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clamped
boundary

Fig. 1 Schematic sketch of the indentation of a clamped membrane. An

indentation, depth δ is imposed at the centre and requires the

application of a force F .

ing δ , the force transforms from a linear response, F/δ ∼ Tpre,

to the nonlinear Schwerin response, F/δ 3 ∼ Y/R2
clamp, depend-

ing on the indentation depth δ . Indeed, noting that the tran-

sition between these qualitatively distinct responses occurs at

δ ∼ Rclamp(Y/Tpre)
1/2, it is useful to define the dimensionless in-

dentation depth:

δ̃ =
δ

Rclamp

(

Y

Tpre

)1/2

. (2)

The transition from linear to cubic force–displacement laws is

therefore expected to occur when δ̃ ∼ O(1). It is important to

notice that, if the stretching modulus is sufficiently large in com-

parison to the pre-tension (as in most indentation experiments),

it is easy to reach the nonlinear regime (δ̃ ≫ 1) even while the

characteristic slope (∼ δ/Rclamp) remains very small. This obser-

vation means that it is appropriate to use the Föppl-von-Kármán

(FvK) equations5,6, which assume small slope, but nevertheless

do capture the geometric nonlinearity of the response.

It is also useful to introduce a dimensionless measure of the

force:

F =
Y 1/2F

T
3/2

pre Rclamp

. (3)

With this definition, Schwerin’s law may be recast in the simple

form: F/δ̃ 3 = α(ν), where ν is the Poisson ratio, and α(ν) is

a smooth, nearly constant function, which has been computed

previously7.

1.2 Main results

At a qualitative level of understanding, Eq. (1) describes correctly

the nature of the force-displacement function. From an experi-

mental point of view, however, what is desired is an analytical

formula for F (δ̃) that interpolates correctly between the linear

and nonlinear regimes, and is uniformly valid over the whole in-

terval of feasible indentation depths. Unfortunately, such a for-

mula does not exist, even while restricting attention to purely

Hookean responses. As we will show in this paper, this difficulty

is intimately related to the ideal nature of Schwerin’s calculation,

which ignores both pre-tension and the finite size of the indenter.

We find that Schwerin’s ideal approach is a useful starting point

in the nonlinear regime, δ̃ ≫ 1, where the effects of Tpre and Rin

can be accounted for as regular perturbations of Schwerin’s re-

sult. However, for small indentation depths, δ̃ ≪ 1, the effects

of both pre-tension and the finite size of the indenter tip are sin-

gular and intertwined. In particular, we find a linear response

with a spring constant, F/δ̃ ≈ 2π/ log(Rclamp/Rin), that vanishes

as Rin → 0. However, for a point indenter, the linear response with

δ̃ ≪ 1 becomes sub-linear so that F/δ̃ → 0 as δ̃ → 0. Our results

on the effect of the size of the indenter tip are summarized in

Table I.

One notable example, to which our results should be partic-

ularly relevant, is the celebrated measurement of the stretching

modulus of graphene1; here an experimental force–indentation

curve, F(δ ), was obtained by using an Atomic Force Microscope

(AFM) as the indenter. Following7, Lee et al. 1 assumed that

F(δ ) can be expressed as an algebraic sum of Schwerin’s non-

linear term and a linear term whose coefficient is proportional

to some unknown tension Tpre, independently of the indenter’s

size. Fitting this proposed algebraic expression (with 2 unknown

parameters) to the measured F(δ ), the authors evaluated the pre-

tension, and the stretching modulus Y . In §4 we discuss the ac-

curacy of this approach, and show that it may often lead to sig-

nificant errors in the estimated values of the stretching modulus

and pre-tension in the sheet. Furthermore, in §5 we propose a

method to extract the stretching modulus from the linear regime

of small indentation depth for sheets subject to a large pressure

(a ‘nano-balloon’).

In the polymer science community, several workers have used

various approaches to describe the metrology of thin polymer

sheets from indentation measurements. However, these works

often use uncontrolled (and/or over-simplified) assumptions, or

include unnecessary details in the model:

(A) One example is Wan et al. 3 , in which the stress in the sheet

is assumed to be uniform and isotropic throughout the indenta-

tion (though increasing with indentation depth). This simplifica-

tion facilitates analytical progress but neglects an important dif-

ference between solid sheets and liquid membranes (which can-

not support anisotropic stresses in equilibrium). Though the scal-

ing behaviour that results from such analyses is correct, the calcu-

lated prefactors can vary considerably8, undermining the validity

of any resulting fit.

(B) Several previous works have provided numerically-

determined plots of the force–displacement relationship, together

with the appropriate asymptotic limits of this force–displacement

relationship in the limits of large and small indentation depths,

as discussed in §1.1. While these calculations are correct, the

authors of these studies often present approximate analytical for-

mulae obtained by adding the two asymptotic results (an additive

composite expansion9). However, they report these analytical

formulae without any discussion of the errors inherent in their

use. We shall show that the errors introduced can be large, par-

ticularly at the intermediate indentation depths that are often en-

countered experimentally.

(C) An unnecessary complication in numerous models of in-

dentation is the inclusion of bending forces2,3. As we will show,

despite enhancement of bending forces by strong spatial variation

of the profile, they are dwarfed by tensile forces, and can be safely

ignored in many experimentally-relevant situations.

(D) Another flawed approach for indentation-assisted metrol-
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ogy, proposed very recently2, is to extract the pre-tension from

the deformed shape of the sheet. As we show below, the only

robust information that can be extracted by fitting the shape is

whether the response is dominated by pre-tension (i.e. δ̃ ≪ 1),

or rather by the stretching of the sheet (i.e. δ̃ ≫ 1). However,

any attempt to determine the actual value of the pre-tension from

measurements of the shape is doomed to fail.

1.3 Outline

We start in §2 by setting up the equations, identifying dimension-

less groups that govern the mechanics, and performing a simple

calculation that reveals the singular nature of the linear response

regime. In §3 we specialize to the case of pointwise indentation,

for which we obtain an analytical solution, valid for the whole

range of indentation amplitude, and show that the regime δ̃ ≪ 1

is characterized by a sub-linear response. In §4 we return to an

indenter of finite size, Rin ≪ Rclamp, and characterize the singular

nature of the linear response at δ̃ ≪ 1, together with its relation-

ship to the point-indenter results. We then discuss, in §5, how

an internal pressure affects these results. In §6 we use our re-

sults to critique previous works and shed light on some subtleties

and sources of confusion in this problem. Finally, in §7 we con-

clude and note an important effect on the response if the clamped

boundary conditions are relaxed.

2 The FvK equations

We begin with the Föppl-von-Kármán (FvK) equations5,6 relating

the out-of-plane membrane displacement ζ (r) to the Airy stress

function ψ(r). (Here ψ is defined such that the principal stresses

are σrr = ψ/r and σθθ = ψ ′, where we use the axial symmetry of

the setup.) We then have the vertical force balance equation for

the membrane in Rin < r < Rclamp, i.e.

−
1

r

d

dr

(

ψ
dζ

dr

)

= 0 (4)

and hence

ψ
dζ

dr
=

F

2π
(5)

where the constant of integration is related to the indentation

force F applied via a simple force balance.

The in-plane stress is coupled to the out-of-plane displacement

by the compatibility of strains equation, i.e.

r
d

dr

[

1

r

d

dr
(rψ)

]

=− 1
2Y

(

dζ

dr

)2

. (6)

2.1 Boundary conditions

The governing equations (5)–(6) are to be solved with appropri-

ate boundary conditions. The conditions on the vertical displace-

ment are clearly:

ζ (Rin) =−δ , ζ (Rclamp) = 0, (7)

corresponding to an imposed indentation depth at the indenter

and zero vertical displacement (where the clamping is imposed)

at the outer edge of the film, r = Rclamp.

The clamping boundary condition requires a little thought.

