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On the basis of the indefinite-metric vector field theory proposed previously, Johnson's 
proposition that the physical mass of a vector field tends to zero as its bare mass goes to 
zero, is shown to be valid if the vector field couples with a charged scalar field in the minimal 
interaction. In the case of the theory of spontaneously broken gauge invariance, the reason 
why the vector field acquires a non-zero mass in spite of the above theorem is clarified. The 
theory of a vector field which is massive owing to the spontaneous breakdown of gauge 
invariance is consistently formulated in the framework of the indefinite-metric quantum field 
theory. In this formalism, both renormalizability and the unitarity of the physical S-rnatrix 
are self-evident. 

§ I. Introduction 

Recently, the present author1l'*l has proposed an indefinite-metric theroy2l of 
a massive vector field such that as its mass goes to zero the theory smoothly 
tends to the Landau-gauge quantum electrodynamics.3l' 4l As one of important 
consequences of this theory, we can reasonably show the validity of Johnson's 
proposition5l'**l that if the bare mass of the vector field ufo goes to zero, its 
physical mass must also tend to zero, provided that there are no other massless 
physical particles, under the assumption that the current j'" is conserved and does 
not explicitly depend on ufo. 

On the other hand, in connection with Weinberg's theory of leptons, BJ much 
attention has been paid to the spontaneous breakdown of gauge invariance in the 
massless vector field theories. Several years ago, Higgs and others7l noted that 
if gauge invariance of the theory is spontaneously broken, the massless vector 
field acquires a non-zero mass, but then Goldstone bosons do not appear in the 
Coulomb gauge because we do not have manifest covariance, which is necessary 
for the proof of the Goldstone theorem.8l If one reconsiders this situation in a 
covariant gauge, in which we have to introduce indefinite metric, Goldstone bosons 
appear but they become unphysical. This interesting phenomenon is now called 
the Higgs phenomenon. Recently, 't Hoofel has applied it to the Yang-Mills 

*> Unfortunately, the publication of this paper was much delayed. 
**> Johnson's reasoning was based on the conventional massive vector field theory whose mass­

less limit is non-existent. 
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Indefinite-Metric Quantum Theory 641 

field in order to construct a renormalizable theory of massive charged vector 

fields. *l B. W. Lee10l has made a detailed study of the Higgs phenomenon in 

the theory of a neutral vector field which couples with a charged scalar field 

(Higgs model). All these recent investigations are made in the Feynman functional­

integral formalism. 
The purpose of the present paper is to analyze the Higgs phenomenon on 

the basis of our indefinite-metric theory of a vector field. We first extend our 

proof of Johnson's proposition to the case in which the neutral vector field up. 
couples with a charged scalar field (§ 2). Then we encounter an apparent dilemma 

between Johnson's proposition and the Higgs phenomenon. In order to resolve 

this paradox, we investigate a solvable model, which is essentially the zeroth 

approximation to the Higgs model (§ 3). The reason for the dilemma is found 

to be a special character of j" in the case of the spontaneously broken gauge 

theory. Finally, the full Higgs model is studied (§ 4). We clarify why Goldstone 

bosons become unphysical in such a way that the unitarity of the physical S-matrix 

is not violated. The main results obtained by B. W. Lee10l are reproduced in 

quite a transparent way. 

§ 2. Genuine massive vector field 

In this section, we consider a neutral vector field U", which couples with a 

charged scalar field ¢. We assume that the interaction between them is the so­

called minimal interaction. The Lagrangian density ..£of the system is given by 

(2·1) 

with 

(2·2) 

Here, B is an auxiliary scalar field having negative norm; m and g denote the 

bare mass of U" and the bare coupling constant, respectively; F is a quadratic 

real polynomial; a dagger stands for hermitian conjugation and the Minkowski 

metric employed is (1, -1, -1, -1). 
The field equations for U" and B are 

a"U"=O, 

(D+m2) U"-a"B=j" 

with D=8"8w Here the current 

j"= -o..£.p/oU" 

= -ig[¢ta"¢- ca"¢t)¢J ~2g2¢t¢U" 

(2·3) 

(2·4) 

(2·5) 

*> We note, however, that this theory is not a genuine Lagrangian field theory because one 

has to introduce ad hoc Feynman's fictitious quanta. On the other hand, Weinberg's idea is based 

on the Lagrangian formalism. 
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642 N. Nakanishi 

is conserved: 

(2·6) 

as is easily confirmed, but it explicitly depends on U"" From (2·4), (2·3) and 
(2·6), we have 

DB=O. 

