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Abstract

The evolutionary dynamics of SARS-CoV-2 have been carefully monitored since the
COVID-19 pandemic began in December 2019. However, analysis has focused primarily
on single nucleotide polymorphisms and largely ignored the role of insertions and
deletions (indels) as well as recombination in SARS-CoV-2 evolution. Using sequences
from the GISAID database, we catalogue over 100 insertions and deletions in the
SARS-CoV-2 consensus sequences. We hypothesize that these indels are artifacts of
recombination events between SARS-CoV-2 replicates whereby RNA-dependent RNA
polymerase (RdRp) re-associates with a homologous template at a different loci
(“imperfect homologous recombination”). We provide several independent pieces of
evidence that suggest this. (1) The indels from the GISAID consensus sequences are
clustered at specific regions of the genome. (2) These regions are also enriched for 5’
and 3’ breakpoints in the transcription regulatory site (TRS) independent transcriptome,
presumably sites of RNA-dependent RNA polymerase (RdRp) template-switching. (3)
Within raw reads, these indel hotspots have cases of both high intra-host
heterogeneity and intra-host homogeneity, suggesting that these indels are both
consequences of de novo recombination events within a host and artifacts of previous
recombination. We briefly analyze the indels in the context of RNA secondary structure,
noting that indels preferentially occur in “arms” and loop structures of the predicted
folded RNA, suggesting that secondary structure may be a mechanism for
TRS-independent template-switching in SARS-CoV-2 or other coronaviruses. These
insights into the relationship between structural variation and recombination in
SARS-CoV-2 can improve our reconstructions of the SARS-CoV-2 evolutionary history as
well as our understanding of the process of RdRp template-switching in RNA viruses.
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Introduction

Researchers around the world are closely monitoring the evolutionary dynamics of SARS-

CoV-2 (Severe acute respiratory syndrome coronavirus 2), the virus that causes COVID-

19 (coronavirus disease 2019) and the source of the 2020 global pandemic. By studying

the mutational patterns of viruses, we can better understand the selective pressures on

different regions of the genome, robustness of a vaccine to future strains of a virus, and

geographic dynamics of transmission.
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Most evolutionary analysis begins with constructing a phylogenetic tree based on

observed mutations or variants in lineages of SARS-CoV-2. Most of these mutations

are filtered to only single nucleotide polymorphisms (SNPs), as structural variants, par-

ticularly deletions, may be sequencing artifacts of low-quality reads or low-coverage

genomic regions. This particular pipeline of analysis has two shortcomings. First, it

ignores insertions and deletions, despite their known role in viral evolution [1] and

the importance of considering all types of mutations when building an accurate phy-

logenetic tree [2]. Secondly, these phylogenetic trees are typically non-recurrent and

do not take into account the possibility of recombination between viral lineages.

Parallel research has been done to determine whether or not SARS-CoV-2 lineages

have already recombined; however, the conclusions have been mixed [3–5]. Not only

does the relatively small number of mutations in the SARS-CoV-2 evolutionary his-

tory make it difficult to identify a clearly recombined lineage, additionally, the lack of

publicly available raw reads makes it difficult to determine if seemingly recurrent muta-

tions are due to recombination, site-specific hypermutability, or systematic sequencing

error.

Recombination plays an integral role in the evolution of RNA viruses, including those

implicated in recent epidemics: Comparative genomics studies suggest that SARS as

well as a SARS-like coronavirus in bats have recombinant origins [6, 7], co-circulating

and recombinant lineages of MERS-CoV were found in dromedary camels [8] and sev-

eral studies hypothesize SARS-CoV-2 has a recombinant origin from bat coronaviruses,

pangolin coronaviruses, or both [9–12].