Prior to clamping and additional deformation being imposed,

there is a base horizontal displacement (due to the pre-tension

Tpre) u(r) = u0(r), where

u0(r)

r
= εθθ =

σθθ −νσrr

Y
=

(1−ν)Tpre

Y
, (8)

with Y = Et the stretching modulus of the material and ν its Pois-

son ratio. We assume that this clamping is imposed, and is per-

fectly effective, at both the outer edge of the film and the point

where contact is first made with the indenter (corresponding to

a cylindrical, no-slip indenter). Other variants of this condition,

e.g. perfect slip, are expected only to modify the numerical pre-

factors in the analysis that follows.

At the points where clamping in imposed, the horizontal dis-

placement must remain at the original values given by u0(r), i.e.

u(Rclamp)

Rclamp
=

u(Rin)

Rin
=

(1−ν)Tpre

Y
.

Since our problem is most commonly solved in terms of the stress

within the film using the Airy stress function ψ(r), it is useful to

express the clamping boundary condition as:

ψ ′(Rin)−ν
ψ(Rin)

Rin
= ψ ′(Rclamp)−ν

ψ(Rclamp)

Rclamp
= (1−ν)Tpre. (9)

2.2 Non-dimensionalization

To facilitate the solution of the problem, we use dimensionless

variables in the remainder of the paper, letting

ρ = r/Rclamp, Ψ = ψ/(TpreRclamp), Z =
ζ

Rclamp

(

Y

Tpre

)1/2

.

(10)

The dimensionless versions of the governing equations (5)–(6)

and boundary conditions (7)–(9) are given in Appendix A.

Our problem depends on three dimensionless parameters. The

first is the geometric parameter

ρin = Rin/Rclamp,

which measures the radius of the indenter to that of the mem-

brane. To simplify the discussion we will assume that ρin is

constant throughout a particular experiment (i.e. the indenter

is cylindrical). However, we note in passing that, for a non-

cylindrical indenter, ρin, may depend on δ ; we shall discuss the

significance of this in light of our results in §6.1.

The other two dimensionless parameters, defined in (2) and

(3), evolve during the indentation: the dimensionless indentation

depth δ̃ , (2), gives a measure of the indentation depth compared

to that at which the stress induced by indentation becomes com-

parable to the pre-tension. We therefore expect that for δ̃ ≪ 1

the tension in the membrane is ‘close’ to the pre-tension (with

caveats that we discuss in due course); for δ̃ ≫ 1 the effect of

the pre-tension is expected to be negligible. The final dimen-

sionless parameter is the dimensionless indentation force F , (3).

The key quantity of interest is therefore the dimensionless force–
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Table 1 A summary of the main results for the force–displacement relations

Indenter Size
Small Intermediate Large
displacements displacements displacements

Rin = 0 F/δ̃ ≈ 2π/ log(4/δ̃ ) — F/δ̃ 3 ≈ α(ν) (Schwerin 4)

Rin ≪ Rclamp F/δ̃ ≈ 2π/ log(
Rclamp

Rin
) F/δ̃ ≈ 2π/ log(4/δ̃ ) F/δ̃ 3 ≈ α(ν)+O(Rin/Rclamp)

2/3

displacement relationship F (δ̃ ).

In the limit of small indentations, δ̃ ≪ 1, the fact that the ten-

sion is approximately unchanged from the state prior to indenta-

tion may be exploited to show that the poking force F is linear

in δ̃ (see Appendix A and Jennings et al. 10); in dimensionless

terms:

F =
2π

log(1/ρin)
δ̃ . (11)

This simple force law shows that the limit ρin → 0 is singular:

apparently the membrane becomes arbitrarily compliant for suf-

ficiently small ρin and δ̃ . To understand better what happens as

ρin → 0 we first consider the limit ρin = 0, a point indenter. We

shall see that for ρin ≪ 1 the small indentation behaviour (11)

only holds for δ̃ . δ̃∗(ρin), where δ̃∗(ρin)→ 0 as ρin → 0. Instead,

a new response emerges for δ̃∗(ρin) . δ̃ ≪ 1 that is independent

of the indenter radius.

3 Point Indentation

With ρin = 0, the problem simplifies considerably, allowing analyt-

ical progress to be made; the details of this analytical calculation

are presented in Appendix B.

3.1 Analytical results

We are able to find (see Appendix B) a parametric representation

for the force–displacement relationship in terms of Φ̃1(δ̃ ), which

is defined implicitly by

δ̃ (Φ̃1) =
2

A(Φ̃1)1/2
sinh−1(Φ̃

1/2
1 ) (12)

where

A(Φ̃1) =
2

1−ν

[

1−

(

1+ Φ̃1

Φ̃1

)1/2

sinh−1(Φ̃
1/2
1 )

]

+ Φ̃1. (13)

The indentation force required to obtain a particular indentation

depth is then given by

F (Φ̃1) =
4π

A(Φ̃1)3/2

[

Φ̃
1/2
1 (1+ Φ̃1)

1/2 − sinh−1(Φ̃
1/2
1 )

]

(14)

with Φ̃1 and A(Φ̃1) as defined in (12) and (13), respectively.

Analytical expressions may also be found for the stress within

the membrane, and the vertical displacement of the membrane

(see Appendix B). Typical profiles for the stress and membrane

displacement are shown in figure 2.

3.2 Force law

In Eqs (12) and (14), we have a complete parametric representa-

tion of the force–displacement relationship. It is, however, useful

to extract from this exact relationship simple, approximate force

10
-3

10
-2

10
-1

10
0

10
0

10
1

0
-1

-0.5

0

0.5 1

Fig. 2 Profiles from the analytical solution for a point indenter with

indentation depth δ̃ = 1, ν = 1/3. Main figure: the principal stresses σrr

(solid curve) and σθθ (dashed curve), show a ρ−2/3 (solid line)

singularity as the indenter is approached, ρ → 0. Inset: The profile of the

indented sheet.

laws that may be used in the limits of small and large indentation

depths.

For small indentation depths, δ̃ ≪ 1, we find∗ that the dimen-

sionless indentation force F satisfies

δ̃ =
F

2π
log(8π/F ), (15)

which can be approximately inverted to give

F =
2πδ̃

log
[

4

δ̃
log 4

δ̃

] . (16)

(However, note that the original form in (15) has an apprecia-

bly smaller error when compared with the full result, as shown

in figure 3.) The force law in (16) shows sub-linear growth with

indentation depth, δ̃ : F/δ̃ → 0 as δ̃ → 0. For a finite indenter

radius, ρin, (16) therefore represents a softer spring than the lin-

ear force law given in (11). However, in the limit ρin → 0, the

point-like response (16) prevents the arbitrary softening that led

us to consider the point indenter limit.

For large indentations, we find that

F = α(ν)δ̃ 3 (17)

where α(ν) is a prefactor that must be determined from the so-

lution of a transcendental equation, see Appendix B. Crucially,

∗A similar result was obtained in a simplified model with a constant applied ten-

sion 11.
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Fig. 3 The numerically-determined stiffness, k = F/δ̃ , for point

indentation of a clamped membrane. Solid curves show the full result

(obtained by plotting δ̃ (Φ̃1) and F (Φ̃1) parametrically from (12)–(14),

respectively. Results are shown for ν = 1/2 (red) and ν = 1/3 (blue).

The plot of stiffness versus δ̃ emphasizes that, in the point indenter limit,

there is no true linear stiffness (i.e. there is no region in which F ∝ δ̃ ).

Asymptotic results are also shown: (15) (dashed curve) is valid for

δ̃ ≪ 1 while (17) (dash-dotted lines) is valid for δ̃ ≫ 1. Note also that the

explicit form of the small displacement force law (16) (dotted curve),

gives less satisfactory agreement with the analytical result than the

implicit form (15).

we find that α(ν) does not vary significantly with Poisson ratio ν

in the relevant range: α(1/3) = π/3 ≈ 1.047 and α(1/2) ≈ 1.213.

