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Some recent progress in the quantum field theory based on the indefinite-metric 

Hilbert space is reviewed in a systematic way. Various problems (as shown in the 

table of contents below) are discussed extensively. The selection of topics is, however, 

dependent on the present author's interest; undescribed topics do not necessarily mean 

to be unimportant. An almost complete exposition is given concerning the finite­

dimensional indefinite-metric space. On the indefinite-metric quantum field theory, the 

problem of interpretation and the unitarity of the physical S-matrix are discussed in 

detail. Also included are a number of new results and remarks on various existing 

theories. Some of them are construction of a field theory having only one Feynman 

integral, critical remarks on the quantization of a purely-imaginary-mass field and a 

criticism of the renormalization procedure of the Gupta-Bleuler quantum electrodynamics. 
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2 N. Nakanishi 
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Chapter 1 

Introduction 

§ 1. Outline 

An indefinite-metric space IS a vector space m which an inner product 
(lJk) is defined for any two vectors !k) and ll), but (k!l,) for jk)=FO is not 
necessarily positive. An indefinite-metric Hilbert space (though it is a self­
contradictory nomenclature) is roughly an infinite-dimensional indefinite­
metric space. For rigorous definition, we have to introduce topology, but 
unfortunately, as will be discussed in § 8, there is no very convenient way 
of in traducing topology in to this space. 

The present paper is a review of some recent progress in the quantum 
field theory based on the indefinite-metric Hilbert space. Since there is an 
extensive review article by NagyN4

) on the indefinite-metric quantum field 
theory, which was published in 1966, we do not intend to present a complete 
review on this subject. We shall avoid reproducing the results which are 
already described in detail in Nagy's book, except for some basic points. 

The use of the indefinite-metric Hilbert space in quantum field theory 
has been motivated for various purposes. As is well known, it is inevitable 
to introduce an indefinite-metric Hilbert space if we wish to formulate 
quantum electrodynamics in a manifestly covariant way. Since the Minkowski 
space is a finite-dimensional indefinite-metric space, the requirement of 
manifest covariance for higher-spin fields naturally leads us to the introduc­
tion of the indefinite-metric Hilbert space. 

There is another interesting application of the indefinite-metric Hilbert 
space; it is to remove the ultraviolet-divergence difficulty of the conventional 
quantum field theory. Though it is almost trivial to remove all ultraviolet 
divergences from the theory by means of indefinite metric, we encounter a 
new difficulty due to the use of indefinite metric, because it conflicts with 
the usual probabilistic interpretation of quantum theory. The most natural 
way of avoiding this difficulty is to restrict physical states (i.e., observable 
states) to those which belong to a subspace having positive-definite metric. 
This idea is consistent if and only if the S-matrix satisfies the condition that 
if the initial state is a physical state then the final state is always a physical 
one. This condition is satisfied in quantum electrodynamics, but its satisfac­
tion is extremely difficult in the theories in which the ultraviolet-divergence 
difficulty is removed. On the possibility of constructing such a consistent 
tpeory, Nagy's book was rather optimistic, but recent closer investigations 
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Indefinite-Metric Quantum Field Theory 3 

have revealed an important mistake involved in the previous work· (see § · 10). 

On the other hand, it has been recently found that there is another possi­

bility, which was overlooked previously, in constructing a divergence-free 

field theory which has the S-matrix satisfying the above condition (see § 16). 

To describe those topics is the main motivation of the present paper. 

Concerning the description of indefinite metric, we make a remark on 

the so-called If-formalism. In the old literature, it was customary to repre­

sent the indefinite-metric Hilbert space in terms of the (positive-metric) 

Hilbert space by introducing an indefinite-metric operator If, that is, the inner 

product in the former was defined by the corresponding matrix element of 

r; in the latter. It is known, however, that it is not only fruitless but also 

misleading to write If explicitly, because If is an operator quite different 

from any other physical operators and because the r;-formalism violates the 

elegant manifest-covariance property of the indefinite-metric quantum field 

theory. Therefore we do not employ the r;-formalism. 

Finally, for later convenience, we explain terminology in the framework 

of the indefinite-metric quantum field theory. A non-zero vector in the 

indefinite-metric (Hilbert) space is called a state vector or simply a state. 

It should be noted that a state is not necessarily a normalized vector. For 

a state I k), <k I k) is, in abuse of language, called the norm of I k) (instead 

of the squared norm). A state having zero or negative norm is called a 

ghost. Let H be the Hamiltonian of a system. If a state I k) satisfies 

(1·1) 

then I k) and Ek are called an eigenstate and an eigenvalue of H, respec­

tively, as usual. Though His assumed to be hermitian, Ek is not necessarily 

real; for Ek non-real, I k) is called a complex ghost, which necessarily has 

zero norm. The totality of the eigenstates of H is not complete in general. 

If 

(1· 2) 

then I k, D) Is called a dipole ghost. More generally, if 

(1·3) 

for n~2, then I k, Mn) is called a multi pole ghost. All the above states 

are called generalized eigenstates. It can be proved that a complete set is 

formed by generalized eigenstates of H at least in the finite-dimensional 

indefinite-metric space (see § 6). 

The Minkowski-space metric tensor O(J,v is defined by Uoo Uu 1 

(l 1, 2, 3) and O(J.v 0 for p.=l=v. The usual tensor-analysis convention is 

employed throughout; for instance, px=p(J.xfJ,=gfJ,vpp.:xv=p0x 0-px and px 

b~=1PtXt· 
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4 N. Nakanishi 

§ 2. Historical review 

Indefinite metric was first introduced into quantum field theory by Dirac 

(1942)D3
) and then reviewed by Pauli (1943) .P3

) An attempt at removing 

ultraviolet divergences was made by Pauli and Villars (1949) ,P5
) whose 

regulator method was, in effect, the introduction of indefinite-metric auxiliary 

fields. This idea was more realistically formulated in the tnultimass theory, 

to which the most prominent contribution was made by Pais and Uhlenbeck 

(1950) Pl) (see § 14). On the other hand, the manifestly covariant quantum 

electrodynamics in the Feynman gauge was proposed by Gupta (1950)G6
) 

and made precise by Bleuler (1950) .B4
> Subsequently, indefinite metric was 

applied to massive vector fields, a weak gravitational field, etc. 

Lee (1954)La) proposed a solvable field-theory model, called the Lee 

model (see § 12), and found that the renormalization constant Zz becomes 

negative if no cutoff function is introduced in the interaction Hamiltonian. 

Kallen and Pauli (1955)Kz) noted that it is necessary to introduce indefinite 

metric in order to renormalize the no-cutoff Lee model consistently, but 

then the appearance of a ghost in the final state violates the unitarity of 

the physical S-matrix. 

Heisenberg (1957)H7
) first introduced a dipole ghost in the Lee model 

in order to justify the use of a propagator having a double pole in his non­

linear spinor field theory.r:rs) According to him, the unitarity trouble would 

not occur in the dipole-ghost theory. After Heisenberg's work, many authors 

(Pauli (1958) / 4
) Froissart (1959) / 6

) etc.) investigated various possibilities, 

such as complex ghosts, relativistic dipole ghosts, etc. in the framework of 

the indefinite-metric quantum field theory. Ascoli and Minardi (1958) Aa),A
4

) 

discussed its general features and clarified the condition in which the uni­

tarity of the physical S-matrix is guaranteed (see § 10). In particular, 

their conclusion supported Heisenberg's one on the dipole-ghost theory. 

Pandit (1959)Pz) and Nagy (1960)Na) summarized the results obtained in 

those days. Shimodaira (1960) 87
) (see § 10), Yokoyama (1961) Y5

)-Y
7
) (see 

§ 15) and Tanaka (1963)'ra) (see § 16) proposed some interesting theories, 

hoping to obtain a divergence-free, unitary indefinite-metric field theory. 

Though this is not a genuine field-theoretical problem, it was found by 

Nakanishi (1965) N9
) that the Bethe-Salpeter equation necessarily has the 

solutions corresponding to ghosts. Soon later, Nakanishi (1965)Nlo) showed 

that at certain energies of degeneracy the existence of multipole ghosts is 

deduced in the Bethe-Salpeter formalism (for review, see Ref. N 14) ). As 

its Reggeized version, the daughter trajectories found by Freedman and 

Wang (1967)F5
) involve the Reggeized ghostsNlz) and multipole ghosts. 

The Reggeized ghosts are further inherited by the generalized Veneziano 
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Indefinite-Metric Quantum Field Theory 5 

amplitudes. Ml) • *> 

Hinted by the multipole ghosts in the Bethe-Salpeter formalism, Naka­

nishi (1966)Nll) proposed a manifestly covariant quantization of the electro­

magnetic field in the Landau gauge by using a dipole ghost. Independently, 

Lautrup (1967) 1
'
2>·**> more thoroughly formulated a quantization of the 

electromagnetic field in the general covariant gauge without noting the 

necessity of a dipole ghost (see § 18). 

Lee and Wick (1969, 1970)Le)-Ls> and Lee (1970)L5> proposed a new 

complex-ghost quantum field theory (see § 16). They found that It Is possi­

ble to obtain a divergence-free, unitary physical S-matrix if relativistic 
complex ghosts are used. It was pointed out by Nakanishi (1971) ,N16> 

however, that the physical S-matrix of this theory is not Lorentz-invariant 

in the second-order self-energy part (see § 16). 

Nagy (1970)N5
> constructed a dipole-ghost field-theory model whose 

physical S-matrix is not unitary, contrary to the conclusion of Heisenberg 

and Ascoli and Minardi. The reason for this result was clarified by Naka­

nishi (1971) N17
> (see § 10). He showed that the use of dipole ghosts does 

not guarantee the unitarity of the physical S-matrix at all. 

The present author conjectures that it is impossible to formulate satis­

factorily a non-trivial, divergence-free quantum field theory whose physical 

S-matrix is unitary, macro-causal and Lorentz-invariant, without introducing 

a drastic change of the notion of space-time. This belief is based on the 

failure of all past attempts to obtain such a theory since Heisenberg and 

Pauli's proposal of quantum field theory. Of course, a number of people will 

not agree to the above conjecture. Indeed, several attempts at formulating 

satisfactory finite theories have been proposed recently.***> 

§ 3. Representations of commutation relations 

In this section, we show how the abnormal commutation relations lead 

us to the introduction of indefinite metric. For simplicity, we consider only 

one mode, avoiding the difficulty due to infinite degrees of freedom. 

(A) Anticommutation relations 

Let a and a be two operators satisfying 

':'l If the loop-graph contributions are summed up, multipole ghosts will also appear in the 
dual resonance model. 

**l Part of his work was referred to in the Schladming Conference held in 1965 (private 

communication). 

***l Some interesting examples are Kita's non-Lagrangian formulation of non-local field 
theory,K4l-K6 l H. Yamamoto's non-hermitian Hamiltonian theory of complex ghosts,Y1l-Y4 l Sudarshan 

and his collaborators' "shadow-state" theorySlol,G2 ),N2 ll,N22
) and Taguchi and K. Yamamoto's regu­

larized Hamiltonian theory.T1l 
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6 N. Nakanishi 

(3·1) 

(3·2) 

In (3 · 2), the upper sign corresponds to the normal anticommutation rela­

tion, while the lower sign corresponds to the abnormal one. Let 

N-=- +aa; (3·3) 

then with the aid of (3 · 2) and (3 ·1), we have 

(3· 4) 

that is, N is a projection operator. Let CV be the operand space, and write 

CV1==-NCV and CVo-=-(1-N)CV. Then, any vector of CV can be uniquely 

decomposed into a vector of CVo and that of CV1, that is, cv CVoEBCV1. 

As is easily seen by using (3 ·l)---- (3 · 3), the operator a maps CV 0 to 0 

and CV 1 to CV o, while a does CV o to CV 1 and CV 1 to 0. Furthermore, for 

the mapping CVc-'J>.CVo induced by a, there is an inverse mapping CV 0 ___,..CV1 

induced by a, that is, the correspondence between CV o and CV 1 is one to 

one. Hence we can represent any vector in CV o by a column-vector whose 

lower half consists of zeros only and any vector in CV 1 by a column-vector 

whose upper half consists of zeros only; then we have 

(3·5) 

where ~ and ( are square matrices satisfying 

a, (3·6) 

where a denotes the unit matrix (amn). Since ~ and ( are commutative, 

they can be diagonalized simultaneously. Changing their normalizations 

appropriately, we can set ~ = +a and (=a. In particular, if we consider an 

irreducible representation alone, we find 

a=(~ ~), a=(~~). (3·7) 

Let \ o> and \1) be a basis vector in CVo and that In cvl, respectively. 

Then (3 · 7) is rewritten as 

a\0)=0, 

a\1). l 0), 

a\0)=\1), 

a\ 1) o. 

Now, if we require any vectors in CV to satisfy 

(l\k)*=(k\l), 

· (l\a\k)*=<kla\l), 

(3·8) 

(3·9) 
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Indefinite-Metric Quanturn Field Theory 7 

where an asterisk denotes complex conjugation, then with the aid of (3 · 8) 

we find that 

<I!O)= <I!a!l)= <I!a!l)*=O, 

<Oil) <I!O)* 0, 

(l!I> =<II a I o> = <o I a II>* <o 1 o>* = <o 1 o>. (3 ·IO) 

Thus under the assumption (3 · 9), <o I 0) and <Ill) cannot be si1nultaneously 

positive in the case of the abnormal anticommutation relation, that 1s, 1n 

this case the introduction of indefinite metric is inevitable. 

(B) Comrnutation relations 

We consider two operators a and a satisfying 

aa--aa= +1. (3·11) 

It should be noted that there is no relation corresponding to (3 ·1). Since 

the abnormal commutation relation (lower sign) is transformed into the nor­

mal one (upper sign) by interchanging a and they are mutually equi­

valent without an additional requirement. Hence, from the physical con­

sideration, we require that there exists a non-zero vector I 0) such that 

aiO)=O. (3 ·12) 

By using (3 ·11), we see that the smallest invariant subspace involving I 0) 

is the space C(l spanned by 

(3·13) 

The vectors listed in (3 ·13) are linearly independent, because if there exists 

a polynomial f such that f(a) I 0) = 0 then we have f(a) In)= 0 for all n, 

that is, f(a) =0 in C(l; if g is a polynomial of the minimum degree such 

that g(a) =0, then we have O=ag(a) -g(a)a= +g'(a), a result which is 

inconsistent with the assumption. Thus C(l is an infinite-dimensional space. 

Now, we require G-3 • 9) to hold. Then it is straightforward to show 

that 

(3 ·14) 

Thus for the abnormal commutation relation we need an indefinite-metric 

Hilbert space. 

As remarked above, if we take 

aiO)=O (3·15) 

instead of (3 •12), then the abnormal case reduces to the normal one, so 

that the use of indefinite metric is avoided. For practical applications, 
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8 N. Nakanishi 

however, the energy operator H will symbolically (i. e., suppressing irrelevant 

degrees of freedom) have the form 

H = Eaa + E'Sf3 (3 ·16) 

with E>O and E'>O, where {3 and fi satisfy the normal commutation rela­

tion. Hence H has negative eigenvalues as well as positive ones. This 

"negative-energy quantization" method could be regarded as a substitute for 

the indefinite-metric theory, but we note that the former has the following 

serious defects : 

(1) The vacuum becomes unstable. 

(2) The divergence difficulty gets worse. Hence this method cannot be 

used for obtaining a divergence-free field theory. 

(3) A transformation between a and {3 destroys the Fock space. Hence 

this method is completely unsuitable for formulating a manifestly covariant 

field theory. 

( 4) As mentioned in (A), this method cannot be applied to the abnormal 

anticommutation relation. 

Thus the negative-energy quantization is almost useless. 
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Indefinite-Metric Quantum Field Theory 

Chapter 2 

Finite-Dimensional Indefinite-Metric Space 

9 

The theory of a finite-dimensional vector space is mathematically well­

established, and its formulation can be found in the mathematical litera­

ture.H9) But the description in mathematical books is usually inconvenient 

to physicists. The present chapter is an exposition of the theory of a finite­

dimensional vector space in the terminology of indefinite metric. 

§ 4. Definition of an N -dimensional indefinite-metric space 

We employ the following notation: a, b, c, etc. stand for complex num­

bers, while vectors are denoted by I k), ll), etc. except for the zero vector, 

which is denoted by 0. The complex conjugate is indicated by affixing an 

asterisk. The symbol E means "belong to". 

A set CV of vectors is called a vector space if the following conditions 

are satisfied for any vectors lk), ll), lm)ECV: 

1° I k)+ ll)ECV, 

2° l,k)+ ll)= ll)+ lk), 

C I k > + It>) + I m > = I k > + C IZ> + I m >), 

3° OECV, lk)+O jk), 

lk)ECV, lk)+( jk)) 0, 

4° alk)ECV, llk) 11~), 

5° (a b) lk)=alk)+blk), 

a(blk)) (ab)jk), 

a ( I k) ll)) a I k) +a ll). 

Furthermore, CV is a finite-dimensional vector space if 

6° The number of linearly independent vectors is finite. [It 1s denoted 

by N.] 

A vector space CV is an indefinite-metric space if for any two vectors 

I k) and ll) of CV an inner product (or a sesquilinear form) is defined in 

such a way that 

7° <ZI k) is a complex number, 

so <ZI k > * = <k ll), 

go <ZI (alk) blk')) a<Zik)+b<Zik'). 

It is often convenient to define a "bra-vector" <k I, which is in one-to-
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10 N.~Nakanishi 

one correspondence to a "ket-vector" I k). Then a*< k j corresponds to a I k) 

because of S0
• 

An indefinite-metric space is more general than the Euclidean space, 

which, m addition to the above, has the properties 

and 
<klk)>O 

<klk)=O if and only if lk)=O. 

(4·1) 

(4·2) 

Because of the lack of those properties, the norm of a vector I k) cannot 

be defined mathematically in terms of <k I k); nevertheless we call <k I k) 

the norm of I k). Since <k I k) is real because of S0
, we have three cases: 

positive norm <klk)>O, zero norm <klk)=O and negative norm <klk)<O. 

Let 11), 12), ···,IN) be N linearly independent vectors of q;, Such 

a set is called a base. For any vector 1/~)Eql, we can expand it as 
N 

lk) banln). (4·3) 
n=l 

We define 

(4·4) 

and call the Nx N matrix r; = (YJmn) an indefinite-metric matrix (not an 

operator). It is a hermitian matrix and of course base-dependent. It is an 

important property, characteristic to the finite-dimensional indefinite-metric 

space, that given (r;mn), the structure of q; is uniquely determined. 

Let jl), 12), ···, IN) form another base. We write 

(min>. (4·5) 

According to ( 4 · 3), we have 

(4·6) 

where u (unm) is a non-singular matrix. Hence 

YJmn = bU:m Utn<k ll) 
k, l 

bU:m 7JktUtn • 
(4·7) 

k,l 

In the rna trix notation, ( 4 · 7) is rewritten as 

(4·S) 

where a dagger denotes hermitian conjugation. Therefore, by choosing an 

appropriate base, we can make the indefinite-metric matrix diagonal in such 

a way that its diagonal elements are + 1,-1 and 0 only. This matrix form 

may be called the normal form. 

We call q; degenerate (or singular) if there exists a non-zero vector 

jk) in q; such that <ZJk)=O for any vector jl)Eql. Since the existence 
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Indefinite~Metric Quantum Field Theory 11 

of such a vector I k) has no effect on any quantity experssed in terms of 

inner products, it is convenient to consider a quotient space CV j() instead 

of CV itself, where () denotes the totality of the vectors I k) such that 

<Zik)=O for any ll). Equivalently, we introduce an additional postulate: 

10° CV is non-degenerate, that is, I k) 0 if and only if <Zl k) 0 for 

any ll)ECV. 

THEOREM The space CV is non-degenerate if and only if "fJ is non­

singular. 

This is because all diagonal elements in the normal form of "fJ are 

non-zero if and only if "fJ is non-singular. 

§ 5. Linear operators 

If Tj/~)ECV for any lk)ECV, then T is called an operator on CV~ 

An opera tor T is linear if for any I k), ll) E CV 

T(a I k) +b ll)) =aTj k) + bTil). (5·1) 

Given a base { ll), · · ·, I N)}, a linear operator T IS uniquely determined 

by an Nx N matrix t = (tnm), where 

Tim) ~tnmln). (5·2) 
n 

It is evident that T= 0 if and only if t = 0. Let s be the matrix correspond~ 

ing to another linear operator S. Then 

Cst)nm In). (5·3) 
n 

Thus, ST corresponds to the product matrix st, that is, linear operators are 

faithfully represented by Nx N matrices. 

The matrix representation is of course base-dependent. Let t be the 

matrix representation of T on a different base { ll), ... , IN)}. Then by 

using ( 4 · 6), it is easy to show that 

(5·4) 

It should be noted that the transformation law of t is different from that 

of "'J, (4·8). 

An operator yt is called a hermitian conjugate of T if 

<J~I Ttll) <ZI Tlk)* (5·5) 

for any lk), ll)ECV. For any linear operator T, Tt always exists and is 

un1que. This can be proved as follows. 
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12 N. Nakanishi 

Let 

N 

ll) bbmlm). 
m=l 

(5·6) 

Then 

<ZI Tl k) b bj amtn ... <P In) 
p,rn,n 

(5·7) 

Likewise, 

<k Is ll) = b a!r;mnSnpbp. (5·8) 
p,n,m 

By definition, in order that S = T 1
., it is necessary and sufficient that 

~ ~t* * L-JY/mnSnp L-l nmY/pn, (5·9) 
" n 

that IS, 

(5·10) 

Since r; is non-singular, the matrix r;- 1ttr; exists and it defines yt uniquely. 

From (5 · 5), it is evident that a relation Tj k) I k') is equivalent to 

<kiTt <k'l. 
A linear opera tor H is calle_d hermitian if Ht H. H is hermitian if 

and only if r;h is a hermitian matrix, where h is a matrix representation 

of H. We also define the following opera tors : 

unitary opera tor U, ut= u-1; 

projection operator P, P 2 *> 

nilpotent operator K, Kn = 0 for some integer n. 

We do not use the nomenclatures "pseudo-hermitian" or "self-adjoint" and 
" d . " pseu o-um tary . 

§ 6. Generalized eigenstates 

In the physical problems, we suppose the existence of a Hamiltonian 
1-1, which is a hermitian operator. In the usual (positive-metric) space, 

any vector can be expressed as a superposition of the eigenvectors of H, 
that is, they form a base. In the indefinite-metric space, however, this 

statement is no longer true even in the finite-dimensional space. Hereafter, 
a non-zero vector in q; is called a state. 

*) P is not necessarily assumed to be hermitian. 
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Indefinite-Metric Quantum Field Theory 13 

Let T be a linear opera tor. If 

Tjk)=clk), (6·1) 

then a state I k) is called an eigenstate of. T and a complex number c is 

called an eigenvalue of T. Let cw be a subspace of C{l. If Tl k) CW for 

any I k) EcW, then cw is called an invariant subspace of T. The space 

generated by an eigenstate of T is a one-dimensional invariant subspace of 

T. As mentioned above, C{l cannot in general be decomposed into a direct 

sum of one-dimensional invariant subspaces of T. 

