
Indefinite Stochastic Linear Quadratic Control and

Generalized Differential Riccati Equation

M. Ait Rami∗ J. B. Moore† and Xun Yu Zhou‡

Abstract

We consider a stochastic linear–quadratic (LQ)
problem with possible indefinite cost weighting
matrices for the state and the control. An out-
standing open problem is to identify an appro-
priate Riccati-type equation whose solvability is
equivalent to the solvability of this possibly in-
definite LQ problem. In this paper we intro-
duce a new type of differential Riccati equation,
called the generalized (differential) Riccati equa-
tion, which in turn provides a complete solution to
the indefinite LQ problem. Moreover, all the opti-
mal feedback/open-loop controls can be identified
via the solution to this Riccati equation.

Keywords. Stochastic LQ control, indefinite
costs, generalized Riccati equation.

1 Introduction

In optimal LQ control theory, the Riccati equa-
tion approach has been used systematically to pro-
vide an optimal feedback control (see [13, 19, 4]
for the deterministic case, and [21, 5, 11] for the
stochastic case). It has been always assumed that
the cost function has a positive definite weighting
matrix, R, for the control term, and a nonneg-
ative definite weighting matrix, Q, for the state
term. In this case, the solvability of the Riccati
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equation is both necessary and sufficient for the
solvability of the underlying LQ problem. How-
ever, it was found in [7] for the first time that
a stochastic LQ problem with indefinite R may
still be well-posed. This phenomenon has to with
the deep nature of the uncertainty involved; see
[7] for a detailed discussion and many examples.
Some pratical applications of indefinite LQ con-
trol to portfolio selection problems and a contin-
gent claim problem can be found in [22, 16] and
[14], respectively. Follow-up researches on indef-
inite stochastic LQ control in finite time horizon
have been carried out in [8, 15, 9] to incorporate
more complicated features such as random coeffi-
cients and integral constraints. Other properties
concerning existence, uniqueness and asymptotic
behavior of solutions to the generalized Riccati
equation associated with an indefinite LQ prob-
lem are studied in [1]. The infinite-time-horizon
case, where the stability becomes a crucial issue,
was treated in [2, 6] via semidefinite programming.

In [7] it is shown that if the following type
of Riccati equation, called the stochastic Riccati
equation (t is suppressed),

Ṗ = −PA−A′P − C ′PC
+(PB + C ′PD)(R + D′PD)−1(B′P + D′PC)−Q,
P (T ) = H,
R + D′PD > 0, a.e. t ∈ [0, T ],

(1)
has a solution P (·), then the possibly indefinite
LQ problem is well-posed and an optimal feedback
control can be constructed explicitly via P (·). A
natural question then is what we can say about
the indefinite LQ problem if (1) does not have a
solution at all? Note that the positive definiteness
of R + D′PD in (1) is very restrictive so that it
may exist an optimal solution to the LQ problem
whereas (1) has no solution.

Finding an appropriate Riccati-type equation



such that its solvability is equivalent to that of the
underlying LQ problem, remains an outstanding
open problem. In this paper we achieve this goal
by introducing a new type of differential Riccati
equation (given below) called generalized Riccati
equation (GRE) where the positive definiteness
constraint of R + D′PD is relaxed:

Ṗ = −PA−A′P − C ′PC
+(PB + C ′PD)(R + D′PD)†(B′P + D′PC)−Q,
P (T ) = H,
((R + D′PD)(R + D′PD)† − I)(B′P + D′PC) = 0,
R + D′PD ≥ 0, a.e. t ∈ [0, T ],

(2)
where the sign † represents the Moore-Penrose
pseudo-inverse [18]. This new Riccati equation
turns out to be the right one for studying indef-
inite LQ problems and permits us to obtain all
possible optimal controls.

It is worth mentioning that even for determin-
istic singular LQ problems (see [20, 12, 17, 10]
among others), which is a special case of the prob-
lem treated in this paper, our formulation and re-
sults are still new.

The remainder of this paper is organized as fol-
lows. Section 2 formulates the indefinite stochas-
tic LQ problem and gives some preliminaries. Sec-
tion 3 shows that the solvability of the GRE is suf-
ficient for the well-posedness of the LQ problem
and the existence of an optimal control. More-
over, all the optimal controls are identified via
the solution of the GRE. Sections 4 shows that
the solvability of the GRE is also necessary for
the existence of optimal linear feedback controls
as well as optimal open-loop controls. Section 5
provides an illustrative example. Finally, Section
6 gives some concluding remarks.