It is generally accepted that recombination in RNA viruses is via a copy-choice mech-

anism by which an RdRp switches template strands during negative strand synthesis,

the first step of both sub-genomic transcription and full-genome replication in +ssRNA

viruses [13–16]. In this process (Fig. 1), RdRp disassociates from the template strand

during synthesis of the nascent strand. From there, several reassociation events can

occur. The RdRp can reassociate back to the same template strand, either at the same

or a different loci; reassociate with a homologous template, again either at the same

or different loci; or reassociate with a non-homologous template. Note that throughout

this paper we refer the process of the RdRp reassociating with a homologous tem-

plate at a different loci as “imperfect homologous recombination.” If the RdRp fails to

reassociate, negative strand synthesis will terminate. Outside of known transcription

regulatory sites, what causes RdRp to disassociate and reassociate to a different tem-

plate strand mid-transcription or replication is not well understood [17]. An early study

suggested that in the absence of natural selection, RNA virus recombination occurs

entirely at random with respect to genome position [18], and is independent of RNA

secondary structure or sequence. Successive studies have found secondary RNA struc-

ture motifs that lead to RdRp disassociation and subsequent recombination in RNA

viruses [19–22].

Using 16,662 GISAID sequences [23], we characterize over 100 deletions and inser-

tions in the evolutionary history of SARS-Cov-2 as of early June 2020, and hypothesize

that these indels are the result of imperfect homologous recombination. We offer several

pieces of evidence that suggest this (Fig. 2). (1) We show that the indels in the consensus

GISAID sequences are found in clusters across the genome. (2) Using long-read transcrip-

tomic data [24], we show that these clusters correspond to regions of the genome that
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Fig. 1 Copy-choice recombination is the presumed primary recombination mechanism for RNA viruses.

During negative strand synthesis, the replication complex and the nascent strand disassociate from the

template strand. From there, the replication complex can template-switch, or reassociate with a homologous

or replicate template strand

have high rates of TRS-independent polymerase jumping, hypothetically RdRp template-

switching hotspots. (3) We show that many of these indel hotspots show high rates of

heterogeneity in the raw reads, suggesting that even sequences where the consensus

sequence does not contain the indel may be undergoing de novo recombination at these

sites. We also briefly note that many of these indel clusters are found on “arms” and

loop structures within the predicted RNA secondary structure of SARS-CoV-2, suggest-

ing that global RNA secondary structure may play a role in RdRp template-switching in

SARS-CoV-2 and other coronaviruses.

Materials andmethods

Data access and preparation

To obtain the SARS-CoV-2 consensus sequences, we accessed the GISAID sequences on

June 3, 2020. We filtered to high-coverage full length (>29kb) sequences, where less than

20 bases were missing, totalling 16,662 sequences.

To obtain the raw reads, we accessed the NCBI SRA run browser on June 3, 2020.

We found the accession numbers that corresponded SARS-CoV-2 reads that were full

length, short reads from Illumina sequencing machines, and consisted of less than 1 bil-

lion total base calls (to speed up computation). We downloaded these using the NCBI’s

fastq-dump API.

To compare the regions with enriched numbers of indels to the hypothesized SARS-

CoV-2 template-switching hotspots, we used the deep sequencing long-read SARS-

CoV-2 transcriptome data published by Kim et al. [24]. We used the reads from

the Vero-infected cells, filtered to reads that aligned to the SARS-CoV-2 genome

(VeroInf24h.viral_genome.bam).



Chrisman et al. BioDataMining           (2021) 14:20 Page 4 of 16

Fig. 2 General pipeline of project: using GISAID sequences, we identified indels present in SARS-CoV-2

lineages. We compared the location of these indels to regions of discontinuous transcription breakpoints,

computed the heterogeneity of indels using raw reads, and analyzed the indel locations with respect to the

secondary RNA structure using a simulation of the folded SARS-CoV-2 RNA molecule

Identifying indels

We used MAFFT10 [25] to perform multiple sequence alignment of the GISAID

sequences with NC_045512.2 as the reference sequence.We locally realigned indel calls

that were synonymous using custom python code, which called indels synonymous if the

unions of their flanking regions were the same. (For example, the indels corresponding

to AGGCTG-GGT and AGGCTGG-GT would be considered synonymous). We cata-

logued indels present between positions 100 and 29,800 in the genome, discarding the

more error-prone ends of the genome. The subset of indels that were present in 2 or more

sequences is shown in (Table 1), and the entire set of indels found among these sequences

is shown in Table S1.