The approximation α(ν)≈ 0.867+0.2773ν +0.8052ν2 is accurate

to within 0.7% for all 0 ≤ ν ≤ 1/2.

The force–displacement relationship given by (12) and (14) is

shown in figure 3 for two different values of the Poisson ratio ν ,

together with the asymptotic results given above. We see that

the agreement is good and, further, that, as expected from the

hypothesized independence of Tpre, F ∼ δ̃ 3 for δ̃ ≫ 1. However,

the key observation is that at small indentation depths the force

law is subtly different from the linear relation F ∝ δ that is often

assumed4,7,12,13. The result, (11), corresponds to an apparent

stiffness that increases logarithmically with increasing indenta-

tion (as seen in figure 3). Its appearance is intimately related

to the point indenter assumption, since this causes both compo-

nents of the stress to grow indefinitely as the origin is approached,

σrr,σθθ ∝ ρ−2/3 (see the stress profiles in figure 2). A similar ap-

parent divergence may be generic in such problems, but is usually

cut-off by the finite radius of the indenter (which prevents this di-

vergence reaching the origin). We therefore move on to consider

how the effects of a finite indenter size ameliorates this singular-

ity, and the practical relevance, if any, of (15).

4 The role of finite indenter size

With a finite indenter, ρin > 0, it is possible to make some analyt-

ical progress using the same techniques as outlined in Appendix

B for a point indenter. However, in this case there is no analogue

of the parametric representation in (12)–(14). Instead, we use

numerical solutions of the dimensionless problem (see Appendix

A), using the MATLAB routine bvp4c. We also consider the limits

of small and large indentations asymptotically.

4.1 Small indentation depths

The result for small indentations and a finite indenter radius was

given in (11). Here we merely need to quantify what is meant

by ‘small’ in this case: the force in (11) becomes small compared

to that for a point indenter with the same indentation depth δ̃ ,

given by (15), when

δ̃ ∼ δ̃∗ = 4ρin log(1/ρin). (18)

We therefore expect that for δ̃ . δ̃∗ the force–displacement re-

sponse is given by (11). For δ̃∗ . δ̃ . 1, however, the details of

the indenter are lost and we expect to return to the appropriate

result for the point indentation case, namely (15).

4.2 Large indentation depths

The singular dependence on ρin just observed is coupled to the

pre-tension. However, for large indentation depths, the pre-

tension does not play a significant role (as in the point inden-

tation case) and so the behaviour should be well-described by the

corresponding solution for a point-indenter. As a result, we ex-

pect to again recover the cubic force-law F ∼ δ̃ 3 with a prefactor

that approaches α(ν), given in (17), in the limit ρin → 0. With

ν = 1/3, the classic Schwerin solution4 may readily be adapted to

determine α(ν ;ρin) explicitly. In our notation

F

δ̃ 3
= α(1/3;ρin) =

π

3

(

1−ρ
2/3

in

)−3
, (19)

valid for all ρin < 1. An approximate result corresponding to (19)

for ν 6= 1/3, and valid when ρin ≪ 1, is given in Appendix B.

In the main text we focus on ν = 1/3; a comparison between the

large indentation result (19) and numerical simulations is shown

in figure 4a. This shows that the force–displacement law is well

captured by the asymptotic results (11) and (19) in the limits of

small and large indentation depth, respectively. Of particular in-

terest is the observation that for small indenters, ρin . 0.01, the

behaviour at intermediate displacements (4ρin log(1/ρin). δ̃ . 1)

is more accurately described by the point force result (15), than

the finite indenter result (11). This observation suggests that ex-

perimental results may not actually be in the linear regime (11)

for as long as is usually believed. In §6 we will discuss further the

implications of this observation.

4.3 Errors at intermediate displacements

The results we have discussed thus far hold only for large or small

displacements. In many practical applications, the range of inden-

tation depths covers an intermediate region. Since no asymptotic

results are known that are able to transition smoothly from small

to large indentation depths, it is common to form the sum of the

small- and large-indentation asymptotic results, giving

F ≈ Fsum =
2π

log(1/ρin)
δ̃ +α(ν ;ρin)δ̃

3. (20)
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Fig. 4 The error inherent in using the approximate expression

Fsum(δ̃ ;ρin) depends on the size of the indenter and the regime of

indentation. (a) The numerically determined stiffness, k = F/δ̃ , is

plotted as a function of δ̃ for a point indenter (black solid curve),

ρin = 10−4 (red solid curve) and ρin = 10−2 (blue solid curve). This is to

be compared to the approximation, Fsum(δ̃ ;ρin) (defined in (20)), which

is shown by the dashed curves of the same colour. For δ̃ ≪ 1, both the

numerics and the approximate expression Fsum(δ̃ ;ρin) reproduce the

expected constant stiffness mode shown by a circle (ρin = 10−4) and

triangle (ρin = 10−2). However, at intermediate indentation depths

δ̃ = O(1), the error between the approximation and computations grows.

(b) The relative error, err(δ̃ ), in the force law F (δ̃ ) incurred by using

Fsum(δ̃ ;ρin), see eqns (20) and (21). Results are shown for ρin = 10−4

(red), ρin = 10−3 (green) and ρin = 10−2 (blue). Here ν = 1/3 in all

computations.

gas

Fig. 5 Schematic showing the setup for an indented ‘nano-balloon’ (a

sheet that is clamped and subject to a pressure difference). In the

absence of indentation, the balloon takes a form close to a spherical cap

(shown by the grey dashed curve); this cap has height h0, and radius of

curvature Rcurv ≈ R2
clamp/2h0. In indentation, the height of the central

point is imposed to be a depth δ below the clamped edges; the

indentation depth measured relative to the inflated height is then

∆δ = δ +h0.

In fig. 4(b) we show the relative error introduced by using this

simple expression rather than the true, numerically determined,

force law F (δ̃ ). In particular, we define the relative error

err(δ̃ ) = |1−Fsum(δ̃ )/F (δ̃ )|. (21)

We see that the error can in fact be very large for δ̃ = O(1) and,

perhaps surprisingly, that this error grows larger as the indenter

shrinks. This is due to the fact that as ρin → 0, the logarithmic cor-

rection to the force, eqn (15), becomes important at ever smaller

indentation depths.

5 Indenting a pressurized membrane

The previous sections have investigated the effect of the pre-

tension and a finite indenter size. However, in many applica-

tions the membrane that is being indented is also subjected to

a constant pressure difference, p, forming a ‘nano-balloon’ (see

fig. 5). This is particularly relevant for indentation experiments

in graphene13–15. We therefore consider next the effect of a con-

stant applied pressure, p, on indentation.

5.1 Pressurizing a clamped, pre-tensed membrane

Before discussing the indentation of a nano-balloon, we first con-

sider the shape of the balloon itself. A natural approximation is

that the balloon surface will adopt a spherical cap shape, with

radius of curvature Rcurv. The problem is then to determine the

deformed shape, namely the radius of curvature Rcurv and the

height h0 of the deformed membrane (see fig. 5). Assuming the

stress within the sheet in nearly uniform, Laplace’s law suggests

that Rcurv ∼ T/p with T the typical stress within the membrane;

T in turn is related to the pre-tension Tpre and the strain induced
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Table 2 A summary of the main results for a pre-tensed, pressurized membrane. Note that the results for the force–displacement relations are written

in a way that is valid for both small- and large-pressurizations.

Pressurization
Balloon Effective Small Large
height tension displacements displacements

P̃ ≪ 1 h0 ∼ pR2
clamp/Tpre Teff ≈ Tpre

F ≈ 2πTeffδ/ log(1/ρin) F/δ 3 ≈ α(ν ;ρin)Y/R2
clamp

P̃ ≫ 1 h0 ∼
(

pR4
clamp/Y

)1/3

Teff ∼ (pRclamp)
2/3Y 1/3

by deformation, ε ∼ (h0/Rclamp)
2 through

T ∼ Tpre +Y (h0/Rclamp)
2.

