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The indefinite-metric quantum field theory of general relativity is extended to the coupled 

system of the gravitational field and a Dirac field on the basis of the vierbein formalism. 

The six extra degrees of freedom involved in vierbein are made unobservable by introducing 

an extra subsidiary condition Q.lphys)=O, where Q. denotes a new BRS charge correspond­

ing to the local Lorentz invariance. It is shown that a manifestly covariant, unitary, canoni­

cal theory can be constructed consistently on the basis of the vierbein formalism. 

§ 1. Introduction 

In a series of papers,ll~<J we have successfully developed the indefinite-metric 

quantum field theory of gravity. In the first paper, 1J we emphasized the importance 

of the following four fundamental principles: Lagrangian and canonical formalism, 

manifest covariance, indefinite-metric Hilbert space with subsidiary conditions (so 

as to make the physical S-matrix unitary), and asymptotic completeness. The pre­

sent author believes that the true fundamental theory describing Nature should 

satisfy the above four principles, unless space-time itself needs to be quantized. 

The existence of Dirac fields in Nature is undoubtedly true. In order to 

conform to our standpoint, therefore, we must extend our indefinite-metric quantum 

field theory of general relativity to the coupled system of the gravitational field 

and a Dirac field. This problem is highly non-trivial, because the generally-co­

variant formulation of a Dirac field cannot be made in terms of the metric tensor 

g~. alone. As is well known, the Dirac theory is most conveniently formulated 

in terms of vierbein. 5J The vierbein h11a (a=O, 1, 2, 3) involves six extra degrees 

of freedom, which are nothing but the freedom of choosing the directions of the 

four axes labeled as a= 0, 1, 2, 3 at each space-time point. Since the transformation 

between two choices of four axes is a Lorentz transformation, it is usually called 

the local Lorentz (LL) transformation, though this name is somewhat misleading, 

because it is not a coordinate transformation. 

It is known that the generally-covariant Dirac Lagrangian density is invariant 

under the LL transformation. Accordingly, the new situation encountered here is 

quite similar to the Yang-Mills theory; we have a local internal symmetry, which 
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780 N. Nakanishi 

is a Lorentz group. It IS natural, therefore, to introduce the BRS transformation 
corresponding to it and set up a Kugo-Ojima subsidiary condition.6J 

In the present paper, we show that the extension of our canonical formal­
ismD-aJ to the vierbein case is carried out consistently. In § 2, we review the 
generally-covariant formulation of a Dirac field in terms of vierbein. In § 3, after 
defining the LL-BRS transformation, we introduce the LL-gauge-fixing Lagrangian 
de1i.sity and the LL-FP-ghost one. Then a new system of field equations is obtained. 
In § 4, we discuss the LL-FP-ghost current Jtfl, the LL-BRS current Js", the FP­
ghost current Jc", the BRS current Jbfl and the Poincare generators P" and Mflv• 
It is shown that the expressions for Qc, Qb and P" remain unchanged. In § 5, we 
introduce the asymptotic fields and show the unitarity of the physical S-matrix in 
the Heisenberg picture. Discussion is made on our choice of the LL-gauge-fixing 
term in the final section. 

The analysis of commutation relations will be presented in a succeeding paper. 

§ 2. Vierhein and a Dirac field 

We denote the vier be in by hfl"' which satisfy 

(2 ·1) 

(2·2) 

where g,,. and '"fJab are the gravitational field and the Minkowski metric ( + - - -), 
respectively. Greek indices and Latin ones are raised by g'" and by '"fjab, respectively. 
Let h=- clet h""' then h = J- g, where g=det g,,.. For any derivation a, from 
(2 · 2) we have 

Expressing the affine connection rP} in terms of vierbein, we see*) 

for any JYP" = M'fl. 
The generally-covariant Dirac r-matrices are defined by 

(2. 3) 

(2·4) 

(2·5) 

(2·6) 

so that {r'', r"} = 2g'", where r a's denote the usual r-matrices in the flat space-time. 
The spin affine connection is defined by 

