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INDECOMPOSABLE SOLUTIONS OF THE YANG-BAXTER

EQUATION WITH PERMUTATION GROUP OF SIZES pq

AND p2q

S. RAMÍREZ

Abstract. In this paper we study the problem of classification of inde-
composable solutions of the Yang-Baxter equation. Using a scheme pro-
posed by Bachiller, Cedó, and Jespers, and recent advances in the clas-
sification of braces we classify all indecomposable solutions with some
particular permutation groups. We do this for all groups of size pq, all
abelian groups of size p2q and all dihedral groups of size p2q.

1. Introduction

The study of solutions of the Yang-Baxter equation originates from the
works in physics of Yang [26] and Baxter [6]. In 1990 Drinfeld [16] proposed
the study of the class of set-theoretical solutions of Yang-Baxter equation
(see Definition 2.1).

The foundational works on the algebraic study of these solutions came
later in the works of Etingof, Schedler and Soloviev [17] and Gateva-Ivanova
and Van den Bergh [19]. In the years following a great number of connections
to other areas of algebra have been found, e.g. Hopf-Galois structures [25],
radical rings [22] and Garside groups [13, 14].

One of main problems is that of classification and construction of solutions.
Although there have been recent improvements in the explicit construction
of all solutions of small sizes [3], this approach does not look feasible in
general. There are for example almost five million involutive (see Defini-
tion 2.2) solutions of size 10, the largest size computed. There seems to be
a computational limit for direct calculations.

One might try considering a class of simpler solutions from which one
might construct all the rest, and try to classify these simpler ones. One
such approach is to consider solutions that cannot be written as a disjoint
union of two other solutions. These indecomposable solutions were defined
originally in [17]. Classifying indecomposable solutions seems to be a more
approachable objective, there are, for example, only 36 indecomposable so-
lutions of size 10. This class of solutions has been intensively studied with
many recent results [10, 9, 20, 24, 23, 11, 8, 18, 21, 7] In this paper we give a
classification of all indecomposable solutions whose permutation group (see

Key words and phrases. Yang-Baxter equation, set-theoretic solution, Braces, indecom-
posable solution.
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Definition 2.2) has size pq, or is abelian or dihedral and of size p2q, where p
and q are distinct primes.

2. Preliminaries

In this section we collect the basic definitions and results we will need
about solutions and braces, and go over the scheme proposed by Bachiller,
Cedó and Jespers [5] that we will use for the classification.

2.1. Solutions and braces. We will restrict ourselves to non-degenerate
solutions, defined in the following way:

Definition 2.1. A non-degenerate solution to the Yang-Baxter equation is

a pair (X, r), with X a non-empty set and r : X ×X → X ×X a bijection

that satisfies

(r × 1)(1 × r)(r × 1) = (1× r)(r × 1)(1 × r),

and such that all the maps σx, τy defined by r(x, y) = (σx(y), τy(x)) are

bijections.

Besides this we will also restrict ourselves to involutive solutions.

Definition 2.2. A solution of the set-theoretical Yang-Baxter (X, r) is called

involutive if r2 = id.
In this case the group generated by the maps σx is called the permutation

group of the solution.

In what follows solution will always mean non-degenerate involutive so-
lution of the Yang-Baxter equation. These restrictions guarantee that the
permutation group will be well-behaved and nicely reflect properties of the
solution. With these restrictions the indecomposables solutions described in
the Introduction can be alternatively defined in the following way:

Definition 2.3. A solution (X, r) is called indecomposable if its permutation

group acts transitevely on X.

The permutation group of a (involutive) solution has the additional struc-
ture of a brace.

Definition 2.4. A brace is a triple (B,+, ◦), with (B,+) an abelian group,

the additive structure of the brace, and (B, ◦) a group, the multiplicative

structure, satisfying

a ◦ (b+ c) = a ◦ b− a+ a ◦ c.

A brace is called trivial if the additive and multiplicative structures are the

same.