Let t be a matrix representation of T on an arbitrary base, and define 

a polynomial in x of degree N by 

f(x) ==det(xo-t), (6·2) 

where o denotes the unit matrix (8nm). The polynomial f(x) is base­

independent, as is easily seen by using (5 · 4). We call f(x) the characteris­

tic polynomial of T. 

CAYLEY-HAMILTON THEOREM 

f(T) =0. (6·3) 

Proof : We first rewrite 

Tl m) = ::>-itnm In) (6·4) 
11 

as 

::>-isnm(T) J n) =0, (6·5) 
n 

where 

(6·6) 

Let CSnm(x)) be the adjoint matrix of the matrix s (snm(x)). Then from 

(6 · 5) we have 

::>-ism1 (T)snm(T) In) =0 for l = 1, 2, ···, N, 
m,n 

that is, 

::>-i(bSnm(T)smt(T)) jn) 0. 
n m 

Since 

(ss) nt det s · on,= font, 

(6 · 8) reduces to 

f(T)In)=O for n 1,···,N. 

Thus we establish (6 · 3). 

(6·7) 

(6·8) 

(6·9) 

(6 ·10) 
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14 N. Nakanishi 

The Cayley-Hamilton theorem is nothing but the compatibility condition 

of N simultaneous homogeneous equations (6 · 4). 

According to the fundamental theorem of algebra, the characteristic 

polynomial is uniquely decomposed into 

r, r 

f(x) IT (x-c1)NJ, (6 ·11) 
i=l 

where c;=l=c£ if j=l=i. 

The minimal polynomial g(x) (which exists) is defined to be a monic 

polynomial of the minimum degree such that g(T) 0, where "monic" 

means that the coefficient of the highest-degree term is 1. Because of (6 · 3), 

f(x) must be divisible by g(x). Hence, we can write 

r 

g(x) =IT (x-cJni, O<n1<N1• 
i=l 

Of course, g (x) does not necessarily coincide with f(x). 

(6 ·12) 

PRIMARY DECOMPOSITION THEOREM The vector space C{J 

is decomposed into a direct sum of r invariant subspaces CV1 : 

CV=CV1EB···EBCVr. (6·13) 

Here CV1 is the null space of (T-cJnJ, namely, the set of all jk) such 

that (T-c1)nJlk)=O. [More precisely, (T1 c1)nJ is the minimal polynomial 

on CV h where T 1 denotes the restriction of T to C{J 1.] 

Proof : We set 

IT (x-ci)n;. 
i~j 

(6·14) 

Since c1, ... , cr are all distinct, g1(x), ... , Ur(x) are relatively prime. Hence, 

as is well known, there are polynomials h1(x), ... , hr(x) such that 
r 

b hlx) g1(x) 1. (6·15) 
J=l 

We define 

P1==h1(T)g1(T). (6·16) 

Then (6 ·15) implies that 

(6·17) 

Furthermore, 

(6·18) 

because gJx) g1(x) is divisible by g(x). Hence by multiplying (6 ·17) by 

Ph we find 

(6·19) 

Thus P1 is a projection operator. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.5

1
.1

/2
9
4
6
8
6
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Indefinite-Metric Quantum Field Theory 15 

We define CV i by the range of Ph namely the totality of the states of 
the form Pi I k). Then from (6 ·17) it is evident that for any I k) ECV 
we have 

(6·20) 

(1) The decomposition (6 · 20) 1s umque. In fact, if 

(6. 21) 

then 

(6. 22) 

Multiplying (6 · 22) by Ph we have 

(6·23) 

Since 

(6· 24) 

we find 

(2) C(lj is an invariant subspace of CV. This is because 

(3) (T-cJnijk)=O for any jk)ECVi. This follows from the fact that 
(x-ci)" 1glx) is equal to g(x). 

( 4) C(l i is the null space of ( c J "J. This is shown as follows. Suppose 
that 

(6. 27) 

Since P;(i#:j) contains a factor (T-ci)"', we have 

(6· 28) 

Hence 

jk) (1 (6·29) 

(5) (T-ci)nr 1 jk)#:O for some jk)ECV;. Otherwise, any state lk)=~Pijk) 
in CV would go to zero if g(T)/(T-c;) acts on it. i 

Thus the theorem is established. 

If we have 

(6·30) 

but 
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16 N. Nakanishi 

(6· 31) 

for some positive integer n, I k) and c are called a generalized eigenstate 

(of order n) and a generalized eigenvalue, respectively. The primary 

decomposition theore1n implies that any state in a finite-dimensional vector 

space is always expressed as a superposition of generalized eigenstates of 

any given linear operator. 

Finally, we note that 

Ni dim CVi. (j 1 ··· r) 
' ' 

(6. 32) 

This relation can be proved by substituting the Jordan form of T in (6 · 2). 

[For the Jordan form, see the next section.] 

§ 7. Standard matrix representation 

Throughout this section, we consider a hermitian operator H 

(Hamiltonian) instead of a general linear operator T. The characteristic 

polynomial f(x) of H is of real coefficients, because 

(7·1) 

and 11 and 11h are hermitian. Hence the non-real generalized eigenvalues of 

H, if any, must appear in complex-conjugate pairs. 

According to the primary decomposition theorem, a base is formed by 

generalized eigenstates of H, but then the indefinite-metric matrix 11, in 

general, takes a complicated form. To simplify the expression for 11 can 

be achieved by transfonning the matrix representation of the linear operator 

into its Jordan form. As stated in the mathematical literature,n9
) the Jordan 

form is a standard matrix representation of an arbitrary linear operator, 

and it is a concept which is independent of the inner product. In our case, 

the transformation into the Jordan form is carried out in a simpler way 

by making use of the inner product. We follow the line of thought of 

Belinfan te and Win terni tz. Bl) 

. Let Ei be a generalized eigenvalue of I-I and CV(Ei) be the totality 

of the generalized eigenstates belonging to Ei. Then the primary decomposi­

tion theorem implies that 

CV ~EBCV(EJ. (7·2) 
j 

The following theorem holds even for an infinite-dimensional indefinite­

metric space. 

THEOREM For any I k) E CV (E;) and any ll) E CV (E1), we have an 

orthogonality relation 
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Indefinite-Metric Quantum Field Theory 

<Zik)=O 

if Er E1. 

Proof: By definition, there exist some integers n1 and n; such that 

(FI-Ej)njlk) 0, 

<ZI (I-I- Ei*) n; 0. 

17 

(7 ·3) 

(7· 4) 

Since E;* two polynomials (x-E1)ni and (;;-Et)n; are relatively prime; 

hence there exist two polynomials qh(x) and qJz(x) such that 

Therefore 

<ZI k) = <ZI [qJ1 (H) (H-EJni (H-- E;*)n; qJz(H)] I k) 

0 

with the aid of (7 · 4). This completes the proof. 

The above theorem implies that if E 1 is non-real then 

(1) all states of C{J(E1) have zero norm; 

(2) cv (Ej) is non-zero if and only if C{J (E1) is non-zero. 

(7·5) 

(7·6) 

The latter proposition follows frmn the assumption that C{J is non-degenerate. 

According to the above theorem, the C{J (Ei) X C{J (E 1) block of the 

matrix t; vanishes if Er *E1• Hence the problem of simplifying the expres­

sion for t; reduces to that in a subspace C{J(Ei) for E 1 real and in a direct 

sum, C{J(EJffiC(J(Ej), of two subspaces for E 1 non-real. For simplicity, 

we omit the subscript j of E 1 and ni for a moment. 

First, we discuss the case of E real. Let K be the restriction of H-E 

to O,l(E), that is, K=H-E in C{J(E) and K is undefined outside C{J(E). 

Of course, we have Kt=K and 

(7·7) 

[Of course, K 0 1.] Thus K is a nilpotent hermitian operator. There exists 

a state I k) E ClJ (E) such that 

<k I Kn-ll k) *0, (7·8) 

because if <k I I<:_n-1
1 k) = 0 for any I k) E C{J (E), then considering two cases 

I k) = ll) +I m.) and I k) ll) +i I m) we immediately see <Jn I Kn- 1 ll) =0 for 

any ll), lm)EC{J(E). 

Let cu;l be the n-dimensional subspace spanned by n states l k), Kl k), 

···, Kn- 1
1 k), whose linear independence can easily be verified by multiplying 

Km (m=n-1, n-2, ... , 1) and using (7·7). Evidently, cW1 is a cyclic in­

variant subspace of C{J (E), where "cyclic" means that this space can be 
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18 N. Nakanishi 

generated by an operator K from a single state. Let CJVr be the totality of 

the states ll) such that 

<k I Kj jl) 0 for j 0, 1, · .. , n 1. (7·9) 

'T'hen we have the following results. 

(1) CJVr is an invariant subspace of q; (E). This is because from (7 · 9) 

and (7 · 7) it follows that 

<klKj·Kjl) 0 for j 0, 1, ... , n 1 (7·10) 

for any jl)ECJVr. 
(2) C{)(E) is decomposed into a direct sum of cu;l and cwt: 

(7 ·11) 

This can be shown as follows. For any jm)EC{)(E), we write 

n-1 

I rn > = b c ;K j I k > + IZ>. (7 ·12) 
j=O 

In order that ll)ECJVr, it is necessary and sufficient that 

n-1 

<kjKPjJn) bC;<kiKP+ilk) 0 
i=O 

for p=O, 1, ··· n-1. (7·13) 

Because of (7 · 8), Co, c1, · · ·, Cn-1 are uniquely determined by (7 ·13) by set­

ting p=n-1, n-2, ... , 0, successively. Thus the decomposition (7·12) with 

ll) ECJVt exists and is unique. 

Since the invariant subspace cu;l has a similar structure as that of 

q; (E), we can repeat the above procedure in cwt instead of q; (E). Since 

the dimension of C(l (E) is finite, we can proceed by mathematical induction 

to obtain finally that 

(7 ·14) 

where CJV!l is an~ n!1-dimensional, cyclic invariant subspace (1 <nq<n). The 

submatrix of r; in CJV!l is a triangle matrix in which all elements below the 

non-principal diagonal line are zero. By a linear transformation of the base, 

it obviously reduces to a matrix whose non-zero elements are only on the 

non-prjncipal diagonal line. More precisely, we can find a state I kq) such 

that 

(7·15) 

with aq 1 (independently of p). Then, in CJV q, we choose a base 

{ I k,), K I kq), .. ·, Knq-1 I kz)}. Thus the subma trix of r; in q; (E) is a direct 

sum of the matrices which have the form 
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Indefinite-Metric Quantum Field Theory 19 

( 
0 +1) 

. +1 
1'. 0 ( 0 - -1) 

or . 1 . 
-1·· 0 

(7 ·16) 

The rna trix representation of K in CW fJ is 

0 0 
1 0 

1 . 
(7 ·17) 

0 1 0 

because K(KP I kq)) 

presentation of 

form 

KP+1 I kq) (p 0, 1, · · ·, nq 1). Hence the matrix re-

E in C{l (E) is a direct sum of the matrices of the 

E 
lE 

1 . 

0 

0 1E 

Such a matrix representation is called the Jordan form of Ii. 

(7·18) 

Next, we consider the case of E non-real. As before, let K be the 

restriction of E to C{l(E). Then we again have (7·7) but Kt=f=.K. 

Let I k) be a state such that 

(7 ·19) 

Then, according to the assumption that C{l is non-degenerate, there exists 

a state jl) C{l (E*) such that 

(ll Kn- 1
1 k)=f=.O; (7·20) 

in particular, 

(7. 21) 

Let CU1 be the space spanned by l k), Kl k), ... , Kn-1
1 k), and CU't be the one 

spanned by ll), Kt ll), .. ·, ( _Kt) n-
1 ll). Of course, CU 1 and CU { are n-dimen­

sional, cyclic invariant subspaces of C{l(E) and C{l(E*), respectively. As 

before, we define the orthogonal spaces (CU:t) 1 and CUt, which are invariant 

subspaces of C{l (E) and C{l (E*), respectively. Then 

~(E) =CUl:B(CU:t)l, 

q; (E*) CU:tEBCU11
• (7. 22) 

Since (CU{) 1 and CUt have similar structures as those of C{l (E) and C{l (E*), 

respectively, we can repeat the above consideration. By mathematical in-
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20 N. Nakanishi 

duction, we obtain that 
$ 

C{l(E) ::SEBCUq, 
q=l 

$ 

q; (E*) ::SEBCUi (7·23) 
q=l 

with 

(7. 24) 

(7·25) 

Here a sign factor aq is unnecessary because CUi is a space different from 
CUq. The submatrix of YJ in C{l(E)ffiC{l(E*) is a direct sum of matrices 

(7·26) 

where ~q IS an nq X nq matrix 

(7. 27) 

The matrix representation of II in C{l(E)ffiC{l(E*) Is a direct sum of 
matrices 

(7. 28) 

where (,q (E) is an nq X nq matrix having the form (7 ·18) (E is now com­
plex). The product of (7 · 26) and (7 · 28) is hermitian as it should be. 
We note that the representation of H in C{l(E)ffiC{l(E*) is also the Jordan 
form. 

Summarizing the above results, we obtain the following theorem. 

THEOREM For Ej real, C{l(Ej) is a direct sum of mutually ortho­
gonal, cyclic invariant subspaces cw q, in each of which we can choose a 
base such that YJ is of the form (7 ·16) and h (the matrix representation 
of H) is of the Jordan form (7·18). For Ej non-real, C{l(Ej)ffiC{l(E/) 
is a direct sum of mutually orthogonal, invariant subspaces CUqEBCUi, where 
CUqcC{l(Ei) and CUi cC{l(E/), with dimCUq=dimCUi. In CUqfficUi, we 
can choose a base such that YJ and h are given by (7 · 26) and (7 · 28), 
respectively.*) 

*) Since n-1 =71, the (orthogonal) projection operator to CU/q (or Cf.Jq(J?RJ~) is given by .L; jp) 
'l1pp1(p' I , where {I p)} denotes its base adopted above. p,p, 
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Indefinite-Metric Quantum Field Theory 21 

Combining this theorem with the primary decomposition 1 theorem, we 

obtain the complete forms of r; and h. Thus, as far as a finite-dimensional 

indefinite-metric space is concerned,· its structure is known quite satisfac­

torily. The same applies also to a space which is a direct sum of an finite­

dimensional indefinite-metric space and a Hilbert space, if both are invariant 

with respect to II. 
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22 N. Nakanishi 

Chapter 3 

General Aspects of Indefinite-Metric Quantum Field Theory 

§ 8. Topology 

We consider an extension of the theory of a finite-dimensional indefinite­

metric space formulated in Chapter 2 to the infinite-dimensional case. The 

axioms 1° ""'10° stated in § 4 are unchanged except for 6°, in which N 

should now be regarded as infinite. This modification is, however, very 

essential. We should remember that almost all important results obtained 

in Chapter 2 are based on the finite dimensionality of the space. For ex­

ample, in the infinite-dimensional case, in order to define a base, we have 

to consider a linear combination of an infinite number of states. To define 

it, it is necessary to introduce a concept of the limit. More precisely, the 

notion that two states are sufficiently near must be defined unambiguously. 

A space having such a relation is called a topological space. Thus? for the 

mathematical treatment of the indefinite-metric Hilbert space, we have to 

introduce topology into it. For the finite-dimensional space, its topology is 

a priori unique. For the infinite-dimensional space, however, there are 

many possibilities of introducing topology into it, and unfortunately it is 

extremely difficult to find the topology appropriate for indefinite-metric 

Hilbert space. 

We first review the axioms of the Hilbert space .!!C. For .!JC, in addition 

to 1° and 7°,.....,9°, we have two properties (4·1) and (4·2). Hence 

the quantity 

lllk>ll==<klk)112 (8·1) 

defines a mathematical norm. Since to define I n)_,..l k) as n_,..co is equi­

valent to define In) I k)_,..O as n_,..co, it is sufficient to define I n)_,..O. 

Because of (4·2), it is natural to define ln)_,..O by 

Ill n> II _,..o. (8·2) 

It is also possible to define I n)_,..O without usmg norm, that 1s, we may 

say that I n)_,..O if 

(lln)_,..O for any ll)E.!f.C (8·3) 

and, m the ordinary case, if 

(nl n)_,..O. (8·4) 

This topology is called weak topology, and correspondingly the topology in 

the sense of (8·2) is called strong topology. Evidently, if I n)_,..O in strong 
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Indefinite-Metric Quantum Field Theory 23 

topology, ! n)->0 in weak topology, but the converse is not true. In quantum 

field theory, weak topology is used only in the asymptotic condition.*> 

In the Hilbert space, an additional axiom is completeness. In 3l, if 

for any e>O there exists a positive number N such that 

II (In)- I m)) II <e for any n, m> N, (8·5) 

then there exists ! k) E3i such that ! ! k) as n--'i>-oo, [Furthermore, it 

is usually assumed that 3l is separable, that is, there is a countable subset 

If) dense in 3£ (i.e., the closure of ID is 30 .] 
Now, we consider the problem of how to introduce the topology appro­

priate for the indefinite-metric Hilbert space CV. 

(A) 1Veak topology 

Since it is impossible to define a mathematical norm in CV by (8 ·1), 

at first sight it looks natural to use weak topology in CV. Since by assump­

tion, CV is non-degenerate,. (8 · 3) might look a satisfactory condition for 

defining ! n)--'i>-0. This is not the case, however, even in a Hilbert space 

~L Suppose that {In)} forms a complete orthonormal set in JJL Then any 

state ll) can be expanded into 

<X> 

ll) b anln) (8·6) 
n=O 

with 

(8·7) 

Then we have 

(ll n) = a:->o, (8·8) 

but (n l n) = 1 always. The unnatural statement I n)--'i>-0 is excluded by 

(8·4). 

The condition (8 · 4) becomes powerless in the indefinite-metric Hilbert 

space CV, because there are zero-norm states. Indeed, let { l n); n 0, 1, · .. } 

be an infinite sequence of linearly independent states in CV such that 

(8·9) 

We consider a sequence defined by 

l2n)+!2n 1) (n 0,1,· .. ). (8·10) 

Then of course 

<nln>=o. (8 ·11) 

*) In the asymptotic condition, (8·4) is excluded in order to remove oscillatory terms. 
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24 N. Nakanishi 

For any state ll) q; which can be expanded as (8 · 6) with (8 · 7), we 

have 

(8·12) 

Thus m the sense of weak topology, we have 

(8·13) 

provided that ll) can be an arbitrary state m q;_ If we do not require 

(8 · 7), then the above difficulty disappears, but in this case <liZ) becomes 

ambiguous, that is, it depends on the order of the smnmation in (8 · 6). 

Since the existence of a base (i.e., a complete set) is necessary for our 

purpose, it is hopeless to construct an appropriate indefinite-metric Hilbert 

space with weak topology. 

(B) r;-jormalis1n 

As mentioned in § 1, the r;-formalism (unitary trick) is the old-fashioned 

way of treating the indefinite-metric Hilbert space. We consider a Hilbert 

space !Ji, which is in one-to-one correspondence with q; in such a way that 

the linearity is preserved in this correspondence. Let I k) and ll) in (_tJi be 

the states corresponding to I k) and ll) in ClJ, respectively. The inner 

product in q; is then expressed by 

<kll> <ki7Jil), (8·14) 

where TJ is an operator in 3£, which must be hermitian because (8 ·14) 

should equal 

(8·15) 

It is usual to suppose that there is a complete set of states In) in !}£ such 

that for their corresponding states In) in q; we have 

1) (8·16) 

The topology of q; is defined by the strong topology of !Ji. An opera tor 

Ton q; corresponds to T on !}£ in such a way that Til) corresponds to 

Til). Hence 

<kl Tll>=<kfnTIZ>. (8·17) 

It is straightforward to show that Tt corresponds to 7]-
1 Tt7J. 

It should be noted that the 7}-formalism is essentially based on a par­

ticular pseudo-orthonormal set {In)} in q;, that is, we always have to 

describe the theory in terms of a particular base. This fact is very incon­

venient if we wish to represent manifest-covariance properties of the theory 

in q), Indeed, the use of the 7}-formalism in quantum electrodynamics is 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.5

1
.1

/2
9
4
6
8
6
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Indefinite-Metric Quantum Field Theory 25 

rnisleading,811
) because the existence of 7J violates the manifest Lorentz 

covariance in the com.rnutation relation between 7J and the electromagnetic 

field. Furthermore, the 7}-forrnalisrn is inconvenient for describing rnultipole 

ghosts. 

(C) . JVevanlenna space*) 

Instead of preferring a particular base m C{l, we can construct a rna­

thematically well-defined indefinite-metric Hilbert space C{l, which was 

proposed by Nevanlenna, in the following way. A Nevanlenna space C{l is 

a direct sum of two mutually orthogonal subspaces C{l + and C{l_, where C{l + 

is a Hilbert space, and C{l __ is a modified Hilbert space such that <k-1 k_)<O 

instead of >O for any non-zero I k_) EC{l_. For any I k), ]l) EC{l, we can 

uniquely write I k) I k+) -1- I k_) and ]l) ll+) I L) with I k+), ll+) EC{l + 

and I k_), I L) C{l_. The inner product is then given by 

(8·18) 

while a mathematical norm is defined by 

(8·19) 

The decornposi tion of C{l in to two subspaces is of course not unique. 

According to Ginzburg and Yokhvidov,**) however, the topology introduced 

above is independent of the decomposition. 

The defect of this formalism is that the decomposition of C{l into C{l + 

and <lJ _ is, in general, not invariant under the transformations which leave 

the theory invariant. 

(D) Banach-space methodN15
> 

Since the inner products between unequal states are unnecessary for 

defining the mathematical norm, in order to introduce strong topology into 

C{l, it is more economical to consider a Banach space !B than to do a 

Hilbert space !7-L, where a Banach space is a complete, normed vector space. 

For o/E!B, its norm is denoted by 11+11, which has the following properties: 

[[ao/11 lal·ll+ll, 

11++¢11<111/1'11 + ll¢11. 

111/1'1120, 

11+11 =0 if and only if o/=0. (8. 20) 

We suppose that there is a one-to-one correspondence between C{l and !13 

*) For see Nagy's book.N4) 

**) The present author could not see the original paper. 
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26 N. Nakanishi 

such that linearity is preserved. The topology of CV is introduced by that 

of 93, and therefore it is independent of the inner product in CV. 

We consider linear functionals over 93; <P is called a linear functional 

if <P( 1.fr) for any o/E93 is a complex number and if 

(8·21) 

We can define a linear combination of linear functionals by 

(8·22) 

Furthermore, we define the mathematical norm of (jJ by 

[[q.7[[:::: sup jq.J(o/)1, 
lltf.rll ::Sl 

(8·23) 

where "sup" means supremum. Then the totality of the linear functionals 

over 93 spans a Banach space which is called a _dual space of The 

dual space, 93, of 93 includes 93. In particular, if 93 93, then 93 is called 

reflexive. We assume that 93 is reflexive. 

It is convenient to rewrite (j)( o/) as q.Jo/. Given (jJ and an operator T, 

if there exists q.J' such that q.J(T~) q.J'o/ for any Y,.E93, then we may write 

q.J' (j3 T, and (j3 ( T 'o/) be written as (j3 T 'o/ without confusion. 