To test if the indels were more clustered together than expected by chance, we com-

puted the distance between each unique indel start position and its nearest neighbor indel
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Table 1 Table of indels (Deletion - D, insertion - I) found in at least two sequences

Start Pos Length Type # Seqs Countries

222 1 D 2 USA, England

508 15 D 2 USA

510 9 D 5 USA, France, Scotland, England

515 6 D 18 Belgium, United, USA, Greece, Denmark, Australia, England

515 3 D 6 USA, Australia

518 3 D 4 Spain, USA, Netherlands, Denmark

669 3 D 9 India, USA

686 9 D 55 Sweden, Belgium, USA, Saudi, Canada, Israel, Spain, Portugal,

Netherlands, Iceland, Denmark, Turkey, France, Australia, England

729 9 D 5 Sichuan, Wuhan

1431 3 D 2 USA, Yunnan

1605 3 D 332 Spain, Portugal, Russia, Latvia, Germany, Northern, Australia,

England, Belgium, USA, Netherlands, Iceland, Denmark, Chile, Wales,

Greece, France, Sweden, Taiwan, Finland, Scotland, Pakistan, New

3333 3 D 23 Kazakhstan

6501 3 D 2 England

6506 3 D 2 Iceland

6510 6 D 2 India, Australia

6518 6 D 2 USA

11074 3 I 16 United, Portugal, Switzerland, Taiwan, Jamaica, Scotland, Jordan,
Australia

12620 3 D 2 Netherlands

14865 2 D 12 Wuhan

18412 1 D 6 Wuhan

20423 3 D 2 USA, Portugal

20965 1 D 4 Wuhan

21991 3 D 14 Belgium, India, USA, Saudi, Netherlands, Slovenia, Jordan, England

25532 3 D 2 USA, France

26159 2 D 2 USA

26351 6 D 2 India

27701 3 D 2 England

27848 382 D 13 Singapore

27910 345 D 2 Bangladesh

28090 6 D 3 USA, Iceland, Australia

28254 1 D 6 Wuhan

29593 2 I 2 USA

29686 1 I 7 Iceland, Thailand, England

29723 44 D 2 Argentina

29726 1 D 2 England

29756 7 D 4 India, USA, Netherlands, England

29760 5 D 2 USA

29761 2 D 5 USA, Australia

29788 2 D 3 England

start position. We computed a simulated null distribution by randomly swapping each

indel start locationwith a different loci between 100-29,800 (the regions whichwe allowed

indels to be found in), and recomputed the distance between each start position and its

nearest neighbor distances. We performed this 100,000 times to derive an expected null

distribution of nearest neighbor distances [26–28]. We then compared our true distribu-
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tion of nearest neighbor distances using a Mann-U Whitney test. Note that as most of

our data was not necessarily normally distributed, we opted for non-parametric statistical

tests throughout our analysis.

Comparing with template-switching hotspots in the transcriptome

Kim et al [24] identified non-canonical subgenomic RNAs (sgRNAs) in the SARS-CoV-2

transcriptome characterized by large deletions in themiddle of the transcript, presumably

a result of the template-switching mechanism for discontinuous transcription. From the

viral reads collected in the Kim et al. study, we filtered to reads with a deletion of 100

bases or more relative to the reference genome and computed the locations of the 5’ and

3’ breakpoints. We compared the breakpoint hotspots to the location of the indels we

identified in the GISAID sequences (Fig. 3).

To test if the locations of the indels correlated to the locations of the 5’ and 3’ break-

points in the transcriptome, we created an indel, 5’, breakpoint, and 3’ breakpoint vector

each 29,904 (the length of the SARS-CoV-2 genome) elements long to represent the loca-

tion of indels, the location of the 5’ breakpoints, and the locations of the 3’ breakpoints.

From the indels in Table S1, the indel vector consisted of the number of unique deletions

at the corresponding loci. The 5’ vector consisted of the number of reads with a 5’ break-

point at the corresponding loci. The 3’ vector consisted of the number of reads with a 3’

breakpoint at the corresponding loci. We computed the Spearman correlation between

the 5’ vector and the indel vector, as well as the 3’ vector and the indel vector. [28, 29]

Indel heterogeneity from raw reads

We analyzed the indels in the context of the raw reads for two major reasons. First, we

wished to validate that these indels were in fact true insertions or deletions, and not

the result of sequencing error or low-coverage genomic regions. Secondly, we wished to

measure intra-host heterogeneity at these sites, to determine whether these indels might

be the result of imperfect de novo recombination events (reassociation of RdRp with a

homologous template at a different loci, Fig. 1) or located in hypermutable regions, or

whether they were inherited from the a viral lineage in the previous host.