(2·7) 

*J A middle dot indicates that the preceding differential operator does not act beyond it. 
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Indrdinitr'-:1fr'tric Qual/tum Field Theory of General Relativity. Y 781 

T'/'b= (a;)z,"--T!'/hp") h'b 

= } { [h'ba1,h,"- h'ba,h,/' -/z'a h'b h,/a;.h,c] - (a<-> b)} 

(2. 8) 

Then the CO\'ariant derivative of r' vanishes: 

(2. 9) 

(2 -10) 

where m stands for a mass and flAr"'=' (a~- r,,) <j1. The conjugate field (/)is defined 

by (/i=<j}f 0• Since h1"' is hermitian, (2·6) implies fo(r")tfo=r". Hence (2-10) 
implies 

(2 -11) 

with (/Jf1,=~- (01, -1- !'1,). 1'he Dirac equations (2 -10) and (2 ·11) follow from the 
following Dirac Lagrangian density D as is seen by using (2 · 9) : 

(2 -12) *> 

It ean be shown that ~[Dis invariant under both the general coordinate transforma­
tion and the LL nne. 

In the Dirac theory, the canonical energy-momentum tensor density,**> 

(2 ·13) 

ts different from the gravitational-source energy-momentum tensor density TD"';. de­
fined by 

(2 -14) 

*l The differential operator i'i" acts on (jJ but not on h. 
**l In the present paper, we always consider energy-momentum tensor densities instead of 

tensors. 
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782 N. Nalwnishi 

This expression for Tn"' looks non-symmetric in its appearance under f10>V, but 
with the aid of the Dirac equations, it can be rewritten into a symmetric form: 

1 - - - -T n"'' = -ih(ji (y"'V' + y'V"'- V'y"'- V"'y')<f; 4 . (2 ·15) 

This fact is a consequence of the LL in variance of ~CD· 

Finally, we review some important consequences of the invariant variation 

theory (the second Noether theorem) 7> for later convenience. 
Let A be any scalar density depending on some fields ([JA· Then the invariance 

of Jgd'xA under the general coordinate transformation implies that the following 

three identities hold: 

(2 ·16) 

(2·17) 

(2 ·18) 

1vith 

K 1"i==- L:CaA/a(a;,m.l)J cm~ri. (2 ·19) 
A 

where rJwA denotes the Euler derivative with respect to r!JA and [r!JA]"" is the trans­
formation matrix of ([JA under the infinitesimal general coordinate transformation 

(i.e., the infinitesimal change of @~1 is written as [r!J 1] 1',a"s'). 
Since 

for ,1 = ~[ n (2 ·16) hecomes 

a I" [iJ h,a (J' n) (- r)~' )l i,a) J + i) h,a (J' n) a' h,a 

+/J1,(.i'n)a,<J;-a,(/J·o~(J'n) =0. 

(2. 20) 

(2. 21) 

(2. 22) 

The last two terms vanish because of the field equations for c/J and (/), namely, 

(2 · 10) and (2 ·11). Therefore (2 · 22) reduces to 

(2. 23) 

that 1s, 

(2. 24) 

because of Tn 1" = Tn'·" and (2 · 5). 
The remaining identities (2 ·17) a ncl (2 ·18) become 
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Indefinite-lvfetric Quantum Field Theory of General Relativity. Y 783 

(2. 25) 

(2· 26) 

respectively. They are important in § 4. 

§ 3. Lagrangian and field equations 

We first introduce the LL-BRS transformation, which is denoted by 8LL• while 

we denote by 8 the BRS transformation corresponding to the general coordinate 

transformation as before. 1'" *' Since the LL transformations form a Lorentz group, 

we have8' 

8Ldhpa) = - tabhpb, 

8LL ((f;) = - ~ lab (Jab¢, 

(3 ·1) 

(3·2) 

where t nb is one of the LL-FP ghosts. We also introduce another LL-FP ghost 

lab and an auxiliary boson field sab· As usual,6'" 1' we assume that 

(3·4) 

(3· 5) 

The three fields sab• tab and lab are all hermitian and antisymmetric under a~b. 