The canonical conjugates of U1 (l = 1, 2, 3), U0, ¢ and ¢t are 

Ilz=IL[/tJUz = Uz -azUo, 

Ilo==CJ .. [/tJUo=B, 

rc=CJ.£/CJ~= ~t + igUo¢t, 

rct=(J.£j(J~t=~-igUo¢' 

(2·7) 

(2·8) 

respectively, where a dot stands for differentiation with respect to time. The 
equal-time commutators for canonical variables are 

[U", II.] =itJ".tJ(x-y), 

[¢, rc] = [¢t, ret] =itJ(x-y), (2·9) 

and vanishing commutators for all other combinations. In terms of field variables, 
the equal-time commutators are rewritten as*> 

[Uk(x), U1 (y) ]..,,=Yo= i(Jk!(J (x-y), 

[Uo(x), B(y) ]..,,=11, =itJ(x -y), 

[Uk(x), B(y) ]..,,=71,= iak""CJ(x -y), 

[B(x), ~(y)]..,,=Yo=9¢(y)CJ(x-y), 

[B(x), ~t(y)]..,,=v,= -g¢t(y)(J(x-y), 

[¢(x)' ~t (y) ]..,,=Yo= [¢t (x)' ~(y) ]..,,=Yo= itJ(x-y)' (2 ·10) 

and vanishing commutators for all other combinations of Uk, U0, U~, B, ¢, ~. ¢t 
and ~t. In order to calculate the equal-time commutators involving U0 or B, we 
have to make use of 

(2·11) 

the relations which follow from (2 · 3) and (2 · 4). Since .£4> is of the minimal 
interaction, we have 
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Indefinite-Metric Quantum Theory 

jo = - (]_["' = lJ..f_.p ig¢>- igrpt a_r;"' 
lJUo lJ¢> · 1J¢t 

= ig (n¢>- ¢tnt). 

Hence the canonical commutation relations imply that 

[UI'(x), jo(y)].,,=Yo = 0, 

[Uz (x), jo (y)].,,=Yo = 0, 

[B(x),jo(y)]..,,=v,=O. 

643 

(2·12) 

(2·13) 

In order to find four-dimensional commutation relations involving B, we re­
write (2 · 7) as4> 

B(x) =-J d.z[b(x-'z)B(z) +D(x-z)B(z)], (2·14) 

where z0 is a free parameter. Setting z0 =y0 in (2·14), with the aid of (2·11), 
(2·10) and (2·13), it is straightforward to obtain 

[B(x), Ul'(y)] =ia/'D(x-y), 

[B(x), B(y)] = -im2D(x-y) 

(2·15) 

(2 ·16) 

and [B(x),j0(y)] =0. Because of manifest covariance, therefore, we have 

[B(x),jl'(y)] =0. (2 ·17) 

Since B(x) satisfies a free-field equation (2·7), we can consistently define*> 
its positive frequency part BC+> (x). The constraint for the physical states is 

BC+> (x) I phys) = 0 . (2 ·18) 

From (2·17) we see that jl'(y)lphys) is also a physical state. 
Let I.!J) be the true vacuum. From manifest covariance, local commutativity 

and the Lorentz condition (2 · 3), we have a spectral representation: 

(.!JI [UI'(x), U" (y) J I.!J) 

= -i f"dsp(s) (g~'"+s- 1a/'a/').1(x-y, s) +im-2ha/'a/'D(x-y). 

(2·19) 

The parameter h is determined as follows. By making use of (2 · 4), (2 ·16) and 
(2·17), we obtain 

(D" + m2) (DY + m2) (.!JI [UI'(x), U"(y)] I.!J) 

(2·20) 

Because of (2 · 6), we should have 

*' To define B<+l (x), replace D by D<+l in (2·14). 
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644 N. Nakanishi 

with a>O, provided that no massless physical particles are present. On substitut­
ing (2·19) and (2·21) in (2·20), we find 

h=1' 

(2·22) 

From (2 ·19) together with (2 · 22) and the first commutator m (2 ·10), we find 
Johnson's formulas5l 

f' dsp(s) = 1, 

f'dsp(s)/s=m- 2, (2. 23) 

where b=min(a, m 2). From (2·23), we conclude that the physical mass mphys 
of Up, which is a point spectrum of p (s), must tend to zero as m~o. 

The above reasoning is applicable to any theory in which UP couples with 
its source in the minimal interaction. 