As is evident frmn the above construction, IfJ is essentially the space 

corresponding to bra-vectors. In this sense, we can represent the inner 

product in CV by a sesquilinear form (j)t'. Given 93, we may define 

f. 93 if both o/ and f. correspond to the smne state in CV. Of course, 

[['1/1·11 is independent of 'fo/. 
T'he Banach-space 1nethod see1ns to be the most natural way for intro­

ducing topology into the indefinite-metric Hilbert space. 

In subsequent sections, however, we do not take care of 1nathematical 

problems such as what topology is used, in what domain an operator con­

sidered is defined, etc. 

§ 9. Problem of interpretation 

The introduction of indefinite metric into quantum field theory causes 

a serious trouble in the physical interpretation of the state. We first review 

the fundamental postulates of the quantum theory in the ordinary frame­

work. 

(1) A state is represented by a normalized vector in a Hilbert space 3t. 

(2) An observable is represented by a hermitian operator on 3t. 

(3) The states I k) in which the measured value of an observable A 

is always A. are defined by an eigenvalue equation 

Ajk)=A.jk). (9·1) 
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Indefinite-Metric Quantum Field Theory 27 

( 4) An arbitrary state in J1t can be represented as a linear combina­

tion of the simultaneous eigenstates, In), of (a maximal set of) mutually 

commuting observables, where 

(9·2) 

(5) In an arbitrary state I k), the probability of finding that the 

measured values of mutually commuting observables are all equal to the 

respective eigenvalues of l n) is given by 

(9· 3) 

From Postulate (4), for any lk) we have 

jJ,~)=~anln). (9·4) 
n 

Hence 

<n I k) ~am<n I rn) an (9·5) 
m 

with the aid of (9 · 2). (9 · 4) becomes 

lk) I n)<nl k). (9·6) 

Therefore we obtain completeness condition 

ln)<ni=L (9·7) 
n 

The total probability of finding that the measured values of mutually com­

muting observables are some c-numbers is given by 

bWn l<nlk)l 2 2:l<kln)<nlk) 
n n n 

=<klk) (9·8) 

because of Postulate (5) together with (9 · 7). Since a state is a normalized 

vector, (9 · 8) implies that 

(9·9) 

that is, the total probability is unity, as it should be. 

There is also a postulate which prescribes the dynamics of a system. 

(6) The time development of a system is described by 

i ca /ot) It) t), (9·10) 

provided that no observation is made. Here, It) is the state of the system 

at time t, and H denotes the Hamiltonian of the system, which is a 

hermitian opera tor. 

Because of (9 ·10), if It) is normalized at a particular time, it is so at 
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28 N. Nakanishi 

any time. Thus the total probability is always unity, that is, probability is 

conserved. This is the basis of the probabilistic interpretation of the state 

in quantum theory. 

Now, we return to the indefinite-metric theory. In this case, (9 · 2) no 

longer holds. We have at best 

(9 ·11) 

so that 

bln)O'/nl=1 (9·12) 
n 

instead of (9 · 7). Hence (9 ·11) and Postulate (5) contradict the require­

ment that the total probability shall be unity. Therefore, Postulate (5) 

must be modified. There may be the following possibilities: 

(a) We abolish the probabilistic interpretation. Unfortunately, we 

have no good idea of a substitute for it. 

(b) We define Wn by 

_ ](njk)l 2 

wn -~-~-<m I k) 1 2 

m 

(9·13) 

instead of (9 · 3). Then of course the total probability is unity. But this 

definition is evidently quite ad hoc. Indeed, (9 ·13) is, in general, not in­

variant under the transformations which leave the theory invariant. The 

most crucial defect of (9 ·13) is that Wn depends not only on I k) and In) 
but also on the choice of other eigenstates of a complete set. 

(c) We define w, by 

(9·14) 

instead of (9 ·13). Then it is evident that (9 · 9) holds if (k I k) 1. 

Possibility (c) is the traditional way of the interpretation of the state 

in the indefinite-metric theory. Hereafter, we always adopt this definition 

of w,. Since from (9 ·14) we see that w, is real but it is not necessarily 

non-negative, we encounter the problem of negative probability. This is the 

origin of the name "ghost". 

Since we know no adequate interpretation of negative probability, the 

usual way of avoiding this difficulty is to introduce a constraint (or a sub­

sidiary condition). We postulate that only physically admissible states are 

those which satisfy the constraint; they are called "physical states"*) and 

span a subspace of CV. If all physical states have positive or zero norm, 

any probability concerning physical states is ·non-negative, and the total 

probability is unity as far as a normalized physical state is concerned. Then 

*) A physical state used here does not mean a clothed (dressed) state. 
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Indefinite-Metric Qu~antum Field Theory 29 

we can retain Postulates (2)----(5) (however, we admit <nln)=O in (9·2) 
for some In)) in the indefinite-metric theory if !/{ is identified with the 
physical-state subspace of C{l. Postulate (1) should be replaced by the 
postulate concerning physical states mentioned above. We note that !l£ is, in 
general, degenerate. Therefore q; is not generally decomposed into a direct 
sum of cCJt and its orthogonal complement; if it does, the indefinite-metric 
theory considered is essentially equivalent to a local :field theory having 
positive metric. It is supposed, of course, that any observable is extendable 
to an operator on C{l, but it may not necessarily be hermitian in the whole 
space C{l. We also note that the expectation value <k I A I k) of an operator 
A in a state I k) is physically meaningful only if I k) E,g[. 

Postulate (6) is left unchanged if It) can be consistently restricted to 
!l£, that is, if the constraint persists at all time. This condition is, however, 
very stringent. It is unli/?,ely that we can utZ:l£ze indefinite metric to remove 
ultraviolet-divergence difficulty in such a way that the constraint is satisfied 
at all time, because no negative-norm, states then can effectively contribute to 
physical processes. In general, therefore, we should weaken the constraint 
in Postulate (6). This point will be discussed in the next section. 

In quantum mechanics, we have several theories of observation. Though 
they are not quite satisfactory, we can meaningfully discuss the problem of 
observation at any finite time. In quantum :field theory, however, the situa­
tion is much worse. It seems impossible to construct a theory of observation 
at finite time. This is because in quantum field theory there exist vacumn 
polarization and self-energy effects, which cannot be well defined unless we 
take into account all contributions between t oo and t oo. In a 
finite time interval, we cannot decide whether a particle A emitted from a 
particle B is to be absorbed later by B or not. In quantum field theory, 
therefore, it is natural to postulate that observation can be made only in 
the asymptotic states (t oo), in which all particles are mutually at very 
large distances. Then a question arises: If only the asymptotic states are 
of physical interest, then there would be no need for considering the Hamil­
tonian and field operators at finite time. This extreme standpoint is called 
the S-matrix theory, in which the S-matrix only is regarded as a 1neaningful 
quantity. We do not, however, adopt the S-matrix theqry because of the 
following reasons : 

(1) It is quite difficult to derive quantum mechanics from the S-matrix 
theory. 

(2) The S-matrix theory cannot explain the reason for the great success 
of quantum electrodynamics. Furthermore, the classical •Maxwell equations 
are completely foreign to the S-matrix theory. 

(3) The treatrnent of the bound-state problem in the S-matrix theory is 
unsatisfactory. 
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30 N. Nakanishi 

Therefore, we adhere to quantum field theory throughout. Though we 

cannot observe a finite-time transition, we take the standpoint that it is 

meaningful to discuss a state at finite time. This standpoint is very crucial 

when we consider the indefinite-metric quantum field theory. 

There are two ways of formulating the asymptotic states. The tradi­

tional method is the adiabatic hypothesis. The total Hamiltonian is supposed 

to approach adiabatically to the free Hamiltonian Ho as t___,. CX) More 

precisely, we replace the interaction Hamiltonian by H 1e-e.ltl (or 

H1e- 8212 in the complex-ghost theory), and take the limit e___,. + 0 after construct­

ing the transition matrix between t - CX) and t + CXJ. This approach is 

suitable for the Hamiltonian formalism. The other method is based on the 

asymptotic condition. As t___,. CXJ, field operators (or products of field 

operators) are supposed to approach to their asymptotic fields, which satisfy 

the commutation relations of free fields, in the sense of weak topology. 

This approach is suitable for discussing Heisenberg operators. We shall, 

however, adopt the adiabatic hypothesis throughout, because we work in the 

Hamiltonian formalism except in § 11. 

When we consider an indefinite-metric quantum field theory in which a con­

straint persists at all time, there is an important problem, which has hitherto 

been unnoticed. Should we apply the adiabatic hypothesis also to the con­

straint? In the conventional treatment, the answer seems to be "yes", though 

it seems to be never explicitly stated so. Recently, however, Haller and Lando­

vitzRz~H4).*) have proposed a new formulation of quantum electrodynamics in 

which the answer to the above question is "no". It is not unreasonable that 

the constraint remains unchanged even for t___,. CX), because the notion of the 

physical states should be independent of time. Under this postulate, Haller 

and Landovitz found that quantum electrodynamics in any reduces 

to that in the Coulomb (radiation) gauge; for example, according to their 

conclusion, the renormalization constants Z1 and Zz are gauge-independent.T4
) 

Of course, in the conventional quantun1 electrodynamics, Z1, Z2 and most of 

off-the-mass-shell quantities are gauge-dependent. The difference between 

two formulations originates from the adiabatic hypothesis on the constraint. 

In the conventional formalism, the space ~o of the physical states at t CX) 

is different from ~' the space of the physical states at finite time. This 

adiabatic change of the definition of the physical states induces a departure 

from the Coulomb-gauge formalism, that is, the possibility of various gauges 

1s owing to the inequivalence between !fio and ~. 

It may look unsatisfactory that the definition of the physical states at 

t CX) is different from that at finite time, but we should note that an 

observer who can observe phenomena taking place at finite time cannot wait 

*) The description of their criticism of the Gupta-Bleuler constraint is misleading.G9) Their 

standpoint is properly stated in a very recent paper by Tomczak and Haller_T4) 
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Indefinite-Metric Quantum Field Theory 31 

for an infinite time interval, and conversely, an observer who can observe 
a transition from t =- oo to t = + oo cannot measure a finite time interval. 
Therefore, the existence of two kinds of physical states is not a logical 
inconsistency. VVe may say that quantum electrodynamics is a unified 
description of two theories: "infinite-time quantum electrodynamics" and 
"finite-time quantum electrodynamics", which correspond to an infinite-time 
observer and to a finite-time observer, respectively. The infinite-time observer 
can measure scattering cross sections, while the finite-time observer can 
observe bound states and the classical Maxwell field (as expectation values). 

Finally, we discuss the question of causality. This problem crucially 
depends on the definition of causality. The microcausality is usually used 
as the same meaning as local commutativity, i.e., the property that any 
two field operators are commutative or anticommutative at spacelike separa­
tions. In this sense, the indefinite-metric theories usually considered are 
microcausal. If, however, the use of ghost fields is not allowed, we have to 
eliminate them. It is generally believed that if ghosts are eliminated, an 
indefinite-metric theory will always reduce to a non-local theory, in which 
microcausali ty is viola ted. 

There are many possible definitions of macrocausality. In the weakest 
sense, it means a cluster property: B6

> If a system consists of two subsystems 
which are present at a very great distance, the S-matrix of the whole system 
is essentially equal to a product of the S-matrices of the two subsystems. 
Another definition of macrocausality is as follows: We can arbitrarily choose 
an initial state from a set a priori prescribed independently of dynamics, 
and then the corresponding final state is uniquely determined by dynamics, 
that is, the initial state can be specified without knowing the final state. 
This macrocausality is always satisfied if the S-matrix is derived from a 
linear dynamical equation like the Schrodinger equation. The indefinite­
metric theories usually considered are macrocausal also in this sense. 

§ 10. Unitarity of the physical S-matrix 

Since, as pointed out in § 9, it seems too stringent to impose a con­
straint at all time for the purpose of constructing a divergence-free theory, 
in this section we consider only the infinite-time observer and require the 
following condition: If the initial state is a physical state then the correspond~ 
ing final state is also a physical state, and vice versa. We call this condi­
tion "physical-state condition". Let S be the S-matrix and P be one of 
projection operators to !Ji0 (the physical subspace at t = oo), that is, 
PC{) =c3to. Then the physical-state condition can be written as 

(1- pt)SP=O, 

pts(1-P) =O, (10·1) 
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32 N. Nakanishi 

that IS, 

SP=PtSP=PtS. (10· 2) 

We assume that the semi-definite-metric space .Jto is a direct sum of 

a Hilbert space ,t]t~ and a space () which consists of zero-norm states alone 

and is orthogonal to '-tJC~. Let P' be the orthogonal projection operator to 

~{~, namely, a projection operator such that .JC~ P'C(J is orthogonal to 

(1-P')C(J. Then, as is seen from (1-P')tP' ptt(1-P') 0, we have 

p't =P'. (10·3) 

Let Po be one of projection operators to () (note that no orthogonal projec­

tion to () exists). Then 

P6P' =P'tPo=P6Po=O. (10· 4) 

It Is convenient to set P= P' + P0 • Then (10 · 3) and (10 · 4) yield 

ptp=P'. (10·5) 

Now, the S-matrix S is unitary in C(J if H is hermitian and if S is 

constructed as usual, but this fact does not imply the conservation of prob 

ability for physical states. The physical S-n~atrix, which is defined by 

(10·6) 

IS not necessarily unitary In .Jeo or .JC~. However, if S is unitary, i.e., 

(10·7) 

and if the physical-state condition Is satisfied, then, by sandwiching (10 · 7) 

with pt and P and by using (10·2), (10·6) and (10·5), we find 

S, S t -P' phys phys- , (10·8) 

that is, Sphys is unitary in the quotient space .JC0/ () ( ~.JC~). 

If H is not hermitian, the unitarity of Sphys is not guaranteed even if 

the physical-state condition is satisfied. Since the latter must be satisfied 

in order to avoid negative probability, the hermiticity of H is almost a 

necessary condition for the uni tari ty of Sphys, though of course we cannot 

exclude the possibility of fantastic exceptional examples in which H is non­

trivially non-hermitian but Sphys is unitary.*) Hereafter, we always assume 

*) The complex-ghost theory proposed by H. YamamotoYl-Y4 ) has a non-hermitian Hamil­

tonian. His claim that Sph y is unitary is wrong unfortunately. His theory is interesting, however, 

as the only known example of a divergence-free, Lorentz-invariant quantum field theory which 

satisfies the physical-state condition. There is another interesting non-hermitian model, which was 

considered by Scar£ and UmezawaSl) and by YokoyamaYS) without being aware of its non-hermi­

ticity. This model has a Yukawa-type interaction Lagrangian, but all fermion propagators reduce 

to boson ones. 
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Indefinite-Metric Quantum Field Theory 33 

that H is hermitian. Then we have only to check whether or not the 

physical-state condition is satisfied. 

The physical-state condition is of course satisfied if there is a constraint 

which persists at all time. The most successful example is quantum electro­

dynamics (see §18). It is of course possible to construct various indefinite­

metric theories which have a persisting constraint but are equivalent to positive­

definite-metric local field theories (in this case, CJ is zero). On the other 

hand, we know two types of theories which have no persisting constraint but 

satisfy the physical-state condition. One is based on the energy conservation 

law. Because of the uncertainty principle, energy is not necessarily conserved 

at a finite time interval but it is strictly conserved at an infinite time in­

terval. Therefore, if the physical states are characterized by energy values, 

then the physical··state condition is satisfied. The other example is called 

the Shimodaira model,87
> which is based on the mass-shell condition satisfied 

at the initial and final states. Suppose that a free ghost-field equation is 

0 
' 

(10·9) 

say. If the interaction Lagrangian involves ¢> only in the form of + m})¢>, 

then it is evident that no external lines of ¢> exist in any Feynman graph. 

Therefore, the physical-state condition is satisfied. This model is not wel­

come, however, because the ultraviolet-divergence problem becomes much 

worse.*> 

From the above consideration, in order to construct a divergence-free 

theory by using the indefinite-metric device, it seems that the only possible 

way is the case of energy conservation. We analyze this possibility in 

detail. 

We first consider a theory involving a si1nple ghost I G) ( <G I G)<O 

and (H-E) I G) 0 with E real). Since it is impossible to distinguish a 

many-particle state involving I G) from a physical many-particle state by 

using the eigenvalue equation of the Hamiltonian only, the existence of 

I G) generally violates the physical-state condition. 

Next, we consider the complex-ghost case. As remarked in § 7, for E 

non-real, we have a pair of complex ghosts I C) and I C*): 

(H-E) !C)= (H--E*) !C*)=O, 

<C!C) <C* IC*) 0, (C* IC)*O. (10·10) 

Since any many-particle state involving a complex ghost (either I C) or I C*)) 

has a non-real eigenvalue, it can clearly be distinguished from any physical 

many-particle state which has a real eigenvalue. In such a case, the 

:;q Here, of course, we confine ourselves to local interactions only. As for non-local interac­

tions, see § 15. 
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34 N. Nakanishi 

physical-state condition is satisfied. Unfortunately, however, the above 

distinction is no longer possible if we consider a state involving both I C) 

and I C*), because E + E* is real. Thus the complex-ghost theory looks 

hopeless. It is not the case, however, if we consider a relativistic theory 

of complex ghosts. We shall discuss this point in detail in § 16. 

Finally, we consider the multipole-ghost case. Since the complex multipole­

ghost case is quite similar to the complex-ghost case, we suppose that E is 

real. Furthermore, for simplicity, we confine ourselves to the dipole-ghost 

case alone. This case is very delicate because the energy conservation law 

itself does not guarantee the physical-state condition. 

Historically, HeisenbergH7
) first made the following consideration. If the 

theory considered contains a dipole ghost, then scattering-wave solutions of 

a time-independent Schrodinger equation asymptotically behave, apart from 

an incident wave, like either ae±ikr/r or (a+br)e±ikr/r (b=I=O), where r=-lxl 

and a, b, k are constants. Heisenberg called the set of the former-type wave 

functions "Hilbert space I" and the remainder "Hilbert space II" (the set 

of dipole-ghost scattering states). Since the states belonging to "Hilbert 

space II" are physically unreasonable, he postulated that one should adopt 

only the solutions belonging to "Hilbert space I". Then it is evident that 

no dipole ghosts contribute to the physical S-matrix; accordingly, the 

physical-state condition is to be satisfied. 

Since Heisenberg's reasoning is rather heuristic, a more reasonable proof 

was presented by Ascoli and Minardi.As),A 4
) They considered the problem 

in the time-dependent Schrodinger picture. Since the time-displacement 

operator is eiHt, if the state considered is a superposition of the eigenstates 

of H at some particular time, this property persists at all time. Because a 

dipole ghost is not an eigenstate of H, it cannot be produced at any time. 

Thus the physical-state condition is to be satisfied. 

The above reasoning is also unsatisfactory because the initial condition 

is usually given at t = oo but not at finite time. The most satisfactory 

way of showing the unitarity of the physical S-matrix is due to Nagy.N4
) 

Suppose that a complete set is formed by physical incoming-wave eigenstates 

I rn, in) of H, dipole ghosts jl, D) and their corresponding zero-norm 

eigenstates !l, 0)= (H-Et) ll, D), where jl, 0) is orthogonal to lm, in) but 

not to jl, D). A physical outgoing-wave eigenstate In, out) can be ex­

panded as 

In, out) bamnlm, in)+bbtnll,O)+bCtnll,D). (10·11) 
m l l 

If H-E" acts on (10 ·11), then we find 

0 bamn(Em-En) lm, in) bbtn(Et-En) ll, 0) 
m I 

(10 ·12) 
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Indefinite-Metric Quantum Field Theory 

From the linear independence of the states, we obtain 

Ctn=b,n=O for E,=!=En. 

Therefore, (10 · 12) reduces to 

that 1s, 

On substituting (10 ·13) and (10 ·15) In (10 ·11), we have 

In, out) 2J amn I m, in)+ 2J b,n ll, o>. 
Em=E 11 Ei=En 

(10·13) 

(10 ·14) 

(10·15) 

(10·16) 

From (10·16), we see that Sphys {(m, in]n, out)} should be unitary. 

35 

Because of the above proofs, it was believed for a long time that a 

dipole-ghost field theory would give a unitary physical S-matrix, provided 

that we do not encounter negative-norm bound states. Some concrete ex­

amples,*) however, seemed to contradict the conclusion of this theorem. 

NagyN5
) therefore constructed a modified Lee model in order to investigate 

this question more closely. In his model, the only source of negative prob­

ability is a dipole-ghost field, but the physical S-matrix can be explicitly 

shown to be non-unitary. Indeed, for scattering states, there is a complete 

set consisting of the eigenstates of H only. From this result, Nagy concluded 

that the above theorem concerning the dipole-ghost theory was valid but 

the dipole-ghost situation was "unstable". 

The unitarity problem of the dipole-ghost theory was finally settled by 

Nakanishi,N17
) who showed that the above theorem was actually ·wrong. 

The point is that contrary to common belief, dipole-ghost scattering states 

are expressible as superpositions of the eigenstates of H. This curious 

phenomenon can take place because the spectrum of H is continuous but 

not discrete for scattering states. A dipole ghost, ll, D) satisfies 

(H-E,) ll, D)= ll, 0), (10 ·17) 

and of course ll, D) is linearly independent of ll, 0). We can construct, 

however, another state satisfying the dipole-ghost equation ( 10 · 17) in terms 

of ll,O): 

ll, D)::=. ~dEmo'(EJ-Em) lm, 0). (10·18) 

Indeed, with the aid of xo' (x) = -o(x), we have 

*) See NakanishiN13 ) and private communication to Nagy.N5 ) 
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36 N. Nakanishi 

(H-Et) ll, D)= jl, 0). (10·19) 

Therefore, a state 

ll,O) ll, D) ll, D) (10·20) 

is an eigenstate of Hand lipearly independent of ]l, 0). We can form a 

complete set by using ll, 0) instead of ll, D). In Nagy's modified Lee 

model, it is possible to construct ll, D) and ll, 0) explicitly. 

Heisenberg's reasoning is wrong because "Hilbert space I" is not a 

closed vector space, and hence a matrix cannot be defined within it. The 

incorrectness of the second proof is evident because a dipole ghost is a 

superposition of the eigenstates of H. The drawback of the third proof is 

the overlook of the possibility that btn can involve a' (E 1 - En) (hence (10 · 14) 

is wrong). 

Thus, except for the relativistic complex-ghost theory, it seems hopeless 

to construct a divergence-free indefinite-metric quantum field theory which 

has a unitary physical S-matrix. Here we of course adhere the definition 

(10 · 6) of Sphys· If Sphys may not be a sub1natrix of S, that is, if we arti­

ficially define sphys, then it is quite easy to construct a unitary physical 

S-matrix. Such a method of defining a physical S-matrix has no field­

theoretical basis, and therefore we call it "artificial unitarization". To allow 

artificial unitarization is essentially to give up quantum field theory and 

adopt an S-matrix-theoretical point of view. 

Since artificial unitarization is not a logical reasoning, there are inde­

finitely many ways of its realization. We classify them into three categories. 