The final piece of the puzzle is the geometrical relationship h0 ∼

R2
clamp/Rcurv and so we have, in scaling terms, that

T ∼ pR2
clamp/h0 ∼ Tpre +Y (h0/Rclamp)

2. (22)

Which of the two terms on the RHS of (22) dominates depends

on the strength of the pressurization, relative to the pre-tension.

We find that the relevant dimensionless parameter measuring this

balance is

P̃ =
pRclampY 1/2

T
3/2

pre

,

which has also been referred to as the ‘confinement’ in related

problems16. In the limit of low pressure, P̃ ≪ 1, (or high pre-

tension)

h0 ∼
pR2

clamp

Tpre
, T ∼ Tpre. (23)

For large pressure, P̃ ≫ 1 (or small pre-tension) we have

h0 ∼

(

pR4
clamp

Y

)1/3

, T ∼ Y 1/3(pRclamp)
2/3 ∼ TpreP̃2/3. (24)

Note that the expression for h0 in the limit P̃ ≫ 1 is known from

previous works on ‘bulge tests’17,18. For ν = 1/3, these results

may be approximately combined8 to give the dimensionless pres-

sure

P̃ = 4h̃0 +(h̃0/0.645)3, (25)

where h̃0 = h0(Y/Tpre)
1/2/Rclamp is the dimensionless balloon

height. This gives a good account of the numerically-determined

behaviour (see fig. 6a).

To address the indentation of a nano-balloon, we need some

understanding of the tension close to the point of indentation —

at the centre of the bulge — which is what we expect indentation

to probe. We therefore define Teff = [σrr(0)+σθθ (0)]/2, and plot

this as a function of P̃ in fig. 6b, noting in the process that the

simple composite expansion for the effective tension, obtained by

naively combining the asymptotic expressions in (23) and (24)

Teff

Tpre
= 1+0.44P̃2/3, (26)

produces a noticeable error for P̃ = O(1). We note also that for

P̃ ≫ 1 the state of stress is neither isotropic nor uniform. This is

illustrated in Fig. 6c, which shows the relative change in the areal

strain (the relative local change in area) between the centre and

edge of the bubble, as a function of the pressure.

5.2 Indentation

To model indentation of a clamped, pressurized and pre-tensed

membrane, we incorporate the pressure p in the normal force

balance equation (4); integrating once we find

ψ
dζ

dr
=

F

2π
−

p

2
r2. (27)

The dimensionless version of this equation (see Appendix A) is

solved numerically, together with the dimensionless versions of

the compatibility of strains, eqn (6), and the boundary conditions

(7) and (9). Note that the only change required to account for

the pressurization is in the normal force balance, (27). However,

in using (7) as previously, we emphasize that here δ̃ measures

the vertical position of the indenter (see fig. 5) and hence not

the indentation depth relative to the height of the pressurized

membrane. This relative indentation depth is denoted ∆δ , and is

defined to be

∆δ = δ +h0.

The schematic in fig. 5 shows these different heights. We continue

to use ˜ to signify dimensionless vertical distances, as in (2).

The numerically determined indentation force versus relative

displacement, ∆̃δ , is plotted in the inset of figure 7(a). Three val-

ues of the dimensionless pressurization are used, P̃ = 1,10,100,

since these cover the range of behaviours that we observe. At

small (relative) indentation depths, ∆̃δ ≪ 1, we observe a regime

of constant stiffness F/∆̃δ ≈ cst. As in the unpressurized case,

this constant stiffness is caused by the pre-existing tension within

the membrane. However, this stiffness now results not from

the pre-tension, Tpre, but instead from the pressurization-induced

tension Teff, which we discussed in scaling terms in (22). At

large indentation depths, ∆̃δ ≫ 1, we see that the results tend

to the same large indentation asymptote as in the unpressurized

case, i.e. F ∼ α(ν)∆̃δ
3
; this again makes intuitive sense since in

this limit the indentation-induced stress dominates both the pre-

tension and the pressure-induced stress†.

To understand the force–indentation curves quantitatively, it is

natural to try and remove the dependence on the pressure by us-

ing the effective tension, Teff(P̃). Following eqns (2) and (3), we

†Note that this force-indentation result is different to that for a true pressurized elastic

shell (with a constant intrinsic radius of curvature), which, for large indentations,

recovers a constant stiffness mode 19,20; this difference occurs because a shell is able

to deform over a horizontal length scale of its choosing, whereas the horizontal

length scale of deformation here is fixed by the position of clamping Rclamp.
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Fig. 6 The properties of a clamped, unindented and pre-tensed balloon.

(a) The height of the balloon, h̃0 = Z(0), as a function of the

dimensionless pressure P̃ (solid curve). The dashed curve shows the

approximate analytic result (25). (b) The effective tension at the centre,

ρ = 0, is defined by Teff = [σrr(0)+σθθ (0)]/2, and is computed as a

function of the dimensionless pressure P̃ (solid curve). The dashed

curve shows the expression (26), which recovers the asymptotic limits

P̃ ≪ 1 and P̃ ≫ 1 correctly but shows significant deviations in-between.

(c) The relative change in the areal strain εii = εrr + εθθ between the

centre of the bubble and the clamped edge. (d) The relative change in

the small indentation stiffness, k1 = F/δ , associated with a 10% change

in the inflated bubble height h0. Here all results are obtained with

Poisson ratio ν = 1/3.

(a)
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Fig. 7 The indentation of a pressurized, clamped membrane for various

values of the applied pressure P̃. (a) The stiffness observed at different

pressures can almost be rescaled onto a universal curve by using the

effective tension, Teff(P̃). This rescaling works well at small and large

indentation depths, but fails for at intermediate indentation depths. The

inset shows the dimensionless force–indentation curves for different

pressures, without any rescaling. (b) The error incurred by using the

composite expression (28) with Teff(P̃) is enormous at moderate δ̃ , and

increases with P̃. One must therefore ensure that experiments lie in one

regime or another, before trying to fit. Here different coloured curves

correspond to different extents of pressurization: P̃ = 0 (black) P̃ = 1

(red), P̃ = 10 (green) and P̃ = 100 (blue). (Results with larger P̃ are

essentially indistinguishable from those with P̃ = 100.) Here, ν = 1/3 and

ρin = 10−3 in all computations.
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rescale ∆̃δ by Teff
1/2 and F by Teff

3/2 with Teff(P̃) computed nu-

merically (see fig. 6(b)). This rescaling (main panel of fig. 7(a))

shows that the force–indentation response at small and large in-

dentations is precisely as would be expected based on the unpres-

surized problem considered earlier in this paper; the same asymp-

totic behaviours are found for P̃ < 0, but are not shown here. At

intermediate indentation depths ∆̃δ = O(1), however, we see that

the behaviour varies greatly depending on the precise value of P̃.

The rescaled version of the force law (shown in the main panel of

fig. 7(a)) highlights this difference: as P̃ increases, the transition

from F ∼ ∆̃δ to F ∼ ∆̃δ
3

becomes sharper, with an almost kink-

like transition observed for P̃ = 100. The presence of this kink

has important implications for the use of interpolating formulae

as well. To study this effect, we define the interpolant

Fsum(∆̃δ ) =
2πTeff(P̃)

log(1/ρin)
∆̃δ +α(ν)∆̃δ

3
(28)

and measure the relative error, as in §4.3. The results, shown in

fig. 7(b), indicate that the error observed at intermediate inden-

tation depths, ∆̃δ = O(1), is substantially larger in the pressurized

cases than in the unpressurized cases — the error reaches 150%

for P̃ = 100.

5.3 How to determine p and Y from small indentations

From the error plots in fig. 7(b), it is tempting to conclude

that any attempt to measure the stretching modulus of thin ma-

terials such as graphene using indentation is doomed to fail-

ure: the stretching modulus only plays a key role in the force–

indentation response at very large indentation depths, where

the forces quickly become so large that it may not be possible

to record them using an AFM. (Indeed, we are not aware of

any Graphene experiments in which the cubic force–indentation

regime has been reached convincingly.) While it may be tempt-

ing to use experimental data obtained at intermediate indenta-

tion depths, ∆̃δ = O(1), we have shown that this is precisely the

regime in which using an interpolating formula such as (28) will

introduce the largest errors.