This structure was originally described in [22], with this definition first
appearing [12], and is a fundamental tool in the classification process. The
multiplicative structure of the brace associated to a solution is the usual
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composition of permutations. We will not find it necessary to know how to
give the additive structure.

In a brace, (B,+, ◦), the multplicative group has a natural action (by
group automorphisms) on the additive group. This action is usually noted
by λ− : (B, ◦) → Aut(B,+), and is given by

λa(b) = −a+ a ◦ b.

2.2. Classification scheme. We now go over the scheme developed by
Bachiller, Cedó and Jespers in [5] for classifying all solutions that have a
given brace as permutation group. A related scheme in terms of coverings
of solutions was developed by Rump in [23].

To give a solution with brace B one must first choose a set of elements
of B such that their orbits under the λ action additively generate B. Then
for each of these elements one must choose a subgroup of its stabilizer, in
such a way that the intersection of all of their normal cores is trivial. The
solution set is then the disjoint union of the quotient by these subgroups.
By [5, Theorem 3.1] all solutions can be constructed this way.

On the other hand in [5, Theorem 4.1] they characterize when two of
these solutions are isomorphic. For this to happen there must be a brace
automorphism that maps the orbits of the elements chosen for the first to the
orbits of the elements chosen for the second one. Moreover, the corresponding
chosen subgroups must be conjugate.

Since we are going to be focused on indecomposable solutions this scheme
simplifies considerably. Since indecomposable solutions are precisely those in
which the permutation group acts transitively, in the construction we must
choose a single element. So rather than consider all possible ways in which
a union of orbits may generate the group, we need only understand which
orbits generate the group. The following observation will be particularly
useful for this:

Remark 2.5. Since all the elements of an orbit have the same additive order

if that orbit generates, the order of these elements must be divisible by all the

primes dividing the size of the group.

A second important consequence of choosing a single element is that the
intersection we need to consider contains a single subgroup. We are then
restricted to choosing core-free subgroups of the stabilizer of an element.
This further simplifies when considering abelian groups, as in this case the
only core-free subgroup is the trivial one. Moreover, it turns out that even in
the case of the dihedral groups this is the only subgroup we need to consider.

We can then restate the results of [5] for this simplified situation as follows:

Theorem 2.6 (Bachiller-Cedó-Jespers). Let B be a brace, x ∈ B such that

the set {λb(x) : x ∈ B} generate the additive group of brace, and K < B
a core-free subgroup of the multiplicative group such that λk(x) = x∀k ∈
K. Then there is a natural solution structure on X/K. This solution is

indecomposable and its structure group is isomorphic to B as a brace.
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Moreover any indecomposable solution with B as its structure brace has

this form.

In order to classify all solutions with a given permutation group, we must
then understand all possible braces with that multiplicative structure. For
this we refer to recent work classifying braces, and more general skew-braces,
of fixed sizes [1, 2, 15, 4]. We are going to be refering mainly to the results of
Acri and Bonato in [1] and [2], as they give explicit formulas for the structure
of the all the braces we require.

The process of classification is then the following. Using the explicit de-
scription of the braces with fixed multiplicative group we first characterize
all generting orbits of the λ action. In the case of abelian groups this gives
us all solutions, for the dihedral groups we also need to find the core-free
subgroups of the stabilizers to find all solutions. Next we need to find how
the brace automorphisms act on the orbits. For this we again use the ex-
plicit description to compute the group of automorphisms explicitly. We the
explicit description of the orbits and automorphisms we can see which orbits
generate isomorphic solutions.

3. Braces of size pq

We first focus on solutions with permutation group of size pq. For the
descriptions of the braces we refer to [1], where all (skew) braces of size pq
are classified. According to the classification there are at most two braces of
these sizes. There is always a trivial brace with cyclic multiplicative group.
When p ≡ 1 (mod q) there is an additional brace whose multiplicative group
is a semidirect product.