(A) Non-linear function of S and P' 

A historically famous example of this type is due to Bogoliubov, Medvedev 

and Polivanov.B5
) They supposed that the initial state could have an 

adjustable non-physical component. If it is chosen to be equal to the non­

physical component of the final state apart from a phase factor, we obtain 

Sphys==P' S[1 +eie(1-P')S] -l P', (10·21) 

where o is a real number. It is not difficult to check that Sphys is unitary 

in $i~. 

Another example of this type may be called the final-state normalization 

method. We assume that the operator S==P'SP' is invertible in $i~. Then 

§§t is also invertible. Since (SSt)- 1 is hermitian, we can uniquely define 

(SSt)-112 by using a unitary transformation. We then define 

(10. 22) 

It is straightforward to verify that (10 · 22) is unitary in !li~. 

In the artificial unitarization of this type, since Sphys depends on S non-
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Indefinite-Metric Quantum, Field Theory 37 

linearly, the cluster property of Sphys is generally lost. Thus it badly violates 

1nacrocausali ty. 

(B) Adjustment of the absorptive part 

We define that the dispersive part of Sphys is equal to that of P'SP', 
but the absorptive part of Sphys is determined in such a way that Sphys 

becomes unitary.*> This procedure is always possible to be carried out if it 

is worked out successively in perturbation theory. 

The artificial unitarization of this type is essentially to neglect the 

absorptive part due to ghost production. A convenient prescription of doing 

this in the case of complex ghosts was proposed by Cu tkosky, Landshoff, 

Olive and Porkinghorne.02
) The shadow-state theory of Sudarshan and his 

collaborators81 o),GzJ,Nzl),Nzzl seems to be essentially of this type. 

Some of drawbacks of the theories of this type are as follows: Sphys is 

not analytic in general so that it will violate the postulates of the analytic 

S-matrix theory,01
) and this method is applicable only to perturbation theory. 

The analyticity can be maintained if the dispersive part is also 

successively modified in conformity with the modification of the same-order 

absorptive part. A celebrated example of this type is the massless Yang­

Mills theory,nz) in which one introduces Feynman's fictitious quanta after 

constructing the S-matrix. Quite a similar situation is encountered also in 
the dual resonance model.Mt) 

(C) Redefinition of physical states 

This method is based on the standpoint that the initial and final states 

should not be assigned more rigidly than they are assigned by good quantum 

numbers. If we can find a one-to-one mapping U from CV onto CV (an 

automorphism) such that good quantun1 numbers are preserved by U and 

if ptutsuP is unitary in (!Ho/LJ, we define 

(10·23) 

The definition of this type was suggested by Schnitzer and Sudarshan82
l and 

recently used by Nagy.N7
) KitaKe) independently made an analogous considera­

tion in his non-local theory. 

A defect of this method is that we cannot specify U unless we know 

S explicitly. In some solvable models, we can demonstrate the existence of 

U, but unfortunately it is not unique. There is no proper reason to choose 

as U a particular one among others. 

§ 11. Consideration in the Heisenberg representation 

It seems that there is no sufficiently comprehensive axiomatic field theory 

*l This prescription should be applied only to connected Feynman graphs. If it is blindly 
applied to the old-fashioned perturbation theory, in which the contributions from disconnected 
Feynman graphs are not separated, the result badly violates macrocausality as in (A). 
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38 N. Nakanishi 

having indefinite metric. As pointed out in § 8, the trouble which we 

encounter is that we know no appropriate way of introducing topology into 

CV. In discussing the Heisenberg operators on CV, we can hope at best 

the Lehmann-Symanzik-Zimmermann (LSZ)Lll) level of mathematical rigor. 

In what follows, we examine how the LSZ-type postulates have to be modified 

in the indefinite-metric quantum field theory. 

We first review the LSZ-type postulates in the positive-metric quantum 

field theory. 

(1) The set of all states spans a Hilbert space c!J£. Fields ¢r(x), which 

correspond to the elementary particles labeled by r, are operators on c!J£ 

(more precisely, they are operator-valued distributions). 

(2) Observables are (unbounded) hermitian operators on c!J£. Hence their 

eigenvalues are all real, and a complete set is formed by eigenstates. 

(3) The theory is invariant under the Poincare group and some other sym- . 

metry groups. In particular, the translational invariance implies the existence 

of the generators Pfl., which are hermitian and mutually commutative and form 

a Lorentz vector; furthermore, 

(11·1) 

for any r. 

( 4) Local commutativity: ¢r(x) and ¢s(y) are commutative or anticom­

mutative for (x-y) 2<0. 
(5) Spectral condition: :The eigenvalues of Po and those of P 2 are real 

and non-negative. Furthermore, the state whose eigenvalue of Po is zero is 

unique and is called the vacuum, which is the only Lorentz-invariant eigen­

state. It is often assumed that P 2 has some particular spectrum consistent 

with the Lagrangian field theory. 

(6) Asymptotic condition: Field operators ¢r(x) approach to ¢;n(x) as 

Xo--i» oo and to ¢~ut(x) as Xo--i» + oo; ¢;n(x) and ¢~ut(x) have the free-field 

properties. 

In the indefinite-metric field theory, most of the above postulates have 

to be modified. We have already discussed how to modify Postulates (1) 

and (2) in § 9. Postulates (3) and ( 4) remain unmodified. Postulate (5) 

has to be weakened considerably, because the generalized eigenvalues of Po 

and P 2 are, in general, complex, and there may exist many non-invariant 

states whose eigenvalue of Po is zero (see § 17). Postulate (6) becomes 

impossible if there exist complex ghosts, because ¢r(x) may increase ex­

ponentially as Xo--i» + oo. 

Since, as seen above, it is quite difficult to discuss Heisenberg operators 

in the general framework of the indefinite-metric quantum field theory, we 
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Indefinite-Metric Quantum Field 7heory 39 

here exclude the existence of non-real eigenvalues,*) that is, we assume that 

we encounter only simple ghosts ·and real multi pole ghosts in addition to 

the normal states. In this case, Postulates (5) and (6) can remain essen­

tially unmodified. Therefore, most results concerning the analyticity of 

Green's functions and scattering amplitudes can still be derived in the in­

definite-metric theory. The only difference between the positive-metric case 

and our case is the properties of spectral functions. For example, as is 

well known, the spectral function of the one-particle Green's function is no 

longer positive definite if there exist simple ghosts. In the following, we 

discuss what happens about the spectral function of the one-particle Green's 

function if there exists a dipoleghost. 

The one-particle Green's function is defined by 

G(x) ==(JJ] T(ct>(x)¢(0)) I JJ), (11·2) 

where I JJ) stands for the true vacuum, ¢(x) is a Heisenberg operator, 

which is assumed to be hermitian scalar field for simplicity, and T is the 

chronological symbol. Suppose that there exists a dipole ghost lp, D) and 

its associated zero-norm state lp, 0) such that 

(Pt.t-pt.t) lp, 0)=0, 

(PM-PM) lp, D) lp, 0) (11·3) 

with 

(p, 0 lp, 0) (p, D lp, D) 0, 

(p, Dip, O)=(p, Olp, D)= 1. (11· 4) 

Then the orthogonal projection operator D(p) to the subspace spanned by 

those two states is given by 

D(p) ==a [ lp, D)(p, 0 I+ lp, O)(p, Dl]. (11·5) 

From (11·1) we have 

cf>(x) eiPx¢(0)e-iPx. (11·6) 

Furthermore, (11· 3) is rewritten as 

e--;Px lp, 0) =e-;px lp, 0), 

e-·iPx lp, D) =e-ipx lp, D) ipxe-iPx lp, 0). (11·7) 

Let G11t) (x) be the contribution from jp, D) and !p, O) to (JJ I cf>(x)ct>(O) j.Q). 

With the aid of (11· 6) and (11· 7), we have 

-----

*> It should be noted that even if this condition is satisfied for Ho, it is not necessarily 

satisfied for H==Po. 
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where 

N. Nakanishi 

Gb(~) (x) =<JJ lif>(x)D(p)¢(0) I JJ) 

[ (SJI ¢(0) lp, D> -ipx(t2 I ¢(0) lp, O) J (p, o I ¢(0) I JJ) 

+(JJj¢(0) IJJ, O)<fJ, Dl¢(0) lt2)}e-ipx 

=rJl (p )e-tPx +rJz(P) pp.(o/opp.)e-iPx, 

d1 (p) 2rJ Re [ (JJ I ¢(0) lp, D><p, o I ¢(0) I JJ) J, 

dz(p) =a! (Q I ¢(0) jp, 0) 1
2

• 

(11·8) 

(11·9) 

Because of Lorentz invariance, the Lorentz-transformed states of lp, D) and 

lp, 0) have to be taken into account. Suppose that p2 m 2 with Po>O. 

Then the total contribution on the mass shell is 

Gb+> (x) = ~d 4 pO(po)o(p 2 -m 2 )Gb(~) (x) 

= ~: ds Pv(s)LJ<+>(x, s), (11·10) 

where 

.J<+>(x, s) ~d 4 pO(po)o(p 2 s)e·-;px, 

pv(s) [l11(m 2
) 26z(tn2)]o(s m2

) 2m2dz(m2)o'(s m 2
) 

(11·11) 

with 11j(p) because of Lorentz invariance. As is well known, from 

(11·10) we have 

(11·12) 

where Gv(x) denotes the contribution to G(x) from dipole ghosts. As seen 

in (11·11), the spectral function Pn(s) contains o'. Therefore if s m 2 be­

longs to a discrete spectrum, it yields a double pole in G(x). If it belongs 

to a continuous spectrum, however, we should integrate (11·11) over m 2
, 

and hence G (x) has a cut similar to the ordinary case. The only difference 

between the two cases is that the spectral function is a m.easure (in the 

mathematical sense) in the ordinary case, while it is a distribution which 

is not necessarily a 1neasure in the dipole-ghost case. 

Finally, we note that (11· 3) is not necessarily satisfied in a Lorentz­

invariant theory. A dipole-ghost state can appear as a particular component 

of a Lorentz vector (see § 18). In such a case, the dipole-ghost equations 

should be 

(P2 -p2
) lp, 0)=0, 

(Pz-pz) lp, D)=pzlp, 0). (11·13) 
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Chapter 4 

Examples of the Indefinite-Metric Quantum Field Theory 

§ 12. Lee model 

The Lee model with indefinite metric was first considered by Kallen 

and Pauli.K2
> Heisenbergn7

> made use of the Lee model to demonstrate the 

possibility of the dipole-ghost situation. Since then, many authors investi­

gated the indefinite-metric Lee model in detail and also discussed various 

modified models. It seems, however, that in the indefinite-metric Lee model 

the discussion of the eigenvalue problem is confined so far to the no-cutoff 

case. The consideration in this case depends on the method of renormali­

zation. In discussing what situation we encounter in the eigenvalue problem, 

it will be better to consider a theory which contains no ambiguity related 

to the removal of ultraviolet divergences. 

The Hamiltonian of the indefinite"metric cutoff Lee model is given by 

II= mv'o/tf' JnN¢}¢ ~ dp(J)pfir (p)e(p) 

+f't¢~dpg(p)tJ(p) +f'rj}~dpg*(p)tJ'I'(p) (12 ·1) 

with*> 

(12· 2) 

Here ,Y., ¢ and tJ(p) are field operators of V, N and fJ, respectively, whose 

masses are rrtT?, rnN and me, respectively; Wp y m 11 + p 2 and g is a coupling 

constant; the form factor G(p) is a (complex) smooth function such that 

G(p) 0(/p/-1-s) with as /p/-H)Q, 

The commutation relations are 

{f', f't} = -1, 

{¢J, ¢t} + 1, 

[tJ(p), ot(q)J =o(p-q), (12·3) 

and all other frelevant commutators (or anticommutators) vanish. The 

vacuum I 0) is defined by 

~,/0)=¢/0)=tJ(p) /0)=0, <0/0)=1. (12· 4) 

The problem of our interest is to discuss the clothed V-particle states I E), 

which satisfy 

*) The factor i in (12 · 2) is inessential for our discussion. It originates from the renormaliza· 

tion in the no-cutoff model. 
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42 N. Nakanishi 

HIE)=EIE). (12·5) 

Because of the p;:trticle-number conservation laws, I E) can be expressed as 

(12·6) 

where c and f(p) are a constant and a function of p, respectively. On 
substituting (12 · 6) in (12 · 5), we have 

(mv-E)c - ~dpg(p)f(p), 

(mN+(J)P-E)f(p) =cg*(p). (12·7) 

We solve (12 · 7) under the boundary condition of no incident wave. Non­
trivial solutions of (12 · 7) exist if and only if E satisfies 

(12·8) 

In the following, we investigate this equation in detail. 

First, it is evident that (12·8) has no real roots for E>Eo==mN+mf). 

Furthermore, we see 

h( oo) oo, lh(Eo)l 

h' (- oo) = + 1, h' (Eo) = - oo, 

h"(E)<O for E<Eo. 

Therefore, the zero point of 

h'(E) =1- \d jg(p) lz 
J p (nzN+(J)P- E) 2 

is unique in the region E<Eo. We denote it by Emax, that is, 

h'(E)>O for E<Emax, 

h' (Emax) = 0, 

h'(E)<O for 

We distinguish the following three cases. 

(12·9) 

(12·10) 

(12·11) 

(12·12) 

(12·13) 

(1) h(Emax)>O. In this case, (12·8) has either one real root E=E_ 
( <Emax) or two real roots E = E_ and E = E+ (E_ <Emax<E+ <Eo), de­
pending on h (Eo) >0 or <O. 
(2) h(Emax) =0. In this case, (12·8) has only one real root E=Ed 

( = Emax), which is a double root. It is easy to show that 

Ed> (1/2) (nzv Eo), mv<Eo . (12·14) 

(3) h(Emax) <O. In this case, (12 · 8) has no real roots. 
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Indefinite-Metric Quantum Field Theory 

Next, we investigate complex roots of (12 · 8). Let 

E 

Then (12 · 8) is rewritten as 

rnv- \dplg(p)_l~~mN+(!)p-Et) 0, 
j (mN+(!)P- Et) 2 + E~ 

Ez[1 \ dp--------- _I g(p) lz 
2 2 

J o. 
j (mN+(!)p-Et) +E2 

43 

(12·15) 

(12·16) 

(12·17) 

In (12 ·17), because of Ez 0, the quantity in the square bracket must 

vanish. We define a function 

<p(E,, a) 1 ~dp (mNJ!;P~'y+a 

in a>O. It has the following properties: 

(f'(E1, + oo) 1, 

(8/fia)cp(Et, a)>O. 

(12·18) 

(J2·19) 

(12·20) 

(12·21) 

Hence, because of (12 ·13), for E1 fixed, (f'(E1, a) has no zero point if 

E 1<Emax( <Eo) and has only one zero point a a(Et) if E1~Emax; in 

particular, 

a(Emax) =0. (12.22) 

Thus (12·17) witl; Ez=I=O is satisfied for E; a(E1) with E 1>Emax· 
The next task is to analyze (12 ·16). *) We define a function 

m It has the following properties: 

x(Emax) =h(Emax), 

x(+oo) +oo, 

x'CE1)>0. 

(12·23) 

(12· 24) 

(12·25) 

(12·26) 

Here (12·24) is evident from (12·22) and (12·8), and (12·25) is also 
obvious, but the proof of (12 · 26) is non-trivial. 

For simplicity o£ notation, we set 

*) This analysis is owing to Prof. H. Araki. The author is very grateful to him for his 
valuable comments on the problem of solving (12·8). 
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44 N. Nakanishi 

(12·27) 

Then 

(12·28) 

Because of 

(12·29) 

the second term of (12 · 28) is equal to 1, and the third term equals 

(12· 30) 

Therefore, the sum of the first three tern1s 1n (12 · 28) IS positive. On 

differentiating (12 · 29) with respect to E1, we have 

(12·31) 

On substituting (12 · 31) in (12 · 28), we find that the last term in (12 · 28) 

is also positive. Thus (12 · 26) has been established. 

From (12 · 24) ......__ (12 · 26), we see that xCE1) has no zero point if 

h(Emax)>O and only one zero point if h(Emax)<O. For h(Emax) 0, the 

zero point is E1 Emax, and hence a(El) 0 because of (12 · 22). We 

therefore conclude that non-real roots of (12· 8) exist if and only if 

h(Emax) <O (i.e., Case (3)), and in this case we have exactly two roots 

E and E;, which are mutually complex conjugate. 

Finally, we investigate the norm of I E). From (12 · 6) together with 

(12·3) and (12·4) and (12·7), we have 

<EIE> !cl 2 + \dplf(p) 12 

(12·32) 

Therefore 

<EIE)= -lcl 2h'(E) for E real, 

jc j 2Im h(E) /Im E for E non-real. (12·33) 

For the three cases classified above, we have the following results. 
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Indefinite-Metric Quantum Field Theory 45 

(1) Since h' (E_) >O and h' (E+) <0, from (12 · 33) we find that 1 E_) 

has negative nonn while 1 E+) has positive norm. As g_,.O, ]E_) tends to 

"f.t]O), while ]E+) disappears; thus the latter is a bound state of Nand 0. 

(2) We obviously have <Ed I Ed)= 0. Hence there has to exist a 

dipole ghost I Ed, D) which satisfies 

Let 

Then 

(H-Ed) IEd,D> lEd>· 

(mv--Ed)c=- ~dpg(p)/(p) +c, 

(mN+oJp-Ed)j--:(p) cg*(p) +f(p). 

By eliminating ](p), we find 

h(Ed)c+ h' (Ed)c=O. 

(12· 34) 

(12·35) 

(12·36) 

(12·37) 

Since h(Ed) h' (Ed) 0, (12 · 37) IS identically satisfied. Thus (12 · 36) 

is solvable. Since 

/(p) \(12·38) 

we find 

<Ed lEd, D)= icl 2\dp jg(p) 1

2 

3 
>0. 

j (mN (l)p-Ed) 
(12·39) 

The non-existence of a tripole ghost can also be confirmed by using (12 ·11). 

(3) From (12 · 33) we have 

(12·40) 

as it should be (see (7 · 3)), and 

(12·41) 

We cannot say which of I Ec) and IE'() is the elementary V-particle state. 

They are both particle-mixtures of elementary and composite particles. 

§ 13. Froissart model 

The Froissart modey·s) is the simplest example of relativistic dipole-ghost 

fields. We consider two hermitian scalar fields A and B. The Lagrangian 
density is given by 
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46 N. Nakanishi 

.£ a(J.Aa(J.B-m2AB+ 1 AA2
• (A=FO) 

Field equations are therefore 

CD m 2)A o, 

(0+m 2)B=AA, 

The canonical quantization implies that 

(13 ·1) 

(13. 2) 

(13·3) 

[A(x), B(y)Lo~Yo [B(x), A(y)Lo~Yo iB(x-y), (13·4) 

where a dot denotes 8/8y 0 , and all other equal-time commutators vanish. 

Let v m 2 + p2; then, as usual, we can expand A Cx) as 

A(x) = (2n)- 312 ~dp(2(1)P)- 112 [a(p)exp( -i(l)pXo+ipx) +h.c.], 

(13·5) 

where h. c. stands for the hermitian conjugate. Since B(x) does not satisfy 

the Klein-Gordon equation, however, a similar expansion is impossible for 

B (x). Therefore, assuming m 0, we consider 

(13·6) 

Since 

(13· 7) 

we have 

(13·8) 

Hence it is possible to write 

Bv(x) = (2n)- 312 ~dp(2(1)P)- 112 [$(p)exp( -i(l)pXo +ipx) +h. c.]. 

(13·9) 

The equal-time commutators are transcribed as 

[a(p), $t(q)] = [/1(p), t}(q)] =B(p-q), 

[a(p), at (q)] = [/1(p), ·f1t (q)] = 0, etc. (13 ·10) 

The four-dimensional commutators are calculated from (13 · 5), (13 · 6), 

(13·9) and (13·10): 
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Indefinite-Metric Quantum Field Theory 

[A(x),A(y)] =0, 

[A(x), B(y)] iLl(x-y, m 2
), 

[B(x), B(y)] =iJ.( -a/8m2)L1(x-y, m 2
), (13·11) 

where 

(13·12) 

In deriving (13 ·11), we have used an identity*) 

(13·13) 

The generators P/1. of translations are given by 

Po ~dpa>pN(p), 

P, ~dpp,N(p), (13·14) 

with 

N(p) (p)fJ(p) +fJi'(p)a(p) + tkm-2at(p)a(p). (13·15) 

The vacuurn I 0) is defined by 

a(p) IO)=fJ(p) 10)=0, <OIO)=l. 

The one-particle state ai'(p) I 0) and fJt(p) I 0) satisfy 

(PfJ.-pfJ.)at(p) I 0) o, 

(PfJ.-p/J.)fJt(p) I o) = t ;.m-2pp.at(p) I o), 

with and 

<Oia(q)af(p) IO)=<OifJ(q)fJt(p) IO)=O, 

<o I a(q)fJt (p) I o) =8(p- q). 

Thus fJt(p) I 0) is a dipole ghost. 

(13 ·16) 

(13·17) 

(13·18) 

47 

We emphasize that the above consideration cannot be applied to the 
case m=O. In order to define Bv(x), we have to seek for an integra­
differential operator K satisfying 

OKA(x) =A(x), (13·19) 
where 

DA(x) =0. (13. 20) 

*) Unfortunately, this identity is erroneously written in Nagy's book.N4) The definition (13·6) 
is different from Froissart' s oneF6) because of the correction of this error. 
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48 N. Nakanishi 

In the following, we prove the non-existence of a Lorentz-invariant K. 

[This proposition was inferred by LukierskiL12> on the basis of the m~O 

limit of (13 · 7) .] 

Because of Lorentz invariance, K can be expressed as 

(13. 21) 

On transferring 0 to the right end, we can eliminate by using (13 · 20). 

Since x~-'8(1. is dimensionless, the dimensional analysis shows that 

(13·22) 

Since no property other than (13 · 20) and Lorentz scalarity is assumed for 

A(x), (13 ·19) must hold for any invariant solution of (13 · 20). Hence we 

may substitute 

(13·23) 

for A(x). Since D(x) is homogeneous, we find 

J(D(x) (13· 24) 

Thus there is no invariant K satisfying (13 ·19). 

It is of course easy to find a non-invariant K satisfying (13 ·19). For 

example,L2
> 

(13·25) 

where 11 stands for the Laplacian ~~=18J, whose inverse can be defined 

unambiguously.*> To adopt (13 · 25) implies to violate manifest Lorentz 

invariance. Manifest Lorentz invariance is, however, the vital element of 

the Froissart model. Indeed, as shown recently by Nagy,N7
> who translated 

the consideration on the dipole-ghost theory stated in §10 into an operator 

from, a non-relativistic version of the Froissart model is equivalent to a. 

model consisting of a normal field and a simple-ghost field. For simplicity, 

we suppress the degrees of the freedom of spatial momentum. We start 

with a Hamiltonian 

with 

~dE· E [at(E)a(E) bt(E)b(E)] 

[a(E), at(E')] = [b(E), bt(E')] a(E E'), 

[a(E), bt (E')] = 0, etc. 