Furthermore, they are assumed to be BRS-invariant (8 (sab) = 0, etc.). The LL-FP 

ghosts ta; and lab are fermion fields. They may be commutative or anticommutative 

with the FP ghost cP and c" and with the Dirac fields ¢ and (/J. But, for defini­

teness, we assume that all fermion fields are mutually anticommutative (at the 

classical level). Hence {8, 8LL} = 0. In contrast with the BRS transformation 8, 

the LL-BRS transformation 8LL commutes with 8,, because the LL invariance is 

an internal symmetry. 

All the "old" fields g,, bP, cP and cP, which have been considered previous­

ly,n_,, are LL-BRS-invariant. Indeed, we can immediately confirm that 

8LL (g,") = 0 (3 · 6) 

from (3 ·1) and (2 ·1). Hence 8Ldh) = 0. We can also easily show that 

*' lJ(hpa) =KiJ,,c'··hw, lJ(<f) =lJ(ifj) =0. 

(3. 7) 

(3. 8) 
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784 N. Nakanishi 

Thus both the old Lagrangian density,*) .7, considered previously!) and the Dirac 

one .£ D are LL-BRS-invariant. 

Now, we introduce the gauge-fixing term for the LL transformation. It must 

meet the following requirements: 

1. It should be non-invariant under the LL-BRS transformation. 

2. It should depend only on Snb and h~c· 

3. When multiplied by h~\ it should be BRS-invariant. 

4. The number of 80 involved in any term of it should not exceed two. 

5. It should involve the six degrees of freedom of hfia independent of g•r· 
Then the following choice of the LL-gauge-fixing Lagrangian density is the 

simplest possible and most nat ural one: 

(3. 9) 

The corresponding LL-FP-ghost term .£ LLFP is determined by 

(3·10) 

that IS, 

(3 ·11) 

The total Lagrangian density, 

.£_tot -1 + .£_ D + .£_ LL , (3·12) 

Is invariant under the LL-BRS transformation, and the total action is BRS-invariant. 

The field equations which follow from (3 ·12) are as follows. The Einstein 

cquation1l becomes 

h ( R'" ~- ~· 1]1" R - B'") = -/C (T n''v + T LLI'V) ' 

where R''v 1s the Ricci tensor (R=Rfifi) and 

The following field equations!) remain unchanged: 

(3 ·13) 

(3 ·14) 

(3 ·15) 

(3 ·16) 

(3 ·17) 

(3 ·18) 

*l We consider the Landau-gauge case alone and, for simplicity, omit any matter field other 

than the Dirac field. 
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Indefinite-Metric Quantum Field Theory of General Relativit~/. Y 785 

New field equations are 

g~·a~r.ab=O, (~l·l9) 

g~·ca~ta •. r.•b-o~tb •. r.ca+a~a.tab) =0, (3·20) 

g~· (8iac. r.cb- o~lbc. r:a + a~a.zab) = 0 (3. 21) 

together with the Dirac equations (2 ·10) and (2 ·11). 

From (3 · 7), we see that (3 · 20) coincides with the 8LL of (3 ·19). Likewise, 

the 8LL of (3 · 21) is 

(:3. 22) 

It is quite instructive to see that (3 · 22) coincides with the antisymmetric part of 

the field equation (3 ·13). 