We accessed NCBI’s SRA run browser on June 3, 2020 to download the fastq files

for the full genomic sequences of SARS-CoV-2. We restricted to Illumina reads, as short

reads have smaller error rates than long reads and are less prone to systematic sequenc-

ing types of errors [30]. We quality filtered the reads using fastp [31], with a qualified

quality phred cutoff of 20, an unqualified percent limit of 20, and a required length of

50. Using NC_045512.2 as the reference, we used bwa-mem [32] to align reads to the

reference genome, following the standard paired for single-end read pipelines as appro-

priate. We marked and removed PCR duplicates using GATK’s MarkDuplicates. We

used lofreq to quality score the indels, perform local realignment, and compute indel

heterogeneity [33]. We used an in-house python script to visualize the raw read align-

ment compared to the reference genome for a given sample and indel loci as shown in

Fig. 5.

We performed a significance test to see if samples had higher heterogeneity at our cat-

alogued indel sites compared to the rest of the genome. Using the raw reads without an

indel as the dominant genotype at a given site (alternate allele frequency as computed by

lofreq (AF) ≤ .5), we compared the indel frequency at our aforementioned indel sites
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Fig. 3 a Heatmap of 5’ breakpoint vs 3’ breakpoints from long-read TRS-independent discontinuous

transcripts. Reads were considered TRS-independent discontinuous transcripts if the leader sequence was

not near the transcription regulatory sequence and the aligned read contained a deletion of 100 or more

bases. The heatmap and histograms are in bins of 100 bases. Colors in the heatmap and amplitude of blue

and green lines are log-normalized. b The log-normalized number of discontinuous transcripts with given 5’

and 3’ breakpoints overlaid with the locations of the indels (by 5’ start position)

with the frequency of indels at the rest of the genome. Using a Mann-U Whitney test we

computed a p-value for the null hypothesis that the heterogenity rates are the same in our

indel sites compared to the rest of the genome [28, 34, 35].

Predicted RNA secondary structure

It is presumed that RdRp template switching is responsible for the discontinuous tran-

scription and recombination in coronaviruses. While transcription regulatory sites (TRS)

govern some of the leader-to-body fusion sites, little is known about what mechanisms

are behind TRS-independent transcription and replication. We used RNAfold [36] as



Chrisman et al. BioDataMining           (2021) 14:20 Page 8 of 16

well as mxfold [37] with the default parameters, to generate estimates of the sec-

ondary structure of the reference SARS-CoV-2 RNA genome.We chose these two folding

prediction tools because we wished to use both a thermodynamics-based prediction

method, and a machine learning-based prediction method. RNAfold is a commonly

used thermodynamics-based prediction method, and mxfold is a recent hybrid (using

both machine learning and thermodynamics) prediction method that has been shown to

perform well on longer RNA sequences [38].

We used RNApdbee [39, 40] and bpRNA [41] to annotate the secondary RNA struc-

tures. We visualized all RNA structures using VARNA [42].

To test if indels preferentially occurred in certain secondary structures, we compared

the distribution of secondary structures at our indel locations against the distribution of

secondary structures in the full genome, using a chi-square test. We computed the distri-

bution of secondary structures by mapping the start locations of each unique indel, and

compared that to the distribution of secondary structures in loci 100-29800 (the range

which we allowed indels) using a chi-square test. [43] We performed this for every com-

bination of RNA folding prediction software (RNAfold, mxfold) and RNA secondary

structure annotation software (RNApdbee, bpRNA).

Results

SARS-CoV-2 lineages contain over 100 indels

Ignoring the error-prone and low-coverage 5’ and 3’ ends of the genome, we found 122

total indels between loci 100 and 29,800 (Table S1).

Table 1 shows the most common indels, that is those that were found in two or more

sequences. Of these 39 common indels, 24 are deletions or insertions of multiples of 3

bases, and would not result in a frameshift. Most (8) of the indels that would result in a

frameshift occur downstream from loci 29500, after the stop codon of the last canonical

open reading frame.