2 Problem Formulation

Let (Ω,F ,P;Ft) be a given filtered probability
space with a standard Brownian motion W (t)
on [0, T ] (with W (0) = 0). In order to sim-
plify exposition we assume that the Brownian
motion is one-dimensional. There is no essen-
tial difficulty with the multi-dimensional case.
L2
F (0, T ;Rp) is the set of Ft-adapted Rp-valued

Lebesgue measurable process φ(·) on [0, T ], such
that E

∫ T
0 φ(t, ω)′φ(t, ω)dt < +∞.

Consider the following linear Ito stochastic dif-
ferential equation

dx(t) = [A(t)x(t) + B(t)u(t)]dt
+[C(t)x(t) + D(t)u(t)]dW (t),

x(s) = y,
(3)

where (s, y) ∈ [0, T ) × Rn are the initial time
and initial state, respectively, and u(·), the
admissible control, is any element in Uad ≡
L2
F (0, T ;Rnu). The matrices A,B, C, D are as-

sumed to be bounded.
For each (s, y) and u(·) ∈ Uad, the associated

cost is

J(s, y;u(·)) = E[x(T )′Hx(T )]
+E

{ ∫ T
s [x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt

}
.

(4)
The matrices Q,R andH are assumed to be
bounded. Our objective is to minimize the cost
function J(s, y;u(·)), for a given (s, y) ∈ [0, T ) ×
Rn, over all u(·) ∈ Uad. The value function is
defined as

V (s, y) = inf
u(·)∈Uad

J(s, y;u(·)). (5)

Definition 2.1 The optimization problem (3)–
(5) is called well-posed if

V (s, y) > −∞, ∀(s, y) ∈ [0, T )×Rn.

An admissible pair (x∗(·), u∗(·)) is called optimal
(with respect to the initial condition (s, y)) if u∗(·)
achieves the infimum of J(s, y;u(·)).

Using Itô’s formula, we have

Lemma 2.1 Let M(·) be a given continuously
differentiable (in t) matrix function taking values
in Sn. Then for any admissible pair (x(·), u(·)) of
the system (3), we have

E[x(t)′Mx(T )]− y′M(s)y =

E

∫ T

s

[
x′(Ṁ + A′M + MA + C ′MC)x

]
(t)dt

+E

∫ T

s
[2u′(B′M + D′MC)x + u′D′MDu](t)dt.

(6)

The following will be used in the sequel.



Lemma 2.2 (Extended Schur’s lemma [3] )
Let matrices M = M ′, N and R = R′ be given
with appropriate sizes. Then the following condi-
tions are equivalent:

(i) M −NR†N ′ ≥ 0, R ≥ 0, N(I −RR†) = 0.

(ii)

[
M N
N ′ R

]
≥ 0.

Lemma 2.3 Let matrices L,M and N be given
with appropriate sizes. Then the following matrix
equation

LXM = N (7)

has a solution X if and only if

LL†NM †M = N. (8)

Moreover, any solution to (7) is represented by

X = L†NM † + S − L†LSMM †, (9)

where S is a matrix with an appropriate size.

3 Sufficiency of GRE

We show that the solvability of the GRE (2) is
sufficient for the well-posedness of the LQ problem
as well as for the existence of optimal controls.

Theorem 3.1 If the GRE (2) admits a solution
P (·), then the stochastic LQ problem (3)–(5) is
well-posed. Moreover, the set of all the optimal
controls with respect to the initial (s, y) ∈ [0, T )×
Rn is determined by the following (parameterized
by (Y, z)):

u(Y,z) = −
{
[R + D′PD]†[B′P + D′PC] + Y

−[R + D′PD]†[R + D′PD]Y
}
x

+z − [R + D′PD]†[R + D′PD]z,
(10)

where Y ∈ L2
F (s, T ;Rnu×n) and z ∈

L2
F (s, T ;Rnu). Furthermore, the value function

is uniquely determined by P (·):

V (s, y) ≡ inf
u(·)∈Uad

J(s, y;u(·)) = y′P (s)y. (11)

Proof : Let P (·) be a solution of the GRE (2).
Applying Lemma 2.1, then we have

J(s, y;u(·)) = y′P (s)y
+E

∫ T
s

[
x′(Ṗ + PA + A′P + C ′PC + Q)x

+2u′(B′P + D′PC)x + u′(D′PD + R)u
]
(t)dt.

(12)
Now, let Y (·) ∈ L2

F (s, T ;Rnu×n) and z(·) ∈
L2
F (s, T ;Rnu) be given. Define

L1 = Y − (R + D′PD)†(R + D′PD)Y,

L2 = z − (R + D′PD)†(R + D′PD)z.

Then we obtain

(R + D′PD)Li = (R + D′PD)†Li = 0,
(PB + C ′PD)Li = 0, i = 1, 2.

(13)

So that (12) leads to

J(s, y;u(·)) = y′P (s)y
+E

∫ T
s

{
[u + (R + D′PD)†(B′P + D′PC)x

+L1x + L2]
′(R + D′PD)[u + (R + D′PD)†

(B′P + D′PC)x + L1x + L2]
}
(t)dt.