Since Tn~" is symmetric, the antisymmetric part of (3 ·13) 1s 

(3. 23) 

Here 

(3. 24) 

with 

h bh ay ~'"= _ h b(f)_[LLGF 
I' v LLGF - I' ~h 

V l'a 

(3 ·25) 

and 

h bh ay I'•= _ h b(f)_[LLFP 
I' v LLFP - I' Oh 

I' a 

= - r;ab ..[ LLFP- ih u"~a h"b + h~bhva) o~l,ze. (L\ I ·.ce -- tcr:a + + &.trlc) 

+ 2ihg~·a~lde · td.h/or:•;oh11a 

(3. 26) 

The explicit expressions 

(3. 27) 
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786 N. Nakanishi 

2ar.cd /a (a ph'"") = [lJP;r;"' h"d ~ o'",r;"' hpd 

~ h'"'hPah,"] ~ (c+-'>d) 

yield the following useful identities: 

With the aid of them together with (3 ·16), ,,,e can show that 

h}h,aTLLGF1''~ (a<-4b) 

= 2hg"' (o"s"e. r,cb ~f) ,s'',. r,'" + 0,0 ,s"b)' 

h/lz,aTLLFP'"~ (a<->b) 

Thus (3 · 22) is equivalent to (3 · 23). 

(3. 28) 

(3. 29) 

(3. 30) 

(3. 31) 

(3. 32) 

Finally, we show that the covariant derivative of TLL1'1 vanishes. Applying 
the same reasoning as the one <' t the end of § 2 to A= L LL, we see that (2 ·16) 
yields 

Because of (3 · 23), the antisymmetric part of TLL'"' vanishes. Hence (3 · 3~1) im­
plies 

Therefore, the covariant derivative of (3 ·13) yieldsn 

(3. 35) 

We note that (3 · 35) is a direct consequence of the BRS in variance, because it is 
essentially the 8 of (3 ·18). 

§ 4. Conserved quantities 

In our theory, there are many conserved currents 111 addition to the Poincare 
generators. First, the Dirac current Jn 1' is given by 

( 4 ·1) 

which plays no essential role in our formalism. 
Next, the LL-FP-ghost current Jt'' is defined by 
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(4· 2) 

It 1s easy to confirm f)PJt"=O by means of (3·20) and (3·21). 

The LL-BRS current J/ is defined by 

(4. 3) 

where the summation goes over all fields. If A is a quantity whose dependence 

on h"" is only through g," then we see 

8LL(h )- §A __ =-t~;hbh"(- aA + iYA ·)=0 
"" a (a h ) a " " a (a ) iJ (a ) . 

I' "a l'g,, p.(],, 

( 4. 4) 

owing to the antisymmetry of tab· Hence J/ receives no contribution from 

After some calculation, we find 

+ihg""aiau· tb't", 

(4· 5) 

Of course, one can directly confirm f)"Js" = 0 by using (3 · 20) ~ (3 · 22). 

Since .£ D + .£ LL is independent of the FP ghosts cr and c(J, the FP-gbost 

current Jc" remains unchanged. 

One naturally expects also that the BRS current Jb1' remains unchanged be­

cause we still have (3 ·17) and (3 · 35). But the validity of this statement is non­

trivial, because the BRS Noether current receives non-vanishing contributions from 

.£D and .£LL. Indeed, the additional contribution [see (4·1) of Ref. 2)] is 

where T'Dan "1 is defined by (2 ·13) and 

T'L"{;",= [fJ.£LdfJ (apsab) J a,sab+ [a.£Lda CiY"lr,u) J a,tab 

+ [a.£ LdfJ (f) J a<,)] fJ,lab- r)";.£ LL. (4· 7) 

In order to simplify the expression for the BRS Noether current, we made use of 

the Einstein equation. 2> The Einstein equation is now (3 ·13), which contains ad­

ditional terms tc (TDP + TLL''"). Therefore the total change of the expression for 

the BRS No ether current is the sum of ( 4 · 6) and 

Because of its dependence on c', it can be written as a total divergence of an 

antisymmetric tensor density if and only if 
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788 N. Nakanishi 

(4·9) 

and 

(4·10) 

where 

(4·11) 

As explained at the end of § 2, they are indeed identities. More precisely, ( 4 · 9) 
and ( 4 ·10) hold, without using any field equation, for each contribution from 
.Ln, .LLLGF and .[LLFP separately. Their validity can also be directly confirmed 
by means of the formulae 