We first consider the trivial brace. In this case, we give all indecomposable
solutions for any trivial brace,

Proposition 3.1. Let B be a trivial brace. If the underlying group of B is

cyclic then there is a single indecomposable solution with associated brace B.

If the underlying group is not cyclic then there is no indecomposable solution.

Proof. By [5] we first need to find all orbits under the λ action that generate
the additive group. Since the brace is trivial all orbits are singletons, and
the problem reduces to finding generators. In particular only cyclic groups
will produce any indecomposable solutions. We can then safely assume the
group is cyclic to find all such solutions.

Since the group is cyclic then only possible core-free subgroup is the trivial
group, so every generator of the group produces a single solution. However,
since the group is cyclic there is a group automorphism mapping every gen-
erator to any other one. Since the brace is trivial any additive morphism is
a brace morphism, and since the subgroup being used to construct the solu-
tion is trivial this gives an isomorphism between any pair of the constructed
solutions. �
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Next we consider the non-trivial brace of size pq. For this we must have
p ≡ 1 (mod q). We identify the brace B with its additive group Zp × Zq.
The multiplicative structure is then given by

(

a
b

)

◦

(

c
d

)

=

(

a+ gbc
b+ d

)

,(3.1)

where g is any element of Zp of order q.
By Remark 2.5, any generating orbit must contain a generator, i.e. an

element of the form (a, b) with both a and b generators of the corresponding

group. The stabilizer of any such orbit is then Zp × {0}, giving (p−1)(q−1)
q

distinct orbits. We note that this subgroup has no non-trivial core-free sub-
groups.

To understand when two of these orbits generate the same solution we
need to know the group of brace automorphisms, these are given by the
following proposition:

Proposition 3.2. Let p and q be primes with p ≡ 1 (mod q). Then the

group of automorphisms of the non-trivial brace of size pq is isomorphic to

Z
×

p .

Proof. The automorphisms of the additive group are given by Z
×

p × Z
×

q ,
acting by coordinatewise multiplication. Given (α, β) in this group for it to
be a brace automorphism it must satisfy

(

α(a+ gbc)
β(b+ d)

)

=

(

α(a+ gβbc)
β(b+ d)

)

, ∀a, c ∈ Zp, b, d ∈ Zq.

And for that to hold the only possibility is β = 1. �

From this it follows that two orbits will generate the same solution pre-
cisely when the second coordinate of its elements coincide. This means that
there are exactly q − 1 indecomposable solutions with this brace.

We then have the following result classifying all indecomposable solutions
whose permutation group has size pq:

Theorem 3.3. Let G be a group of order pq. Then:

(1) If G is cyclic there is a single indecomposable solution with permuta-

tion group G.

(2) If G is a semidirect product Zp ⋊ Zq then there are exactly q − 1
indecomposable solutions with permutation group G.

In any of these cases all solutions have size pq.

A particular instance of this result is that if p is a prime number then there
is a single indecomposable solution with permutation group the dihedral
group D2p.
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4. Cyclic braces of size p2q

Now we turn to study braces of size p2q and start by considering those
whose multplicative group is cyclic. We refer to [2] for the enumaration and
explicit descriptions of the braces.

4.1. Case p = 2. In [2] the analysis is split into the cases q ≡ 1 (mod 4)
and q ≡ 3 (mod 4), however the braces with abelian permutation group can
be described uniformly for both cases so we make no such distinction here.

There are two possible braces with cyclic permutation group. The first is
the trivial brace. By Theorem 3.1 there is a single indecomposable solution
for this brace. For the other solution we identify the brace with its additive
group Z

2
2 × Zq. The multiplicative structure is given by





a
b
c



 ◦





d
e
f



 =





a+ d+ be
b+ e
c+ f



 .(4.1)

By Remark 2.5 the elements of any generating orbit must have order 2q.
So we must consider the orbits of elements of the form (α, β, γ) with γ a
generator of Zq and α and β not both 0. Since acting via λ on one of this
elemnts can only change its first coordinate we must have β = 1. We then
have exactly q − 1 generating orbits of the form Oγ = {(∗, 1, γ)}, with γ a
generator of Zq.