(13·26) 

(13·27) 

*) In contrast with A-\ o-1 is ambiguous a.nd violates the associative law (D(x) = - 1 0) 

X D(x) =!= o-1 (DD(x)) =0). 
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Indefinite-Metric Quantum Field Theory 49 

This model, of course, has no dipole ghost. If, however, with k-::FO, we 

define 

then 

and 

a(E) [a(E) b(E)], 

0(E)-=k-1a(E) k-1E(d/dE) [a(E)-b(E)], 

[a(E), 13t(E')] =[$(E), a 1.(E')] =o(E-E'), 

[a (E), a.,. (E')] [13 (E), 13t (E')] 0, etc. 

(13·28) 

(13·29) 

~dE· E [at (E)S(E) + {3 1
• (E)a(E) k~ 2 a 1 · (E)a(E)]. 

(13·30) 

Evidently, (13 · 29) and (13 · 30) constitute a non-relativistic version of the 

Froissart model. 

If manifest Lorentz covariance is required, however, then such a con­

sideration as above becomes impossible. In the following, we show that if 

m 0, the displacement operator PM, which is defined by (13 ·14) and (13 ·15) 

together with (13 ·10), cannot be reduced to P~, where 

P~-= ~dpwpN' (p), 

P~-=~dpp 1 N'(p) (13·31) 

with 

and 

N'(p) -=at(p)a(p) -bt(p)b(p) 

[a ( p) , a.,. ( q) ] = - [ b ( p) , b t ( q) ] = o ( p- q) , 

[a(p),bt(q)] 0, etc. 

(13·32) 

(13·33) 

Suppose that P:=P~, when a(p) and fJ(p) are certain linear combinations 

of a(p) and b(p). From [a, P~] =p,.,a and [a, at] =0, we must have 

a(p) k [a(p) b(p)], (13. 34) 

since k(a+b) reduces to the above by redefining -b as b. Then the rela­

tion [a, (3t] = o implies that 

where DP is a differential operator. In order to have [{3, P:J + ha) 

with ~ A.tn-2
, from (13 · 31) and (13 · 35), DP must satisfy 
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50 

[Dp, (l)PJ hk{J)p, 

[Dp, PrJ =hkPt· 

From (13 · 37) we find 

Dp hkpa/ap, 

N. Nakanishi 

(13·36) 

(13·37) 

(13. 38) 

but (13 · 38) does not satisfy (13 · 36) unless 1n = 0. Thus only the m 0 

case (A= oo so that h be finite), which is not the genuine Froissart model 

as emphasized above, can be reduced to a simple-ghost tnodel in a manifestly 

covariant way. ( [$, etJ =0 is satisfied by setting h=k-2/3.) 

Finally, we note that there are some attempts to extend the Froissart 

model to the multipole-ghost case. Invariant solutions of the multiple Klein­

Gordon equation 

(13•39) 

were investigated in detail by Bowman and HarrisB7
> and later by Montaldi.M4

) 

LukierskiL14
)'

1
"
15

) constructed solutions of (13 · 39) in terms of the solutioni:of 

the Klein-Gordon equation by using translationally non-invariant coefficients. 

A natural extension of the Froissart model to the multipole-ghost case was 

made by Yokoyama and Kubo.Y12
> 

§ 14. Multimass theory 

The simplest covariant way of avoiding ultraviolet divergences in the 

Feyninan integral is to introduce a Feynman cutoff.Fa) For example, as is 

well known, the photon propagator in the Feynman gauge is 1/ (-p 2
- is) 

apart from a factor igf/.11· If it is replaced by 

1 
(14·1) 

-p2 ie 

where A2 is a very large quantity, all relevant Feynman integrals except 

for the second-order photon self-energy integral become convergent (apart 

from infrared divergences) In quantum electrodynamics. Since (14·1) is 

rewritten as 

1 1 
(14· 2) 

the above replacement is equivalent to the introduction of a ghost field 

having a mass A. This procedure, of course, violates the unitarity of the 

physical S-matrix, but in this section we do not take care of this problem. 

The historically famous Pauli-Villars regulator methodP5
> is of a similar 

line of thought. Though their original idea was formalistic, but as pointed 

out by Gupta,Gs) it is realized in terms of the indefinite-metric theory as 
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Indefinite-Metric Quantum Field Theory 51 

follows. We suppose that a' physical field ¢J0(x) is always accompanied 

with a number of auxiliary fields f/11 (x), · · ·, f/Jn (x) (for simplicity, we assume 

that ¢ 0, ¢1 , ···, ¢n are hermitian scalar fields). We consider a linear com­

bination 
n 

¢(x) (14·3) 

with a1 real and ao = 1. If 

(14· 4) 

with rJo 1 and rJ1 1 for j=1, ... , n, then 
tl 

[¢(x), ¢(y)] =ibrJ;a~L1(x-y, mD. (14·5) 
j.7c0 

We require the Pauli-Villars regularity conditions 

(14·6) 

which imply that ¢(x) is much less singular than ¢o(x) on the light cone. 

Thus, given a conventional theory involving ¢0, if ¢ 0 is replaced by ¢ in the 

interaction Lagrangian, then we obtain a less singular propagator <o IT(¢¢) I 0) 

instead of <o I T(¢o¢o) I 0). 

The above auxiliary-field method is closely related to the multimass 

theory, which was extensively investigated by Pais and UhlenbeckP1
) without 

explicitly employing indefinite metric. The field equation in the n1ultimass 

theory is of the form 

F(0)¢(x) (x), (14·7) 

where F(s) is a polynomial in s and j(x) denotes a source operator. The 

higher is the degree of F(s), the less singular is the propagator of ¢. 

The free Lagrangian density of the mul timass theory is given by 

. Lo= 
1 

2
¢FCD)¢ . (14·8) 

Because of the hermiticity of J:o, the coefficients in F(s) are all real. 

Assuming that F(s) is monic (i.e., the highest-degree coefficient is one), we 

can write 

n 

F(s) =II (s-s1), (14·9) 
}=0 

where s1 may be complex, but then sf also has to appear. 

Hereafter we confine ourselves to the case in which all s1 are different 

from each other. Hence F'(s1) 0. From the well-known formula of partial 

fractions 
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52 N. Nakanishi 

(14·10) 

we obtain an identity 

(14·11) 

with 1/F'(sj). Therefore, on setting 

(14·12) 

we have 
n 

¢(x) 2~};j($j(x). (14·13) 
i=O 

By usmg (14·13) and (14·12), the free Lagrangian density (14·8) is 
rewritten as*) 

(14·14) 

If s1 =sc is non-real, then as mentioned above, (14·14) also involves a 

field corresponding to s:. On defining ¢c~v1ic¢n we see that .J:o involves 

.J:c, where 

(14·15) 

This Lagrangian density (after integrating by parts) is the starting point 

of the relativistic complex-ghost field theory (see § 16). 

If all s1 are real, we may assume that s0>s1>· .. >sn without loss of 

generality. Since F(s) is a continuous function, the sign of F' (s i), namely, 

that of IJh changes alternately. For simplicity, we assume that YJo>O. We 

can eliminate I YJ i I from ( 14 · 14) by setting ¢ j = v I YJ j I if>~. Finally, we assume 
that so<O, and set si= -mj. Then (14·14) and (14·13) become 

(14·16) 

and 
n 

¢(x) Sai¢lx), (14·17) 
j=O 

respectively, where 

c -1) 1 vr~~r. (14·18) 

Since a1aj YJh the identity (14 ·10), i.e., 
n 

b1Ji (s + 1nD -l = [F(s)] - 1
, (14·19) 

i=O 

*) Pais and UhlenbeckPt) made a partial integration, but it is unnecessary in (14·14). 
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Indefinite~Metric Quantum, Field Theory 53 

reproduces (14 · 6). [Expand (s mD -l and compare the coefficients of 
s-k (k 1, 2, ···, n).] 

As demonstrated above, the multimass theory realizes the auxiliary-field 
method in the most economical way. The former is more elegant than the 
latter because in the former the ad hoc introduction of the auxiliary fields 
into the free Lagrangian is avoided and the regularity conditions are satis~ 

fied automatically. A defect of the n1ultimass theory is the use of higher 
derivatives in the Lagrangian. 

Finally, we make some comments on the multimass version of quantum 
electrodynamics. If the electron field is associated with auxiliary fermion 
fields, then gauge invariance is violated, because fermion fields having 
different 1nasses couple directly. In the photon self-energy part, Pauli and 
VillarsP.;) avoided this difEculty by introducing an artificial regularization, 
which could not be justified in terms of the indefinite-metric quantmn field 
theory. Arons, Han and SudarshanA1

) formulated a divergence-free quantum 
electrodynamics by introducing two auxiliary fermion fields, but it was not 
gauge-invariant. gauge-invariant, divergence-free quantum electrodynamics 
was first formulated by and Wick.Ls) Though their original theory is a 
complex-ghost theory (see § 16), we may take all masses real if we forget 
about the unitarity problem. It does not violate invariance to intro­
duce an auxiliary vector field associated with the electromagnetic field. As 
noted at beginning of this section, its introduction removes all ultraviolet 
divergences appearing in the S-matrix excej)t for the second-order photon 
self-energy part. To remove its divergence, Lee and Wick introduced two 
auxiliary fermion fields, ++ and o/ _, having a purely imaginary More 
precisely, the Lee-Wick additional Lagrangian density is given by 

.J:LW = ( --ir''B{J. M-er{J.A{J.)o/+-i~~( -ir{J.a{J.+l\1*-er{J.A,Jo/~, 

(14·20) 

where ~± ==o/~ro and A{J. denotes the electromagnetic field; M may or may 
not be complex. The equal-time anticommutators are 

{1/r~(x), f~(y)},o=Yo (ro)a0o(x-y), {o/~(x), 'f~(y)}xo=Yo 0. (14·21) 

As seen from (14·20), .£Lw does not violate gauge invariance. Because of 
the purely imaginary charge, the second-order photon self-energy integrals 
due to these auxiliary fermion fields have the opposite sign to that of the 
second-order photon self-energy integrals due to the electron f1eld and the 
muon field.*> Therefore, their ultraviolet-divergent parts exactly cancel out, 
because the coefficients of both quadratically and logarithmically divergent 

*J If we do not take account of the muon field, the charge of the auxiliary fermion fields 
must be . Thus the muon field has a 1·aison d'etre of avoiding an irrational magnitude of 
the charge of the auxiliary fields. 
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54 N. Nakanishi 

terms are independent of the loop mass. 

The Lee-Wick method is quite interesting, but one should note that it 

is not a Tegularization method, but, so to speak, a cancellation method. The 

ultraviolet behavior is weakened only in the loop integrals which have 4n + 2 

fermion lines 0, 1, · · ·). Furthermore, the Schwinger term Ol) cannot be 

removed by J:Lw. This is in contrast with the regularization method, in 

which the Schwinger term is completely swept away, as pointed out by 

Moffat.M3
) The appearance of the Schwinger term is a pathological feature 

of the present quantum field theory, and it is natural to remove it by 

introducing auxiliary fields. We note that the removal of the Schwinger 

term persists even if the masses of the auxiliary fields tend to infinity so 

that the unitarity of the physical S-matrix is not injured. 

§ 15. Realization of intrinsic form factors 

The multimass theory provides a method of regularizing the Feynman 

integral by modifying propagators. Another way of regularizing the Feynman 

integral is to introduce intrinsic form factors into vertices. Historically, 

this attempt is known as the non-local theory, or more precisely, the 

quantum field theory of non-local interaction. 

One considers such an interaction Lagrangian density as 

(15·1) 

where F(x, y) is a c-number function, called a form factor, hoping that 

certain good form factors could eliminate ultraviolet divergences. 

The non-local theory, however, has two fatal drawbacks. First, in order 

to obtain a convergent Feynman integral in momentum space, the form 

factor should be a distribution containing the Feynman -is; otherwise the 

Feynman integral would become m.ore singular because Dyson's power-count­

ing theorem for ultraviolet divergences then would no longer hold. This 

requirement implies that F(x, y) should be a complex-valued distribution, 

but that contradicts the hermiticity of )L1d4x. Second, since (15 ·1) con­

tains action at a distance, the Tomonaga-Schwinger equation does not satisfy 

the integrability condition. Therefore, the Yang-Feldman in-out formalism 

was adopted to construct the S-matrix. Hayashi,HG) however, pointed out that 

in this formalism an internal inconsistency appears in the order ,q
4

• If the 

formalism is modified to remedy this difficulty, them macrocausality will 

be violated. Thus the non-local theory based on the non-local interaction 

Lagrangian seems to be quite unsatisfactory.*) 

*) An attempt at a non-local theory without postulating the Lagrangian was made by 

Kita.K4-K6) In his theory, the assumption that field operators are Lorentz-covariant is up. 
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Indefinite-Metric Quanturn Field Theory 55 

The purpose of this section is to demonstrate that it is possible on the 

basis of the indefinite-metric quantum field theory to construct a theory in 

which each vertex has a forn1 factor of a Feynman integral-type. This 

theory is divergence-free and macrocausal, but its physical S-matrix is 

non-unitary, unfortunately. The theory which we propose here is a refine­

ment of Yokoyama's theory. In 1961, YokoyamaY5)-Y7
) proposed a very 

interesting way of regularizing quantum field theory by introducing several 

auxiliary fields. l-Ie claimed the unitarity of his physical S-matrix. 

Munakata,M5
) however, criticized his conclusion by constructing a modified 

Yokoyama model, whose physical S-matrix was explicitly non-unitary. The 

reason of this discrepancy was, contrary to Munakata's suggestion, Yoko­

yama's inadequate treatment of the mass-shell condition. If calculated 

correctly, one cannot forbid the appearance of ghosts in the final state. 

Before entering into the main subject, we note that there is an exactly 

solvable model which satisfies all usual (Wightman) axioms of the relativistic 

quantum field theory except for the positive definiteness of metric. This 

model was proposed first by GlaserG1
) in a brief comment and much later 

formulated independently by Bialynicki-Birula.B3
) Let ¢(x) if> (x) and be two 

scalar fields having an equal mass rn. We consider a Lagrangian density 

== 21 (-::liL£1,.-::l"A. 71'2£1,.2) 1 (8/Li-::J :~ ""'l2i2) 
U 'flU ,.-.'fl <- 'fl 2 'flU fJ.~J -- I I 'f' F(¢+~), (15·2) 

where F(z) is an arbitrary real polynomial in z. The field equations are 

where 

CD m 2)¢(x)=j(x), 

CD+m2)¢(x) = -j(x), 

(¢+~). 

From (15 · 3), we have 

that 1s, ¢ ~ is a free field. Therefore, we can write 

where 

[¢in(x)' ¢in(y) J iLi(x-y, Jnz)' 

[¢in(x), ;pn(y) J = 0, 

(15·3) 

(15. 4) 

(15·5) 

(15·6) 

(15·7) 

We note that j(x) is rewritten as F'(¢
1 n+~in). Hence the solution of 

(15 · 3) is given by 
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where 

N. Nakanishi 

¢(x) ¢in(x) ~d 4 yL1R(x-y, m 2)j(y), 

¢ (x) ¢i11 (x) ~d 4 yL1R(x-y, m 2)j(y) (15·8) 

(15·9) 

In perturbation approach, propagators always appear in a pair of ¢ and ¢, 
and they cancel out exactly. Therefore9 all Feynman graphs involving at 

least one internal line give no contribution. Thus the only contribution to . 

S ---1 from the graphs which have only one vertex in each 

connected component. 

Now 9 Yokoyama's theory is based on the above exact cancellation of two 

equal-mass fields. In the following, we present Yokoyama-type models in a 

more way. 

We consider three physical fields ¢lx) (j 1, 2, 3) and six auxiliary 

fields cplx) and q)1(x) (j 1, 2, 3); they are all hermitian and scalar. The 

Lagrangian density .£ Lo + L}Y) is given by 

_J~~cafL a 2 2) o-
2 

f1 ¢>1 11-¢1 Jn1¢1 

1 3 1 3 

+ ca/l.cp/1/l.cpj- ,u;cp;) - 2 t1 ca/1-~Ja/l.<oj- ,u;~D, (15·10) 

. (cpj-q)J(/>i. 

(15·11) 

Without the last term of (15 ·11), the above model would be a trivial 

superposition of Glaser's model, that is, the cpJ propagator always cancels 

with the q)1 propagator. Because of the presence of the last term of 

(15 ·11), it is possible to have a non-vanishing propagator 

(15·12) 

!he physical fields qJl, ¢z and ¢a can couple with each other only through 

the propagator (15 ·12). Each Feynman integral of this theory, therefore, 

1s obtained from that of the theory having the Lagrangian density 

(15 ·13) 

by replacing g by 

(15 ·14) 

p1 being the 4-momentum of the ¢1 line CP1 + Pz + Pa = 0). Thus we have 

obtained a theory having form factor (15 ·14) at each vertex. If we wish to 
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Indefinite-A1etric Quantum F'ield Theory 57 

have a theory in which the form factor is given by the Feynman integral 

corresponding to a triangle graph instead of (15 ·14), we have only to adopt 

the interaction Lagrangian density 

(15·15) 

instead of .J;}Yl. 

It is now an easy matter to construct a theory in which the form 

factor is exactly the Feynman integral corresponding to a given (connected) 

Feynman graph G. We prepare a physical field ¢k for each external line k 

of G and a pair of auxiliary fields cp1 and cp, . for each internal line l of G, 

and construct the free Lagrangian density .1:o in such a way that all rf>,~ and 

cp1 have positive norm and all <p1 have negative norm: 

(15 ·16) 

We arbitrarily assign an orientation to every internal line of G. For each 

vertex a G, we denote the set of all lines incident with a by 

E [a], set of all internal lines outgoing from a by 0 [a] and the set of 

all lines to a by J[a]. vVe then define the interaction 

Lagrangian density by 

-) l 
CfJt f' 

(15·17) 

where the summation goes over all vertices of G. In this way, we see that 

an arbitrary Feynman integral can be as a form factor. We also note 

that any linear combination of Feynman integrals can be realized by taking 

the corresponding superposition of .J;jGl. 

Finally, we point out that the above technique can also be used for 

generalizing Glaser's model. If we add 

(15 ·18) 

to (15 ·16) and if we replace ¢>k in (15 ·17) by ¢k + if)k, then we obtain a field 

theory in which G is the sole connected Feynman graph which contributes 

to the S-matrix. *l Likewise, we can construct a theory in which the 

*> From this model follows an important conclusion that each Feynman integral has the 

analyticity and other properties which can be proved in the axiomatic field theory without using 

the positive-definiteness of metric. 
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58 N. Nakanishi 

S-matrix consists of a finite number of Feynman integrals. 

§ 16. Relativistic complex-ghost field theory 

As noted already (see §§11 and 10), there are two serious difficulties 

in formulating a complex-ghost quantum :field theory. First, a complex-ghost 

field asymptotically increases exponentially,*) thus forbidding the asymptotic 

condition. Correspondingly, in the interaction picture, the infinite-time limit 

of the transition matrix U(t, t') diverges exponentially. Second, since the 

energy of the state consisting of a complex ghost and its conjugate is real, 

it is very difficult to forbid its appearance in the final state, that is, the 

physical-state condition is usually violated. In the Lee model, the violation 

of the unitarity of the physical S-matrix was demonstrated in the 2N + 30 

sector by Ascoli and MinardiA5
) and by Tanaka.T3

) 

Both difficulties stated above can be avoided if the masses of all complex 

ghosts contain a negative imaginary part. This standpoint is H. Yamamoto's 

complex ghost theoryYl)-Y4
) (see also Tanaka's paperT3

)), in which I-I is neces­

sarily non-hermitian. In his theory, the total S-matrix is non-unitary and 

hence the physical S-matrix is also non-unitary in unless we 1nake 

artificial unitarization. In this section, therefore, we consider only case 

in which I-I is hermitian. 

The first difficulty of the complex-ghost theory was resolved by Lee 

and Wick.1
'
6)·**) They directly defined the physical S-matrix in terms of the 

scattering-wave eigenstates of H. Let I E) be an eigenstate of the 

Hmniltonian Ho belonging to a real eigenvalue E. Then the outgoing-wave 

and incoming-wave eigenstates of Hare given by 

IE, out)== [1- (H-E-is)-1Hl] IE), 

IE, in) [1 (H-E+is)-1Hl] IE), (16·1) 

where H1 ==H- Ho is the interaction Hamiltonian. The physical S-matrix 

is defined by 

sphys = { (E', in IE, out)}. (16. 2) 

It Is straightforward to show that 

(E', iniE, out)=(E'I {1-2rcio(E'-E) [Hl-Hl(H-E-is)-1Hl]} IE). 

(16. 3) 

*) PauliP4
) was aware of this difficulty already in 1958. 

**l There appeared a number of papers concerning the Lee-Wick complex-ghost theory. For 

example, see Lee and Wick,L7 l Nachtman,Nll,N2) Nagy,N6) Gleeson and Sudarshan,G3l Mehrotra 

and PatilM2) and Dobson, Jr.04l 
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Indefinite-Metric Quantum Field Theory 59 

It is important to note that the ie in (H--E ie)-1 has no effect on the 

intermediate states having non-real energy. Lee and Wick showed that 

(16 · 2) can also be obtained from U(t, t') (under the adiabatic hypothesis) 

if exponentially divergent terms are consistently separated before taking the 

infinite-time limi 1:. 

To see the implication of (16 · 2) explicitly, we consider a modified Lee 

model in which the Hamiltonian Ho contains complex-ghost fields 'tv 

(having a mass M) and 'tv* (having a mass M*), where Im M>O. The 

free propagators of V and V* are 

respectively, where the contours r and r' run from E 

in such a way that 

Sv(t) = Sv* (t) = 0 for t<O 

(16· 4) 

ex> to E +oo 

(16·5) 

because of the absence of the antiparticles. Then the contours rand r' have to 

pass through above the pole of the integrand. Thus r' can be identified 

with the real axis R, but r must be a complex contour, which is equivalent 

(i. e., homologous) to R o(M), where l5(M) denotes a counterclockwise 

small circle enclosing M (a is called Leray's co boundary operator). 

The above results may symbolically be written as 

r---R- o(M) m C- {1\1}, 

r'----R m {M*}, (16. 6) 

where C denotes the complex plane and {lH} indicates the set consisting 

of a point E Malone. 

By using (16 · 6), (16 · 4) 1s rewritten as 

\' (t) - - 1 \ dE + -;Mt 

uv - 2ni J R E M e ' 

··---· dE---
___ 1 ~ e-iEt 

2ni R E-M*· 
. (16·7) 

The second term of Sv(t) diverges exponentially as t-"" ex>, This divergence, 

for instance, appears in the lowest-order graph of the N-0 elastic scattering. 

The Lee-Wick prescription, in this case, is nothing but to drop the second 

term of Sv(t). It is important, however, to note that the exponential term 

is dropped only for the infinite time. For intermediate states, the whole 

expression for Sv(t) must be retained, that is, in any loop integral we 

should employ the complex contour r. For example, the second-order self-
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60 N. Nakanishi 

energy part having an intermediate state V + V* Is given by 

.(' dE' 
z Jr (E'-M) (E----:-E=-:.,---=M~*·) ' (16 ·8) 

where r-----R-o(M) but not r~R. If we replaced r by R, then we should 

have a Yamamoto-type theory. 

