(F,, C1F,) ~ e Fidp,-
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Proof. (i) Let k be a sink. We shall construct an exact sequence
0—F, —>T—CF,—0
with a projective representation T which does not possess any direct summand of the form
F,. Then, obviously Hom(T, F,) = 0 and Ext!(T, F,) = 0, and therefore the exact se-

quence
Hom(T, F,) — Hom(F,, F,) — Ext!(C”F,, F,) — Ext(T, F,)

yields the required isomorphism
Ext'(C”F,, F,) ~ Hom(F,, F,) = Fk(Fk)Fk'
Now, in order to construct T and the above exact sequence, consider an admissible

ordering k = ky, k,, . . ., k,, of I" with respect to Q2. Let Wkt be the representation of
(M, s, *+* 5, ) such that

(Wk!)kt = (k1Mkr)Fkt and (Wkt),- = 0 for i # k,.

Skeg

Put

Vi, =Sk Sky Sk, Wiy 1SESH
Since W is the direct sum of d; ,  copies of F; , it follows readily that V; is the direct
sum of the same number of copies of Pkt; therefore, th is projective. Also, Vk1 = 0. Ob-

serve that, for all s # ¢,
(th)ks = k® (th)kr ® kerS’

ks
where the summation runs over all neighbours k, of &, such that K, — k_ in the orientation
 (and therefore, a fortiori, » > s). On the other hand, the components of C™ F,_ satisfy,
fors#1,

(C_Fk)ks = [ S5 (C—Fk)k,. ® k,.Mks] Y (kleS)st-

k,~kg
Finally, we consider the exact sequence
0—F, —>T5CF, —0,

where T = €D, th and € = (eks) is defined by inductionons =n, n — 1, ..., 1 as follows:
Fors > 1, @ ]
eks = [ ekr ® l(kerS) @ 1(k1Mks)’

which means that €, identifies T} with (CTFp), . And, for s = 1, we have the exact se-

quence _ —
0 — Fy, —>ga(c File, ® g My, = (CTF ) —0;
i d

here, @kr(C—Fk)k, ® kerl = Tkl and we put €, =T Thus, we have defined € whose
kernel is just F,, as required. This completes the proof of (i).
The assertion (ii) can be established by a similar argument.

ProOPOSITION 2.8. Let (M, Q) be a realization of (T, d) and C*, C™ the correspond-
ing Coxeter functors. :
(i) For X=C7"P, withC"X# 0,
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1o ~
Ext'(C™ X, X) ~ Fk(Fk)Fk'
(i) For X = C*"Q, with C*X#0,
1 +y) A&
Ext'(X, C"X) = Fk(Fk)Fk'
Proof. Both statements are straightforward consequences of Propositions 2.7 and 2.3.

3. REPRESENTATION OF DEFECT ZERO: GENERAL THEORY
Let (M, ) be a (fixed) realization of an extended Dynkin diagram (T', d). The defect
3,(dim X) of a representation X € L(M, Q) will be denoted simply by 8X. The general the-
ory of representations of zero defect follows closely the theory of quadruples by 1. M. Gel-
fand and V. A, Ponomarev. First, we have the following equivalence.

LEMMA 3.1. The following properties are equivalent for X € L(IM, £2).

(i) X is a direct sum of indecomposable representations of zero defect in L(I, Q);
(i) 89X = 0 and 8X < 0 for every subobject X' of X in L(IM, );
(iii) 0X = 0 and 3X" > 0 for every quotient X" of X in L(M, ).

Proof (cf. [10]). Assume (i) and let X' be a subobject of X such that 3X' > 0. De-
noting the order of the induced Coxeter transformation ¢ on QF/N by m, we have, for ar-
bitrary r,

dim(C*T™X) = ¢ (dim X') = dim X' + r(3X)n,
which can be arbitrarily large. On the other hand, since C* preserves monomorphisms (for,
S,:’ involves only construction of a certain kernel), we have

dim(C*™"X") < dim(C*™"X) = dim X for all 7,

a contradiction. Thus (i) implies (ii).

Conversely, (ii) implies (i). For, all summands in a direct decomposition of X have de-
fect < 0, and the total sum of their defects is 0. Hence, all are of zero defect.

A dual argument yields the equivalence of (i) and (iii).

DEFINITION. The representations in L(IR, Q) satisfying the properties described in
Lemma 3.1 will be called regular.

Thus, we have

PropPoSITION 3.2. Let (M, Q) be a realization of an extended Dynkin diagram. Let
R(IR, Q) be the full subcategory of all regular representations in L(M, Q). Then R(M, Q)
is an abelian exact subcategory of L(IMM, Q), closed under extensions.

Proof. Let V,WE R(M, Q) and leta:V — W. Let @« =a’a’ with an epimorphism
a':V — X and a monomorphism «" : X — W. Then, by Lemma 3.1 (ii), 3X < 0, and by
(i), aX > 0; hence 3X = 0. Since subobjects of X are also subobjects of W, X is, in view of

(i), regular. Thus, images of morphisms between regular representations are regular. On the
other hand, if

0—-V—-X—W—0

is exact, then 0X = 9V + 9W and therefore, if any two of the representations are of zero
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defect, so is the third one. In fact, if any two of the representations in the above sequence
are regular, so is the third one; for, subobjects of V are subobjects of X, quotients of W are
quotients of X and subobjects of X are extensions of subobjects of V by subobjects of W.
This completes the proof.

A simple object X of R(N, Q) is said to be homogeneous if dim X € N. An arbitrary
regular representation is called homogeneous if all its simple composition factors (in the cate-
gory R(Wt, 2)) are homogeneous. The full subcategory of R(IMN, Q) of all homogeneous
representations will be denoted by H(‘M, ).

Now, consider the dual vector space Q* of all linear forms x: QU — Q. Write x =
(x;) with respect to the dual basis,i.e. xx = Z,cpx;x; forx = (x;) € QF. Fora representa-
tion X = (X, ;) € L(M, ), we write xX = x(dim X).

For each w € W, define w*: Q* — Q* by

(aw*)(x) =a(wx), x € QF.

For k €T, s§ is an involution and, writing xs: = §, we obtain
Ep=—Xix and &, =x tdyx, for i#k
e ee e * — * * see *®
Forc=s; SkpSky» WE have ¢™ = sy sy, Sk,,» and

{xIxc* =x} =4,
is a one-dimensional space generated by the defect vector d,. (One can verify that it is a
complement of the image of QF under the mapping Q" — Q'™ defined by x — Bp(x, ),
whose kernel is obviously /V.) Also

{x|xc*(x) = x(x) for all x € QF*} ={x|ex =x} =N

DEFINITION. A representation E € L(IN, Q) is said to possess an equation if there
exists 1 € QF* such that
(i) nE>0;
(i) if nX > O for some regular representation X, then E < X;
(iii) if nX < O for some regular representation X, then X — C*E.
In what follows, E, = C*"E (with E; = E) for a given E € L(}, Q).

LemMA 3.3. Let E € (M, Q) possess an equation n and assume that, under the action
of the Coxeter transformation c, dim E has a finite orbit containing [ > 2 elements. Then
(1) CY'E ~E and all
E

f it

o<r</|
are (mutually nonisomorphic) simple regular nonhomogeneous representations.

(2) X = 0 for all simple regular representations X #E,, X G E,.

(3) Ext!(E,, X) = O for all simple regular representations X # E_ and X #E, |,
0<r<i

(4) Bxt!(X, E,) = O for all simple regular representations X #E, and X #E,_,,
0<r<i

Proof. (1) For arbitrary natural r, let E, = @Xr be a direct decomposition into
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indecomposable representations. Since the orbit of dim E, is finite, all orbits of dim X, are
finite and thus all 39X, = 0. Hence, all E, are regular representations. Furthermore, since
n(C*TE) = nE >0, E can be embedded into C*'E by (ii) of Definition; hence C*'E=E.
Moreover, all E,, 0 <r <1, are simple in R(MM, £2); it is sufficient to show this for E be-
cause E =~ C+(' ") E,. But n is additive on extensions and therefore, in view of E > 0,
there is a composition factor X of E in R(IM, 2) with nX > 0: by (ii), E can be embedded
into X and thus E = X is simple. Also, E is nonhomogeneous, because dim E & .

(2) Now, let X be a simple regular representation; then by (ii} or (iii) of Definition
nX = O unless X ~ E or X ~ E,. In fact nE, = — qE because Z,.,.,nE, = 0; the latter
follows from the fact that Z,.,,dimE €N

(3) Thus assume that X # E and X # E, and consider an extension
0—X—V —E-—0
Since nV = X + nE > 0, the regular representation V contains a representation Y isomor-
phic to E. In view of nX = 0 and nE > 0, X and Y are nonisomorphic. Consequently,

XNY=0,and E~Y & V-—E is the identity of E, i.e. the sequence splits. According
to Proposition 2.3,

Ext!(E,, X) = Ext!(E, C™"X)
and the statement (2) follows.