Fortunately, if the pressurization is sufficiently large (i.e. P̃ ≫

1), then this conundrum may be resolved without initially know-

ing the precise pressure: the height of the unindented bal-

loon, h0, together with indentation data at small indentation

depths gives enough information for both Y and p to be in-

ferred. Classic results for the pressurized blister test17,21 give

h0 ≈ Ah0

(

pR4
clamp/Y

)1/3
, while the small indentation stiffness

k1 = F/δ ≈ 2π
[

Teff ≈ AτY 1/3(pRclamp)
2/3
]

/ log(1/ρin); here the

constants Ah0
≈ 0.645, Aτ ≈ 0.438 for ν = 1/3.

We can then use these relationships to show that

p ≈
log(1/ρin)

2πAh0
Aτ

h0k1

R2
clamp

(29)

and

Y ≈
A2

h0
log(1/ρin)

2πAτ

R2
clamp

h2
0

k1. (30)

The results (29)–(30) are only valid provided that ∆̃δ ≪ 1 and

P̃ ≫ 1. The signature of being in the small indentation regime is

that the linear stiffness k1 = F/∆δ is approximately constant. The

signature of being in the large pressure regime, P̃ ≫ 1, is more

subtle (unless Tpre, Y and p are all known). However, we note

that in this regime, k1 depends sensitively on p: if an experiment

were in the P̃ ≫ 1 regime, we would expect k1 to vary notice-

ably when the experiment is repeated with a slightly different

pressure. In contrast, if k1 does not change significantly in such

an experiment, one would have to conclude that P̃ ≪ 1 instead.

More concretely, if the pressure were modified so that the bubble

height, h0, increases by, say, 10% then the relative change in the

stiffness k1 will be ≈ 20% if P̃ ≫ 1, and negligible otherwise (see

figure 6d).

Finally, we note that for graphene, typical values of Y ≈

300 N/m and Tpre ≈ 0.5 N/m have been reported1. This means

that with a pressure difference p ≈ 4 atm (as in López-Polín

et al. 14) and drumhead radius Rclamp ≈ 1 µm we might expect to

have P̃ & 20, making the limit P̃ ≫ 1 a reasonable approximation.

6 Critique of previous works

Various analytical results have previously been proposed for the

indentation of a pre-tensed membrane. These are repeated and

used in the literature, with varying degrees of accuracy. With

the results of the previous sections, we are now in a position to

consider some of these works, and to discuss their strengths and

weaknesses. This section is divided into five subsections in which

we highlight some common flaws and subtleties, examining their

impact on indentation-based metrology of thin solid films.

6.1 Linear response and the role of indenter size

Several papers1,13,22,23 quote a formula for the force–indentation

response,

F = πTpreδ + f (ν)
Y

R2
clamp

δ 3 , (31)

which is often (incorrectly) attributed to Schwerin4,7. We have

seen that the linear term in Eq. (31) does not correctly describe

even the linear response for an indenter with a finite tip radius

Rin ≪ Rclamp, since the correct linear stiffness (11) contains a log-

arithmic dependence on ρin. While such logarithmic factors are

usually assumed to be small, for an indenter tip that is 1000 times

smaller than the clamping radius, the effect can be significant

since the relevant factor − log(ρin = 10−3)≈ 7.

Previous measurements of the pre-tension in Graphene1,22,23

were based on the erroneous form (31), and used data for which

a significant portion seems to be in the linear regime (i.e. where

F ∝ δ , see Fig. 2A of Lee et al. 1). The neglect of the appro-

priate logarithmic factor therefore calls into question the validity

of the resulting estimate of pre-tension. Other workers in the

field3,10,24 have correctly appreciated the need for a logarithmic

correction, dependent on the tip radius, in the linear regime. One

example is the work of Bunch et al.15 in which the pre-tension

of Graphene was specifically addressed using the correct linear

response (Eq. (11)).

We also pointed out (see Fig. 4), that when using a small inden-

ter tip one should be careful to use the linear force law Eq. (11)
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only for sufficiently small indentations δ̃ < δ̃∗ = 4ρin log(1/ρin); for

δ̃ & δ̃∗ the sub-linear, point-indentation formula, Eq. (15), should

be used instead. One potentially useful feature of the intermedi-

ate displacement force-law (15) is that it is not sensitive to the

indenter size, provided that δ̃ > δ̃∗. As such, we expect that this

result may be applicable even in scenarios in which the effective

indenter size changes with indentation depth (e.g. a sphere con-

tacting a membrane will have a contact radius that grows with

δ̃).

6.2 An analytical force-displacement formula

An intractable problem with the use of Eq. (31) is the assumption

that the behaviour of F (δ̃ ) at intermediate indentation depths,

δ̃ = O(1), may be approximated as a sum, Fsum(δ̃ ), of the appro-

priate asymptotic results in the regimes of small and large inden-

tation, δ̃ ≪ 1 and δ̃ ≫ 1. In §4.3 we investigated the error (as

a function of δ̃) inherent in using such an approximation (with

the corrected small indentation behaviour). We found that al-

though the relative error tends to zero as both δ̃ → 0 and δ̃ → ∞,

it may become appreciable for intermediate values of δ̃ . This is

particularly important since experimental data is often gathered

in an intermediate range (e.g. 10−2 < δ̃ < 10). Furthermore, we

found that the maximum relative error that is introduced by using

such an approximation grows as the indenter size shrinks, ρin → 0:

for ρin = 10−3, the maximal error is ∼ 40% while for ρin = 10−4

it is ∼ 50% (see fig. 4(b)). Moreover, the peak in err(δ̃ ) is not

only large, but also broad, affecting a large range of indentation

depths.

Numerous estimates of the stretching modulus of Graphene1,13

have employed an expression analogous to Fsum(δ ); as we have

shown such approaches are vulnerable to errors at intermediate

δ̃ . This hurdle may be overcome by using the full numerical solu-

tion (solid curves in Fig. 4(a)). Alternatively, if data is available

at a sufficiently large range of δ̃ , one may simply ignore the data

at intermediate δ̃ (signified by a scaling law other than F ∝ δ̃

or F ∝ δ̃ 3). The data at small indentation depths (signified by

F ∝ δ̃) could then be used to extract the pre-tension (as was done

by Bunch et al.15), while the data at large indentation depths (sig-

nified by F ∝ δ̃ 3) could be used to extract the stretching modu-

lus. We emphasize that these two measurements are determined

independently of one another, provided that data sits clearly in

one of the two separate asymptotic regimes. In several previous

studies it appears that experimental data have been used in such

a fit despite not lying in the appropriate regime. For example,

experiments on few-layer flakes of mica22,23 were fitted using

the expression (31). However, reanalysing this data by plotting

F/δ 3 shows that these experiments do not reach large values of

δ : F/δ 3 never reaches the expected plateau (see fig. 8).