8T/d 
--------

()(f) l'h,a) 
8T/d 

8{.8}z~a) ' (4 ·12) 

( 4 ·13) 

Thus the expression for the BRS currene) Jb11 remains unchanged. 
Quite a similar mechanism takes place also for the (total) canonical energy­

momentum tensor density 3) 

(4·14) 

Its effective additional contribution is 

(4 ·15) 

which is precisely equal to 8,K11',, as is shown above. Thus the expression for the 
translation generator,3l 

P - ---1 sd3- , 06;::\ b 11 - /l, X Lg (J 6 tt ' ( 4. 16) 

remams unchanged. 

Finally, the canonical angular-momentum tensor density 1s defined bll 

(4 ·17) 

where .'/'1.~'' stands for the spin angular momentum. Under the true Lorentz trans­
formation, ,;, should transform like a spinor. Correspondingly, the vierhein It,," 
should transform not like a vector but like a tensor. In general, any Latin index 
should not be distinguished from a Greek one under the Lorentz transformation. 
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Inde.fmitc-Jfctric Quantum Field Theory of General Relativity. I r 7.':\~l 

Hence we must he Yery careful about rai~ing and lowering indices. 

Since 

('f/1,1,/Z.,n- 'f/vph;w ,I, 'l/1w/z,w- 'f/vahp;,) fJ_C /IJ (fJ,h,w) 

c. ('l/!,PIJ"r -- IJ,PUM) [if] /if (a,q"") +oX /if (a,(j"p) J (4 ·lo) 

uwmg to the cancellation of the last two terms, the adclitiona 1 conl rihut ion II> 

.7A1w is 

('fJ~plzva- 'f/vplz 1,n + 'f/pahp, -- 'l/vahp,,) f) (.1' D -1- ILL) /8 (f)Jzpa) 

+ [a<£ D!a Cad!) J<J,AJ + v;o-,, [a L D!a (8,VJ') J + Y LL' "' (4·19) 

with 

(4·20) 

On the other hand, the orbital angular momentum :c/:f\- .:c/1\ acquires an ad­
ditional contribution 

That is, apart from a total divergence of a quantity antisymmetric under /i<-'>Y, 

.'At 1", receives the contribution 

which exactly cancels the first two terms of (4·19). Furthermore, by direct 
calculation, \Ve find 

('f/1wlzpv- 'flvahp,,) 81' D/8 (f)Jzpa) 

= _l_ih;r; J"l a- }'h 
2 'f/ (/ ' ''" > 

(4. :z:n 
(This identity is il consequence of the LL invariance of D·) 'fhus no contribution 
from )_; D remains.*' 

After all, the Lorentz generator3r }\JJ!, acquires an extra contribution 

il.JLLpv=: s d 3X [ (YJ,tahpv- r;,ahpp) aJ.: ui8Apn + .9' LL01',] 

= 2 S d 3x hg0" L 6 pv , (4. 24) 

·fr ln the flat space-time, this corresponds tu the well-known fact that the angular muitlC!ltum 
tensor contains no extra spin term when expressed in terms of the symmetric energy-momentum 
tensor. 
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790 N. Nakanishi 

where 

(4 ° 25) 

Since 

(4 ° 26) 

owing to (3 ·16), (3 ·19), (3 · 20) and (3 · 22), we see that lvlLLJ<V 1s a conserved 
quantity. 

§ 5. Asymptotic fields 

Since it is inadequate to eliminate sab from our Lagrangian by integrating by 

parts, the six components of sab must be regarded as canonical variables, that 

is, Sab is not a Lagrange multiplier field. For Ln, we should eliminate aif by 

integrating by parts. Thus the canonical variables are h11a, cP, cP, Sab, tab, lab and 

¢. Canonical quantization can be carried out consistently. Detailed analysis will 

be presented in a succeeding paper. We shall show there that all commutation 

relations concerning the old fields (g11v = h 11ahva, bP, cP, cP) 2J are precisely reproduced. 