(4) To prove the last statement, consider the extension

0—E -V Dx o 1<r<y,
with a simple regular representation X such that C™Y" X # E and C~ VX ~ E,. Then

nV =nE, < 0and E, is a quotient of V. Hence the sequence splits and, again by Proposi-
tion 2.3,

Ext!(X, E,) = Ext!(C""" DX E,) =0, 0<r<],
forall X# E, , and X~ E,.
The following lemma provides the final argument in the proof of Theorem 3.5.
LEMMA 3.4. Let (I, Q) be a realization of an extended Dynkin diagram (T, d) and

C™ be the corresponding Coxeter functor. Let i be a source with respect to §). Let E be a
representation of (M, ) such that CYE # 0 and E; = 0. Then there exists k € T" such that

End E = F,, Ext!(E, E) = 0 and Ext!(E, C*E) = Fk(Fk)Fk‘

Proof. Denote by L (I, Q) the full subcategory of L(M, Q) of all representations

X of (MM, ) such that X; = 0. Since i is a source, there is an admissible ordering &
. k,, of I' such that k, =i Thus

Y
Y=SE, o SESEEE LR Q)

1> k27

and CTE is an extension of Y by a direct sum Z of copies of F;:

0—>Y—>C'E—Z—0.

From here, we get the exact sequence
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Hom(E, Z) — Ext!(E, Y) — Ext!(E, C*E) — Ext!(E, Z),
in which both the first and last terms vanish: the first one trivially and the last one because
of injectivity of Z. Thus
Ext'(E, CTE) =~ Ext!(E, Y).
Now, there is a canonic isomorphism

T: L,(M, Q) — LM, Q),

where (MM’, Q') is the restriction of (M, Q) to the graph (I, d'), where I = '\ {i} and d’'
is the induced valuation. Observe that (I, d') is a disjoint union of Dynkin diagrams. It
turns out that
7(Y) = C"* T(E),
where C't = S;n_l S;zS,“:l is the Coxeter functor on L(IM’, Q). Now, by Propositions
1.9 and 2.6,
T(E) = C't"Q, for some k€I,

and by Proposition 2.8 (ii)
Ext!(T(E), C"T(E) ~ . (Fy),,.
Also, by Propositions 2.5 and 2.3,
End T(E) = F,, and Ext'(T(E), T(E)) = 0.

Lemma 3.4 follows.®

Now, given E which possesses an equation 7, observe that ¢*'n is an equation of E,.
Put

N Kerc*'n=K,.
o<r<i

By Lemma 3.3 (2), always K, D N.

DEFINITION. A finite set {E" |1 <t < h} of representations of (M, Q) is said to be a
generating set if

(i) the orbits of dim E under the action of ¢ are nontrivial and finite;

(ii) any two dim E® gnd dim EC) fort % ¢ belong to distinct orbits of c;

(i) each EY possesses an equation 77,

(iv) there exists a source i with respect to §2 such that each E® has the property that
El(t) -0

v nl<t<h Kn(t) N.

Now, Lemmas 3.3 and 3.4 in combmatlon with Proposition 2.3 yield the following re-
sults which refines the second part of Theorem in the Introduction.

THEOREM 3.5. Let (M, Q) be a realization of an extended Dynkin diagram and ct
the corresponding Coxeter functor. Let E = {E(’) |1 <t < h} be a generating set of regular
representations of (M, Q). Then the category R(M, ) is the product of H(IM, ) and h

6 Here, T(E) is a representation of a disjoint union of Dynkin diagrams. However, since it is inde-
composable, it is, in fact, a representation of one connected component and so we may apply the pre-
_vious results.
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subcategories R corresponding to the orbits 0() = {E(), ctE®, .., ct'EMY, 1<

t < h. The indecomposable objects in R are serial with composition factors from 0 op-
dered in a (going down) sequence corresponding to the action of C* : each of them is fully

determined by its (simple) socle and its length which both can be arbitrary.

The last statement follows from a well-known characterization of serial abelian cate-
gories which (in the case of a module category) is due to T. Nakayama (see e.g. [9}). Since
L(M, ©) has global dimension < 1, the same is true for each R, Since each simple object
has a nontrivial extension by a suitable simple object, there are indecomposable objects of
arbitrary length with a prescribed socle. As an immediate consequence, we get the following
statement which will be used in Chapter 5: If X is an indecomposable representation of con-
tinuous dimension type belonging to some R, then End X is a division ring if and only if »
X has no proper subobject of continuous dimension type. This happens if and only if every
simple representation of R® appears precisely once as a composition factor of X. Also, if
Y is another indecomposable representation of continuous dimension type in R('), then
Hom(X, Y) # 0.

The existence of a generating set £ of Theorem 3.5 is proved, for each of the extended
Dynkin diagrams, in the next chapter.

4. SiMPLE REGULAR NONHOMOGENEOUS REPRESENTATIONS

In this chapter, we shall exhibit a generating set of regular representations for each of
the extended Dynkin diagrams with a suitable orientation. The results will then be incorpo-
rated in the tables of Chapter 6; in particular, all simple regular nonhomogeneous representa-
tions will be listed there.

As a consequence of these results, we can formulate the following theorem.

THEOREM 4.1. Let (T, d) be an extended Dynkin diagram and €L an admissible orienta-
tion. Let n + 1 be the number of its vertices and h the number of elements in a generating
set of regular representations. Then 0 < h < 3 and the number | of all simple regular non-
homogeneous representations is given by the formula

Il=n+h-1.

The number h is independent of § except in the case of the diagram T\n (n = 2) when
h=1or2. ‘

The formula in the theorem can be reinterpreted as follows: If (), is an orbit of a sim-
ple regular nonhomogeneous representation under the action of C*, denote by !, the length
of 0,; then

SU-D)=n-1.
t

We shall use letters a, b, z, . . . , possibly with some indices, to denote the vertices of
the diagrams; the vector spaces of a given representation attached to these vertices will be de-
noted by the corresponding capital letters 4, B, Z. . . . (with the respective indicés). For
convenience, aS’"), .. . will denote also dim Agm), ... . For further notation, such as using
the letters H and G to denote subfields of F, we refer to the tables.
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In order to show that a given set is a generating set, we have to verify conditions (i)—
(v) of the definition. However, the conditions (i), (i) and (iv), (v) can be checked in a rou-
tine manner, and thus we shall be concerned only with the condition (iii) : In each case, we
shall prove that the linear form n{™ listed in the tables is an equation for E(()”’ ). Through-
out the proofs, X stands always for a regular representation, X' for a (not necessarily regular)
subobject and X” for the quotient of X by X'. We shall use frequently the fact that, 39X’ <0
and oX" > 0.

Before we proceed to establish the existence of a generating set for each individual ex-
tended Dynkin diagram, we are going to give an outline of the proof that p* is an equation
for E®) which will be systematically followed in each case. It is trivial to verify that
7MEM > 0. Hence, we need only to show that the other two conditions concerning regular
representations X with n()X # 0 are satisfied. This will be achieved by the method of con-
traction to a compatible realization of a Dynkin diagram in the following sense. We shall
outline the method of contraction in general, for arbitrary valued graphs.

DEerFINITION. Let (I, 2) be a realization of a valued graph (I, d). A realization
(M, Q" of a valued graph (I, &) is said to be a contraction of (M, Q) if I' CT and

(i) for every two k, I €T, for which there is an oriented sequence of edges k =
ig — iy — =++ —>i, = 1in (T, d) (n the orientation ), there is an edge k—lin (I", d);

(i) for every oriented (with respect to Q') edge k — 1 in (', &'), there is a unique
sequence of edges Ly, = (k =g — =»» — i, — 1,4 — *** — i, = D), and it is oriented
in & by i, ~—>ip+lforallo<p<q—1;

(i) Ly N Lpp=@for{k, } N (K, I1=g,

(iv) F; = Fy for every k € T'; and

(V) o My= My ® B pr"p+1 ® - ® _— where {i,, i} runs through
Ly, for every edge k—1of (T, d).

Now, for each k € I", define

Wy ={i€Tli=iy —iy —> -+ —i,=kwithi, €' forall 0<p<gq} .

and
Tkz{,'emk:io—n'l-—->---—>iq=iwithip$1" for all 0 < p < gq}

Thus, k belongs both to {, and 1.
Let X = (X;, j¢;) be an arbitrary representation of (YR, ) and (M', Q') a contraction

of (M, Q). Define the representation U = R(X) of (M, ) as follows: U = (Uy, ;yx)s

where
Uy =X, forall k €T

and
Wy U ® My —> U, for all k —1 (in Q)

. U t U !
with ;. = iq¥iq_1, ip+1¥ip i,%i, 1y ¥ig aNd

! — LR S .

- ®, M —X  ®

M, ip+1 ips 1M"p+2 @ <o ®iq_1Miq forall 0<p<g-1.