Visually, the indel sites appear to be clustered together. To test if this clustering was

significant, we computed the distance between each indel start location and the near-

est indel. We compared this distribution to a simulated null distribution and show that

the observed indels are closer together to each other than expected by chance (Mann-U

Whitney p-value 1.7x10−15).

Indels cluster at SARS-CoV-2 template-switching hotspots

The coronavirus transcriptome is characterized by discontinuous transcription events.

During discontinuous transcription, RNA-dependent RNA polymerase (RdRp) ‘jumps’

from a 5’ breakpoint to a 3’ breakpoint. This discontinuous transcriptionmay occur across

a single genome of a virus or it may involve 2 copies of the RNA genome, with the RdRp

switching from one template (leader) to another (body) mid-transcription. [13, 16, 44]

According to the prevailing model, leader 5’ breakpoints and body 3’ breakpoints occur at

short motifs called transcription-regulatory sequences (TRSs) adjacent to open reading

frames [45, 46]. In a deep sequencing study of the SARS-CoV-2 transcriptome, Kim et. al.

found that there were many discontinuous transcription events not characterized by TRS

(known as TRS-L-independent fusion), with both the 5’ and 3’ breakpoints clustered at

specific regions of the genome. The mechanism behind TRS-L-independent fusion is not

currently well understood.
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We found that the number of unique indels at a given loci and the number of discon-

tinuous transcripts with a 5’ or 3’ breakpoint were highly correlated (Spearman p-value

3.5x10−5 for indel count vs 3’ count, p value 5.7x10−8 for indel count vs 5’ count). In

Fig. 3, we note several regions of interest, where the genome was enriched for indels iden-

tified from the GISAID sequences and where the genome was enriched for either 5’ or 3’

breakpoints.

Indels have intra-host heterogeneity

Using the raw reads, we found high rates of intra-host heterogeneity for the indels.

Figure 4 shows the rates of heterogeneity for indels at each loci as computed from the raw

reads. Many of the same regions of the genome enriched for 5’ and 3’ breakpoints in the

transcriptome, particularly regions B, C, D, and F, also have high rates of heterogeneity

for small deletions and insertions within the raw reads.

As seen in Fig. 5, many indels have samples with high heterogeneity. From the raw reads

without an indel as the dominant genotype at a given site, we compared the indel fre-

quency at our aforementioned indel sites, with the alternative variant frequency of indels

at the rest of the genome. We show that our indel sites have higher rates of heterogeneity

(Mann-UWhitney p-value 0.0005) compared to the rest of the sites in the genome.

However, we also see samples with high homogeneity for a given structural variant call,

as shown in Fig. 5. This suggests that structural variants may occur by either a recombi-

Fig. 4 Rates of heterogeneity in raw reads. a Alternate allele frequency vs indel location as computed from

raw reads by lofreq. bMean alternate allele frequency vs indel location as computed from raw reads by lofreq
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Fig. 5 Raw read alignment for several common deletions Examples of the raw reads (10 raw reads randomly

chosen) for indels with strong homogeneity in one host and high heterogeneity in another host. The red line

the reads below indicates where the insertion or deletion of interest is. A “-” indicates a gap in a read relative

to the reference, or vice versa, whereas blank spaces simply indicate the ends of a read. (a) Examples of raw

reads with a strong homogeneity at the indel, suggesting that the indel arose from an event in a previous

host. (b) Examples of raw reads with intra-host heterogeneity at the indel, suggesting that these indels are de

novo events

nation or mutation event in a previous host (resulting in high intra-host homogeneity),

or from de novo recombination within a current host (resulting in high intra-host

heterogeneity).

Indels cluster at arms and loops in the secondary RNA structure

To see if there were any obvious structural motifs associated with indels or hypothesized

recombination hotspots, we simulated the secondary RNA structure of SARS-CoV-2 and

analyzed the locations of the indel clusters, using both RNAfold (Fig. 6 and Fig. S1)

and mxfold (Fig. 7 and Fig. S2). From Figs. 6 and 7, RNAfold and mxfold both

predict indel clusters to be on “arms” of the folded RNA; that is, highly accessible

regions that are extended away from the RNA backbone. In particular, regions B, and

D-F are consistently located on the some of the furthest extensions of the folded RNA

molecule.

