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Abstract 

The paper deals with  gyroscopic  stabilization of unstable 

linear mechanical  systems  with positive definite mass 

and stiffness matrices, respectively, and an indefinite 

damping matrix. A stabilization is obtained by adding a 

suitable skew symmetric gyroscopic matrix to the 

damping matrix. After investigating several special cases 

we find an appropriate solution of the Lyapunov matrix 

equation for the general case. An example shows the 

deviation of the stability limit found by the Luapunov 

method from the exact value. 

 
Introduction 

Only few papers are dealing with indefinite damping 

matrices in linear systems of 2
nd

 order differential 

equations. Indefinite damping matrices can cause 

instability. In the meagre literature on the subject we can 

find remarks that modelling of sliding bearings and 

cutting of metals can lead to negative damping (dry 

friction) and therefore to instability (self-excited 

vibrations).  

One of the motivations for the present work is the 

industrial problem of avoiding shrieking of car breaks. 

Models show negative damping terms in the governing 

equations induced by a decreasing friction characteristic, 

see [1]. 

Consider a linear mechanical system of differential 

equations of the form 

                                                            

                                                           

0=++ xKxDxM &&&  .                                                (1) 

                                             

The mass matrix M  and the stiffness matrix K  are both 

real symmetric and positive definite 

( 0,0 >=>= KKMM
TT

), and the symmetric 

damping matrix DD
T
=  is assumed to be indefinite. In 

the following we choose IM = (the identity matrix). 

The system (1) can be stable or unstable due to the 

indefinite damping matrix. Let us assume instability, then 

the question arises how to stabilize the system. 

 

 If we stick to linearity, the addition of a gyroscopic force 

xG &  with a skew-symmetric matrix )(, GGG
T

!=  on 

the left hand side of equation (1) might perform a desired 

gyroscopic stabilization.  

 

 

Special cases 

I) In the case of sufficiently small damping a 

simple perturbation approach leads to a 

condition for system 

0=++ xKxDxI &&&  to be unstable as 

well as to a condition for the system 

0)( =+++ xKxGDxI &&&  to be 

stable, see [2]. 

II) Let the unstable system (1) have a form 

where all diagonal entries of the indefinite 

matrix D  are positive (this can always be 

achieved by a change of coordinates). 

Moreover, let K  be diagonal. Then the 

gyroscopic matrix 

              G with ikik dg =  for ki < , 0=kkg ,   

               and ikik dg !=  for ki >  will stabilize 

               the system. 

III) System 

0,0)( >=+++ cxIcxGDxI &&& , is 

stable if and only if GDB +=  is 

positive stable, which means that all 

eigenvalues of B  have positive real 

parts.                 

 

 

Solution of the Lyapunov matrix equation 

We rewrite system 

                                                 

0)( =+++ xKxGDxI &&&                                      (2)                  

 

as a first order system (3) 
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System (3) is stable, if there exist symmetric matrices 

0>P  and 0!Q  which satisfy the Lyapunov matrix 

equation. 

                                                               

.QLPPL
T

!=+                                                 (4) 



 

The solutions P and Q  to the Lyapunov equation (4) 

are  (5) 
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We have to determine suitable matrices SR, and 

T such that the matrices P and Q  in (5) are positive 

definite and positive semi-definite, respectively.  

 

Theorem  Let GDB += be positive stable and 

let BK
1!

and 
1!

! KB
T

have no eigenvalues in 

common (this is e.g. the case if BK
1!

 is positive 

stable). Then  

1.              HSBBS
T

=+                                      (6) 

with an arbitrary symmetric matrix 0>H  has a 

unique solution .0>=
T
SS  

 2.)           SKKSKVBBVK
T

!=+               (7)                                                 

has a unique skew-symmetric solution 
T

VV != . 

 

Sufficient conditions for stability of system (2) are  

a.)       0!""
T
TTH          with    VKT = . 

b.)     0
1

>!
! T
TSTR         with   BTSKR += . 

 

Proof: After solving equation (6) we want to find 

matrices T and 0>R  such that    

0
11

=+=
T
TKKTQ  and 

0
12

=+!= TBRKSQ . 0
11
=Q  implies 

VKT = with a skew-symmetric matrix .V To satisfy 

0
12
=Q we put first the skew-symmetric part of 

12
Q  

to be zero. This means solving the 2/)1( !nn  linear 

equations (7) for the 2/)1( !nn  unknowns in .V  

The symmetric part of 0
12
=Q  results in 

TBKSR += . In this way we end with 

0
211211
=== QQQ . One of the conditions for 

stability of system (2) is 0!Q which leads to 

0
22
!Q  and means a.). If this condition is not 

satisfied, we can not use the assumed matrix G  as a 

stabilizing matrix, and we have to start the procedure 

again with another choice of G . 

If 0!Q , we still have to investigate whether 0>P . 

This can be done using condition b.) 

 

The following example shows the deviation of the 

stability limit found by this direct method of Lyapunov 

from the exact value. 

 

Example 

Let system (1) have the form  
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 with                        

,0,0
21
<> dd tr ,0,0)( 21 >>+= KddD  

tr 0)( 1
>

!
DK .                                                         (9) 

For sufficiently small values of 
12
k the system is 

unstable. We want to stabilize the system by adding a 

term xG &  where  
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dg

gd
GDB   is positive stable which 

means 
21

2 ddg !> . To this end we choose in (6)  

0>H as !
"

#
$
%

&

''

'
=

221

211

dgdd

dddg
H .  

The conditions (9) are sufficient for solving the 

matrices TVS ,, , and R  along the guidelines of the 

theorem. For the sake of simplicity we choose in the 

following 0
12
=k . Then condition a.) of the theorem 

results in  

                    
2

21

2 xddg !"       with      

( )
( )( )

11

12221121

2

2211 !
++

"
+=

dkdkdd

kk
x .       (10)                   

It can be shown that in our example all values of 
2
g satisfying (10) automatically satisfy the condition 

b.) of the theorem such that condition a.) alone 

represents the stability requirements. It is interesting to 

compare (10) with the condition for asymptotic 

stability gained by Routh-Hurwitz 

                                                              

xddg
21

2
!" .                                               (11)                   

Finally we mention that the formulas (10) and (11) 

have to be changed slightly if 0
12
!k . We can 



conclude that the conditions tr 0)( >D  and 

tr 0)( 1
>

!
DK are necessary and sufficient for 

gyroscopic stability of system (8). 

 

Concluding remarks 

Although damping matrices GDB +=  need not to 

be positive stable for the stability of system (2) this 

assumption is convenient and tempting, since it is 

successful in special cases like III). Under this 

condition we solved the Lyapunov matrix equation (4) 

and received the above theorem. For the shown 

example condition b.) of the theorem is unnecessary. It 

is an open question whether condition b.) can be 

skipped as well in  the case of matrix order 2>n . In 

this case the two conditions tr 0)( >D  and 

tr 0)( 1
>

!
DK  are only necessary but in general not 

sufficient for gyroscopic stabilization with help of the 

above theorem. For  2>n , a numerical procedure is 

suitable for computation of the matrices TVS ,, , and 

R . It is then convenient to choose IH = in (6). The 

procedure of the theorem can be extended easily to 

systems (2) where the stiffness matrix contains an 

additional skew-symmetric part. 
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