Now, the second difficulty stated at the beginning of this section is 

manifest in (16 · 8); a pinch occurs when E M + M*, so that we have 

a real singularity due to a pair of complex ghosts. Evidently, this difficulty 

cannot be overcome as long as we consider a static or non-relativistic :field 

theory. Lee,L5
) however, made a very interesting observation: In a relativistic 

theory,L4),Ls) the situation changes qualitatively. The relativitic energy of a 

complex ghost having a mass, M and a spatial momentum q is given by 

(16. 9) 

Therefore, the total energy of a complex-ghost state having a total 

spatial momentum p is given by 

E = O.Jp + Wp-q * = (16 ·10) 

where p and q are of course real 3-vectors. Then it is important to note 

that (16·10) is, in general, not real for p 0. Indeed, for p-=1=0,*) when q 

runs over the whole three-dimensional Euclidean space, E sweeps a closed, 

simply-connected, two-dimensional region D in the complex E plane. The 

boundary fJD of D intersects the real axis R at only one point E b, where 

(16·11) 

Let 

a= (16 ·12) 

then we have 

b<a. (16·13) 

Hence a half-line [a, + oo) on R (this is the "expected cut") lies 

completely inside D. 

The fact that the energy eigenvalues of complex-ghost-pair states occupy 

a two-dimensional region is a very important characteristic of the relativistic 

complex-ghost theory. The complex-ghost-pair states having a real eigen­

value also exist but are of Jneasure zero in Lebesgue's sense. This property 

remains true for any state involving complex ghosts. Thus, because of 

*) Hereafter we always consider this case. The p=O case should be regarded as the limit 

p->0. 
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Indefinite-Metric Quantu1n Field Theory 61 

energy conservation, the physical-state condition (see §10) is satisfied if all 
real-energy-particle states are the physical states, and therefore the physical 
S-matrix is unitary. This conclusion is extremely remarkable. 

To see the above situation more explicitly, we consider the Feynman 
integral of the second-order self-energy part involving a pair of complex 
ghosts. Analogously to (16 · 8) (a precise derivation of (16 ·14) will be 
given later), we have 

(pM=p~))f, 

(16 ·14) 

where the contour r passes through below the left-hand poles qo mq and 
qo =Po- m!-q and above the right-hand poles qo mq and qo =Po+ m;_q, that is, 
r---.,R+o( -mq) -o(wq). The subtraction term (pM=p~

0
)) is introduced in 

order to make (16 ·14) by itself finite; such a procedure is actually 
unnecessary in a finite theory in which the ultraviolet divergence always 
cancels out. It is straightforward to carry out the integration over qo of 
I(p). After some manipulation, we have 

1 
I(p) =2n[F(po, p) +F( -po, p)] (16·15) 

with 

(16·16) 

It is evident from (16 ·16) that F(jJo, p) is real for Po real. Furthermore, 
F(p 0, p) is holornorphic in Po in the domain in which the relation 

(16·17) 

does not hold for any real value of q, that is, F(p0, p) is holomorphic in 
Po outside D. For any point belonging to D, (16 ·17) holds only on a one­
di1nensional manifold in the q space. Hence, in (16 ·16), the contribution 
from a neighborhood of (16 ·17) is infinitesimal.L5

> Accordingly, F(p0 , p) 
is well defined and continuous everywhere in the Po plane. Thus F(p0 , p) 
has no discontinuity on the real axis, that is, the absorptive part of F(po, p) 
is identically zero; a complex-ghost pair cannot appear (more precisely, it 
can appear with zero probability) in the final state, as noted above. 

T'he absence of the absorptive part is possible because the value of 
F(po, p) in D is not equal to the analytic continuation of F(po, p) from 
the outside of D (otherwise, F(p0, p) would be an entire function and 
therefore be identically zero because of Liouville's theorem). Indeed, the 
first derivative of F(p0 , p) is discontinuous on the boundary oD.Nla) In 
particular, F(po, p) is not holomorphic at Po=b. It is important to note 
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62 N. Nakanishi 

that the "expected cut" L is completely enclosed by the "non-analytic 

barrier" oD. We set s=p~- p 2 and correspondingly set 

Sa - p 2 (JYf + M*) 2
, 

sb==b2
- p 2

= (Rev' 4M+ p 2
)

2
- p 2

• (16·18) 

In contrast with s=sa, the sinf,rular point s sh, is not Lorentz-invariant. 

Indeed, as p 2 varies from +co to 0, sb moves from 2(M+ M* 2
) to (M + M*) 2

• 

Since the location of a singularity of F(po, p) is not Lorentz-invariant, 

I(p) cannot be a Lorentz-invariant function. In this way, the Lorentz 

non-invariance of (16 ·14) was first proved by Nakanishi.N16>·*) Later, Gleeson, 

Moore, Rechenberg and SudarshanG2
) explicitly calculated (16 ·14) for Po 

real and confirmed his conclusion. According to their result, I(p) in 

sb<s<sa is equal to a sum of a Lorentz-invariant function, which is the 

analytic continuation of I(p) from s<sb to sb<s<sa, and a quantity L1I(p), 

which is given by 

(16 ·19) 

It is easy to check L1I(b, p) 0. It is noteworthy that the m.agnitude of 

the Lorentz-invariance violation in the location of the singularity s =sb is 

of second order in Im M, but, as is seen from (16 ·19), that in the amplitude 

itself is of first order in Im M. **) Summarizing the above consideration, 

we may say that the physical S-matrix of the relativistic complex-ghost 

field theory is unitary at the sacrifice of Lorentz in variance.***) 

All the above consideration is crucially based on the assumption that 

all spatial momenta are real. Indeed, if they were also analytically continued, 

then I(p) would become Lorentz-invariant but have the usual cut L on the 

real axis, violating the unitarity of the physical S-matrix. After Nakanishi's 

pointing-out of Lorentz non-invariance, Lee and WickL9
) became suspicious about 

taking spatial momenta real. [They gave up their original prescription and 

instead adopted an S-matrix-theoretical prescription proposed by Cutkosky, 

Landshoff, Olive and Polkinghorne.02
)] Their question to the real-spatial­

momentum prescription is as follows: Under a Lorentz transformation, a 

*) Before Nakanishi's work, the Lorentz non-invariance of the Lee-Wick theory was inferred, 

in a certain higher-order graph, by Cutkosky, Landshoff, Olive and Polkinghorne.02) Unfortunately, 

however, what they discussed was the Lorentz-transformed Lee-Wick prescription but not the 

Lorentz transformation of the expression defined by the Lee-Wick prescription. 

**) Compare this result with a claim made in Ref. C2). 

***) In the Lee-Wick quantum electrodynamics,L4J,LB) the complex-ghost self-energy graph itself 

does not exist because of gauge invariance, but we encounter it as a reduced graph of a fourth­

order electron-positron scattering graph. 
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Indefinite-Metric Quantum Field Theory 63 

free complex-ghost wave function 

exp( -i(J)pXo+ipx) (16. 20) 

is transformed into a function having a non-real spatial momentum; then 
the Fourier transform to momentum space becomes impossible, and thus we 
cannot have the usual formulation of a field theory. NakanishiNls) made an 
objection to their comment. To keep spatial momenta real is very essential in 
the framework of quantum field theory. In the commutator of an annihilation 
operator and a creation one, we encounter a three-dimensional Dirac a-function, 
which is well defined in the sense of Schwartz's distribution85

> only if its argu­
ment, i.e., spatial momentum, is real. If one extended the definition of the 
a-function to complex values of spatial momentum in the sense of analytic 
continuation (this is mathematically possible as described below), then the 
state-vector space CV would no longer be a vector space in the usual sense~ 
Furthermore, the Lee-Wick question on the difficulty of the Fourier trans­
form is related to a c-number solution of the Klein-Gordon equation, but 
it does not apply to the second-quantized field. Indeed, the complex-ghost 
field operators with real spatial momenta can be shown to be a Lorentz 
scalar. In the following, we review Nakanishi's formulationNzo) of the 
relativistic complex-ghost field theory, which is manifestly covariant at any 
finite time. 

Let rp and t/Jt be spinless complex-ghost fields having M and M*, re­
spectively (Im M>O). As shown in § 14, the free Lagrangian density of 
complex-ghost fields is given by 

.Lo ~ (fJP'rpo/l.rp- Mzrpz + 8MrptfJMrpt M*2t/Jtz). (16. 21) 

The field operator rp(x) is expanded as 

(16·22) 

with 

t/JC+> (x) (2n)- 312 ~dp(2(J)P)- 112 a(p)exp(£px i(J)pXo), 

rpC->(x)- (2n)- 312 ~dp(2(J)P)- 112 ~t(p)exp( ipx+i(J)pXo). 

(16·23) 

The canonical commutation relations imply that 

[a(p), ~t(q)] = [~(p), at(q)] =o(p-q), 

[a(p), at(q)] = [~(p), ~t(q)] 0, etc. 

Therefore the four-dimensional commutation relations are 

(16· 24) 
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64 

where 

N. Nakanishi 

[¢(x), ¢(y)] =iLI(x-y, M 2
), 

[¢(x), ¢t(y)] 0, 

[¢/(x), ¢t(y)] =iJ(.x-y, M* 2
), (16·25) 

L1 (x, M 2
) == (2n)- 3 ~d p(J);/sin (px- WpXo). (16 · 26) 

It is easy to show that Ll(x, M 2
) is Lorentz-invariant by using contour 

deformation in p. 

The generators PfJ. and M 1J.l/ of the Poincare group can be explicitly 

constructed as 

where 

Po ~dp [wpj3-r (p )a (p) + w;at (p) J3(p)], 

P, ~dpp 1 [j3t (p)a(p) at (p)J3(p)], 

~ ~ 

Mo, [OJpj3t (p )81a(p) + o/i;at (p)8,J3(p)], 

Mk,== ~ i~dp [pkfl(p)a;a(p) -ptfl(p)~a(p) 

<-> ~> 

+p,,at(p)8,J3(p) -p~at(p)8ki3(p)], (16·27) 

(16·28) 

By calculating [¢C±)(x), M.u.v], we can confirm that ¢C±)(x) is Lorentz-scalar, 

in spite of the fact that the spatial momentum p is real. This is because 

M.u.v is also written in terms of the operators of a real spatial momentum. 

The vacuum I 0) is defined by 

a(p) IO)=S(p) IO)=O (16·29) 

together with (O I 0) 1. Since (16 · 29) is equivalent to 

(16·30) 

the vacuum is a Poincare-invariant state. Thus both the Lagrangian and 

the quantization are Lorentz-invariant. 

The one-particle states are expressed as wave-packet states such as 

(16· 31) 

where f(x) is a function sufficiently localized in both space and time. The 

totality of the states (16 · 31) spans a Lorentz-invariant subspace. It is 

impotant to note that a Lorentz-transformed state of a pure plane-wave 
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Indefinite-Metric Quantum Field T'heory 65 

state a/(p) I 0) is outside our space CV, because such a "state" would be 

exponentially increasing in spatial directions. Thus we never need a Lorentz~ 

transformed opera tor of a ( p) . 

It is straightforward to calculate the two-point vacuum expectation 

values: 

(0 I ¢(x)¢(y) I 0) = (2rc)- 3 ~dp (2wp)-1 exp [ip (x-y)- iwp(Xo-Yo)], 

(Oj¢(x)¢t(y) IO) 0, 

(0 I q}(x)¢'t(y) I 0) = (2rc)- 3 ~dp(2w;)- 1 exp [ip(x- y) -iw;(xo-Yo)]. 

(16·32) 

Since ImuJp>O, by Cauchy's theorem we have 

O(xo-Yo)(Oj¢(x)¢(y) IO) 

i ( 2rc) - 4 ~ d p ~ r
1

11nA ~~~~~~-"'~:-~~~=~-: ___ , ___ ,,_ (16·33) 

where the Po contour r1 runs from oo to oo but passes through above 

the pole Po (Op, that is, rl~R o(mp). By interchanging X and y and 

transforming p/1. into (16 · 33) becomes 

(16. 34) 

where rz runs from -00 to + 00 but passes through below the pole Po=- Wp, 

that is, rz,____R+13( -wp). It is evident that r1-----r in (16·33) and rz~r 

m (16 · 34), where 

r,..._,_R 13(wp)+o( wp). (16·35) 

From (16·33) and (16·34), therefore, we obtain 

(16·36) 

with 

LlF(x, 1\1[
2
)== -i(2rc)- 4 ~dp~.rdpo~[ 2 ~pi, (16·37) 

where r is defined by (16·35). We note that LlF(x, l'v12
) is Lorentz­

invariant, as it should be. 

Likewise, we have 

< 0 I T [ ¢ (X) ¢t (y) J I 0 > 0, 

(OIT[¢t(x)¢'~(y)] IO) LlF(x~y, M* 2
), (16·38) 
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66 N. Nakanishi 

where the Po contour r' of JF(x,M*2) is homologous to R, that is; JF(x, M*2
) 

has an ordinary four-dimensional Fourier transform. 

Now, we introduce interactions with other fields. Let Ho and H1 be 

a free Hamiltonian and an interaction Hamiltonian, respectively; Ho includes 

not only complex-ghost fields but also physical fields. In the interaction 

picture, as is well known, the interaction Hamiltonian is given by 

(16. 39) 

As remarked in § 11, Dyson's S-matrix does not exist if we employ the 

usual exponential adiabatic factor e-e:txol. Hence we here employ the Gaussian 

adiabatic factor e-e:zx5, that is, we define 

( ) 
-E:2x2 

Xo e o. (16·40) 

Then the transition matrix ue:(x0, x~) has the infinite-time limit. Therefore 

we obtain the S-matrix 
00 

se:==~(1/n!) ( 
11=0 

i)n~d 4 x(l) .. · ~d 4 x(n)T [Jl{~(x< 1 >) ... Jl{~(x<n))] 

(16. 41) 

apart from the vacuum polarization factor, where 

H} (xo) == ~ dxJl{7 (x). (16·42) 

Of course, se: is dependent on e:, and this e:-dependence violates the 

Lorentz invariance of se. Hence, as usual, we should take the e--.0 limit, 

but then the exponential divergence due to complex ghosts reappears. To 

avoid this difficulty, we empoly the notion of a finite part of a divergent 

integral. It is quite common in modern mathematics to define a finite part 

of a divergent series or integral. The most reasonable definition of a finite 

part is based on the uniqueness of analytic continuation. For example, 

consider Euler's integral of the first kind : 

(16·43) 

This integral is convergent only for Re a>O and Re (3>0. If, however, 

we take Hadamard's finite part, which is essentially analytic continuation 

in a and (3, then (16·43) equals B(a, fl) everywhere.*) Hadamard's finite part 

is most reasonably defined in terms of Schwartz's distribution.85
) 

In order to define a finite part of limc:_,.oSe:, we have to make some 

extension of Schwartz's distribution. In calculating each term of lime;_,.ose:, 

the difficulty, of course, arises from each integration over x~j). A typical 

x 0 integral which we encounter is 

*) We should suppose that Hadamard's finite part is extensively used in the dual resonance 
model; Ml) otherwise the usual integral representation is almost useless. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.5

1
.1

/2
9
4
6
8
6
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Indefinite-Metric Quantum Field Theory 67 

(16 ° 44) 

If both Po and qo are real then lime;..,.oq>6 (p0 -q0) is identical with o(po-qo)o 

As seen from (16 o 37), however, energy cannot always be restricted to real 

values. For instance, suppose that qo is complex; then evidently lim6 ..,.oq>8 is 

exponentially divergent. Our problem is to extract a finite part from it 

unambiguously. 

Let f(p 0) be an arbitrary function holomorphic in a strip which in­

cludes the real axis Imp0 = 0 and a straight line Impo = Imqo. If the test 

function j(p 0) sufficiently damps at infinity, we can define 

(16·45) 

On substituting (16 o 44) in (16 o 45), we can interchange the order of the 

integrations, because the integral is absolutely and uniforn1ly convergent for 

e finite. We then have 

F 6(q0) (2n)- 1 ~~~x 0 e-- 82 '"~~~~p 0 ei<Po-qo)'"i(p 0 ). (16 o 46) 

Because of the assumed analyticity of f(Po), the Po contour can be deformed 

into a line Impo==Imqo. After the contour deformation, we again interchange 

the order of integrations. Since Im(po-qo) 0 now, we can take the e->-0 

limit to obtain 

(16·47) 

Comparing (16·47) with (16o45), we find that lim8..,.oq>8 (p0 qo) has the 

same effect as a o-function. Therefore, we call it a complex o-function and 

denote it by oc(Po-qo). This concept is not new, and it is indeed a special 

case of the complex distribution introduced by NakanishiNs) in 1958 for the 

purpose of constructing an exact eigenstate corresponding to an unstable 

particle. 

By using the complex o-function, it is now easy to write down any Feynman 

integral. At each vertex of a Feynman graph, we have a product of a 

three-dimensional o-function and a complex o-function instead of a four­

dimensional o-function. We need, however, to take no special care for the 

treatment of complex o-functions. Everything goes as in the ordinary 

Feynman integral except for the point that L1F(x, M 2
) has a complex contour 

r. Thus, for example, (16 ·14) (without the subtraction term) is a second­

order self-energy Feynman integral. For any tree graph, we need no complex 

energies. 

The above procedure is manifestly covariant because, according to the 

Hall-Wightman theorem/11
) Lorentz invariance cannot be injured by analytic 

continuation. On the other hand, we know that I(p) is not Lorentz­

invariant. The reason for this apparent dilemma is that the assumed analyt-
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68 N. Nakanishi 

icity of the test function f(Po) IS not generally satisfied Ill the actual 

Feynman integral. Indeed, in 

~ ~+oo ' lim dx dx 0 ei(p~k~q)xe~ezx~ (M2 (M*z k2)-1, (16. 48) 
C,-;.0 ~oo 

f(p 0 -k0) should be identified with (M* 2 -k2
)-

1
, which has a pole in the 

strip. The violation of invariance property in taking a finite part is not 

quite foreign to us; a similar situation is encountered also in the conven­

tional quantum field theory. The renormalization procedure always pre­

serves Lorentz invariance, but it generally violates scale invariance and the 

rs-phase invariance. 

The above definition of the S-matrix should strictly be distinguished from 

an artificial definition of the S-n1atrix. The prescription of taking a finite 

part is of no ad hoc nature; it is unambiguous. The introduction of complex 

a-functions is necessary if we define the total S-matrix satisfying the energy 

conservation, because there are complex-energy eigenstates. Furthermore, we 

can showNzo) that the physical S-matrix, which is strictly a submatrix of the 

S-matrix defined here, coincides with the Lee-Wick physical S-matrix (16 · 2). 

Finally, we again emphasize that the relativistic complex-ghost field 

theory is a non-trivial, divergence-free quantum field theory which is mani­

festly covariant at any finite time and whose physical S-matrix is unitary 

and macrocausal. So far, we know no other theory which has all these 

features. The Lorentz non-invariance of the physical S-matrix is not nec­

essarily its demerit but it can be a merit.*) The well-known parity violation 

and time-reversal non-invariance could be regarded as a , suggestion of the 

possible violation of Lorentz invariance. We also note that the relativistic 

complex-ghost field theory provides a convenient model for analyzing the 

possible experimental departure from quantmn electrodynamics, since the 

usual Feynman-cutoff model violates unitarity. 

§ 17. Quantization of a purely-imaginary-mass field 

As is well known, the 4-momentum of any observed elementary or 

composite particle is timelike or lightlike. One might feel that the non­

existence of the particles having a spacelike 4-mmnentum is not aesthetic. 

It might not be quite unreasonable, therefore, to suppose the existence of 

such particles. Indeed, in the theory of the Bethe-Salpeter equation,N14
) it is 

widely known that the solutions of the homogeneous Bethe-Salpeter equation 

exist and are well-behaved even for any negative value of the invariant 

square of the bound-state 4-momentum. Recently, Schroer and Swieca84
) found 

*> There are some experimental indications of the possible violation of Lorentz invariance. 

For example, the coexistence of the 3°K black-body radiation in the universe and the ultra-high 

energy cosmic-ray primaries (> 1020 e V) is most naturally explained by the violation of Lorentz 

invariance at very high energies (H. Sato and T. Tati, Prog. Theor. Phys. 47 (1972), 1788). 
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Indefinite~Metric Quantum Field Theory 69 

a similar situation also in the relativistic Schrodinger equation for a particle 

moving in a strong external field. In this section, we discuss the field­

theoretical treatment of the particles having a spacelike 4-momentum, namely, 

the problem of quantizing the field having a purely imaginary mass. We 

note that the purely-imaginary-mass field does not necessarily require the 

introduction of indefinite metric. 

For simplicity, we consider a scalar field ¢>, which satisfies the purely­

imaginary-Inass Klein-Gordon equation 

-tl)¢ = 0, tt>O. (17·1) 

The invariant c-number solutions of (17 ·1) can be obtained from those of 

the complex-mass Klein-Gordon equation 

by means of analytic continuation m M 2
• The two independent invariant 

solutions of (17 · 2) are 

.d(x, Mz) (2n:)-3 ~dp(Mz + pz)-1/ze;pxsin [ (Mz + pz) 1/zxo]' 

,d(l)(x, Mz) (Zn:)-3~d p(Mz + pz)-1/Zeipxcos [ (Mz + pz) 112xoJ. 

(17·3) 

Since the energy (M 2 +jl) 112 has a branch point at M 2 
= ~ p 2

, for M 2 

- p 2 the sign of (M2 + p 2
) 

112 depends on the path of analytic continua­

tion. Since .d(x, M 2
) is independent of the sign of (M2 + p 2

)
112

, its analytic 

continuation to M 2 ;.l is unique, but JC 1)(x, M 2
) is analytically continued 

in two inequivalent ways. Thus we obtain three*) independent invariant 

solutions of (17 ·1) : 

where 

.d(x, - p,
2

) =- (2n:)- 3 ~dp [O(p2
- p,2 )(1)_;1eipxsinwpXo 

+O(p,2 -p2 )w_; 1e1Pxsinhwpxo], 

Re,dCl>(x, -p,2
) (2n:)-- 3 ~dpO(p 2 t1)(1);/e'Pxcos(l)pXo, 

Im.d(l>(x, tl) (2n:)- 3 ~dpO(p, 2 - p 2 )w; 1e1PxcoshiVpXo, (17. 4) 

(17·5) 

>:<) It seems that the third one of (17 ·4) has been unnoticed so far. The author is grateful 

to Dr. Kamoi and Prof. Kamefuchi for communication on thier paper.K3l 
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70 N. Nakanishi 

Among the above three invariant functions, only Re.JC1
) (x, - tl), which we 

write as L1r(x, - p
2

) for brevity, has a manifestly Lorentz-invariant expression 

L1r(x, - p 2
) =Re.JC1)(x, - p 2

) = (2n)- 3 \d~a(p 2 + p 2
)e-iPx. 

(17·6) 

It is important to note that two terms of Ll(x, -,i) are not Lorentz-invariant 

separately. This is because s(p0) a(p2 + p
2

) is not Lorentz-invariant. 