The following result characterizes the group of brace automorphisms of
these braces:

Proposition 4.1. Given q a prime number, the group of brace automor-

phisms of the only non-trivial brace with multiplicative group isomorphic to

Z4q is isomorphic to Z2 × Z
×

q , with

Proof. The group automorphisms of the additive group are isomorphic to
GL2(2)× Z

×

q , with the first component acting by multiplication on the first
two coordinates, and the second component on the third one. Let (A, u)

be an element of this group, with A =
(

x y

w z

)

. We replace each term by

(A, u) times the element in (5.2) to check which ones are also multiplicative
morphisms. Focusing on the second coordinate we get

w(a+ d) + z(b+ e) = w(a+ d+ be) + z(b+ e),

if this is to hold for any a, b, d, e ∈ Z2 then w must be zero. This immediately
implies we must have x = 1 = z for the matrix to be invertible. The
condition on the first coordinate is now automatically satisfied and from the
third coordinate we do not get any restriction, so for (A, u) to be a brace
automorphism A must be unitriangular. Since the group of unitriangular
matrices is isomorphic to Z2 we get the desired result. �

Given two generating orbits Oγ and Oγ′ we can take A the identity matrix
and u = γ−1γ′ to get by the previous result a brace automorphism mapping
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the first orbit to the second one. In particular all the orbits generate the
same solution, i.e. there is a single indecomposable solution with non-trivial
brace in this case.

4.2. Case p odd. In this case we again have only two possible braces, the
trivial one and a single non-trivial one. However, in this case the non-trivial
brace also has cyclic additive group. Identifying the brace with its additive
group Zp2 × Zq, the multiplicative structure is given by

(

a
b

)

◦

(

c
d

)

=

(

a+ c+ pac
b+ d

)

.(4.2)

By Remark 2.5 any generating orbit is the orbit of a generator of the additive
group. Given (α, β) a generator of Zp2 × Zq its orbit under the λ action
consists of all elements of the form (α̂, β) with α̂ ≡ α (mod p).

To see which of this orbits generate the same solution we characterize the
group of brace automorphisms of this brace.

Proposition 4.2. The group of brace automorphisms of the only non-trivial

brace of order p2q with cyclic multiplicative group is isomorphic to Z
×

q .

Proof. The group of automorphisms of the additive group is Z×

p2
×Z

×

q , acting

by coordinatewise multiplication. From (4.2) we can see that for an element
(α, β) to also be a morphism of the multiplicative group it must satisfy
α2 ≡ α (mod p2). �

From this result we then conclude that two generators of the additive
group (α, β) and (α′, β′) give the same solution if α ≡ α′ (mod p). In par-
ticular, there are p− 1 indecomposable solutions for this brace.

Together with the previous case we have proved the following theorem:

Theorem 4.3. Let p and q be distinct prime numbers. There are p distinct

indecomposable solutions with permutation group isomorphic to Zp2q.

5. Non-Cyclic abelian braces of size p2q

We now focus on the only non-cyclic abelian group of order p2q. We note
that by Proposition 3.1 the trivial brace will not give us a solution in this
case.

5.1. Case p = 2. In this case there is a single non-trivial brace and its
additive group is cyclic. Identifying the brace with its additive group Zq×Z4

it multiplicative structure is given by
(

a
b

)

◦

(

c
d

)

=

(

a+ c
b+ (−1)bd

)

.(5.1)

The generating orbits are then of the form Oα = {(α, 1), (α, 3)}, with α a
generator of Zq.

We can characterize the group of brace automorphisms with the following
result:
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Proposition 5.1. Given q an odd prime, the only non-trivial brace with

mutliplicative group Zq ×Z
2
2 has group of automorphisms isomorphic to Z

×

4q.