(14)
Hence, J(s, y;u(·)) is minimized by the con-
trol given by (10) with the optimal index value
y′P (s)y. Now we show is that any optimal con-
trol can be represented by (10) for some Y (·) and
z(·). Let u(·) be an optimal control, then we can
see that the integrand in the right hand side of
(14) must be zero almost everywhere in t. This
implies

(R + D′PD)u = (R + D′PD)†(B′P + D′PC)x
+L1x + L2,

Applying Lemma 2.3 to solve the above equation
in u(t), we obtain (10). 2

Corollary 3.1 The optimal controls are obtained
in the following special cases:

(i) If R(t) + D(t)′P (t)D(t) ≡ 0, a.e. t ∈ [s, T ],
then any admissible control is optimal.

(ii) If R(t) + D(t)′P (t)D(t) > 0, a.e. t ∈ [s, T ],
then there is a unique optimal control that is
given by the following linear feedback law:

u = −(R + D′PD)−1(B′P + D′PC)x. (15)



An immediate consequence of Theorem 3.1 is
the uniqueness of the solution to the generalized
Riccati equation (2).

Corollary 3.2 If there is a solution to the gen-
eralized Riccati equation (2), then it must be the
only solution to (2).

Proof : Let P1(·) and P2(·) be two solutions of
the generalized Riccati equation (2). Then Theo-
rem 3.1 implies that

y′P1(s)y = y′P2(s)y, ∀y ∈ Rn, ∀s ∈ [0, T ].

Hence P1(t) ≡ P2(t). 2

4 Necessity of GRE

First we need the following lemma.

Lemma 4.1 Assume that the LQ problem (3)–
(5) is well-posed. Then there exists a symmetric
matrix function P (·) such that

V (s, y) = y′P (s)y, ∀(s, y) ∈ [0, T ]×Rn. (16)

Moreover, assume that Q(t) and R(t) are contin-
uous in t, and for any initial (s, y) ∈ [0, T ] ×Rn

the LQ problem (3)–(5) has an optimal open-loop
control that is continuous in t, then the matrix
function P (·) satisfying (16) is differentiable on
[0, T ].

Proof : First, (16) can be shown by a simple
adaptation of the well-known result in the deter-
ministic case (see, e.g., [10, 4]). Moreover, since
the value function V (s, y) is continuous in s, so
is P (·). Next, fix (s, y) and let (u∗(·), x∗(·)) be
an optimal solution of (3)–(5) with respect to the
initial condition x(s) = y with u∗(·) continuous.
Then the dynamic programming optimality prin-
ciple yields

V (s, y) = E
∫ s+h
s [x′∗Qx∗ + u′∗Ru∗](t)dt

+E[V (s + h, x∗(s + h))], ∀h ≥ 0.
(17)

Making use of (16)–(17), we have

1
hE[y′P (s + h)y − y′P (s)y] =
− 1

hE[y′P (s + h)y − x∗(s + h)′P (s + h)y + ...
x∗(s + h)′P (s + h)y − x∗(s + h)′P (s + h)x∗(s + h)
−
∫ s+h
s [x∗(t)′Q(t)x∗(t) + u∗(t)′R(t)u∗(t)]dt.

Noting that P (·) and x∗(·) are continuous, and the
integrand above is continuous in t by the assump-
tions, we can show by a standard argument that
the limit of each of the three terms on the right-
hand side of the above equation exists as h goes to
zero. Therefore limh→0

1
h [y′P (s + h)y − y′P (s)y]

exists. Since y is arbitrary, P (s) is differentiable
at s ∈ [0, T ]. 2

The assumption that the optimal control is con-
tinuous in t is a rather technical one. From the
above proof we can see that only the continu-
ity of the control at the initial time s is actually
needed. On the other hand, if we assume that
B(t), C(t), D(t) and R(t) are continuous, then by
(10) the existence of a continuous optimal open-
loop control is really necessary for the solvability
of the GRE (2).

The following is the main result of this section.

Theorem 4.1 Assume that B(t), C(t), D(t), Q(t)
and R(t) are continuous in t. Then the LQ prob-
lem (3)–(5) has a continuous optimal open-loop
control for any initial (s, y) ∈ [0, T ] × Rn if and
only if the GRE (2) has a solution P (·). More-
over, any optimal control is given by (10).

Proof : The sufficiency part follows from The-
orem 3.1. Since the LQ problem is well-posed,
Lemma 4.1 yields that there exists a symmetric
matrix function P (·) such that

V (s, y) = y′P (s)y, ∀(s, y) ∈ [0, T )×Rn.