28 VLASTIMIL DLAB AND CLAUS MICHAEL RINGEL

On the other hand, if V is a representation of (M, ) which is a subobject of U =
R(X), we can define canonically two subobjects of X: T (V) and T'(V). But first, given V =
(V> 1), introduce the following notation:

IfieTbelongsto {,,and Ly = (=i —>ij —> > — i, = k) is a path satisfying
i & TV for all 0 < p < g, define V;, . 38 the inverse image of ¥V, under the mapping

,-qﬁi-q_l g 5:'},_ ilaio X _’qu ® iinq_l ]+ ® ilMio’
where

- —_— " sse . . . . s . .
e 1Py =iy P, @ 1@ O LK, @ M, @@ M

®. M, .M ® .M, forall 0<p<qg-1,
p P p ‘p- 1 °0

and put
ng =N ViLe € Xi>
Ly

where the indices run through all possible paths L, described above.
In a similar fashion, if € T belongs to 1, and L¥ = (k =iy —> iy —> =++ — i, =)
is a path satisfying i, & I for all 0 < p < q, define ViL « as the image of ¥ under the map-

ping ,-q@ , defined above. And again, put
L
I/ik —'E I/;'Lk g Xi’
Lk

where the indices run through all possible paths L¥.
Now, we define the representation 7(V) of (I, £2) as follows: T(V) = (V}, ;¢;), where

V=N V}k’
K

where the indices run through all & such that i € ;. (and thus, if no such k exists, V; = X,)
and ;p; are induced by X.

Similarly, we define the representation T'(V) of (I, ) by T'(V) = (V], ;¢,), where
Vi' = ; Vi%c »

where the indices run through all k such that i € 1, (and thus, if no such k exists, ¥; = 0)
and the mappings ]-cp:- are again induced by X.

It is easy to verify that both T(U) and 7'(U) are subobjects of X. The following con-
sequence will be repeatedly used.

LEMMA 4.2. Let (W', Q') be a contraction of (M, ). Let X be a representation of
(M, Q) and U = R(X) the corresponding representation of (M', Q). If V is an indecom-
posable direct summand of U, then V determines a subobject T'(V) of X and a quotient
T"'(V) = X/T(W) of X, where W is a complement of V in U.

Now, our proof will consist of considering, for each extended Dynkin diagram and for
each #¥, a contraction (I, Q') of (M, Q) defined by the nonzero components of 7(*),
and in decomposing R(X) into indecomposable representations of (MR, Q). Since (M', Q')
is a realization of a Dynkin diagram, the direct summands are determined by their dimension
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type, and these are the positive roots of the diagram. From the condition (X > 0, we de-
duce that one particular summand V, must occur in the decomposition and show that the
subobject T'(V,) of X is isomorphic to E® = E{). Similarly, using the condition 7{”X < 0,
we single out another particular direct summand V, of R(X), and show that the quotient
T"(V,) of X is isomorphic to E{") = C*E{?. These conclusions are obtained in each case as
a result of a very simple elimination process of those direct summands V which would lead
to subobjects of X of positive defect or to quotients of X of negative defect. In the case of
diagrams E, F and G we shall make use of an additional information that the orientation is
chosen in such a way that all mappings ]np, X; — X; ® ;M; are monomorphisms; for, other-
wise we would get a subobject of X of a positive defect

Although we shall deal in the proofs with the dimension types only, the actual descrip-
tion of the simple regular nonhomogeneous representation given in the tables follows imme-
diately from the form of the corresponding representation V, or V, of the contracted Dyn-
kin dlagram

Al ; and A12 Obviously, there are no regular nonhomogeneous representations.

A,n>1 {E;= Ecp, E{, =F dq} is a generating set (of course, the set contains
only E, if g = 0}.

First, 1 is an equation for E. Consider the contraction to the Dynkin diagram A, :
¢, — b (more precisely to the realization F — F of the Dynkin diagram ¢, — b), and de-
compose R(X) into the direct sum of indecomposable representations. The dimension types
of the direct summands are (0, 1), (1, 0) or (1, 1). Now, if nX > 0, then there must be a
direct summand V,, of dimension type (1, 0); for, q is additive and 7V < 0 for the sum-
mands V of type (0, 1) and nV = O for those of type (1, 1). And, evidently X' = T'(V,)
~ E,y. If nX <0, there must be a direct summand V, of dimension type (0, 1). And, we
get X" =T'(V,)~E

The same arguments show that ¢’ is an equation for E'.

B .{E= F } is a generating set. Consider the contraction to the diagram B, :

Z, 4 (2 1) —— b. The d1mens1on types of the direct summands of R(X) are (0, 1), (1 0),(,1)

and (1, 2). If nX > 0, a summand V,, of type (1, 0) must occur and T'(Vo) = Eg. If

71X < 0, R(X) has a direct summand of type (0, 1) or (1, 2). But, there is no dnrect sum-
mand V of type (0, 1), because it would determine a quotient T"(V) of X of negative defect
—1. Hence, there is a summand V, of type (1, 2) and the quotient T"(V,) is isomorphic

to E,.

En. {E=F, 1} is a generating set. Consider the contraction to the diagram B :
n—

Zy_y a2 —— b. If nX > 0, there is a direct summand V, of R(X) of dimension type (1, 0)
and T’ (Vo) = Ey. IfnX < 0 then, for the same reason as in B .» there is a summand V,
of type (1 1) and T'(V,) =

. {E= F } is a generatmg set. Again, consider the contraction to B,:

z (1 2) —>b. As before if nX > 0, there is a summand V,, of R(X) of type (1, 0) and

n—1

T (Vo) = E,; and, if nX < 0, there is a summand V, of type (1, 1) and T"(V,) =~ E,.

BD {E=F, . E = FF F -+« F F G} is a generating set. First, consider the
n_..
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contraction to B, 1z, _, @.1) b. If pX > 0, there is a direct summand V, of R(X) of

dimension type (1, 0) and T'(V,) =~ E,. If X <0, then a summand V, of type (1, 2)
occurs and T"(V,) = E,. )

Second, consider the contraction to the diagram a, ~—=b. If X > 0, then a direct
summand V, of R(X) of dimension type (1, 1) occurs and 7"(Vy) ~ Ey. If X <0, then
there is a summand V', of type (0, 1) in the decomposition and we get T7"(V;) ~ E|.

CD,. {E= an—z’ E' = gFF <+« F F F} is a generating set. First, consider the con-

traction to the diagram z, _, (—l—ﬂ b. As before, if nX > 0, there is a direct summand V,
of R(X) of type (1, 0) and T"(V,) ~ E,. And, nX < 0 implies the existence of V, of type
(1, 1) and T"(V,) = E,. 1.2)

Second, consider the contraction to a, =5 p. If X > 0, there is a direct summand
V, of type (2, 1) and T'(Vg) =~ Ej. And, if X <0, then a summand V; of type (0, 1)
yieldsg""(V;) ~E].

D,. {E=F2n_ E =%FF--- FFg, E" =%FF-" FFg}isagenerating set.

3)
First, consider the contraction to the diagram
b
A, ~
3:Zp-3 - b2
In the decomposition of R(X), the dimension types of the direct summands are O (1), 1 8,
0 (1) 1 (1) 1 (1) and 1 } Now, if nX > 0 there must be a direct summand V,, of type
1 g; and T'(VO) ~ E,. If nX <0, there must be a direct summand of type 0 (1), or 0 (1),

or 1 } But the first two cases lead to a quotient of X of negative defect —1. Hence, there

is a summand V, of type 1 %, and T"(V)~E,.

Second, consider the contraction to @, — b,. Then a summand V{', of type (1, 0)
yields the subobject T'(V,) = Ej, in case that n'X > 0 and a summand V; of type (0, 1)
yields the quotient T'(V) ~ E} if #'X < 0.

Finally, n” is an equation for Ey by the same arguments as above.

0 0 0

E.. (E=0FFFO,E =0FFFF,E"=00FF F}is a generating set.

First, consider the contraction to the diagram

5]

D

nily >z < b,

If nX > 0, then in a decomposition of R(X), there must be a summand of dimension type

0 (1) 0,or! (1) 0,0r 0 8 1,or1 % 1. But all the first three summands will determine a sub-
object of X of positive defect. Hence, there is V,, of type 1 i 1 wh%)ch'determines the subobjects

1 1
TSVO) Ry E? If nX <0, then there must be a summand of type 01 0,0r010,0r 110, or
1

011,or121, But again, with the exception of a summand V, of type 1 2 1, all other would
lead to a quotient of X of negative defect. And V, determines the quotient 7"(V,) ~E,.
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Second, consider the contraction to the diagram A3 tay —>z<«—b. If 7'X >0, then a
direct summand V of R(X) of dimension type (1, 1, 1) must occur, which determines the
subobject T'(Vy) =~ E,. And a summand V; of type (0, 1, 0) determines the quotient
T'(V)) ~ E,.

Finally the proof that " is an equation for Eg follows the same lines.

~ (1, H)F
E,. {E=0FFFFFO,E=000FFF0,E'=0Fx0Fx0 FxFFxF

0 x F O x F} is a generating set.

First, consider the contraction to
c

D4:a3—->z<—-b3.

1 0
If nX > 0, then there must be a direct summand of R(X) of dimension type 0 0 0, 0or 1 00,
0 1 1
or001,o0r11 1. Usinga by now standard argument, a summand V, of type 1 1 1 must
1 0

occur and T'(Vo) ~ E,y. If nX <0, then a summand of type 0 10,0r010,0r01 1, or

1
1 2 1 must occur. All but the last one lead to a quotient of X of negative defect. And the

1
summand V, of type 1 2 1 determines T"(V,) ~ E,.