The physical states are defined by the subsidiary conditions 

(5 ·1) 

where, of course, both Qb-f d3xJb0 and Qs=f d3xJ5° are conserved. 

In order to show the positive semi-definiteness of the norm of the physical­

state subspace, vve investigate the asymptotic fields under the postulate of asymptotic 

completeness. 

We introduce the asymptotic fields by*J 

as x 0->- oo (or x0~ + oo). It is convenient to set 

so that cp1" coincides with the asymptotic field of g11 v. 

(5° 3) 

(5·4) 

As before,n. 4J we assume that the properties of the asymptotic fields are gov-

*l Here we omit Z-factors and neglect the problem of ultraviolet divergence. 
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Indefinitc-Jletric (]uantum Field Theory of General Relativity. F 791 

erned by the linearized Lagrangian density of .1' tot except for the renormalization 
of the parameters involved. The asymptotic Lagrangian density, .,.easym, correspond­

ing to L remains unchanged. The total asymptotic-field Lagrangian density 1s 

given by 

(5. 5) 

from which we have 

(5. 6) 

~!Jn11 = 0, []rab = 0, Ufa1, = 0. (5. 7) 

By using the linearized De Donder c:onclition° 

(5. 8) 

(5 · 6) 1s simplified into 

Owing to the third term of (5 · 5), the field equation for Yab 1s modified into 

(5 ·10) 

It is straightforward to analyze the canonical commutation relations for the 

asymptotic fields. We find that the four-dimensional commutation relations between 
the old fieldsll remain unchanged. Those which involve the new fields are found 
to be 

etc. 

[<;:'ab (x). fed (y)] = [<,coalJ (x), !Jed (y)] = 0, 

[ Eab (x), Ucd (y)] = ~ t i (IJac'Y/bd ~ 'l/ad!Jbc) D (x ~ y), 

[ Eab (x), Ecd (y)] = [!Jab (x), !Jeri (y)] = 0, 

(5·11) 

(5 ·12) 

(5 ·13) 

(5 ·14) 

(5·15) 

The expressiOns for Us and Qt 111 terms of the asymptotic fields are, up to a 

multiplicative constant. 

Hence 

Qs = s d'x Ua/J (Go~ Go) r"b, 

Qt=i Sd'.xra,,(Go~G0)rab. 

(5 ·l6) 

(5 ·17) 
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792 N. Nakanishi 

{rab• Q.} = 0, {'t' ab• Q.} = Uab · 

(5 ·18) 

(5 ·19) 

Then applying the Kugo-Ojima theorem,6> we see that the physical-state subspace 
1s positive semidefinite. 

Thus the physical S-matrix is unitary. 

§ 6. Discussion 

In the present paper, we have established that the quantum field theory of 
the coupled Einstein-Dirac system can be consistently formulated in the framework 
of the manifestly-covariant canonical formalism. 

We make some remarks on the choice of the LL-ga uge-fixing term. In the 
path-integral formalism, one can introduce almost any kind of the gauge-fixing term, 
though then gauge theories always suffer from the difficulty caused by the Gribov 
ambiguity. 9> On the contrary, in the covariant canonical formalism, to which the 
Gribov ambiguity is totally irrelevant, the choice of the gauge-fixing term is quite 
restrictive. In our theory, our choice (3 · 9) is practically unique under the condi­
tions stated in § 3. Simpler-looking choices, 

(6·1) 

and 

(6·2) 

which are mutually equivalent, satisfy the first four conditions but not the last 
one. With (6 ·1) or (6 · 2), all canonical conjugates of h~a are not independent. 
Of course, (3 · 9) is not unique in the mathematical sense, for instance, we may 
add .i'~LGF and/or hsabsab to .i'LLGF· But such modifications are not interesting. 
We shall see in a succeeding paper that the LL-gauge-fixing term (3 · 9) yields 
quite natural equal-time commutation relations between Heisenberg fields. 
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