(A) Tachyon theory 

In quantizing the field having a purely imaginary mass, Feinberg1
?
1

) and 

Arons and SudarshanA2
) employed L1r(x, -tl) in the four-dimensional com­

mutation relation. Since L1r(x, -,l) does not vanish for x 2<0, those particles 

can travel faster than light velocity. Feinberg, who called them "tachyons", 

proposed to quantize the purely-imaginary-mass field ¢(x) in the Fermi 

statistics by 

{¢(x), ¢(y)} L1r(x-y, -p2
), (17·7) 

because L1r(x, - p
2

) is an even function of x. Since the creation of 

negative-energy particles has to be interpreted as the annihilation of positive­

energy particles and since the sign of the energy Po is not Lorentz-invariant, 

creation and annihilation, and therefore the vacuum, cannot be Lorentz­

invariant notions. In order to avoid this difficulty, Arons and SudarshanAz) 

considered a non-hermitian scalar field ¢ ( x) , which contains annihilation 

operators alone. Then, ¢1(x) can obey the Bose statistics. Indeed, we can 

set 

[¢(x),¢t(y)] L1r(x-y, -p2
), 

[¢(x),¢(y)] 0, (17·8) 

that is, 1n terms of two real fields ¢t=C¢+¢})/v2 and ¢z=(¢-¢t)/v'-2i, 

we set 

[¢i(x), ¢ly)] =0, (j=1, 2) 

[1'/>l(x), ¢z(y)] iL1r(x-y, p
2). (17·9) 

In order to avoid the appearance of negative-energy particles as physical 

particles, Arons and Sudarshan defined the S-matrix under the reinterpreta­

tion principle that negative-enegry particles in the final state (or in the 

initial ~tate) should be regarded as positive-energy particles in the initial 

state (or in the final state). Thus macrocausality is evidently violated. 

There appeared a number of papers*) concerning tachyons: theoretical 

and experimental, classical and quantum-theoretical, pro and con,**) etc. 

*) For an extensive list of see Danburg et al.Dl> 

**! See, for example, Kamoi and Kamefuchi.KS) 
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Indefinite-Metric Quantum Field Theory 71 

The most serious difficulty of the tachyon theory is the acausal character 

of tachyons. If they existed and were observable, we could obtain the 

information about future events by using a fast-moving tachyon-receiver­

emitter. 

At any rate, the quantum field theory of tachyons is based on serious 

misunderstanding. The differential equation (17 ·1) does not mean that the 

particle travels faster than light velocity. As is well known in mathematics, 

the propagation character of (17 ·1), is the same as that of the positive-mass 

Klein-Gordon equation (this was first pointed out by TanakaT2
)). The use of 

LlT(x, ~ ;.l) in the commutation relation is not a realization of the super­

light velocity, because LlT(x, ~ ;l) does not vanish also at timelike distances 

(a classical tachyon cannot travel more slowly than light velocity) and 

because even for the positive-mass case, JC 1\x, m 2
) does not vanish at 

spacelike distances. Furthermore, the use of LlT(x, -;i) contradicts the very 

motivation of introducing purely-imaginary-mass particles, because then the 

aesthetic uniformity among the three cases Jn
2>0, = 0 and <O is lost. 

(B) Non-tachyon theory 

A more reasonable quantization of the purely-imaginary-mass field was 

proposed by TanakaT2
) much earlier than Feinberg's work, and recently 

Schroer83
) independently developed a similar formulation. Both in T'anaka's 

theory and in Schroer's one, J(x, ;l) is used in the four-dimensional 

commutation relation. Since Ll(x, ;.l) vanishes at spacelike distances, we 

encounter no acausality problem. What is of super-light velocity is the group 

velocity daJp/ dIp j. T2
) 

We consider a hermitian scalar field ¢(x), whose free Lagrangian density 

is given by 

(17 ·10) 

vVe assume that ¢(x) is expanded as 

¢(x) = (2n)- 312 ~dp {O(p2 -;l) (2(j)P)- 112 [a(p)exp(ipx -iaJpXo) 

at (p) exp ( i px + iaJpXo)] + (} (;.l- p 2
) (2wp) - 112 

· [!1(p)exp(ipx +wpxo) +r(p)exp( -ipx -wpxo)]}. 

(17·11) 

It should be noted in (17 ·11) that the spatial momentum can take any 

real value in contrast with the tachyon theory; for p 2<tl the energy becomes 

purely imaginary. The hermiticity of ¢(x) implies that 

!1t(p) =!1( -p), rt(p) =r( -p). (17·12) 
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72 N. Nakanishi 

The canonical commutation relations can be rewritten as 

[a(p), a1'(q)] =o(p q), 

[J3(p), r(q)J = io(p q), (17·13) 

and zero commutators for any other pairs. From (17·11) and (17·13), 
we have 

[¢(x), ¢(y)] iLl(x-y, -;l), (17 ·14) 

as is expected. 

The problem is how to define the vacuum I 0). There is no question 
in setting a(p) I 0) =0. From the idea of analytic continuation, it is expected 
to be good to set either fJ(p) I 0) = 0 or r(p) I 0) = 0. If we assume the 
spatial-rotation invariance, *) however, from (17 ·13) and (17 ·12) we then 
have 

o <OI [fJ(p), r(q)] IO) -ia(p q)<OIO), (17·15) 

that is, the vacuum has to have zero norm. This result is quite unsatisfac­
tory. 

As a natural way of avoiding the above trouble, we propose to introduce 
an operator 

~(p)=- c1; -12) [eC1/4)nifJ(p) + e-<1/4)nir( _ p)] 

and define the vacuum I 0) by 

a(p) !O)=~(q) 10)=0. 

From (17·13), we see that ~(p) satisfies 

[~(p), ~(q) J 0, 

[~(p), ~i'(q)J =o(p-q). 

(17·16) 

(17 ·17) 

(17·18) 

Therefore, the quantization for the part p 2<ti is analogous to that for the 
normal part p 2> 1.1.

2
• We need no use of indefinite metric. 

The generators of the Poincare group are as follows: 

Po= ~dp {O(p 2
- tl)(J)Pat (p)a(p) 

-O(ti-p 2)iJJp t [~(p)~(- p) +~t(p)~t(- p)]}, 

P, = ~dp p, [O(p2
- p 2)at(p)a(p) +O(p2

- p 2 )~·r(p)~(p) J, 

>1<) In Schroer's theory,83) a special direction is introduced to violate the spatial-rotation 
invariance. 
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Indefinite-Metric Quantunz Field Theory 73 

Mo, ~ i~dp {O(p 2
- tl)(J)pai'(p)a;a(p) 

1 <~ <~ 

O(p.z-pz)wp· 2- [~(p)8,~(- p) -~t (p)8,~i'(- p)]}' 

1 \ ~> ~ 
Mkl= 2i jdp {O(p 2

- p.2
) [p~~a/(p)8,a(p) -p,ai'(p)oka(p)] 

~ ~ 

+O(p.2
- p 2

) [pk~t(p)a~~(p) -p~~t(p)ak~(p) J}, 

(17·19) 

<-> 
where Ot is defined by (16 · 28). The spatial generators P1 and M111 are 

essentially the same as those in the positive-mass theory if ~(p) is regarded 

as the extension of a(p) to p 2<p.2
• However, Po and M 01 do not commute 

with the number operator. T'herefore, I 0) can be an eigenstate of neither 

Po nor J.Vl01 , that is, the invariance under time translations and pure Lorentz 

transformations is spontaneously broken. 

The above difficulty cannot be avoided by considering a non-hermitian 

field as in (17·8). Following Tanaka,T2
) suppose that 

[¢(x),¢(y)] 0, 

[¢(x), ¢t(y)] iL1(x-y,-p.2
). (17·20) 

Let ¢1 (¢+¢1)/v2 and ¢z (¢-¢t)/v2 i; then (17·20) 1s equivalent to 

Thus the situation reduces to the hermitian case. 

The only way out of the difficulty is to set 

[¢(x), ¢(y)] iJ(x-y, p.2), 

[¢(x), q'}(y)] =0 

(17·21) 

(17·22) 

instead of (17 · 20). This quantization is nothing but a special case of the 

relativistic complex-ghost field theory formulated in § 16. In this case, 

therefore, the purely-imaginary-mass particles are no longer observable at 

all, as is consistent with experimental data.01
) 

§ 18. Manifestly covariant quantization of the electromagnetic field 

The most widely known example of the indefinite metric quantum field 

theory is the tnanifestly covariant quantum electrodynamics proposed by 

GuptaG6
) and completed by Bleuler.B4

).*) Since the photon mass is exactly zero, 

>!'l There are a number of papers concerning the Gupta-Bleuler theory and its extension. 

Some recent papers are those by Dlirr and Rudolph,05J,D6J Brevik and Lautrup,BSJ Hayakawa and 

Yokoyama,H5l Gomatam84l and Bertrand.B2J 
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74 N. Nakanishi 

the longitudinal photon is not observable, but instead there is Coulomb 

interaction between charged particles. The positive-metric quantization of 

the electromagnetic field is possible if we add a non-local and non-covariant 

Coulomb interaction term in the Lagrangian; the S-matrix is then Lorentz 

invariant. , This formalism is, however, not manifestly covariant. It is 

impossible to formulate a manifestly covariant quantum electrodynamics 

within the framework of the positive-metric theory,*) because the quanta 

of the Coulomb potential are not observable. This fact is closely related to 

the non-compactness of the little group of a lightlike vector. 

In the Gupta-Bleuler theory, the longitudinal photon has positive norm, 

while the timelike photon has negative norm. The physical states are those 

in which longitudinal photons and timelike photons are superposed in an equal 

weight. The Lorentz condition 8/LA~-'=0 is not satisfied as an operator 

identity, but it is reproduced only as an expectation value in the physical 

state. Therefore, the photon's free propagator has no gradient term, that 1s, 

it is 

ig{J.V 
(18·1) 

in momentum space. 

As is well known, quantum electrodynamics is gauge invariant. The 

photon propagator is gauge-dependent; the gauge of (18 ·1) is called the 

Feynman gauge or the Fenni gauge. The photon propagator in more general 

covariant gauge is 

(18·2) 

If A= 0, (18 · 2) reduces to (18 ·1). The case A= 1 is called the Landau­

Khalatonikov gauge, or simply the Landau gauge. As will be seen later, the 

Landau gauge is most convenient; only in this gauge the electromagnetic 

field A!L(x) satisfies the Lorentz condition as an operator identity. It is 

impossible to obtain the Landau-gauge quantum electrodynamics from the 

Feynman-gauge one in a manifestly covariant way by a q-number gauge 

transformation, because the photon propagator of the former contains a 

double pole as seen in (18 · 2) while (18 ·1) does not. In order to obtain 

(18·2) with A:i=O, it is necessary to introduce a dipole-ghost field operator, 

as was pointed out by Nakanishi.Nn) 

A canonical formalism of the electromagnetic field in the general 

covariant gauge was formulated, within the framework of classical theory, 

>:<) There are several papers which claim the success of constructing a manifestly covariant 

quantum electrodynamics without using indefinite metric. All of them are incorrect. Indeed, 

StrocchiSS) proved the non-existence of a Lorentz-vector operator A.a(x) which reproduces the 

Maxwell equation (see also Wightman and GardingWl)). 
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Indefinite-Metric Quantum Field Theory 75 

:first by Utiyamam1
) (much earlier than Nakanishi's work). The manifestly 

covariant quantum electrodynamics in the non-Feynman covariant gauge 

was proposed by NakanishiNn),NlS) and by Lautrup,L2
) independently. Lautrup's 

theory was very thorough, but unfortunately he was not aware of the 

necessity of dipole-ghost quantization. Some modified versions of the 

Nakanishi-Lautrup formalism were presented by Lukierski,Lla) by Goto and 

ObaraG5
) and by Yokoyama.Y9

),*) 

We :first consider the manifestly covariant quantization of the free 

electromangetic field A~"(x) in the general covariant gauge. For this purpose, 

1t 1s necessary to introduce an auxiliary scalar field B(x). Of course, both 

A~"(x) and B(x) are hermitian. The Lagrangian density is given by 

.l:o=- ~ F~"vF~"v+BfrA~"+ ~ aB2
, (18·3) 

where a is a real parameter and 

(18·4) 

In (18 · 3), we may generalize the last term to an arbitrary function of B, 

but we do not consider such a general case. In contrast with a usual Eose 

field, B has a dimension of the mass squared. If a =f- 0, then setting 

we can write 

with 

r''- 1 F~"VF 1 
~.J...-o= -4 Mll 2 

(18·5) 

(18· 6) 

(18·7) 

Hence we may start with .£~ by omitting C; thus we can eliminate B. 

It is impossible, however, to eliminate B in the case a 0, which is the 

most important Landau-gauge case. Therefore we use (18 · 3) throughout. 

The field equations which follow from (18 · 3) are 

DAM fJ~"fr Av o~"B 0, (18·8) 

o~"A~"+aB=O. (18· 9) 

From (18 · 8), we have 

=0. (18·10) 

Hence B is a massless field. On eliminating av Av in (18·8) by means of 

*) An extension to the weak gravitational field was made by Yokoyama and KuboYn) (and 

YokoyamaYio)). 
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76 N. Nakanishi 

(18·9), we obtain 

0Aii- (1-a)aliB=O. 

From (18 ·10), therefore, we find 

0 2Aii=O, 

(18·11) 

(18·12) 

that is, Ali does not satisfy the d' Alembert equation but does the double 

d' Alembert equation. 

Let ref./. be the canonical conjugate of Ali, that is, 

nt=iL£o!oA, =A~-a,Ao, 

rco=o.Lo/oAo B, (18·13) 

where a dot stands for differentiation with respect to Xo as usual. We note· 

that the canonical conjugate of B is Ao. 

The Hamiltonian Ho=~dx!Ho(x) is defined by 

that is, 

.!flo 
1 2JFi,+ 

2

1 ::8 [(A,) 2
- (81AoiJ +B2Jo1Az-

2

1 aB2
• 

k, l l l 

The canonical commutation relations, 

[Aii(x), Av(.Y)lllo=Yo [rcM(x), 1Cv(y)]mo=Yo 0, 

[Aii(x), nv(.Y) Lo=Yo =ioMvo(x-y), 

can be rewritten in terms of AM, A 1 and B: 

[Aii(x), Av(y)Jxo=Yo=O, 

[Aii(x), JL(y)Jmo=Yo ilJMtl3(x-y), 

[LL(x), A, (y)] mo=Yo = 0, 

[Aii(x) ,B(:y)] mo=Yo =iolioo(x-y), 

[.A_k(x), B(y) Lo=Yo i8ZJ(x-y), 

[B(x) ,B(y)] xo=Yo = 0, 

(18·15) 

(18·16) 

(18·17) 

where 8~=8/oxli. These relations involve neither Ao nor B, but from the 

.field equations (18 · 9) and (18 ·11), we obtain 

(18·18) 

(18·19) 
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Indefinite-Metric Quantum Field Theory 77 

where A denotes the Laplacian. It is to be noted that (18 ·18) and (18 ·19) 

are equivalent to the Heisenberg equations iAo = [Ao, Ho] and {B = [Eo, Ho], 

respectively. 

From (18·19) and (18·17), we have 

[B(x), B(y)] xo=Yo= 0, (18· 20) 

We rewrite (18 ·10) asL2
) 

B(x) = ~dyD(x-y)mB(y), (18·21) 

where 

<~> 

fo5g=- (of /8yo) g-f8g/8yo. (18·22) 

The validity of (18 · 21) is confirmed in the following way: Differentiate 

the right-hand side of (18 · 21) with respect to Yo to see that it is independent 

of Yo, and then set Yo =xo to see that it is equal to B(x). Since Yo is 

arbitrary in (18 · 21), we can make use of (18 ·17) to compute the four­

dimensional commutator. We find 

[B(x),B(y)] 0. (18·23) 

'Thus B(x) is a zero-norm field. Analogously, we obtain 

[A/k(x), B(y)] = ioZ.D(x-y). (18· 24) 

In order to calculate [AM, Av], we need a causal invariant solu6on of 

0 2
<P 0 other than D(x). It is defined by 

E(x) =-- (8/8m 2)A(x, m 2
) I m=O 

-i (2n)- 3 ~d 4 pe(p 0 )o' (p2)e-iPx 

- (8n)-1c:(xo)O(.x2
). 

As is easily seen, E (x) has the following properties: 

OE(x) D(x), 

E(O, x) =E(O, x) =E(O, x) =0, 

E(O, x) = -o(x). 

By using E(x), we rewrite (18·12) as 

A"'(x) ~dyD(x-y)agA"'(y) ~dyE(x-y)mOA"'(y). 

We can compute [A/k,Av] by means of (18·28) and (18·17): 

[A/k(x), Av(y)] = -igfkvD(x-y) +i(1-a)8~o~E(x-y). 

(18·25) 

(18· 26) 

(18·27) 

(18·28) 

(18. 29) 
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78 N. Nakanishi 

In analogy with DC±)(x) (the positive and negative frequency parts of 

D(.x) ), we wish to define EC±)(x) by (8/8m2)iJC±)(x, m 2
) I m=o• but the 

latter quantities are infrared divergent (E(x) is not). To avoid this 

trouble, we define EC±) (x) by 

EC±) (x) == i (2n) -s ~ d 4p0 (p0) a' (p2
) (e-;px -1). 

It is evident that 

( 

(18·30) 

(18·31) 

(18·32) 

We can define A~±)(x) and BC±)(x) by replacing D(x) and E(x) by DC±)(x) 

and EC±)(x), respectively, in (18·28) and in (18·21). Then 

A .. (x) A~+)(x) + A~-)(x), 

B(x) =BC+)(x) + BC-)(x), 

(A~+))t A~-)' (BC+))t BC-). 

(18·33) 

(18. 34) 

Since A~±) and BC±) are translationally invariant and Lorentz-covariant, the 

vacuum I 0) is consistently defined by 

A~+) (x) I 0) 0, BC+)(x) I 0) 0 

with <o I 0) = 1. Therefore 

(18·35) 

'<OIA .. (x)Av(y) I 0)- -ig .. vDC+)(x-y) +i(1-a)a;a~EC+)(x-y). 

(18·36) 

Since for an arbitrary function f(x) we have 

0( + Xo)8of(x) Oo [0( + Xo)f(x) J o(xo)f(x)' 

0( + Xo)8~f(x) =8HO( + Xo)f(x)] Oo [o(xo)f(x)] 

with the aid of (18 · 32), (18 · 31) and (18 · 27), we obtain 

o(xo)oof(x), 

(18· 37) 

g/1-vDF(x-y) + (1-a)a~a~EF(x-y), 

(18·38) 

where*) 

(18· 39) 

*> Note that the second term of the integrand in (18·39) does not contribute to (18·38). 
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Indefinite-Metric Quantum Field Theory 79 

(18. 40) 

The fourier transform of (18 · 38) coincides with (18 · 2) if we set A 1 a. 
Likewise, we have 

<OIT[A~(x)B(y)] 10)= -a~DF(x-y), 

<OIT[B(x)B(y)] !O) 0. 

The physical states are defined by 

BC+)(x) I phys) 0. 

(18·41) 

(18·42) 

Then it is evident from (18 ·11) and (18 · 9) that <phys I A!k(x) I phys) 
satisfies both the d' Alembert equation and the Lorentz condition. 

Next, we consider the momentum representation of the field operators. 
Because of the existence of the second term in (18 · 29), we cannot directly 
write down the usual three-dimensional fourier transform of AM(x). LautrupL2

) 

(see also LukierskiL16
)), therefore, took the following technique. Let 

A (x) ==-t A- 1 [xoaoB(x) --tB(x)]. (18·43) 

Then (cf. § 13) it satisfies 

DA B (18· 44) 

because of (18 ·10). He defined 

+(a 1)8MA;. (18·45) 

A~ satisfies DA~ = 0 because of (18 ·11). With the aid of an identity 

(18·46) 

it is straightforward to show that 

(18·47) 

Therefore, it is possible to write down the three-dimensional fourier transform 
of A~ (x) just as in the Gupta-Bleuler theory. This formalism is, however, 
unsatisfactory because A is not a Lorentz scalar and therefore A~ is not a 
Lorentz vector. As shown in §13, it is impossible to find an invariant 
solution of (18 · 44). Since manifest covariance is the principal motivation 
of the present formalism, its violation cannot be accepted. To avoid the 
use of dipole ghosts can be attained only at the sacrifice of manifest 
covariance (cf. §13), as long as a=Fl. 

The four-dimensional fourier transform of AM(x), considered by Naka­
nishi,Nll) respects the manifest covariance of the theory. A defect of this 
method is that the Hamiltonian cannot be expressed in terms of momentum-
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80 N. Nakanishi 

space opera tors. Let 

AM(x) (2n)- 312 ~d 4 pO(po) [aM(p)e-;px a1(p)e'Px], 

B(x) (2n)- 312 ~d 4 p0(p 0 ) [b(p)e-;px bt(p)e'Px]. (18· 48) 

The field equations (18 ·10), (18 · 9) and (18 ·11) are equivalent to 

p2bt(p) 0, 

p~-ta1(p) =iabt(p), 

p2a1(p) -i(1-a)jJ1J.bt(p), 

(18·49) 

(18·50) 

(18·51) 

respectively. The four-dimensional commutation relations (18 · 29), (18 · 24) 

and (18·23) become 

[a,lp), at(q)] o4 (p q) [g{wo(p 2
) + (1 a) p{J.pv?l (p2

) J' 

(18·52) 

[aM(p), bt(q)] =io4 (p-q)pj5(p 2
), 

[b(p), bt(q)] 0, 

(18·53) 

(18·54) 

respectively. The definition (18 · 35) of the vacuum is rewritten as 

(18·55) 

There are four independent one-particle states having a 4-momentum 

pfJ. (p0>0) because of (18·50). We take a Lorentz frame in which P1 =0 

(then p3 0 on the mass shell). It is convenient to adopt the following 

four one-particle states: 

jp, I't)==aJ(p) jO), (l=1, 2) 

lp, L) a~(p) I 0), 

Jp, S) (p) I 0). (18·56) 

The first two, jp, Tz) (l = 1, 2), are called transverse photons, the third, 

jp, L), is a longitudinal photon, and the fourth, jp, S), is a scalar photon. 

From (18·49),....,._(18·55), we have 

and 

p 2 jp, T 1)=p2 lp, S)=O, 

<p, Tkl q, Tz) =akzri(p-q)o(p2
), 

<p, L I q, L) o4 (p q) [o(p2
) (1 a) p~o' (p2

)], 

<p, Sjq, S)=O, 

(18·57) 
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Indefinite-Metric Quantum Field Theory 

~J), rl~ l q, L) = (jJ, 1~ I q, S) o, 

(p, Ljq, S)=ii34 (p q)p3i3(p2
). 

81 

(18·58) 

Thus the transverse photons have positive norm and satisfy the d' Alembert 

equation, the longitudinal photon is a dipole ghost except for a 1 and 

the scalar photon is the associated zero-norm state. 

Now, we introduce the interaction Lagrangian density 

where the current j,, is assumed to be conserved: 

811-j/L 0. 

The Heisenberg operators AIL(x) and B(x) satisfy 

DB 0. 