Second, consider the contraction to

c
A;:z < b,.
1
If n'X > 0, a summand V; of type 1 1 must occur and T'(Vy) ~ Ey. If ' X <0, V} of

0
type 1 0 must occur as a summand and 7"(V,) ~ E}.

Finally, consider the contraction to
c

D;:a, >z« by < by.
If "X > 0, then there must be a direct summand of R(X) of dimension type 1 8 00, or
0810,0r0801,0r0(1)00,0r1(1)l I,or1l 11 1 0,or0}1 l,or1 } 1 l,orlé2 1.
Again, by routine elimination of all types with the exception of the last one, we deduce ex-
istence of Vg of dimension type 1 % 2 1 which determines T(')(V(';) ~ g‘,g Simi(l)arly, if .

n"X < 0, then all but the last one of the dimension types0100,1100,0110,001 1,
1 : 1 1
0100and 1210 can be eliminated. .nd the direct summand V| of dimension 121 0
determines the quotient T"(V}) ~ Ej.
E,. (EZ0000FFFO0,E =00 Fx0 Fx0Fx0 FxF FxF 0xF,

(1,1,0F + (0, 1, )F
E'=0Fx0x0 Fx0x0FxFxQ0FxFx0 FxFxF O0xFxF

0 x 0 x F} is a generating set.
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Consider the contraction to
c

D,:a; —z<b,,
and proceed as in the case of 7in E or E..

Second, consider the contraction to
C

D :ay; —z <« b, < by,
and proceed as in the case of 7" in E,.

Finally, consider the contraction to
c

\

Eg:a, —a, —z<=b, < b,.
If "X > 0, there are 18 possible dimension types of direct summands of R(X), for which the
nvalue is positive. However, all, with the exception of the type 1 2 g 2 1 determine a sub-
object of negative defect. And, the direct summand V of the mentioned type yields the
subobject T'(Vg) =~ Ej. If 7"X < 0, there are 10 possible dimension types of direct sum-
mands of R(X) having n-value negative. Again, by simple elimination, we conclude that a

1
summand V| of dimension type 1 2 3 2 1 must occur and T"(Vy ") ~

.{E=00FFF, E =0G G F F} is a generating set. F1rst consider the con-

traction to B tay N z <= b. If nX > 0, there must be a summand V,, of type (2, 1, 1)

in the decomposition of R(X) and T'(V,) = E,. 1f nX < 0, there is a summand V, of type
(2,2,1) and T"(V,) = E,

Second, consider the contraction to a, €2, — b. If n'X > 0 there is a summand
V, of type (1, 1, 1) : T'(V(',) ~ Ey. If X <0, then a summand V; of type (1, 1, 0) oc-
curs and T'(V) =~

F,,. E=0F F G G, E =0 F F F 0} is a generating set. First, consider the con-

traction to B; :a, — z<(——2 b,. If nX > 0, then there is a direct summand V, of R(X)

of dimension type (1, 1, 1) and T'(V,) ~ E,. If n1X< 0, then the existence of a summand
V, of type (0, 1, 1) yields the quotient T"(V,) ~ E

Second, consider the contraction to a, — z L) b,. If 'X > 0, we establish easily

the existence of a direct summand V of R(X) of type (1, 1, 2): T’(V(')) ~ E;. And, if
7'X < 0 there must be a summand V| of type (1, 2, 2): T"(Vy) ~

2 1- {E=0 F F} is a generating set. Consider the contractlon to the Dynkin dia-
(1,3)
gram G, 12, —— z. If X > 0, then there must be a direct summand V,, of R(X) of

dimension type (3, 1) and T'(VO) ~ E,. If nX <0, then there is a summand V, of type
(3,2) and T"(V,) ~ E
G,,. {E=0F G + fG with f € F\G} is a generating set. Consider the contraction
3’
to G, :z @ b. If nX > 0, then there is a direct summand V,, of R(X) of dimension type

(1, 2) determining T'(Vo) ~ E,. And, nX <0 implies the existence of a summand V, of
type (1, 1). Thus there is a quotient T"(V,) =~ E, of X.
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5. HOMOGENEOUS REPRESENTATIONS
In this section we assume again that (Y, Q) is a realization of an extended Dynkin
diagram (T", d). We want to show that the study of the homogeneous representations can be
reduced to the study of the homogeneous representations of a realization of a diagram of
type K“ or Km-
The realization of a diagram of type A, or A, Will simply be called a bimodule, and

(d12:d21)
denoted by pM,;; more precisely, if (T', d) = { 3 is such a diagram with the orien-
tation {2 defined by ; —— ;, and the modulation I = (F,, F,, \M,, ,M,), we write

simply F=F,;,G =F, and ;Mg = S (1M2)F2. Then M, determines completely the
realization (I, Q) and, in this way, we will consider ;M as the realization of (T, d). Thus,
a representation (Ug, V;, ¢) of oM consists of two vector spaces Ug, V;, and a G-linear
mapping ¢ : Up ® pM; — V. Note that, for every Mg, R(zMz) = H(zMz).

THEOREM 5.1. Let (I, Q) be a realization of an extended Dynkin diagram, and let
R(M, ) = H(M, Q) x R x «+o x RM). Then there exists a bimodule Mg of type
K“ or K”, a full exact embedding T : H(zMg) — R(IMM, Q) and h simple objects R(),
R®), .., RM in H(Mg) such that

(i) the image of objects of H(zMg) under T have continuous dimension types;

(i) forallt, TR®) € R®),

(iii) the full subcategory of H(zMg) of all objects without subobject of the form R
RO 1 << h, is equivalent to H(M, Q) under T.

As a consequence, we get also some information about the category H(zM). Namely,
H(zMg) is the product of i + 1 categories; 2 of these are uniserial categories with a unique
simple object R®™ and the remaining one is described in (jii); the objects have no composi-
tion factors of the form R,

The proof of the theorem will consist in a case by case inspection. In the tables of
Chapter 6, there are listed a bimodule zM,,, a functor T: L(zM;) — L(IM, Q), and the
representations R®) of pMg. As we will show, these data satisfy the following conditions:

(0) T is a full and exact embedding (or, at least, the restriction of T to the category
Le(zM_) of all representations (Ug, V, ¢) with a surjective mapping ¢ is a full and exact
embedding).

() If X is a representation in | e(zMg), then T(X) has continuous dimension type
if and only if X has continuous dimension type.

(i) TRD) contains a simple object of R as a subobject, and End R™) is a divi-
sion ring.

(i)’ Every homogeneous representation of (I, Q) is an image under T.

We claim that these conditions imply the assertions of the theorem. For, since
T: Le(zMg)— L(M, Q) is a full embedding, any representation X in Le(zM) is inde-
composable if and only if T(X) is indecomposable. Now, by (i)', T(R(?) is indecompos-
able, and has no subobject in R(M, §2) of continuous dimension type. Therefore R(*) has
to be simple, because T is exact and satisfies (i). Since T(R®) is indecomposable and con-
tains a simple subobject of R(, it belongs to R(. Let C be the full subcategory of all
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objects of H( M) without subobjects of the form R®, 1 <t<h IfY # 0 belongs to

C, then Hom(R®, Y) = 0 (since R(" is simple) for all #; thus, also Hom(T(R®, T(Y)) = 0,
and therefore T(Y) is homogeneous (using the remark at the end of Chapter 3). This shows
that the restriction of T to C gives a full and exact embedding of C into H(IM, £2). But
every indecomposable homogeneous representation of (¢, ) is of the form T(Y) with an
indecomposable representation Y and of continuous dimension type. Also, no R® can be
embedded into Y; for, otherwise, T(R() & T(Y), and 7(Y) would belong to R(). This im-
plies that the functor 7': C — H(IN, Q) is dense and therefore T is an equivalence.

Now, we are going to consider the individual extended Dynkin diagrams. In all cases,
condition (i) is satisfied trivially and, in most cases, it is also very easy to see that the condi-
tion (iii)’ is satisfied: one uses the properties of a simple regular representation X with
n(X) = 0 which are listed in the last column of the tables. These properties are satisfied for
every simple homogeneous object, and therefore for every homogeneous representation at all.
As a result, we are mainly concerned with conditions (0) and (ii).

Kn. It is obvious that T(R) contains

/0—"0""—>0——>NF\

0 0,

S 0—0-—0—> 07

whereas T(R") contains

0/, 0—0—+-0—0 ~ .
00— 0> Fp
B,. Since Fg, ® GIFG2 mult, Fg, comes, in fact, from an F-linear mapping

1t . .
Fg, ® ¢, Fr Elu—>FF, its kernel K is an F-subspace of Fg, ® ¢,Fr>and dim K = 1.

Thus T'(R) contains
0—0~—++0—K,—0
as a sg\l;object‘
C,. Obviously, the kernel of ¢: (Fy), ® ¢Fp, = (F/G)g ® ¢Fap, = Fr,
is KF2 =G; ® G(Fz)Fz; thus T(R) contains
0—0—+0—Gg—0
as a subobject.

s . 1
BC,. The kernel of the mapping G;; ® ,,G, nult, G is a nonzero G-subspace K;
of Gy ® G ; therefore

0—=0— = 0—K,—0

is contained in T(R).