We annotated the RNA structures using both RNApdbee [39, 40] and bpRNA [41],

which derive secondary structures. RNApdbee can annotate stems, loops, and single

strands, while bpRNA can gives slightly more sophisticated annotations such as stem

loops, bulges, and inner loops.

To test if the indels preferentially occurred in any secondary structure, we annotated the

RNA structures using RNApdbee [39, 40] and bpRNA [41] and compared the distribution

of secondary structures at indel sites to the overall distribution of secondary structures.

We found that in every combination of RNA folding prediction software and secondary

structure annotation program, indel sites were preferentially were enriched for loop struc-

tures and underenriched for stem structures: For the bpRNA annotations, indel starts

were disproportionally in hairpin, internal, and multiloops, rather than bulges and stems.

This was true for both the structure predicted by RNAfold (chi-square p-value 6x10−4)

and the structure predicted by mxfold (chi-square p-value 6x10−6). For the RNApdbee

annotations, indel starts were disproportionally in loops and single strands rather than

in stems. Again, this pattern held for both RNAfold predictions (chi-square p-value

1x10−4) and mxfold predictions (chi-square p-value 4x10−4).
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Fig. 6 RNA structure was simulated using RNAfold and visualized with VARNA. The zoomed-in subsections

of RNA are from the selected regions of both high indel and discontinuous transcription breakpoint

enrichment. Green areas represent regions with an indel. Note that the structures zoomed-in subgenomic

RNAs have been manually refined to avoid overlap of loops for easier visualization

Discussion

We have catalogued over 100 indels in the SARS-CoV-2 genome, a type of mutation

that was largely ignored in the early analysis of SARS-CoV-2 evolutionary history. Via

the GISAID consensus sequences, publicly available raw reads, long-read deep transcrip-

tomic data, and simulated RNA structure, we show several independent pieces of evi-

dence that suggest that these indels are artifacts of recombination, and that SARS-CoV-2

contains several recombination hotspots.

Interestingly, using sequence-based recombination detection approaches, previous

studies have identified several of our hypothesized recombination hotspots as recom-

bination breakpoints in SARS-CoV-2 and other related coronaviruses. Lau et al. found

evidence of the N and ORF8 proteins of SARS being acquired from recombination

between horseshoe bat viruses. They identified recombination breakpoints at 20900,

26100, 27128, and 28635 [6] - which correspond well to our indel hotspots D, E, and

F. Hom et al. also identified a possible recombination breakpoint around 21495 in trac-

ing SARS from a bat coronavirus [7], corresponding to indel-enriched region D. Lam et

al. identified a possible recombination schema for SARS-CoV-2 from Malayan panglolin

viruses and bat CoVs with breakpoints around 11000, 21000, 23000, 24000 [10], which

corresponds to C, D, and E indel-enriched regions. Analysis on the sarbecovirus recombi-

nant origins of SARS-CoV-2 identified possible recombination breakpoints at 1684, 3046,

9237, 11885, 21753, 22773 and 24628. [47]. 1684 is close to 1605, at which 332 of the

GISAID sequences we analyzed have a deletion 3 bases long. The latter 4 breakpoints fall
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Fig. 7 RNA structure was simulated using mxfold and visualized with VARNA. As in Fig. 6, the zoomed-in

subsections of RNA are from the selected regions of both high indel and discontinuous transcription

breakpoint enrichment. Green areas represent regions with an indel

close to or within our identified indel-enriched regions C, D, and E. We also see several

deletions between 2500-3500 (possibly linked to the breakpoint hotspot at 3046), though

we see no indels within 500b of 9237.

Globally, regions enriched for indels and transcriptional breakpoints appear to fall on

“arms” of the simulated folded RNA molecule. We hypothesize the because these regions

of the RNA molecule are extensions from the backbone, they are easily accessible and

therefore the RdRp can “jump” between homologously aligned replicate molecules. We

note that this is a crude representation of the secondary RNA structure; it ignores the

interactions between genome and nucleocapsid, uses only the reference sequence and

does not capture how mutations might change the folded RNA structure in different lin-

eages, ignores psueodknots, and only shows the primary consensus fold. Furthermore,

RNA folding prediction algorithms have historically decreasing performance on longer

RNA molecules [38]. However, given that both RNAfold and mxfold both showed

indels significantly enriched in loop structures, it seems possible that conserved RNA

structure does play some role in RdRp disassociation. Additional work needs to be done

to determine if additional local sequence or structural motifs exist that guide RdRp

disassociation.