Proof. The gorup of automorphisms of the additive group is Z×

4q
∼= Z

×

q ×Z
×

4 ,

which acts by coordinatewise multiplication. By substituting on (5.1) we see
that all of these are also multiplicative automorphisms. �

It follows from this result that all orbits generate the same solution. There
is then a single indecomposable solution with permutation group Zq×Z

2
2 for

any odd prime q.

5.2. Case p odd. Like in the previous case there is a single non-trivial
brace, however in this case the multiplicative group is isomorphic to Z

2
p×Zq.

Identifying the brace with the additive group, the multiplicative structure is
given by





a
b
c



 ◦





d
e
f



 =





a+ d+ be
b+ e
c+ f



 .(5.2)

Notice that this is the same formula that defines the non-trivial brace of
subsection 4.1. However when p is an odd prime the resulting multiplicative
group is not cyclic. The orbit of an element (α, 0, β) only contains elements
of the same form, and in particular cannot generate the additive group. The
rest of the orbits are of the form Oα,β = {(∗, α, β)}, with α 6= 0. For such an
orbit to generate both β must also be non-zero. The following proposition
characterizes the brace automorphisms:

Proposition 5.2. Given p an odd prime and q a prime number, the group of

brace automorphisms of the only non-trivial brace with multiplicative group

isomorphic to Z
2
p × Zq is isomorphic to G× Z

×

q , with

G =

{(

x2 y
0 x

)

: x ∈ Z
×

p , y ∈ Zp

}

⊂ GL2(p).

Proof. We procede like in Proposition 4.1. The group automorphisms of
the additive group are isomorphic to GL2(p) × Z

×

q , with the first compo-
nent acting by multiplication on the first two coordinates, and the second
component on the third one. Let (A, u) be an element of this group, with

A =
(

x y

w z

)

. We act on each term of (5.2) by (A, u) to check which ones are

also multiplicative morphisms. Focusing on the second coordinate we get

w(a+ d) + z(b+ e) = w(a+ d+ be) + z(b+ e),

and like before for this to hold for any a, b, d, e ∈ Zp w must be zero. In
this case the condition on the first coordinate is not automatically satisfied.
Using w = 0 we get

x(a+ d) + y(b+ e) + z2be = x(a+ d) + y(b+ e) + xbe,
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that will hold for any a, b, d, e ∈ Zp if and only if x = z2. From the third
coordinate we do not get any restriction, so for (A, u) to be a brace auto-
morphism it must be of the desired form. �

Given two generating orbits Oα,β and Oα′,β′ we can take u = β−1β′ and

A =
(

(α−1
α

′)2 0

0 α
−1

α
′

)

to get an automorphism that maps the first orbit to

second one. This means that all the orbits generate the same solution.
With this and the previous case we have proved the following theorem:

Theorem 5.3. Given p and q prime numbers, there is a single indecompos-

able solution with permutation group Z
2
p × Zq.

6. Dihedral braces of size p2q

In this last section we turn our attention to solutions with dihedral permu-
tation group. With the results of [2] we can get all solutions with permutation
group D2p2 or D4p for p an odd prime. We first note that in any dihedral
group every rotation generates a normal subgroup, and any two distinct re-
flections generate some rotation. In particular, in any dihedral group the
only core-free subgroups are those generated by a single reflection, and so
we have the following result:

Theorem 6.1. If X is an indecomposable solution with permutation group

D2n, then |X| = 2n or |X| = n.

6.1. Case 2p2. For this case we will analyze a slightly more general one,
that of a semidirect product Zp2 ⋊ Zq when p ≡ 1 (mod q). Taking q = 2
we get the desired dihedral group. These semidirect products are given by
choosing g an element of order q in Z

×

p2
, and letting a generator of Zq act by

mutliplication by g.
There is a single brace with this group as its multpiplicative group, and it

has additive group isomorphic to the cyclic group. Its multiplicative struc-
ture is given by

(

a
b

)

◦

(

c
d

)

=

(

a+ gbc
b+ d

)

.