Moreover, by the assumption and Lemma 4.1,
P (·) is differentiable. Using the dynamic program-
ming principle we have for all u(·) ∈ Uad

V (s, y) ≤ E
∫ s+h
s x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt

+E[V (s + h, x(s + h))], ∀h ≥ 0.

Applying Ito’s formula to V (t, x(t)), using the
above inequality, and employing Lemma 2.1, we
obtain

E

∫ s+h

s

(
x
u

)′
M(P )

(
x
u

)
(t)dt ≥ 0,

where M(P ) represents the matrix[
Ṗ + A′P + PA + C ′PC + Q PB + C ′PD

B′P + D′PC R + D′PD

]
.



Taking u(t) ≡ ū ∈ Rnu , and then dividing
both sides by h and letting h → 0, we obtain for
a.e. s ∈ [0, T ](

y
ū

)′
M(P )(s)

(
y
ū

)
≥ 0.

Since y ∈ Rn and ū ∈ Rnu are arbitrary, we ob-
tain for a.e. t ∈ [0, T ][

Ṗ + A′P + PA + C ′PC + Q PB + C ′PD
B′P + D′PC R + D′PD

]
≥ 0.

(18)
Applying Lemma 2.2 to (18), we have

Ṗ + PA + A′P + C ′PC
−(PB + C ′PD)(R + D′PD)†(B′P + D′PC) + Q ≥ 0,
((R + D′PD)(R + D′PD)† − I)(B′P −D′PC) = 0,
R + D′PD ≥ 0, a.e. t ∈ [0, T ].

(19)
Now, Let (x∗(·), u∗(·)) be an optimal open-loop
control for (3)–(5) with respect to the initial con-
dition x(s) = y. Applying Lemma 2.1 to P (·), we
have

V (s, y) = y′P (s)y
+E

∫ T

s

[
x′∗
(
Ṗ + PA + A′P + C ′PC + Q

−(PB + C ′PD)(R + D′PD)†(B′P + D′PC)
)
x∗

]
(t)dt

+E
∫ T

s

[
u∗ + (R + D′PD)†(B′P + D′PC)x∗

]′
(R + D′PD)

[
u∗ + (R + D′PD)†(B′P + D′PC)x∗

]
(t)dt.

(20)
By virtue of the relation V (s, y) = y′P (s)y and
(19)–(20), we obtain

Ṗ = −PA + A′P − C ′PC
+(PB + C ′PD)(R + D′PD)†(B′P + D′PC)−Q.

This completes the proof. 2

5 An Example

Consider the following one-dimensional LQ prob-
lem

minJ = E{
∫ 1
0 [q(t)x(t)2 + r(t)u(t)2]dt + hx(1)2}

subject to
dx(t) = [a(t)x(t) + b(t)u(t)]dt

+[c(t)x(t) + d(t)u(t)]dW (t),
x(0) = x0 ∈ bfR,

(21)

where the coefficients are such that d(t) 6= 0, ∀t ∈
[0, 1], b(t) + d(t)c(t) ≡ 0, q(t) < 0 and 2a(t) +
c(t)2 + q(t) > 0, ∀t ∈ [0, 1]. Take r(t) =
−d(t)2p(t), with

p(t) =
e[2a(t)+c(t)2](1−t)[2ha(t) + hc(t)2 + q(t)]− q(t)

2a(t) + c(t)2
(22)

is the solution to the following equation

ṗ(t)+[2a(t)+c(t)2]p(t)+q(t) = 0, p(1) = h. (23)

It is easy to verify directly that (23) is exactly
the generalized Riccati equation in the present
case (note that the singularity arises because
r(t) + d(t)2p(t) ≡ 0). Therefore by Theorem 3.1
and Corollary 3.1-(i), the LQ problem is well-
posed, and any admissible control is optimal with
an optimal cost p(s)y2.

Furthermore, since 2a(t) + c(t)2 > 0, we have
from (22) that p(t) ≥ h, ∀t ∈ [0, 1]. Hence, if h is
chosen such that h < 0 then p(t) could be negative.
On the other hand, if h > 0, then p(t) > 0 and
r(t) = −d(t)2p(t) < 0. In this case, both q(t) and
r(t) are negative but the LQ problem is well-posed.
The essential reason behind this phenomenon is
that the positive terminal cost hx(1)2 outweighs
the negative running cost.

6 Conclusion

Standard LQ theory, which has proved so useful
for control applications in the last decades, has
been extended here to signal models with multi-
plicative noises in both state and control, and with
quadratic weights that are fundamentally differ-
ent from those in the literature. Such models bet-
ter approximate nonlinear stochastic systems and
arise naturally in areas of current interest such as
in finance. A new Riccati equation is introduced
in this paper as an appropriate vehicle for identi-
fying optimal controls and calculating the optimal
cost value.
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