§ 3. Boulware-Gilbert model 

The Lagrangian density of the Higgs modeFl is essentially the same as (2 ·1) 
with m~o, though we here adopt the Landau-gauge formulation. All field equa­
tions and canonical commutation relations remain unchanged. The only difference 
consists in the non-vanishing vacuum expectation value of ¢: 

(Qj¢(x) I!J)=v/ .J2~0, (3·1) 

which was not used in the proof, presented in § 2, of Johnson's proposition that 
m~o implies mphys~o. Nevertheless, it is known that UP acquires a non-zero 
physical mass (mphys~O) at m=O in the Higgs model. 

As usual, we set 

v'2¢(x) =v+¢(x) +ix(x), (3·2) 

where v* = v, ¢t = ¢ and xt = x. so that 

(!Ji¢(x) I!J)=(!Jix(x) I!J)= 0. (3·3) 

On substituting (3 · 2) in (2 · 2), we have 

.£</> = !M2UPUP + taP¢8 pcfJ + taPxa px- MUPa px + tg2UPU" (¢2 + X2) 

+gMUPUP¢+gUP(xa"¢-cjJa"x) +F(t(v+¢Y+tx2), (3·4) 

where 

M=gv. (3·5) 
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Indefinite-Metric Quantum Theory 645 

As the zeroth approximation to the Higgs model, we consider the case m which 

g~o (and F~O) but M is kept finite. Since ¢ then decouples from the rest, 

we have an effective Lagrangian density 

.£o= -Ho"'U"-o"U"') (o"'U.-o.U"') +i(m2 +M2) U"'U"' 

+Bo"'U"'-MU"'o"'x+to"'xo"'x. (3·6) 

This is essentially the model considered by Boulware and Gilbert11l as an example 

of a gauge-invariant massive vector field. Since this model is exactly solvable, 

in this section we analyze it in detail· in order to see why the proof of mphys~o 

as m·~O does not apply. 
The field equations are (2 · 3) and (2 · 4) together with 

and 

Dr.=O. 
We may rewrite (2·4) with (3·7) as 

(D+m2 +M2) U"'-o"'(B+Mr.) =0. 

From (3·9), (2·3) and (3·8), we have 

DB=O, 

whence 

(3·7) 

(3·8) 

(3·9) 

(3 ·10) 

(3 ·11) 

The field equations are thus the same as those in the free-field case having a mass 

squared m 2 + M 2 and an auxiliary field B +Mr.. But the constraint is still (2 ·18). 

The equal-time commutators involving r. and/ or X are as follows: 

[U"', r.J = [U"', xJ =O, 
[ Uz, r.J = [ Uz, xJ = o , 
[ B, xJ = [r., r.J = [x, xJ = o , 
[B, X.]= -iMtJ(x-y), 

[X, X.] =itJ(x-y). (3·12) 

Hence, by using (2·14), (2·11) and (3·7), it is easy to confirm (2·16) and 

(2 ·17). *l For completeness, we here write all four-dimensional commutation re­

lations between fields: 

[U"(x), U.(y)] = -i[g".+ (m2 +M2)-1op"o;"]LI(x-y, m 2 +M2) 

+ i (m2 + M 2)-18 /'o.XD (x- y), 

*> A contrary statement was erroneously made in Ref. 1). 
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646 N. Nakanishi 

[Up(x), B(y)] = -i8/'D(x-y), 

[B(x), B(y)] = -im2D(x-y), 

[Up(x), x(y)] =0, 

[B(x), x(y)] = -iMD(x-y), 

[x(x), x(y)] =iD(x-y). 

Therefore, from (3 · 7) we have 

[jp(x),j.(y)] =M28/'8/[x(x), x(y)] .fM'[Up(x), U.(y)] 

= -iM'[gP.+ (m2 +M2)-18p"'8;"]J(x-y, m2 +M2) 

-im2M 2 (m2 +M2)-1op"'8."'D(x-y). 

(3 ·13) 

(3·14) 
The remarkable point of the Boulware-Gilbert model is the existence of the term 
proportional to 8/'8;"D(x-y) in the current-current commutator. This fact, which 
contradicts (2 · 21), is due to the presence of massless physical particles. Indeed, 
let 

since 

Dx(x) =O, 

[X(x), B(y)] = 0, 

[X(x), x(y)] =im2M 2 (m2 +M2)-1D(x-y), 

(3 ·15) 

(3 ·16) 

(3 ·17) 

(3 ·18) 
x (x) is massless, physical (i.e., B<+> (x) [X ( y) !JJ)] = 0) and of positive norm.*> 
The intermediate states consisting of a x particle gives a non-zero contribution 
to <JJI [jp,i.J !JJ). 