We note that this formula is precisely the same as (3.1), and with the
same arguments as in Section 3 we get that the automorphism group of this
braces is given by the following result:

Proposition 6.2. Let p and q be primes with p ≡ 1 (mod q). Then the

group of automorphisms of the non-trivial brace of size p2q is isomorphic to

Z
×

p2
.

Like before the generating orbits are the ones generated by elements (α, β)
with α and β generators, and two elements give the same solution precisely
when the have the same second coordinate.
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Theorem 6.3. Given p and q primes such that p ≡ 1 (mod q), there are

exactly q− 1 indecomposable solutions with permutation group Zp2 ×Zq, and

all such solutions have size p2q.

In particular we get the following consequence:

Corollary 6.4. Given p an odd prime, there is a single indecomposable

solution with permutation group the dihedral group D2p2 . This solution has

size 2p2.

6.2. Case 4p. In this case we have several brace structures to study. There
are two braces with cyclic additive group and another one with non-cyclic
additive group. The first cyclic one has multiplicative structure given by

(

a
b

)

◦

(

c
d

)

=

(

a+ (−1)bc
b+ (−1)bd

)

.(6.1)

The orbit of a generator (α, β) consists of itself and the element (−α,−β),
and its stabilizer is {(∗, 0), (∗, 2)}, which is precisely the group of all rota-
tions, and so has no non-trivial core-free subgroups. The group of brace
automorphisms is given by the following result:

Proposition 6.5. Given p an odd prime, the group of brace automorphisms

of the brace with cyclic additive group and multiplicative group given by (6.1)
is isomorphic to Z

×

4p.

Proof. An automorphism of the additive group is given by multiplication
by a pair of elements (x, y), and one can verify that all of them are brace
automorphisms. �

In particular this means that all the orbits give rise to the same solution.
The second brace with cyclic additive group is given by the formula

(

a
b

)

◦

(

c
d

)

=

(

a+ (−1)b(b−1)/2c
b+ (−1)bd

)

.(6.2)

In this case the orbit of a generator has four elements, and its stabilizer is
given by the subgroup {(∗, 0)}. This group consists entirely of rotations and
so has no non-trivial core-free subgroups. We characterize the group of brace
automorphsims with the following resul:

Proposition 6.6. Given p an odd prime, the group of brace automorphisms

of the brace with cyclic additive group and multiplicative group given by (6.2)
is isomorphic to Z

×

p .

Proof. An automorphism of the additive group is given by multiplication by
a pair of elements (x, y). Acting with this in both sides of the formula (6.2),
we get that to be a brace automorphism the pair must satisfy y = 1, which
gives us the desired result. �



INDECOMPOSABLE SOLUTIONS OF THE YANG-BAXTER EQUATION 11

With this we can see that all the orbits generate the same solution.
Finally we look at the non-cyclic brace. Identifying it with its additive

group Z
2
2 × Zp its multiplicative structure is given by





a
b
c



 ◦





d
e
f



 =





a+ d
b+ e

c+ (−1)af



 .(6.3)

The lambda action on an element does not modify the first two coordi-
nates. Concretely this means the orbit of an element (α, β, γ) is {(α, β,±γ)},
and in particualar it cannot generate the additive group. So this brace has
no associated solutions.

With this result we can see that all orbits are conjugate under isomorphism
and so generate the same solution. In conclusion we get the following result:

Theorem 6.7. Given p an odd prime, there are two indecomposable solutions

with permutation group isomorphic to D4p. Moreover all of these solutions

have size 4p.

As we noted in Proposition 6.1 an indecomposable solution with permu-
tation group D2n can only have size n or 2n. From the results obtained here
we conjecture the first case never happens:

Conjecture 6.8. If X is an indecomposable solution with permutation group

D2n then |X| = 2n.
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