6.3 Nano-balloons

Our analysis of indentation in the presence of an internal pres-

surization has revealed the perils of using a polynomial fit such

as Fsum(δ̃ ): the inaccuracies introduced by using such an expres-

sion can be even larger than just discussed, because the ‘kink’

(fig. 7a) between linear and cubic behaviour is generally much

10
0

10
1

10
-2

10
-1

Fig. 8 Experimental data obtained from the indentation of few-layer

mica flakes 23 show that the indentation depth is typically not large

enough to reach the regime in which F/δ 3 = cst. Here data are

presented for a 2-layer flake (circles), a 3-layer flake (sideways triangles)

and a 6-layer flake (downwards triangle). (The data presented here

were captured digitally from fig. 3(c) of Castellanos-Gomez et al. 23 .)

sharper in this case. (More discussion of this is given in Appendix

C where we show that a cubic fit of data can lead to large er-

rors in the inferred stretching modulus.) We therefore advise that

the first step in any fitting analysis of an indented nano-balloon

experiment should be to determine whether the data lies cleanly

in one asymptotic regime or another. Perhaps the simplest way

of doing this is to use a logarithmic plot of force versus inden-

tation depth, since this will reveal the presence, or lack, of clear

power-law behaviour. For example, fig. 9, shows (digitally cap-

tured) data from López-Polín et al. 14 . These suggest power law

behaviour that is closest to F ∼ δ 2 (and not linear or cubic be-

haviour). As such, we suggest that these experiments also did

not reach large enough indentation depths to reliably extract the

stretching modulus Y : the experiments are between the small and

large indentation regimes, which is precisely where the effect of

the switch-over matters. However, we also proposed (see §5.3)

that it may be possible to extract the value of Y by focussing in-

stead on the small indentation, large pressure regime, together

with measurements of the unindented balloon’s height.

6.4 Extracting pre-tension from shape

In a recent paper2 it was suggested that an accurate estimate of

the pre-tension can be obtained by fitting the shape of the de-

formed membrane to that predicted by numerical solutions of the

FvK equations.

The limitations of this idea can readily be realized by con-

sidering the membrane shapes that are predicted by numerical

solutions of the problem. In an experiment, it is not known

a priori whether a particular indentation depth corresponds to

δ̃ ≪ 1 or δ̃ ≫ 1; similarly, the precise value of the indenter radius

ρin may not be known (for example, if a small spherical inden-

ter is used2). Figure 10 therefore shows the membrane shapes

for different values of δ̃ normalized by the vertical deflection at

ρ = 1/4, i.e. r = Rclamp/4. Our numerical solutions show that,
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10
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10
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10
-2

Fig. 9 Experimental data on the indentation of a graphene nano-balloon

from López-Polín et al. 14 . F/δ 3 is plotted to show that these data do not

reach the large indentation regime F/δ 3 = cst. Here the balloon

pressure is varied but not measured directly; instead a globally

averaged strain is measured experimentally 14. The reported values of

this strain are ε = 0.09% (circles), ε = 0.23% (triangles) and ε = 0.3%

(squares). (The data presented here were captured digitally from

fig. 2(b) of López-Polín et al. 14 .)

when rescaled in this way, the shapes “collapse" onto two dis-

tinct universal shapes corresponding to the linear (δ̃ ≪ 1) and

cubic (δ̃ ≫ 1) responses. A dependence on δ̃ (and thereby on the

pre-tension Tpre) becomes noticeable only within the intermediate

parameter range, δ̃ ∼ O(1).

We illustrate the importance of these universal shapes by

replotting previous experimental results, reproduced from Xu

et al. 2 and rescaled in precisely the same way (i.e. rescaling r

by Rclamp and ζ (r) by ζ (Rclamp/4)). These data are shown, to-

gether with our numerically determined shapes, in fig. 10. We

see that these experimental results are essentially indistinguish-

able from the numerically determined shapes with δ̃ ≪ 1. We

therefore argue that all that can be concluded from such a plot is

that in these experiments δ̃ . 1 — any attempt to infer a precise

value of δ̃ , and hence the pre-tension Tpre, must be subject to so

much noise as to be essentially meaningless.

6.5 The negligible effect of bending

Our approach in this study was based on “membrane theory" in

which the bending force is neglected. This approach is a very

useful simplification to the analysis, since the 1st FvK equation (4)

is a second-order (rather than fourth-order) differential equation,

allowing analytical progress to be made.

However, other workers2,3 have opted to retain the bending

force in their numerical analysis. In Appendix D we discuss the

role of these effects more fully. Here, we note that the role of

bending is expected to be confined to small regions, boundary

layers, near the indenter and the outer edge of the film (the re-

gions in which the curvature is largest). In the main portion of

the film, the force balance expressed by the simplified membrane

theory, (4), must still hold and so we do not expect the force–

displacement relationships discussed here to be significantly mod-

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

1

1.5

2

2.5

3

3.5

4

Fig. 10 Rescaled membrane deflections predicted by our numerical

simulations with ρin = 0.02, ν = 0.5 and increasing dimensionless

indentation depth: δ̃ = 0.01 (red curve), δ̃ = 0.1 (yellow curve), δ̃ = 1

(green curve) and δ̃ = 10 (blue curve). A plot with δ̃ = 100 is

indistinguishable from that with δ̃ = 10 at this scale. The points show

experimental data, captured digitally from fig. 3b of Xu et al. 2; we use

the same colours to represent data captured at different indentation

depth as in figure 3b of Xu et al. 2 .)

ified.

Furthermore, we note that including the bending force requires

one to specify additional boundary conditions (such as the slope

or torque at the point where the sheet detaches from the inden-

ter). Such boundary conditions are not well-controlled and often

need to be introduced as an additional fitting parameter (see for

example Xu et al. 2), adding further uncertainty to the analysis.

As such we suggest that the effect of bending can be safely ne-

glected (for sufficiently thin sheets) and, in fact, that this neglect

will in general strengthen the robustness of any fitting results that

are obtained.

7 Conclusion

Our detailed analysis of the Föppl-von-Kármán equations applied

to indentation problems suggests a number of important take-

home messages that we summarize here:

• Using polynomial expressions to fit the measured force,

e.g. Eqs. (20) or (28), may lead to erroneous results. This

is particularly relevant if data is gathered at an intermedi-

ate range of indentation depth, which does not reach the

expected cubic regime (F ∼ δ 3). Furthermore, the error in-

herent in such a fitting increases as the indenter’s radius de-

creases.

• The errors induced by using a polynomial fit become even

more significant when a large pressure difference exists be-

tween the two sides of the indented sheet. This observation

undermines attempts to use a cubic fit to extract the stretch-

ing modulus from force-deflection data at intermediate in-

dentation depths (see Appendix C for further discussion of

this point).

• We proposed an alternative method to extract the stretch-

ing modulus from data obtained at small indentation depth
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(§5.3). The caveat of this method is the necessity to achieve

sufficiently large pressurization to overcome the pre-tension.

We presented a self-consistent test that enables one to ver-

ify whether the exerted pressure in the experiment is suffi-

ciently large to allow such an analysis.

• We showed that any attempt to obtain metrological data

from fitting the shape of the indented sheet (rather than

force Vs. deflection) is liable to be extremely inaccurate.

Finally, let us mention that our study was predicated on the

assumption that the sheet is strongly clamped at the rim (r =

Rclamp): the radial displacement at the edge of the circular hole

is fixed, and does not vary upon indentation. This assumption

is implicitly used by most workers in the field, but we are not

aware of robust, independent tests of its validity. One case where

this assumption may be violated is in pressurized sheets, where

an annulus near the rim may be detached from the substrate (if

the pressure is “pushing upward", as in Fig. 5) or attached to the

wall (if pressure is “pulling downward"). To account for such a

situation, one may have to define an effective clamping radius

Rclamp, which may be slightly smaller than the actual radius of

the hole. A more basic subtlety is the assumption that the sheet

cannot slide on the substrate. In particular, graphene may be ex-

pected to slide easily on sufficiently smooth substrates (due to

the weakness of tangential stresses), and so it seems plausible

that upon indentation, the sheet will slide inward to reduce the

radial stress induced by the indenter. Such a sliding may result

in azimuthal (hoop) compression, which can be relaxed by ra-

dial wrinkles, thereby affecting substantially the response25. The

consequence of such a scenario will be discussed elsewhere26.
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Appendix A: Dimensionless equations

In this Appendix we give the complete dimensionless problem

(including the applied pressure P̃ for completeness). Upon non-

dimensionalizing the governing equations (27) and (6) according

to (10) we find that

Ψ
dZ

dρ
=

F

2π
−

P̃

2
ρ2. (32)

and

ρ
d

dρ

[

1

ρ

d

dρ
(ρΨ)

]

=− 1
2

(

dZ

dρ

)2

. (33)

These are to be solved with the dimensionless version of the

boundary conditions (7) and (9), which are

ρinΨ
′(ρin)−νΨ(ρin) = (1−ν)ρin, Z(ρin) =−δ̃ (34)

and

Ψ
′(1)−νΨ(1) = 1−ν , Z(1) = 0. (35)

These are the equations that are solved numerically in the main

text to determine the force–displacement relationship, F (δ̃ ).