BD,. The kernel of the mapping F F O pFg® oFp nulf Fpg is a nonzero F-sub-
space K, of Fp ® pfig © gFy, and thus K © 0 CT,; therefore,

0> 00—+ 0K, ®0—0

is contained in T(R).

On the other hand, let ¢: Fp @ pFg ®@ Fp ~Fg ® Fp —» (F/G)g ® ;Fp ~ Fp.
Then P, NF,®0=G; ® 0, and therefore
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0
Fp®0—> e~ Fo ® 0 — (F/G); ® 0
Fr
is contained in T(R".
CD,,. Since the kemel K of Fe ® Fg mult F is an F-subspace of Fg ® ;Fp,it fol-
lows that K @ 0 C T, is an F-subspace; thus,
0
300 0—>K®0—0
0
is contained in T(R).
For the projection mapping Fg ® F; —> (F/G); ® F; =~ F, we see that
F,N(Fs ®0)® Fp =(Gg ® 0)® ;Fg and hence T(R') contains
0
G ®0)® GFp— = (Gg ® 0) ® gFp — (F/G) ® oFs.
Ge ® oFf
Bn. Obviously, T(R) contains
0 0
~ -
0 0—0 0—Ty ~0

-
where 'y = {(f, /)| f € F} is the graph of the identity mapping. If ¢, =0, thenI'; =
U ® 0; thus

° SF@0—F®0— - —>F®0:2
is contained in T(R"). Similarly, E; C T(R").
Es- First, we show that T: [(xMg) — L(IM, Q) is a full embedding. Let
Gy
1
G

1

, T(Ug, Vi, (01, ¢2))= A1 Ay o Z O by o By
Then 4, N B, = 0 U 0; thus, all three direct components of Z are determined. Further-
more, (4, + C;) N B, identifies 0 U 0 with 0 0 U, (C; + B;) N A, defines the graph of
¢,, whereas C, N A4, is the graph of ¢, .

Note that T(R) contains a copy of E, determined by the central vector space 0 U 0,
T(R') contains a copy of Eg, with the central vector space {(0, u, u) |u € U}, and T(R")
contains E, with the central vector space 0 0 U.

E,. Again, we show that T is a full embedding. Obviously, the direct components of
Z in T(Ug, Vg, (9, p,)) are determined, and (4, + C) N B; determines the diagonals be-
tween 0 U0 0,00 U 0and 000 U. Also ¢, is determined by (C+0U00) NV O U O,
and y, is determined by (C+000U)N VO U Q.

T(R ) contains a copy of E,, with the central vector space generated by the elements
(0, u, u, 0),u € U. T(R") contains a copy of Ey, with the central vector space generated
by the elements (0, 0, u, u), u € U. Finally, T(R") contains Ej, namely
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{0, u, 0,-w)lu€ Ut

'l
00004,00005 0000 000U~L0U0U~000U~—000U

Es- To show that T is a full embedding, one notes that the components ¥ 00000,
00UO000,and 0000 U O of the central vector space Z in T(Ug, Vg, (9, ¢,)) are deter-
mined using only the subspaces 4; and B;. Also,(C+4,)N4, 0B, =000U00,
and then (C+000U00)NA,=000000,and(C+VO0OU00)NEB,=00000U
This shows that all components are determined. Obviously, C provides the identifications of
the different copies of U, as well as the definition of the graphs of ¢, and ¢,.

Now, T(R) contains a copy of E, since (0, 0, 1, 1, 1, 0) belongs to 43 N B, N C.
Similarly, T(R") contains a copy of Eg, since (0,0, 1,0, 1, 1) = (0,0, 1,0,0,0) +
(0, 0, 0, 0, 1, 1) belongs both to C and to (45 N B,) + B,. Finally, T(R") contains a copy
of E;; whose central vector space is 0 U 0 U 0 U, and whose vector space C is generated by
the two elements (0, 0,0, 1, 0,-1) and (0, 1, 0, 1, O, 0).

In the remaining four cases, we shall use the concept of an interior and that of a clo-
sure of a G-subspace in a vector F-space (where G is a subfield of F) defined in the introduc-
tion to the tables in Chapter 6 (for details, see [4]).

?41 The functor T is a full embedding: If T(Ug, Vg, &) =4, — A4, = A3 —Z <« B),
then Uz = A4, V; = A, N A3, and B is just the graph of ¢.

We claim that T(R) contains a copy of E,. The kernel of the mapping F; @ Fp —
(F/G)g ® ;Fp is the Fsubspace K = G ® ;Fp. Thus O x K is an F-subspace of
Fg ® gFgp — Fg ® ;Fg, and T(R) contains

0—=>0—>0xK—>0xK+«—0xXK

On the other hand, let ¢ be the identity mapping ¢ : G @ o Fp — G5 @ Fp.
Then T, N G x Gg = (1, 1)G and therefore T(R") contains a copy of E;), namely

0— (1, )6 — (1, 1)G — T, < T,.

Perhaps we should point out that the category of all images under 7 is - given by all
representations which satisfy the conditions 4, = 0, A2 =Z A, ®B=2, A © A, =W
The conditions A ®B=Zand A, ® B =7 are not satisfied for all images under T, but
rather At:or the homogeneous ones.

F,,. First, we show that the functor T is a full embedding. Since Up®pF; @G5 =0,
we see that B, = 0 x V. Also Up ® pNp =B, N (4, +B,), and Up = Up ® N ® oNE.

Here we use the fact that dimpN = dim N = 1, so that N* exists with ;N ® o Nf =
Finally, ¢ is determined by 4,.

Second, T'(R) contains E, because (1 @ 1) x 0 belongs to A, N B, in this case. On
the other hand, T(R") contains a copy of E'l, because the kernel of the multiplication map-
ping Fﬁ ® Fr m-E!!»FF is just N, so that A, N El *0.

G, . The functor T: L(;(F/G)g) — L(M, Q) defines an equivalence of categories
between the category Le(z(F/G)) of all representations ¢ : Uy ® cF/G)g — V with a
surjective ¢, and the category C of all representations (4, & A, & Z) of (M, Q) which

FFF'
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have the property that (4, Z), considered as a representation of - 1.3, , is a direct sum
of copies of (G < Fy). It is obvious that H(;(F/G)s) C Le(o(F/G)g)-

Also, using the fact that a homogeneous representation X does not allow a nonzero
homomorphism from E, into X, we get H(IN, Q) C C. Thus (4, <, Z) has to be a direct
sum of copies of (0 <— F) and (G;<— F). However, if there is a copy of (0 F ), then
dim(4,),; < dim Z, and, using the defect argument, dim(4,); > 2dimZy, which would
imply the existence of a subobject of the form E,.

Now, consider T(R), where R = (Fp, (Fg ® F;)/[(Fg ® ;G; + w(Fg)), ). Since
(Fg ® Gg) N w(F) = 0 according to the example following Proposition 2.1, dim T'(R) =
(3, 6,9). Obviously, T(R) contains a copy of E;, namely

0 — w(Fr) = W(Ff),

and the quotient is E;. But T(R) is not the direct sum of E; and E,; for, in T(R), the
closure A, of A, =Fg ® ;Gg is Z=Fg ® Fp. Thus EndR ~ EndT(R) is a division ring.
G,,. Let ;Mg = (pFg ® oFp)w(F)and N, = (pFg ® ;G + wF)/w(F). Ac-
cording to the example following Proposition 2.1, the endomorphism ring of the pair
Mg < Ng¢), considered as a representation of F - fo + G, is F. Now, the direct sums of
copies of (M D N) form a category C which is equivalent to the category of all vector
F-spaces, under the functor which maps an F-space Uy to (Up @ Mg O Up ® pNy). [In
order to show that it is an equivalence, one easily checks that it is a dense full embedding.]
Thus, there is a reversed functor which associates to a direct sum (Z; D B;) of copies of
(Mg D N) a vector space Up such that

Up @ p(Mp DNg) = (Z 2 Bg).

We claim that 7 provides an equivalence between the category Le(zMy) and the cate-
gory C of all representations (4, C— Zp «2B) such that (Z > B) is a direct sum of inde-
composable representations of dimension type (2, 3). Of course, T maps Le(zMy) into C.
But, obviously, T: Le (M) — C is also dense. Moreover, T is a full embedding, since
(A — Z; < Bg;) determines U and the kernel of , and therefore also ¢.

It is easy to see that T'(R) contains a copy of E,.
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6. TABLES

The following tables summarize the results of Chapters 4 and 5 on the indecomposable
regular representations. Each of the tables provide the following information on the respec-
tive extended Dynkin diagram:

1. The type of the valued graph including the notation for the vertices.

2. The quadratic form of the graph.

3. The vector n stable under the action of Wey! group, and the tier number g.

4. The defect vector 8, with respect to an orientation which is indicated here.

5. A modulation M = (F,, ,.M]-). As a rule, if ,-M]- is one-dimensional on both sides,
we assume F;=F; and F,‘(ijwf)F]‘ = F‘,(F,-)Fi. This is not, in general, possible for the diagram
A,,, because it is not a tree; here, we assume that F;, = F for all i €T and that iMj = pFp
for all but one edge. Also, if ;M; is one-dimensional as a left F;-module, we may assume
that F] is a subfield of F; and M = Fi(Fi)F]_; and, similarly for the case when ,-M]- is a one-
dimensional right F;-module. In the tables we omit to display these bimodules explicitly.