(18. 59) 

(18 60) 

(18·61) 

(18 · G2) 

(18· 6:3) 

Because of (18 · 63), we can consistently define the positive-frequency part 

JjC+l(x) of B(x). The constraint 

BC+)(x) l phys) 0 (18· 64) 

persists, and therefore the physical-state condition is satisfied. It should be 

noted that though B(x) satisfies (18·63), it is not a free field because it 

does not commute with a matter field at lightlike distances.L2
) 

The S-matrix is constructed as usuaL The only difference from the 

Gupta-Bleuler theory is of course the gauge of the photon propagator. 

Since L1 does not involve B, the propagators in (18 · 41) are unnecessary. 

The physical S-matrix is unitary; this result is owing to (18 · 60), but not 

owing to the use of dipole ghosts as discussed in § 10. 

As is well known, quantum electrodynamics is gauge-invariant. There 

is no problem for a c-number gauge transformation A~=A11.+a8""Ac and 

B' B, where Ac is a c-number function satisfying 0Ac = 0. In order to 

change the gauge of the photon propagator, it is necessary to consider a 

q-number gauge transformation.L1
J If we employ an operator A satisfying 

(18 · 44), then the gauge parameter a is transformed into {3 byL2
) 

(18. 65) 

As emphasized above, however, A cannot be a Lorentz scalar. Therefore, 

the gauge transformation (18 · 6'5) necessan:ty conflicts with manifest co·vari­

ance. Since for each value of a we have a different indefinite-metric Hilbert 

space CV a, the q-number gauge transformation which is compatible with 
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82 N. Nakanishi 

manifest covariance could be realized only in a larger space :SaffiqJ a. 
In this connection, Yokoymna's formalismY 9

) is noteworthy because it 
·has a scalar operator satisfying (18·44). His free Lagrangian density ~· 0 
consists of two parts sgs and .£~, where 

):_FIJ.v 'L' 
4 1.' /J.V 

1 c~'J.A )2 
2 u IJ. ' (1R·66) 

(18·67) 

.rgR is equivalent to the free Lagrangian density in the Gupta-Bleuler. theory 
and L~ is equivalent to the massless Froissart model (see § 13). Since 

- J.B, DB c~-=: o, 

IC(x), C(y)] = iJ.E(x~y), 

if we define 

A(A) 
/1. fJ,J.C, 

then A~Al rs manifestly covariant and satisfies 

i,q,.vlJ(.x y) iJ.fJ~fJ~E(x--y). 

(18. 68) 

(lR · 69) 

(1R·70) 

(1R·71) 

Since we do not have a relation like (18·9), however, fJILA~A) cannot be ex­
pressed in terms of B only. In particular, for the Landau gauge A 1, the 
Lorentz condition is not satisfied as an operator identity; we have to 
introduce a constraint to reproduce the Lorentz condition. Thus the genuine 
Landau-gauge theory cannot be described by Yokoyama's formalism. This 
point is crucial when we consider the Heisenberg operators. 

Finally, we discuss the renormalization of AIL (x). An important feature 

of the electromagnetic field is that, except in the Landau gauge, the re­
normalized field A~ has a gauge different from the unrenormalized one, as 
was observed first by Kallen.Kl),H5

) 

For simplicity, we consider the Gupta-Bleuler theory. Let I Q) be the 
true vacuum. Then from Lorentz invariance, local comtnutativity and 
fJILDA~ 0, we have a spectral representation 

<tJI [A~(x), A~(y)ljtJ) 

i~~ ds { [o(s) +11(s)] g,J.v+· [s- 1d(s) Ko(s)] fJ~fJ~} Li(x-y, s) 

(18. 72) 

with 11(s)::?:O and ~~ ds11(s) /s (from an equal-time commutator). Therefore 

<tJI [fJMA~(x), A~(y)] j.f2) ~£fJ~D(x~y) 

<tJI [fJMA, .. (x), Av(y)] jSJ). (18·73) 
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Indefinite-Metric Quantum }zeld Theory 83 

Accordingly, the simple-minded renormalization A~= Z3 112 A~ contradicts 

(18·73). We should define 

where 

z~-l 1 + ~~ dsa(s)' 

D ;[ :o::: --- 8'LA,~, 

so that 

a ~~.A z- 1128/I.A. r 
~ c<~3 ~· 

(18·74) 

(18·75) 

(18·76) 

(18·77) 

As emphasized several times, however, there is no Lorentz scalar A satisfy­

ing (18 · 76) in the Gupta-Bleuler theory. Thus we conclude that in the 

Gupta-Bleuler theory it is impossible to carr.Y out the renonnalization of the 

field operators in a manifestly covariant way. The same is true also in 

any other covariant gauge except for the Landau gauge. A rnanifestly co­

·variant rcnormali.zation is j)()ssible only in the Landau gauge (for detail, 

see § 19). 

§ 19. Massive vector field 

A massive vector field is usually quantized in a positive-metric Hilbert 

space. This is possible because the little group of a timelike vector is 

compact. For simplicity, we consider a hermitian vector field UM, whose free 

Lagrangian density 1s given by 

J:o 1 v~~vv 
4 /f.V (19·1) 

with m.:·.:::-·0, where 

(19·2) 

The field equation, which is called the Proca equation, 1s 

(19·3) 

that IS, 

(19·4) 

Thus the Lorent7. condition is identically satisfied. The four-dimensional 

commutation relation is 

(19·5) 

There 1s another widely-known formalism, called the Stueckelberg 
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84 N. Nakanishi 

formalism, 89> which is a generalization of the electromagnetic field in the 

Feynman gauge. We consider a hermitian vector field AM and a hermitian 
scalar field B. They are supposed to have an equal mass.*> The free 

Lagrangian density is 

.£0 ~ [(ofLAv)(8MAv)-nl 2J11tA,"' (8MIJ)(8J5) Jn 2R2
]. (19·6) 

Hence the field equations are 

+Jn2)AM=0, 

CD +·rn2)B o. 

The four -dimensional commutation relations are 

[A,"'(x), Av(Y)] 

[A,"'(x), B(y)] =0, 

ll5(x), B(y)] iLl(:r: y, m.2
). 

(19·7) 

(19. 8) 

Since A 0 (x) satisfies an abnormal commutation relation, we h~1ve 1 to employ 
an indefinite-metric Hilbert space, as was remarked by Gupta.G7

> The vector 

field of physical interest is defined by 

It satisfies 

CD+m2)UM 0, 

[ ulk (X) ' Uv (y) J 

(19. 9) 

(19·10) 

(19 ·11) 

In spite of the right-hand side of (19·11), UM(x) does not satisfy the 
Lorentz condition. Hence one has to introduce a constraint 

(19·12) 

that IS, 

(19·13) 

We note that as m~O (19 ·13) tends to Gupta's constraint in quantum 
electrodynamics. The above formulation is invariant under the gauge 

transformation 

1:>1 
_) (19·14) 

with (CJ Jn 2
) Ac 0. 'The two extra degrees of freedom introduced in 

(19 · 6) are suppressed by (19 ·12) and (19 ·14). The interaction Lagrangian 

*) An extension to the unequal-mass case was made by Fujii and Kamefuchi_l<'7) 
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Inde.fin£te-Afetr£c Quantum Field Theory 85 

density is given by - U'")w If the current j,1, is conserved, then in spite of 

its appearance the herm£t£an vector field theory is known to be renormali­

zable,01) because B(x) can be formally eliminated in the S-matrix by a 

unitary transformation. 

We now point out some defects of the above-mentioned conventional 

formalisms of the massive vector field. 

(1) H one correctly calculates the Feynman propagator, one does not obtain 

Since 8o==8/8xo does not commute with O(:.±~xo+Yo), there appears an 

additional non-covariant term im-· 2
oM0ov0o

4 (x), as is seen by using (18 · 37). 

(2) Even if the non-covariant term is neglected, the Feynman propagator 

does not satisfy the Lorentz condition. Indeed, in momentum space, one 

has 

P'''( 0. (19 ·16) 

T'his fact implies that angular momentum may not be conserved m virtual 
states.*) 

(3) The Jn-c>{) limit of · UM does not exist. Therefore, we cannot discuss 

the massive vector field and the massless one in a unified way. In the 

past, this feature caused much inconvenience. For example, ,Johnson's proofJl) 

of the proposition that the vanishing of the bare mass tn necessarily implies 

the vanishing of the physical mass was devoid of its foundation, as was 

criticized by Schwinger.8
fl) Furthermore, in quantum electrodynamics, one 

usually introduces a fictitious photon mass A only into the S-matrix in order 

to avoid infrared divergences. l-Ienee the non-perturbational treatments of the 

infrared-divergence problem could not, logically consistently, be compared 

with its Feynman-integral approach. 

(4) The renormalizahility is not manifest, and the (df-the-rnass-shell quan­

tities cannot be renormalized. Furthermore, it seems to be unclear how the 

bare mass m involved in the gradient term in (19 ·15) is renormalized to 

the physical mass, when we take the picture that the physical mass consists 

of the bare mass and the radiative mass. 

All the above defects can be dissolved hyJ'constructing a vector field 

theory in which the Feynman propagator becomes 

. )-1 -ze 

m momentum space. Since (19 ·17) is rewritten as 

(19 ·17) 

*) If so, in the electromagnetic structure of the nucleon, the virtual photon could be converted 

not only into vector mesons but also into any kind of tensor mesons. 
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86 N. Nakanishi 

. ,q,w-rn···2p,.j)" . m,- 2 P~-tP" 
t----·-z·---~2 -.- .. + t ---2---;-, 

m -p -ze -p -ze 
(19·18) 

we see that a massless scalar field of negative norm should be present. 

'T'he vector field theory having the above propagator is very naturally 

obtained by extending the Landau-gauge quantum electrodynamics, as was 
recently pointed out by Nakanishi.N19

),*) 

The Lagrangian density is given by 

J:o 

where VJ-1." ts defined by (19·2). Field equations are 

fJiJ.UJ-1. 0, 

+m2
) U,.-81-tB=O. 

From (19 · 21) together with (19 · 20), we have 

=0; 

therefore (19 · 21) implies that 

0. 

(19·19) 

(19·20) 

(19. 21) 

(19·22) 

(19. 23) 

Since the canonical commutation relations are' independent of the mass term 

in (19 ·19), the equal-time commutation relations are the same as (18 ·17) 

if we replace A,. by U,.. 

As in § 18, we rewrite (19 · 23) into an integral form: 

U,. (x) m-z[~dyD(x-y)Bb'(O m}) Ufl.(y) 

~dyLt(x-y, m 2 )a~OU,.(y)]. (19·24) 

We note that the m--0 limit of (19·24) precisely reduces .to (18·28) if 
we replace U{J. by AM. On rewriting (19 · 24) as 

U",(x) == \dyL1(.1:---y, Jn
2)ffbU,/y) 

-rn- 2 ~dy[LI(x-y, nt2
) -JJ(x--y)]Bb[fJfi.B(y)] (19·25) 

*) There are several theories which have some resemblances to, but are different from, Naka­

nishi's formalism. A massive scalar field of negative norm was introduced in the ~-limiting 

process of Lee and YangLio) and in the massive electrodynamics of Feldman and Matthews1
''2) for 

different purposes. Veltman Vl) transformed the conventional propagator into (19 ·17) by construc­

ting an extra Lagrangian in the massive Yang-Mills theory. Fradkin and Tyutin~' 4 ) considered 

the Yang-Mills version of the Lagrangian density (19 ·19) in their functional-integral formalism. 

Note added: Very recently, P. Ghose and A. Das [Nucl. Phys. B41 (1972), 299] have 

proposed a massive vector field theory quite simil<:Jr to the one presented in the text) but intheir 

theory the massless limit is not well defined, 
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Indefinite-Metric (Juantttrn F£eld Theory 87 

with the aid of (19 · 21), we can easily calculate the four-dimensional com· 

mutation relation, as done in § 18. we find 

[UM(x), Uv(y)] i (g MV Yfl ·za~a~) L1 (X 

+£m-
2
8~8~D(x-y). (19·26) 

As rn-~0, the right-hand side of (19 · 26) tends to (18 · 29) with a 0. 

Likewise 

[ U,Jx), B(y)] = -~i8~1J(x--y), 

[B(x), B(y)] im 2J)(x-y). 

(19·27) 

(19·28) 

In contrast with the rn = 0 case, the three-dimensional fourier transform 

of UM(x) exists for rn*-0. Let 

Then 

(a>l)' p) with (J)p= ·v1rt2 f··p2
' 

(I pI, p) (hence 7/ 2 0). (19. 29) 

U,1.(:1:) rn·-zaMB(x) + (2n) .. 312 ~dp(2(1)P)- 112 la,J.(p)e· 11'x ·+ h.c.], 

B(:x;) (2n)- 312 n't ~ dp(21 p!) -l/Z [J9(p)e-i.Px +h. c.] (19 · 30) 

for rn 0 only, where 

and 

[aM(p), a~(q)] (gMv m-zpMpv){J(p q), 

[aM(p), J9t(q)] =0, 

[J9(p),Rt(q)] aa(p q). 

The vacuum I 0) is defined by 

(X,J.(p) I 0) 0, fJ(p) I 0) 0 

with (0 I 0) 1, that is, 

u,~+) (:r) I 0) ::::c 0, EJC+) (:r) I 0) 0. 

The constraint for physical states is 

J9(p) lphys)=O, 

that is, 

B<+)(::c) I phys) "--" 0. 

(19·31) 

(19 <:~2) 

(19·33) 

(19· 34) 

(19·35) 

(19·36) 
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88 N. Nakanishi 

Though (19 · 33) and (19 · 35) are not well defined for rn = 0, (19 <34) and 
(19 · 36) have the same form as in the case of the Landau-gauge electro­
magnetic field. 

Now, we make an important observation. For m:FO, B(.x) is a field 
of negative norm. Hence the constraint (19 · 36) implies that there are no 
B particles in the physical state. For m = 0, however, since B (.x) satisf1es 
(18·23), BC+)(:x.') commutes with !15c'-)(y)_l"t=BC-)(y). Therefore the B 
particles can be present in the physical state; instead, (18 · 42) forbids the 
existence of the dipole ghosts, i.e., the longitudinal photons. Since the B 
particles are not observable because of zero norm, there remain only two 
degrees of the observable freedom in the m = 0 case. Thus, in the present 

formalism, the well-known reduction of the degrees of the observable freedom 
as rn-----""0 is embodied in quite an elegant way. 

The Feynman propagator, 

(19. 37) 

can easily be calculated. Since the non-covariant term owing to 8,~8vL{+) is 
canceled by the one owing to fJ,.~.fJvDc±\ we exactly obtain 

LIF,p.v(:r, m 2
) - (gp.v+m- 2fJp.fJv)L1F(.x, rn 2

) +m-2fJp.fJvDF(.x). (19·38) 

The fourier tranform of (19 · 38) precisely reproduces (19 ·18), i.e., (19 ·17). 
Likewise, 

<o!T[Up.(:r)B(y)J !O)= -a~DF(.x-y), 

<O!T[B(.x)B(y)] !O) -rn2DF(.x-y). 

The interaction Lagrangian density is given by 

_f/ U,t, 

where we assume that -

(19·39) 

(19·40) 

fJ~jp.=O (19·41) 

and that jp. explicitly involves neither Up. nor B. The field equations for 
Heisenberg opera tors are 

a~-~u,.~.=o, (19·42) 

(19· 43) 

Because of (19 · 41), (19 · 22) still holds for the Heisenberg operator B(.x). 
Hence the constraint (19 · 36) persists, and therefore the physical-state 
condition is satisfied. Without (19 · 41), we cannot prove that Sphys is unitary. 
Therefore, if we wish to extend the present formalism to a non-hermitian 

vector field, in order to secure the current conservation law, we should 
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Indefinite-lVIctric Quantum Field Theory 89 

consider the massive Yang-Mills field. Unfortunately, in this case, the B 

field can no longer satisfy the d' Alembert equation, because it carries isospin 

1, and therefore contributes to the isospin current. Thus, in order to have 

a unitary physical S-matrix, we have to confine ourselves to the hermitian 

vector field alone. 

If (19 · 40) is of Yukawa type, the above theory is manifestly renormal­

izable as is seen by the simple power-counting. It should be noted that the 

renormalization is applicable not only to the on-the-mass-shell quantities hut 

also to the off-the-mass-shell ones. 

We discuss the vacuum expectation value of the four-dimensional com­

mutator of the Heisenberg operator Ufl.(x). The m=O case should always 

be understood as the limit rn~O. From Lorentz covariance, local com­

mutativity and the Lorentz condition (19 · 42), we have a spectral representa­

tion 

<sJj l. u,t(-r), U,/y) II SJ) 

--i~: dsp(s) (gfl."+s~ 1 o~o;)JJ(x-y, s) +inz,- 2 ho;~.O~l)(x-y). 

(19. 44) 

In order to determine a parameter h, we first prove the following relations : 

[B(x), B(y)] irn2l)(x --y), (19·45) 

(19·46) 

Since, by assumption, jfl. involves ,neither U,t nor B, the operators U,, U,, 
Uo and B will commute with j,J. at the equal time, apart from some possible 

pathological terms.*) Hence by usmg 

B(x) ~dzlJ(x .z)ah~Cz) (19·47) 

together with 

(19·48) 

we obtain (19 · 45) and (19 · 46). 

On rewriting (19·4~3) and using (19·115) and (19·46), we have 

([_]"' 1n
2

) COY m 2
) <tJ!I_ U,J:.c), Uv(Y)] jJJ) 

=<JJI [jfl.(x),jv(y)] jSJ)+im 2 o~o~D(x-y). (19·49) 

*) In the calculation of [B(.x),Jl(y)], we encounter 1the Schwinger term [jo,jt] and the 

"seagull" term L:k[akUk.jt].0 lJ They will cancel with e01ch other, because the left-hand side of 

(19 ·46) should be a Lorentz vector and its zeroth component vanishes. At any rate, we suppose 

that all pathological terms like the Schwinger term is removed by introducing auxiliary fields 

having an infinite mass (see § 14). 
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90 N. Nakanishi 

Since from (19 · 46) we have 

(19·50) 

nc+)(.x)j(J.(y)lphys) vanishes, that is, jfl,(y)lphys) is a physical state. Since 

I !2) is a physical state, therefore, j{l.(y) I !2) is so. Thus, in the spectral 

representation of <tJI [j,.(x),jv(y)] I!J), all relevant intermediate states are 

physical states. Hence, because of Lorentz covariance, local commutativity 

and (19 · 41), we have 

<Q I [jfl,(x) ,jv(y)] I !2) 

i~~ dsp(s) (g,LV 1 s- 1 8~8~)J(x---y, s) (19·51) 

with 

?i(s)20 for (19·52) 

By comparing (19·44) with (19·49) together with (19·51), we find 

h 1, (19. 5~~) 

(19. 54) 

We note that (19 ·53) is based on the assumption that j,L involves neither 

U{l. nor B; otherwise h can be different from unity. From (19·54) and 

(19 ·52), p(s) is seen to be positive definite (except possibly at s =rn2
). 

On substituting (19 ·53) in (19 · 44) and calculating the equal-time 

commutator [ Uk, U,], we have 

Therefore 

~~dsp(s) 1, 

i~~ dsp(s) ( 8kt+s-18Z8:)8(x-y) 

+ im-zaza;a(x -y). 

rn- 2 ~~ dsp(s) /s. 

(19·55) 

(19·56) 

(19·57) 

In the present formalism, we can always take the nt-+0 limit smoothly. 

From (19 ·57), as m~o the right-hand integral must diverge, but because 

of (19 ·56) and p(s)>O for s-:::f=m2 a divergent contribution can arise only 

from the lower limit of the integration. Accordingly, for m=O, there 

is no a>O such that p(s) =0 for s<a, that is, the P 2 spectrum of the 

physical states extends to zero. In other words, there must exist at least 

one kind of physical particles whose physical Jnass is exactly zero. As is 

well established experimentally, however, there are no massless physical 

particles which interact strongly. l-Ienee no baryon-number gauge field, 
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which necessarily has rn = 0, can exist in hadron physics. 

Hereafter, we consider the case in which p(s) has only one point­

spectrum. Since p (s) is a measure unless rn = 0, its point-spectrum must be 

a o-function. Hence, for m=FO we can write 

p(s) Zo(s m~hyA) +·Zff(s)O(s b), (19·58) 

where 'lrtphys and z are the physical mass of u"' and the wave-function 

renormalization constant, respectively. Because of the stability of the vector 

meson (if unstable, no point-spectrum can be existent), we have 

b>Jn~hys. (19 ·59) 

On substituting (19·58) in (19·56) and m (19·57), we obtain 

z-L=1 ~: dsfJ(s)>1, 

1
2

= ~-~ -i·Zr=ds 6
(·) .• 

Jn ?nphy~ J b s 

(19·60) 

(19·61) 

The above two relations are exactly the ones obtained by Johnson·n) in the 

framework of the conventional (positive-metric) vector field theory. In 

Johnson's case, one cannot take the limit m~O in (19 · 61), but we can 

now take this limit safely. Hence we see that m~O implies m 1 hys~O. 

The substitution of (19 ·58) and (19 · 61) in (19 · 44) together with 

(19 ·53) yields 

z-1(!?! [ U,.t(x), Uv(Y)] j.Q) 

= -i(g"'v+m;;;;vsaz.a~)Ll(x-y, m~lhys) +irn;~vsa:a~D(x-y) 

+ ~~ ds-d(s) [ i(.gfl.V + s- 1 az.a~)L1(x -y, s) is- 1 o:a~D(x-y) J. 

(19·62) 

We consider the m~o litnit, i.e., the ·rnphys-"'0 limit of (19 · 6~). On writing 

limm_,.oU,.t(;::r) Jlg(x), limm_,.oZ z~ and lim,.,.0r1(s) rc(s), we have 

z3-1(!? I [Ji,.t(:~:), A,/y) J ! !?) 

[,q"'JJ(x--y) --az.a~E(x y) I 

I· ~~~lsrc(s) I. i (.q1,v 1 · 8. 
1 oZ.8~) L1 (:r -y, s) +is 1 8Z.a~n(x ·-y) 1. 

(19. 6:3) 

This fonnula is nothing but the vacuum expectation value of the commutator 

of the Landau-gauge electromagnetic field. 

Finally, we discuss the renormalization procedure. As suggested by 

(19 · 62), the renormalized field u:(x) is related to the unrenormalized one 

U"'(x) through 
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92 N. Nakanishi 

(19. 64) 

Since B(x) is not observable, there seems to be no definite criterion for 
choosing a particular wave-function renormalization. From the consideration 
in the case of the electromagnetic field in the general covariant gauge,L2

) 

it seems natural to set (cf. (18·77)) 

(19. 65) 

Then we have 

and 

where 

<tJI [U~(x), Br(y)] jtJ) -ia~D(x-y), (19·66) 

[Br(x), Br(y)] = -im~nys [1 + rn~hys~: ds11(s) / s] -1D(x-y), 

(19·67) 

(19·68) 

(19·69) 

with on1 2
-==m~hvs-m 2

. The renormalization in the Landau-gauge quantum 
electrodynamics is obtained as the m~hys~O limit of the above. Unlike the 
other covariant gauges, we encounter no trouble in the Landau-gauge case. 
Thus the Landau-gauge quantum electrodynamics is more satisfactory than 
the Gupta-Bleuler theory. 
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