Small indentations

In the limit of small indentation depths, δ̃ ≪ 1, and no pressuriza-

tion, P̃ = 0, we expect that the stress is barely changed from that

existing prior to indentation, i.e. Ψ ≈ ρ. Substituting this into the

vertical force balance equation (32) we obtain

dZ

dρ
=

F

2πρ
,

which can be integrated subject to the boundary condition (35)

to give

Z(ρ) =
F

2π
logρ.

Finally, requiring that Z(ρin) = −δ̃ gives the force law (11). We

also note from (33) that the correction to Ψ ≈ ρ should be ex-

pected to enter at O(δ̃ 2).

Appendix B: Analytical calculation for point

indentation

In this Appendix, we consider the point indentation problem with

no pressure, i.e. ρin = 0 and P̃ = 0. The dimensionless FvK equa-

tions (32)–(33) are to be solved subject to the boundary condi-

tions (34), which simplifies to Ψ(0) = 0, and (35).

Analytical solution

We use (32) (with P̃ = 0) to eliminate Z from (33), giving

ρ
d

dρ

[

1

ρ

d

dρ
(ρΨ)

]

=− 1
2

(

F

2πΨ

)2

. (36)

At this point it proves useful27,28 to let

η = ρ2, Φ = ρΨ

so that (36) becomes

d2
Φ

dη2
=−

1

32π2

F 2

Φ2
, (37)

which is to be solved with boundary conditions

Φ(0) = 0, 2Φ
′(1)− (1+ν)Φ(1) = 1−ν . (38)

We can immediately integrate (37) once to obtain

dΦ

dη
=

F

4π

(

1+AΦ

Φ

)1/2

.

This can be simplified slightly by letting Φ̃ = AΦ to give

dΦ̃

dη
=

FA3/2

4π

(

1+ Φ̃

Φ̃

)1/2

.
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Integrating again, we have that

FA3/2

4π
η =

∫

Φ̃

0

(

f

1+ f

)1/2

d f

= Φ̃
1/2(1+ Φ̃)1/2 − sinh−1(Φ̃1/2).

This gives an equation relating the integration constant A and F

in terms of Φ̃1 = Φ̃(1), which will be useful as a parameter (we

will write our analytical solution in terms of the parameter Φ̃1).

In particular, we have that

FA3/2 = 4π
[

Φ̃
1/2
1 (1+ Φ̃1)

1/2 − sinh−1(Φ̃
1/2
1 )

]

. (39)

We can obtain a further equation from the second of the bound-

ary conditions (38), which gives an equation for A(Φ̃1):

A(1−ν) =
F

2π
A3/2

(

1+ Φ̃1

Φ̃1

)1/2

− (1+ν)Φ̃1, (40)

(since FA3/2 was already specified as a function of Φ̃1).

Finally, we need to relate the indentation depth δ̃ to Φ̃1. To do

this we note that

δ̃ =
∫ 1

0

F

2πΨ
dρ =

FA

4π

∫

Φ̃1

0

1

Φ̃

dΦ̃

Φ̃′

which immediately gives

δ̃ =
2

A1/2
sinh−1(Φ̃

1/2
1 ). (41)

With the set of equations (39)–(41) we have a parametric form

for the displacement and indentation force in terms of Φ̃1.

The profile of the membrane, Z(ρ), and the Airy stress function,

Ψ(ρ), may also be expressed parametrically as

Z(Φ̃) =
2

A(Φ̃1)1/2
sinh−1

[

Φ̃
1/2
1

(

1+ Φ̃
)1/2

− Φ̃
1/2
(

1+ Φ̃1

)1/2
]

(42)

and

Ψ(Φ̃) = A(Φ̃1)
−1 Φ̃

ρ(Φ̃)
, (43)

where the radial coordinate, ρ, is given in terms of Φ̃ by

ρ(Φ̃) =

[

Φ̃
1/2(1+ Φ̃)1/2 − sinh−1(Φ̃1/2)

Φ̃
1/2
1 (1+ Φ̃1)1/2 − sinh−1(Φ̃

1/2
1 )

]1/2

. (44)

It is instructive to consider the asymptotic limits of small and

large indentations to try and understand the behaviour of the

above analytical solution.

Small indentations

In the limit Φ̃1 ≫ 1 we have from (40) that

A ∼ Φ̃1

(including terms from FA3/2). We then immediately have that

F ∼ 4πΦ̃1/A3/2 ∼ 4πΦ̃
−1/2
1 and

δ̃ ∼
2log(2Φ̃

1/2
1 )

Φ̃
1/2
1

≪ 1.

Hence the limit Φ̃1 ≫ 1 corresponds to small indentation depths,

δ̃ ≪ 1. This result seems counter-intuitive at first but is purely

a result of the rescaling used to facilitate the solution: note that

Ψ(1) = Φ(1) = Φ̃1/A ∼ 1 in the limit Φ̃1 ≫ 1 and so, as expected

for small indentation depths, the stress is close to the pre-stress.

To obtain the force–displacement relationship, we eliminate Φ̃1

from the last two expressions to give

δ̃ ∼
2log(2Φ̃

1/2
1 )

Φ̃
1/2
1

∼
F

2π
log(8π/F ).

Large indentations: Φ̃1 − Φ̃
∗
1 ≪ 1

To be able to reach large indentation depths, δ̃ ≫ 1, (41) sug-

gests that we should look for values of Φ̃1 for which A(Φ̃1) = 0,

i.e.

(Φ̃∗
1)

1/2(1+ Φ̃
∗
1)

1/2 − sinh−1(Φ̃∗
1)

1/2 =
1+ν

2

(Φ̃∗
1)

3/2

(1+ Φ̃∗
1)

1/2
. (45)

Now, A(0) = 0 so that Φ̃1 = 0 is always a possibility. However, as

Φ̃1 → 0, δ̃ remains finite, and so the root Φ̃1 = 0 does not corre-

spond to large indentation depths. It is a simple matter to show

that for ν > 1/3 there is another root of (45), Φ̃
∗
1 > 0, while for

ν < 1/3, this other root is negative, Φ̃
∗
1 < 0. To reach the regime

δ̃ ≫ 1, we must examine the behaviour close to this other root;

we therefore perform the standard expansions for Φ̃1 − Φ̃
∗
1 ≪ 1.

In particular, we have directly from (41) that to leading order

A1/2 =
2

δ̃
sinh−1(Φ̃∗

1)
1/2

and hence

F = 4π
(Φ̃∗

1)
1/2(1+ Φ̃

∗
1)

1/2 − sinh−1(Φ̃∗
1)

1/2

A(Φ̃∗
1)

3/2

≈ α(ν)δ̃ 3, (46)

where

α(ν) =
π

4
(1+ν)

(Φ̃∗
1)

3/2

(1+ Φ̃∗
1)

1/2
[

sinh−1(Φ̃∗
1)

1/2
]3
, (47)

and we have used (45) to simplify the expression for α(ν).

Unfortunately, it seems that Φ̃
∗
1 must be determined numer-

ically, and hence that the prefactor α(ν) in (46) must also be

determined numerically.
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Perturbative results for 0 < ρin ≪ 1

In the limit of large indentations, δ̃ ≫ 1, the effect of ρin is cap-

tured by a regular perturbation theory. We find that

F

δ̃ 3
= α(ν ;ρin)≈ α0(ν)+

6

[2π(1+ν)]1/3
α

4/3
0 ρ

2/3

in (48)

where α0(ν) is the corresponding prefactor in the point-loaded

limit ρin = 0, given in (47).