6. The simple nonhomogeneous regular representations. The list is divided into the
orbits of CT. Besides the representations, we inclide their dimension type, their image under
C?, the equation n = no for E = E; and the derived equations 0, for other representations
E,. The last column in the tables points out the consequences of the equality nﬁ’)X = 0 for
a simple regular representation X. In particular, a simple regular representation is homogene-
ous if and only if all conditions given in the last column are satisfied simultaneously. [The
consequences follow immediately from the proofs of the tables. However, they can be
easily derived from the tables alone: that is to say, the assumption that a particular conse-
quence, for a regular X, is not satisfied implies that, for the respective E{*), either EMc, X
or X —> Eﬁ’).] Here, the capital letters 4, B, Z, . . . (possibly with some indices) denote
the vector spaces of the representation X in the corresponding vertices g, b, z, ... of I'. In
case that G is a subfield of F" and the mapping A; — Z, ® .F is 2 monomorphism, we
shall assume that 4, is a G-subspace of the F-space Z,. In such a situation, we shall denote
by A the maximal F-subspace {a € 4 |aF C A} contained in A (the “F-interior” of 4) and
by A the F-subspace I, 4 aF (of Z) generated by A4 (the “F-closure™ of 4). Observe also
that the source / needed in the proofs of Chapter 4 is always « or q,.

7. A bimodule ;M. whose representations determine the homogeneous representa-
tions of the corresponding extended Dynkin diagram.

8. A functor T: L(zMg) — L(M, Q) which defines the correspondence.

9. The simple regular representations R of oM, such that T(R) is not simple. Always,
Eg') C T(R™M) with the exception of the diagram F42! where T(R') contains (E)).

Finally, let us make the following convention: If Mg =M, ® M,, we shall decom-
pose ¢: Up @ oMy —> V; is an obvious manner into (¢,, ¢,). Also, writing down a repre-
sentation, we shall usually specify the vector spaces and the mappings by U 7y £, UF2
(although these mappings are defined between U 1 @ Mg , and Ug,)
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>

11
1,4
BULPY

Ox) = (x, — 2x,)* = (a — 2b)*;
n=2—1;g=12;

9, =1—>=12

M= G — F'with [F:G] = 4;

All regular representations are homogeneous.

A12
@2,

O(x) = (x, = x,)? = (@~ b)*;
n=1—1;g=1,;
9, =2—>-12

M
F{7F,

M=F F., with dim, M = dimM,_ = 2;
1 2 Fy Fq

All regular representations are homogeneous.
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~

A

n
Cl —c2-—l'l —Cp\
a b,wherep2gandp+q=n-—1;

~

dy—dy— = —d,~
Q(x) =2_(x; — x;)*, where the summation runs through all edges i —/;
1 —1—9-+—1 0->0->+=>0

n=1" :1;g=1; Bc=n+li \—(n+1);
\1_1_-..—1 '0—)0—)..._)0}'
_F-F-+-F_

M=F_ F, where [N = gF and the right action of F on N

F—F—++=F%N isgiven by a field automorphism of F;

isomorphisms for
simple X with
E,™ dim E, " CE,® 7, 7,0 X=0

00--0F 00---01 00---01
00 0 E, 0O

00-+00 00+-00 00+-00 P
00+-00_ 0000 1000
E =F CUFR 1 E, 1 0 A-c,
for FF-FF 1111 0000
p=1 FO:-00 1000 1-1---00
E, =0 0 0 0 E, 0 c, > G,
00-:00 0000 0 0--00

00--FO0 00---10 00--1-1
0 0 0 0 0 0 1
P 00---00 00---00 00---0 0 2

o 000---000 000---00O g 0000
" " 00+-0F 0001 1 Y0001 D,~B
, FF - FF 1111 , 00:+00
E, = F 1 1 E, 1 0 A->D,
for 00:+00 0000 -10+---00
91 0000 _ 00-:00_ _, 0 0+-00
E, =0 0 0 0 Ej 0 0 D ,-D,
FO--00 10+-00 1-1+-00
, 00--00 00:-00 ., 00--0 0
E,=0 0 0 0 E, 0 _,~>D
00---FQO 00---10 00 --1-1 p a

M= pFp® pNg;

1 1 1
},QF—’UF‘*'"—*UF P1

T(Ug, Vg, (¢, 02 = Up Ve

1 UF—1> FT’"'T’UF ¥2

R = (Fg, Ng, (0, 1)) satisfies E, C T(R) for p >
R = (Fg, Fg, (1, 0)) satisfies Ej; C T(R’) for ¢ >

»

it Lad
.
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~

n

1,2 2,1
U T en,

2 T ip-

o(x) = (5_21)2 + Z (Zt _Zt+1)2 +(z,_, b)2§

1<t<n-2
n=l‘_l_1‘—"'—l—1’g=2’
ac=2——>0——>0——>~--——)0——>—-2-’

M=G, —F—F—++—F—G, with [F:G,] = [F:G,] =2;

isomorphisms for simple X

E dimE, C*E, n, withn, X =0

¥

41

E,=000:--0F0 000---010 E; 000-+01-1 Z, , —Hom(xFg,,Bz,)

E, =FFF-+FFF 211112 E, 1-10+:000 A®g Fp—Z,
E,=0F0--000 010:--000 E; 01-1---000 z, — 2,

. " .

.

n

E,_,=000:-F00 000--100 E; 000---1-10 Z,_,—Z, ,

M= ooy 1 11
14

mult .
R = (FGI’FG2’ FG1 ® GlFGz —-—>FGZ) satisfies E, C T(R);
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C,
T S 5
Q) =Qa-z, )+ X (g -z, *+(2,_; — 2b)%;

1<t<n-2

n=1—2—2——2—1;g=1;

3,=2—>0—0— " —0—-2

M=F, —G—G—++—G—F, with [F,; :G] = [F,:G] =2;
isomorphisms for
simple X with
E, dimE, C*E, n, 7,X=0
E,=000--0GO 000---010 , 000--01-2 Z,_, —Bg
E,=F, GG-GGF, 111-+111 , 2-10---000 A4;—Z,
E,=0G0--000 010--000 3 01-1--000 2z, —2Z2,
E,_,=000--6G00 000--100 E, 000--1-10 2Z£, ,—Z ,

M= g (Fyg ® gUF2)p,y;

1 1
T(Ug,» Up,» ¥) = WUp, = Up @ p (Fy)g =

1
. _)'UFI ® FI(FI)G i) VF2;

R = ((F)p,» Fp)p,y» Fplg ® g(Fp, = (FyIG)g ® g(Fy)p, ~ (F,)p,) satisfies

Eo C T(R);
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BCn
1,2 1,2
a( )Zl *—22 — e _Zn—l (_lb,
QX)) =@-z,2 + X (2,724, *+(z,_, —2b)%;
1€t<n-2
n=2—2—2— 0 —2—1;g=12;

aczl——)0—>0-—)-ao —-)0-)-2;

43

M=H—G—G—++—~G—FwithHCGCFand [F:G] = [G:H] =2;

isomorphisms for
simple X with

E, dimE, C*E, n, 7,X =0
E,=000:+0G0 000-+-010 E 000---01-2 Z, , —B;
E,=GGG++GGF 211+-111 E, 1-10:-000 A,®,G;—Z
E,=0G0 +-+000 010--000 E; 01-1--000 Z, —2Z,

E, ,=000:-G00 000--100 E, 000--1-10 Z, ,—2Z, _,

M= 4 Fg;

1 1
Ty, Vs 0) = Uy = Uy ® G —> +++ — Uy ® yGg > Vs

It
R = (Gyy, Fpp, Gy ® yFp > Fp) satisfies Eq C T(R);
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BD,

— et

a
1
~ 2

_ 2,1) b
4 Z3 n—2 >

2
Q(X) = Z (2(2, - at)2 +2 Z (Zt —ZH—I)Z + 2(Zn__2 - b)z;
t=1,2 1<tsn-3

1
n= _2—2—+—2—2;g=1;

1/
1o
ac=l/?0——>0—>---—>0——->—-1;
F _ :
93?=F/F——F—'-'—F——Gw1th[F:G]=2;
isomorphisms for
simple X with
Er(’) dimEr(t) C+Er(f) nr(t) nr(r)x =0
0 0 0 B
Eg=_00-:0F0 00010 B 000112, ,—Hom(:%.5)
F | |
E,= FF-FFF 11::112 B, -10-:000 4;®4, 7,
0 0 0
E,= F0-+-000 10:--000 E, 1-1+-000 2, —2Z,
0 . O L] 0 -
o 0 C0 '
E, ,= 00:-FO00 00100 E, 00--1-10 2, ;—Z, ,
0 0 0
, 0 0 , 0
Ey= FF-+FFG _11-+111 E, _00+-00-1 A, ~ 4,
F 1 2
, F 1 .2
By= FF-FFG 11111 E, 00:-00-1 A, ~ A,