It is important to note that though x (x) is physical, as m ~o it tends to 
B (x) so that its norm tends to zero; therefore the x particles become unobservable. 
As remarked previously/l' 2l B(x) is unphysical for m=/=0, but it becomes physical 
for m=O because it then commutes with B(y). For m=O, the massless unphysical field is 

X(x)=x(x) +tM-1B(x); (3·19) 
both B(x) and X(x) are of zero norm, but [B(x), X(y)] is non-vanishing. 

§ 4. Higgs-type massive vector field 

In § 3, we have seen that the reason why the physical mass of UP can be 
non-zero as m--?0 in the theory of spontaneously broken gauge invariance is the 
existence of massless physical particles, which are not identical with Goldstone 

*> The normalization of x(x) is chosen so as to account for the massless spectrum of [j",j.]. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/49/2/640/1858080 by guest on 21 August 2022



Indefinite-Metric Quantum Theory 647 

bosons. The crucial point is that as m~o those massless physical particles 

become unobservable just like the quanta of the Coulomb interaction. Having 
understood the mechanism of yielding a non-zero physical mass, in this section 
we study the Higgs model by setting m = 0 from the beginning. We rewrite 
UP as AP in order to stress m = 0, and we consider the general covariant gauge 
by adding -!aB2 to _[ for the convenience of the comparison with B. W. Lee's 
work.10>•*> 

The :field equations are 

f}PAp+aB=O, 

co +M2)Ap- (1-a)apB-Mapx=Jp 

with 

Jp jp+M2Ap-Mapx 

= -g[gAP(¢2 +X2) +2MAP¢+xaP¢-¢8Px]. 

Of course, f}Pjp=O but f}PJp=/=0. We still have**' 

DB=O, 

(4·1) 

(4·2) 

(4·3) 

(4·4) 

but x no longer sa tis:fies a free-field equation. The constraint (2 ·18) remains 
unchanged. 

The equal-time commutators (2 ·10) remain valid if UP and ¢ are replaced 

by AP and by (1/ -./2) ( v + ¢ + ix), respectively. Hence we have four-dimensional 
commutation relations 

[B(x), Ap(y)] =ia/'D(x-y), 

[B(x), B(y)] =0, 

[B(x), x(y)] = -i[M+g¢(y)]D(x-y), 

[B(x), Jp(y)] = -igM8/[¢(y)D(x-y)]. 

From (4·7) and (4·8), we have 

(.!21 [B(x), x(y)] 1.!2)= -iMD(x-y), 

(.!21 [B(x), JP(y)] 1.!2)=0, 

(4·5) 

(4·6) 

(4·7) 

(4·8) 

(4·9) 

(4·10) 

respectively. The non-vanishing of ( 4 · 9) is the important characteristic of the 
spontaneously broken gauge theory. From ( 4 · 9) together with ( 4 ·1), we must 

have 

(.!21 [Ap(x), x(y)] lt2)=iaM8/'E(x-y), (4·11) 

*> In his treatment, the Landau-gauge case is ill-defined in contrast with our formalism. For 
example, the proper self-energy part of A.u is singular at a=O in his formalism. 

**> If m;ofO and a;ofO, B becomes massive; every D(x-y) appearing in § 2 then is replaced by 
il (x-y, am2). 
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648 N. Nakanishi 

because of manifest covariance and the vanishing equal-time commutators, where 

E(x) =- (ajam2).d(x, m 2) lm~o 

=- (8n)-1s(x0)0(x2), 

DE(x) =D(x). 

(4 ·12) 

(4 ·13) 

As seen in § 3, AI' acquires a non-zero mass at least if g is small. Hence 
AI' contains no massless transverse components. From manifest covariance, local 
commutativity, ( 4 · 5) together with ( 4 ·1) and the equal-time commutators, we 
have a spectral representation 

<JJI [AP(x), A.(y)] IQ)= -i f"'dsp(s) [(9p.+s-1ap .. a.Z).J(x-y, s) 

-s-181' .. 8/D(x-y)] -iaap .. a.XE(x-y) (4·14) 

with c>O. 
Now, we consider the asymptotic fields. Since in-fields and out-fields can be 

discussed in the same way, for definiteness we consider in-fields alone. In order 
to avoid gauge complication, we first discuss the Landau-gauge case (a= 0). 
Suppose that 

AP(x)~APin(x), 

rp(x) ~¢in(x), 

B(x) ~Bin(x), 

x(x) ~xin(x) (4·15) 
as x0~- oo. Each in-field has to satisfy a free-field equation. Hence ( 4 · 5), 
(4·6), (4·9) and (4·11) with a=O yield 

[Bin(x), Al'in(y)] =iaP .. D(x-y), (4·16) 

[Bin(x), Bin(y)J =0, (4·17) 

[Bin(x), xin(y)] = -iMD(x-y), (4·18) 

[AI'in(x), xin(y)] =0, (4·19) 

respectively. From (4·18) we see that xin(y) must satisfy the d'Alembert equa­
tion, that is, the X field is massless. This fact represents that X is the Goldstone 
field. Hence xin(x) has to satisfy 

(4·20) 
where r is some real dimensionless constant. The constraint for the physical 
in-states is 

[Bin(x)J+>iphys) = 0. (4·21) 
From ( 4 ·18) we see that Goldstone bosons are unphysical. 