There are several alternative explanations for these highly enriched regions of indels,

but we believe that they are unsupported by the combined evidence in the GISAID

sequences, raw reads, and transcriptome data. First of all, addressing the obvious possi-

bility of systematic sequencing or alignment error, we see no signs in the raw read data
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that the indels are due to such error types. The indels occur in many Illumina samples,

which are not prone to systematic sequencing errors, and many samples have nearly 100%

homogeneous calls for a given indel. Many heterogeneous reads have alternate variant

frequencies too high to be consistent with Illumina error profiles [48, 49].

Another theory is that perhaps indels occur at hypermutable sites within the genome,

and it is either by chance that they appear to be clustered in several regions, or selective

pressure weeds out indels in other areas of the genome. However, recall that these regions

are also enriched for 5’ and 3’ breakpoints in the transcriptome, which we calculated by

only considering reads with a deletion >100 bases. If these sites are in fact hypermutable,

then they are also hypermutable for larger indels as well; selective pressure would not be

acting on the transcriptome in such amanner. It seems possible, however, that theremight

be additional template-switching hotspots that can be seen in the discontinuous tran-

scriptome, but not in the regions of indel enrichment because selective pressure makes

SARS-CoV-2 unable to handle indels in this region. [50] For example, there seems to be

enrichment of 5’ end breakpoints in the discontinuous transcriptome between loci 8000

and 9000, however we found no indels in that region (see Fig. 3); perhaps a indel in this

region would result in a dysfunctional phenotype.

Finally, these indels might be the result of RdRp disassociating and reassociating from

one location to another on the same strand of RNA, rather than from a template strand

to a nascent strand of a viral replicate. This would mean that these indels are not created

from template switching between two separate viral strands, but from RdRp disassociat-

ing and reassociating on the same viral strand. This is possible; however it is likely that

if an area is a hotspot for RdRp jumping within the same strand, it is consequently a

hotspot for RdRp template switching between two different template strands. Recombina-

tion between two or more SARS-CoV-2 template strands could be verified experimentally

by measuring recombination rates between mutant viral lineages, or computationally by

finding a patient that has been co-infected by two different SARS-CoV-2 lineages with

discernible mutations on either side of a recombination breakpoint. This computational

verification may be difficult as it would require co-infection in a patient, the presence of

both lineages within the same cell, recombination, and the recombinant lineage to make

it into the sequencing reads.

We emphasize how valuable the raw or aligned reads are for better understanding of

SARS-CoV-2 evolutionary dynamics. Although the consensus sequences such as those on

GISAID provide some information aboutmutational patterns and evolutionary dynamics,

there are several shortcomings in consensus sequences that raw reads can address. As we

have shown, using raw reads we can quantify site-specific mutability. An estimate of per-

site variation, both for SNPs and for indels, is essential for building accurate phylogenetic

trees [51, 52], which can then be used to trace the spread of SARS-CoV-2 and identify

recurrent mutations or sites under high selective pressure [53]. Furthermore, as SARS-

CoV-2 continues to spread and inevitably recombines with either itself in the form of

a different lineage, another coronavirus, or another RNA molecule, the raw reads with

provide a clearer understanding of recombination patterns than consensus sequencing

can.

We therefore urge the scientific community to make their raw reads publicly available if

possible. While there are possible privacy concerns with human DNA or RNA contami-

nation in the data, most pipelines that generate a consensus sequence involve filtering our
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reads aligning to the human genome, thereby maintaining privacy and lowering barriers

for open access to the scientific community.

In conclusion, we have catalogued over 100 indels present in the SARS-CoV-2 evo-

lutionary history thus far and shown several independent pieces of evidence that these

clusters of indels indicate recombination hotspots. An improved understanding of struc-

tural variation as well as recombination in coronaviruses will improve phylogenetic

reconstructions of the evolutionary history of SARS-CoV-2 and other coronaviruses, and

is one step closer to understanding the outstanding questions surrounding the RdRp

template-switching mechanism in RNA viruses.
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