M= pFo ® Fp;

Vi 1 1 1
T(Ug, Vi, 0) = U ; Up@ Ve = Up®Vp— o = Up ®Vp — (Ug ® V)T,
F
where I, = {(u, p(u ® 1 ® 1))|u € U} is a G-subspace of U, & Vas
mult
R=(Fg, Fp, Fp ® pF; ® Fp — F}) satisfies E, CT(R);

R'= (Fp, Fp, Fp ® pFg ® Fp ~Fg ® GFp — (FIG)g ® oFp ~ Fp) satisfies
E, C T(R;
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CD,
a, (1,2)
>21 T T T Iy b
a
0= 3 Qa,~z*+2 3 (z,=2,4,P +2z,_, ~ 2b)%;
t=1,2 1<t<n-3

1
= \ — — B 8 — —— . . .
n—1/2 2 2 1, g=2;

1
o= 200 0

LR

G
m = /G—-G G — F with [F:G] = 2;

isomorphisms for
simple X with

Er(t) dim Er(t) ct Er(t) nr(f) nr(r)x =0
0 0 ¢ 0
E,= 00:+0GO 00---010 E, 00:--01-2 Z, ,—B;
0 0 0
G 1 1
E,="GG+-+GGF 11--111 E, -10+-000 4,®4,—2Z,
G 1 1 |
0 0 0
E,= G0--000 10000 E, 1-1+---000 2z, —2,
0 0 L] - 0 - L]
0 0 0
E,_,=,00:G00  00:-100 E,  00--1-10 2, ;,—Z2,,
, 0 0 , 0
E,= FF«+-FFF _22:--221 E 00++00-1 A4, ~4,
F 2 1
F 2 , 1.
E, = FF«+«FFF ~22++221 E 00--00-1 A, ~A4
1 0 0 0 0 1 2

M =  F; representations of F are considered both as mappings U, ® F; — V and
as mappings U, ® Fp — Vg @ oFp;

VG ® GFF\
T(Ug, Vg, v) = U@ Ug ®@V5)® gFp — 2 —(Ug ® V) ® Fp
G
¢ d — (U ® V) ® GFglT,.,
where I, = graph of Ug ® Fp — Vo @ oFg;
mult

R=(Fg, Fg, Fg ® oFg; — F) satisfies E; C T(R);
R' = (Fg, Fg, Fg ® gFg — (F/G)g @ sF; = Fg) satisties Ey C T(R');
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~

n

o1 /bl
Ty =2y~ — 2z ;
02/ 1 2 n 3\b2
o= 2 (2":-21)2 +2 2 (Zt‘zt-n)2Jr 2 (zn_3-2b,)2;
t=1,2 1<t<n—4 =1,2
_ I 1 =
n“—1/2_2_' _2\13 g_lx
-1
— ™ ~7 .,
BC—I/O—»O—* —*0\_1,
F__ _.F
W= TF—F——F
isomorphisms for
simple X with
E® dim E_(9) C+E,,(t) n, nr(t)x =0
0 0 O 0 0 -1
E,= 00---0F 00---01 E 00---01 Z _,—B &8
® o 0 0 0 o e A
E FFF FFF 11 11 E : 10 000 A D A4 Z
— .o —_ . —_
1 F F 1 1 2 1 0 1 2 1
0 0 O 0 0 0
E,= F0---00 10---00 E, 1-1 00 zZ, —Z,
0 0 0 0 0 0 .
o 0 0 0 0 0 '
B, 3=,00F0 0010 B 00-1-1 = 7,47,
, 0 0 O 0 , 0 -
Eo= FF«FF 1111 E, 00---00 A, — B,
F F 1 1 1
E' FFF FFF 111 11I E, 100 00 A B
— LI e a8 e —_—
170 0 0 0 ® 0 -1 ! 2
" O F 0 1 " O 0
E,= FF--FF 11211 E} 00---00 A, — B,
F 0 1 0 1 -1
. F 0 1 0 . 1 -1
E,= FF-+FF I11---11 E, 00---00 A, — B,
0 F 0 1 0 0
M=F(F><F)F;

Ve

RS
T(UF, VF’(‘pl,‘pz)):U /’UF$ VF—>UF@ VF_._)...__)UF@V
F

where T'; is the graph of ¢, (i = 1. 2);

R = (Fg, Fg, (1, 1)) satisfies E, C T(R);
R' = (Fg, Fg, (0, 1)) satisifes E; C T(R');
R" = (Fp, Fp, (1, 0)) satisfies E;; C T(R");

T (UF & VF)/FI
F s
(U ® V)il
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P~
Ee

|
a, —ay —z—by — by
Q(x) = (62, — 3a,)* + (6b, — 3b,)% + (6¢, — 3c3)* + 3[(3a, - 222 + (3by — 22)* + (3¢, — 22)%);

1

|
2

1
)
1
| A
n=1—2—3—2—1; g=1; 9,=1—=>1—>-3« 1«1

consequences for simple
E,( dimEg,® C'ED 2,0 X with 7,(0X = 0

0 0
F 1 1
E,= 0 F F F 0 01110 E, 01210 Z/4,®ZB, ®Z/C,=2

(1, HF 1 1

1, HF 1 0
E, =Fx0Fx0 FxFOxFOxF 11211 E, 10-101 A4, &8, &C, =2
0 0 0
0 0 , 0
E;): 0 F F F F 01111 Ey 01-101 A4,®B, =2
F 1 1
F 1 , 0
E'l: 0 0 F F 0 00110 E, 00-110 B,®9C =2
0 0 0
F 1 , 1
E’2= F F F 0 0 11100 E, 10-100 C,®4, =2
0 0 0
F 1 1
E,= 0 0 F F F 00111 E] 00-100 B, ®C,=2Z
0 0 0
0 0 0
El= F F F F 0 11110 E; 10-110 A4,9B,=2
F H 1
F 1 0
E;= 0 F F 0 0 01100 E, 01-100 C,®A4,=2Z2
M:F(FXF)F; Cl
!
G
{

R' = (Fg, Fg, (1, 0));
R" = FF’ FF’ (1, 1)),

TWg, Vg, (01, 0D =V00 —>VUO—=>VUU<—0Q0UU+-00V,
where C;, = {(p, (1), u, u) lu € U} and C, = C; + {(¢,(u), 4, 0)|u € U};
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c £,

{
@y —a, —a3— z— by — b, —by;
O(x) = 6[(2a, ~ a,)* + (2b, — b,)* + 2[(3a, = 2a5)* + (3b, = 2b3)’] + (4a; - 3z)?

+ (4by — 32)* + 6(2c - 2)?;

2
|
n=1—2—3—4—3—2—1; g=1;
2
4
9,=1—21—>1—>-4< 1«11
F

|
M=F—F—F—F—F—F—F
consequences for
simple X with

E,(” 7, X =0

dim E,() C*E,(®

F A I
F F 0 0 001110 E, 001-2100

0,

(A4, NB,)®C=

Ec,2= 0 0 F ZjA, ®Z/B, ®Z/C=Z

(1, 1)F 1 1
E, = Fx0 Fx0 Fx0 FxF OxF OxF 0xF 1112111 E, 100-1001 4, ®B, ®C=Z
0 0 0
E,= 0 F F F F F 0 0111110 E; 010-1010 4,®B,=2Z
F I 1
E,=0 0 0O F F F 0 0001110 E, 000-1010 B,®C=2
X F o , 0
EE=F F F F F 0 0 1111100 E, 100-1100 A4, ®By=2
F 1 i
E,2=0 F F F 0 0 0 0111000 E; 010-1000 4,®C=2Z
' F 0 , 0
E,z=0 O F F F F F 0011111 E; 001-1001 (4,68, =2
oo WP 1 : 1 (4, N By) @
"= F " —
El= 0 Fx0 Fx0 (lxl)FFx 0><F0><F011i211 . 010?101 B,NO®B, =2
E) =Fx0 Fx0 FxF FxFOxF OxF 0 1122110 E, 1012010 “43058,)®

A, N0®4, =2

M= p(F x F)p; C

1

T(Ug, Vg (9;, ¢;)) = V000 & VUOO <, VUUO < VUUU > QUUU > 00UU > 000U,
where C is generated by the elements (¢, (u), u, u, 0) and (p,(u), 0, u, u) with u € U,

R = (Fg, Fp, (0, 1));
R' = (Fg, Fg, (1, 0));
R" = (Fp, Fr, (1, 1))



REPRESENTATIONS OF GRAPHS AND ALGEBRAS
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7110000 < 2207100 < NAANNA > 011014 S 0014 > 000224 > 000014 > 000004 = (36 ') 94 *dn) 1