Since 

(4·22) 
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Indefinite-Metric Quantum Theory 649 

where 

(4 ·23) 

the physical-state subspace is generated by the hermitian conjugates of*l 

(4·24) 

from the vacuum. Since Vl'in(x) should satisfy a, Klein-Gordon equation, it cannot 

contain a massless component. From ( 4 ·14) with a= 0, the massless spectrum 

of [AI'in(x), A}n(y)] is iKfJ/'8/'D(x-y) with 

K= f" dsp(s)/s. (4·25) 

Therefore, using ( 4 · 20) and ( 4 · 19), we find 

(4 ·26) 

Thus we should have 

<JJI [x(x)' x(y) J IJJ)=iM2KD(x -y) +iS"' ds(J(s) A(x -y, s). 
+O 

(4 ·27) 

For a'?"=O, we have to be careful of the invalidity of ( 4 ·15), as was noted 

by Kiillen12' in quantum electrodynamics. Indeed, the right-hand side of ( 4 ·11) 

is inconsistent with any free-field equation. The appearance of E (x- y) implies 

that there should exist dipole-ghost states.2' As is well known, however, the 

Gupta-Bleuler theory, which corresponds to a= 1, involves no dipole ghosts. This 

dilemma is due to the breakdown of the operator manifest covariance of a non­

Landau-gauge theory, as has been pointed out recently.2' As far as two-point 

functions are concerned, however, this trouble can be bypassed. Following 

Lautrup,4' we define an operator 

(4·28) 

where J denotes the Laplacian. Though A(x) is not a Lorentz scalar, it satisfies 

DA(x) =B(x), (4·29) 

[B(x), A(y)] = [A(x), A(y)] = 0, (4 ·30) 

[AI'(x), 8/A(y)] + [8/'A(x), A.(y)] =i81'xfJ/'E(x-y). (4·31) 

From (4·14),' (4·30) and (4·31), we see that the vacuum expectation value of 

the commutator of 

(4·32) 

has no a-dependent term, that is, it equals ( 4 ·14) without the last term. With 

*' V t<ln and cp1n are of positive norm and B1n is of zero norm. The zero-norm unphysical field 

. [cf. (3·19)] is 
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650 .N. Nakanishi 

the aid of (4·5) and (4·9), we can show that 

(.!JIM[A,.(x), A(y)] + [a,.-"A(x), x(y)]i.!J)= -iMa/'E(x-y). (4·33) 
Hence if we define 

x(x)==x(x) +aMA(x), (4·34) 
then we have 

(4·35) 
Therefore, by defining A 101n(x) and x1n(x) as the asymptotic fields of A10 (x) and 2 (x), respectively, the discussion of the in-fields reduces to that in the Landau­gauge case. Since from (4·9) 

(.!JI [x(x), A(y)] + [A(x), x(y)] I.!J)= -iME(x-y), (4·36) 
we have 

(.!JI [2(x), 2(y)] I.!J)=(.!JI [x(x), x(y)] I.!J).-iaM2E(x-y,. (4·37) 
Since the left-hand side of ( 4 · 37) should be identified with ( 4 · 27), we finally find 

(.!JI [x(x), x(y)] I.!J) 

=iM2K,.D(x-y) +i I:dsO'(s).d(x-y, s) +iaM2E(x-y) (4·38) 

in the general covariant gauge. The Green's function counterparts of ( 4 ·14), (4·11) and (4·38) were given by B. W. Lee10l by calculating the proper self-energy parts by means of the Ward-Takahashi identities. 
To sum up, we have shown that the neutral vector field theory of spontane­ously broken gauge invariance can be consistently formulated in the framework of the indefinite-metric quantum field theory. We can avoid the use of complicated functional-integral technique completely. Our theory is manifestly renormalizable, and the unitarity of the physical S-matrix is self-evident because the constraint (2·18) persists at all time. The Goldstone field x is massless and unphysical, while the massless B field is physical but unobservable because of its zero norm just like the quanta of the Coulomb interaction. 
Extension of our formalism to the non-Abelian gauge field will be formally straightforward/) but we then encounter the difficulty that the constraint no longer persists. 
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