Gn9g4n= 4
“onIgn=4

5 Wro)9g9n =y
2 Y x DT =W
z=Cru@oCru'g®@oe’ 11e¢10101 % 1CEETTIT  JxX0X0 I*xd%X0 mmmxw Axdxd Oxdxd 0%xdxd 0x0xd 0x0x4 = '3
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- 1 I A
z=0/zo ‘d/z ® *v/z . o
A 0iZ-10000 '3 01110000 0 A A d 0 0 0 q
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~
F41

(1,2
a, —a, —a, z — b;
O(x) = 3(2a; ~a,)* + (3a, — 2a;)* + 2(2a4 — 32)* + 6(2b — 2)%;
n=1—2—3—2—1; g=12;
e e Bl e e

M =G —G—G—F— Fwith [F:G] =2;

consequences

for simple X

E, {0 dmEM  CTE® 0O with ,0X=0

E,2= 0 0 F F F 00211 E 00121 4,®&B=Z

E, =GxG GxG GxG FxF (1, )F 22221 E, 100-114,®B=2

E,= 0 F F F 0 02210 E, 010-10 A4,=0,4,=2Z

E,k= 0 G G F F 01111 E, 010-224,®B=1Z

EE= G G F F 0 11210 E, 101-20A4,84,=2
M= Fg;

TWg, Ve, 9 =Vgx0 Vg xUsz Vi x (U ® 6Fg) & (Vg ® oFp) %
(Ug® gFp) o T, where T, is the graph of : Uy ® oFp — Vi ® Fp;

R' =(Gg. Gg, Gy ® 4Fp S Gy ® oFp);



al _(12 —2Z

@n,

2 — by

42
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O(x) = 6(2a, —a,)? +3(2b, — by)? + 2(3a, — 22)* + (3b, — 42)? ;

n=1—2—3—4—2; g=1;

3,=1—>1—>-3«1<+1;

c

M=F—F—F—G— G with [F:G] =2;

Er(t)

dmE® C*E®

ﬂt(t)

51

consequences
for simple X
with , X =0

E,= O F F G G 01111 E 02-201 A,®B,=2Z
E,= 0 0 F F G 00121 E, 00211 B, ®B,=2Z
E,= 0 F F G 0 11110 E, 20210 A4, ®B,=2Z
E,= F F F F 0 01120 E, 01210 A4,®8B,=2
E, =(1,/)F (1,f)F FxF GxG GxG 11222 E; 10-101 A, ®B, =Z

with f€ F\G

M=gpFg ® gFp;

T(Ug, Ve, ) = Ay ™ A, = (Up @ pMp) x Vi «— (Up ® pFp ® 6G5) x Vi

— Uz ® pFy ® ;Gg) x 0,

where A, is the graph of g and A; = A4, N (Up @ gKp x Vi),
with K, = ker(pFg ® Fp — pFp);

R' = (Fp, Fp, Fpo ® pFp ®

mult
cFp— Fp);
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G,,
(1, 3)
a; —a, z;
0(x) = (2a; — a,)* + 3(a, — 22)%;
n=1—2—1; g=3;
0, =1—1—-3;
M =G—G—Fwith [F:G] =3;
consequences for
simple X with
E, dimE, C*E, n, 7,X=0
E,= O F F 031 E  01-2 A, =2 4,=0
E, =GxG+ GxG+ FxF 332 E, 10-1 A ® Fp—Z
(e, NG (e, NG is an isomorphism

such that {1, e, f}
is a basis of Fg

M = (F/G); representations of ,(F/G). are considered as the mappings
0:Ug ® oFg — Vi with U, @ G;) =0;
TWUg Vg, 0:Ug ® oFg = Vg)=Ug ® ;G & kerop o, Ug ® Fp;
R=(Fg, (Fg ® gF)(Fg ® oG + w(Fg)), m), where 7 is the projection, and
w = 1:F — F, ® Fp is the mapping canonically attached to the identity
Frp ® pFg — F; with respect to some €: ;F; — G (see the example after
Proposition 2.1);
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z(i’—-l—)b;

Qx) = 3(22 —2)? + (2b - 32)?;
=1—2—3;, g=1;

0, =1—>-2«1;

M=F—F— G with [F:G] =3;

E dim E

r r

G22

consequences for simple X with
C*¥E, n, 2X=0

r

E,=0 F G+fG 012
. with fEF\G
E,=F F G 111

E, 0-32 B ® Bf=Z as abelian groups

E, 3-31 A®B=2Z

M= (pFg ® GFp)| o pFp), where w = 1 : F — F ® oFp is the mapping canonically
attached to the identity Fp ® F; — F with respect to some €: 5 F, — 5G4
(see the example after Proposition 2.1);

T(Ug, Vg, 9) =Kerp & Up @ oMy & Up @ pNg,
where ;N = (pFg ® ;G5 + W(gFp)) | w(pFr);

R =(Fp, Mg [xF, Fp ® oMy =~ Mg —> Mg [xF) with 0 #x €EN;
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ADDENDUM

We should like to use this opportunity and point out some of the developments in the
theory of representations of graphs which took place after this paper was prepared for pub-
lication.

In order to complete the description of the category L(M, ) for a realization (M, Q)
of an extended Dynkin diagram, one would need the classification of the homogeneous inde-
composable modules. In general situation, this seems to be very difficult. However, the sub-
category H(IMM, ) can be described in the case of a K-realization (or “K-species”), that is in
the case of a realization (YN, §2) such that all F; contain a common central field K with
[F;: K] < e, which operates on each M, centrally. For these, H(I, §2) is always a direct
sum of uniserial subcategories of global dimension one with a single simple object (C. M. Rin-
gel, Representations of K-species and bimodules, to appear in J. Algebra.) Thus in order to
complete the classification of all indecomposable representations of K-realizations of extended
Dynkin diagrams it only remains to describe all simple homogeneous representations of all
K-realizations of the diagrams K“ and A 12-

This can be done when the field X is the field R of the real numbers. For, obviously,
there are only six different R-realizations of this kind (C and H denote the fields of com-
plex numbers and quaternions, respectively):

H H
1) RB—EH and Hﬂ——R»R;
Fp ® . F
) FEE " 5 b with F= R, Cor H; and
cCc ® cCE
3) C C, where the right action of C on Cg is given by conjugation.

This follows from the fact that a bimodule M can be considered as a left F ®K G°P.
module; now, H ®n H°? is a simple algebra and C @y Cis the product of two copies of C.

In 1), the complete classification is given in V. Dlab and C. M. Ringel, Real subspaces
of a vector space over the quaterpions, to appear: The simple homogeneous representations
are of the form Uy ¢ Hg, where U is a two-dimensional R-subspace of H containing the
subfield R, and thus the set of such representations is the two-dimensional real projective
space. The endomorphism ring of every such representation is the field C.

In 2), H(IN, Q) is the product of the module category of the corresponding polyno-
mial ring F[x] and a uniserial category with a single simple object whose dimension type is
(1, 1). Here, if ¥ = R, the set of all simple homogeneous representations is a compact real
2-hemisphere K ; the endomorphism ring of a representation corresponding to a point on the
boundary is the field R, and that of a point in the interior is C. The correspondence can be
described as follows: Consider the hemisphere K as the one-point compactification of the
closed upper real plane. For the points (g, b) with b > 0, the corresponding representation is

1
Rx R—//ZZ RxR;

“ha)
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for (a, 0),

and for the point oo,

If F = C, the set of simple homogeneous representations is the real 2-sphere and the
endomorphism ring of every such representation is C. We consider the real 2-sphere as a
one-dimensional projective C-space and then a correspondence is given, for ¢ € C, by

c——=
¢

and for oo, by
0
c_=cC.
If F = H, then the set of all simple homogeneous representations is again the compact
real hemisphere K and the endomorphism rings of such representations are either H or C,
depending whether the corresponding point lies on the boundary or in the interior of K.
Here, the correspondence between the points of K and the representations is given as follows:
For (@, b) in the real upper half-plane (b = 0),
1
H > H,

_—

and for the point oo, a+bi

Finally, in 3), H(IM, ) is the product of the category of all modules over the twisted
polynomial ring C(x, —] with respect to the conjugation, and a uniserial category with a
single simple object, again of dimension type (1, 1)(V.Dlab and C. M. Ringel, Normal forms of
real matrices with respect to complex similarity, to appear in Linear Algebra and Appl. Again,
the set of all simple homogeneous representations is K; the correspondence is given as follows:
for ¢ = (g, b) with »>0o0rb =0 and 2 <0,

CxC_—_—3CxC,
Oc)
10

1
c_—/3¢C,
a

forb=0anda >0,

and for the point o, again
0

c_3¢cC.

1

The endomorphism ring of a representation corresponding to (a, b) with b > 0 is C,
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to (g, 0) with a < 0 is H, to (g, 0) with 2 > 0 is R and to the points (0, 0) and e, it is C.
From the above paper of C. M. Ringel, it follows easily that, given a K-realization

(M, Q) of a connected valued graph (T, d), L(IM, Q) is of tame representation type if and

only if (T, d) is an extended Dynkin diagram. Namely, for all valued graphs with an indefin-

ite quadratic form and for all K-realizations (M, §2), the category L(IM, ) is of wild repre-

sentation type in the sense that there is a full exact embedding of the category of all modules

over a free associative algebra with two generators over a commutative field.
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