Appendix C: The perils of polynomial fitting

A slight modification to the fitting of the analytical expression

(31) is to fit experimental data using a cubic polynomial

F = α0 +α1δ̃ +α2δ̃ 2 +α3δ̃ 3, (49)

for free parameters αi; an estimate of the stretching modu-

lus Y may then be found by comparing α3 with the value of

F/δ̃ 3 = α(ν) that is expected in the large indentation regime.

There are two reasons why this approach seems natural: firstly,

this accounts for a shift in the origin caused by inflation (think

of the difference between ∆̃δ and δ̃ in the nano-balloon prob-

lem)14. Secondly, the inclusion of constant and quadratic terms

in (49) would seem to give additional freedom to capture the sub-

cubic behaviour that is observed in the transition between linear

and cubic behaviours (when the indentation depth is not strictly

large).

We use our numerical solutions of the fully nonlinear equations

to investigate how robust this fitting procedure is: we try to un-

derstand when the true cubic behaviour is replicated by the cubic

behaviour of the fitted cubic. In other words, we ask when does

α3 reproduce the true value of α(ν ;ρin) that is obtained in the

asymptotic limit δ̃ ≫ 1? We begin by noting that experimental

data, such as that shown in figure 9, does not always cover a

large range of indentation depths, and, in particular, often does

not cover a whole decade in δ . Furthermore, one does not know

a priori whether an experiment has reached the large indenta-

tion regime: without knowing Tpre and Y one cannot tell whether

δ̃ ≫ 1 (as required for the cubic regime to hold) or not. What

one can tell from an experiment is whether k = F/δ varies with

indentation depth. In our calculations a greater than 10% varia-

tion in k suggests that δ̃ & 0.1; we assume that experimental data

corresponding to δ̃ . 0.1 would give a behaviour in F/δ that is

close enough to constant to be discarded.

We therefore consider our numerical “data" restricted to in-

tervals δ̃ ∈ [δ̃min, δ̃max] with δmin = δmax/10 ≥ 0.1 taken for def-

initeness. We then make a cubic fit of this data, cf. (49), and

extract the corresponding value of α3 from this fit. Figure 11

shows the results of this analysis for numerical data generated

with ρin = 10−2 and internal pressurizations P̃ = 0,1,10 and 100.

We see that α3 → π(1 − ρ
2/3

in )−3/3 as δ̃max grows — this is as

should be expected since this corresponds to the truly nonlinear

regime. However, for ranges that cover the intermediate indenta-

tion regimes (where the true force law is neither cubic nor linear)

we see a large variation in the value of α3. This effect is partic-

ularly large for pressurized membranes with large P̃; indeed, for

large pressurizations and small enough δ̃min it is even possible to

10 10
1

10
2

-1

-0.5

0

0.5

1

1.5

0

Fig. 11 How robust is a cubic fit to the range of δ over which the fit is

performed? Here we consider numerically generated data for the

indentation of a pressurized balloon over an interval δ̃max/10 ≤ ∆̃δ ≤ δ̃max

and calculate the coefficient of the cubic term, α3, as this interval

changes. Results are shown for P̃ = 0 (circles), P̃ = 1 (triangles), P̃ = 10

(diamonds) and P̃ = 100 (squares). For sufficiently large δ̃max we recover

the expected result, α3 → π(1−ρ
2/3

in )−3/3, which is shown by the

dashed horizontal line. Here ν = 1/3 and ρin = 10−2.

find α3 < 0 through this procedure. Clearly this is an artefact of

the fitting procedure, and does not have any physical significance.

This analysis shows that this fitting procedure is actually quite

sensitive to the interval on which the fitting is done. In particular,

we see that even in the unpressurized limit (P̃ = 0) one could

make an error of at least 50% simply by attempting the cubic fit

over an inappropriate interval of δ .

Appendix D: Neglecting bending

In §6.5 we discussed our neglect of bending briefly. To justify

this, we only need to perform a consistency check: it is enough

to evaluate the bending force that would be associated with the

membrane profiles that we obtained in sections 3-5, and compare

this force with the indentation force that we calculated for these

same profiles. One may easily see that the bending force scales

as:

Fbend ∼ Bζ ′′′′ ∼ Bδ/R4
clamp , (50)

where spatial derivatives are estimated based on the clamping

radius. The ratio between the “membrane force" , Fmem, and

Fbend, which is often called the “bendability"25,29,30, requires

us to identify the dominant membrane force. As we showed

in previous sections, this may be induced by pre-tension (for

δ̃ ≪ 1 and Tpre ≫ (PRclamp)
2/3Y 1/3), pressure (for ∆̃δ ≪ 1 and

Tpre ≪ (PRclamp)
2/3Y 1/3), or the stretching modulus of the sheet

(for δ̃ ≫ 1 or δ̃ ≫ h̃0, respectively, for large and small pretension-

to-pressure ratio). Thus the bendability is

Fmem

Fbend
∼ max







TpreR2
clamp

B
,

P2/3Y 1/3R
8/3

clamp

B
,
Y δ 2

B







. (51)

In most experimental scenarios that we are aware of, the above

ratio is & 104.
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Thus, at the macroscopic scale of the whole film, the effect

of bending may be neglected. Nevertheless, the bending force

may be relevant at small scales, where the spatial variation is

sufficiently rapid, as is typical in “boundary layers". Here we ex-

pect the boundary layers (in the vicinity of the indenter and/or

the clamped edge) to have typical horizontal scale ℓec =
√

B/σ

(where σ = max{Tpre,(PRclamp)
2/3Y 1/3}, or ∼ Y (δ/Rclamp)

2); over

the length scale ℓec the effect of any exerted torque relaxes. The

net contribution of this bending-induced force to the total force is

inversely proportional to the bendability and can be safely ne-

glected in most practical situations for very thin sheets. (We

note further that in some situations membrane theory may pre-

dict compressive stresses; in such scenarios, bending has a strong,

non-perturbative effect on the stress field, which eliminates any

such compression, see e.g. refs25,29,31,32; however, this is not the

case for indenting a clamped sheet, where the stresses remain

purely tensile everywhere.)

References

1 C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 2008, 321, 385–388.

2 X. Xu, A. Jagota, D. Paretkar and C.-Y. Hui, Soft Matter, 2016, 12, 5121–5126.

3 K.-T. Wan, S. Guo and D. A. Dillard, Thin Solid Films, 2003, 425, 150–162.

4 E. Schwerin, Zeit. Angew. Math. Mech., 1929, 9, 482–483.

5 L. D. Landau and E. M. Lifshitz, Theory of elasticity, Butterworth-Heinemann,

1986.

6 E. H. Mansfield, The Bending and Stretching of Plates, Cambridge University

Press, 1989.

7 M. R. Begley and T. J. Mackin, J. Mech. Phys. Solids, 2004, 52, 2005–2023.

8 J. S. Mitchell, C. A. Zorman, T. Kicher, S. Roy and M. Mehregany, J. Aerosp. Eng.,

2003, 16, 46–54.

9 E. J. Hinch, Perturbation Methods, Cambridge University Press, 1990.

10 R. M. Jennings, J. F. Taylor and R. F. Farris, J. Adhesion, 1995, 49, 57–74.

11 D. Norouzi, M. M. Müller and M. Deserno, Phys. Rev. E, 2006, 74, 061914.

12 U. Komaragiri, M. R. Begley and J. G. Simmonds, J. Appl. Mech., 2005, 72, 203–

212.

13 G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson,

F. Pérez-Murano and J. Gómez-Herrero, Nature Phys., 2015, 11, 26–31.

14 G. López-Polín, M. Jaafar, F. Guinea, R. Roldán, C. Gómez-Navarro and

J. Gómez-Herrero, arxiv, 1504.05521v1.

15 J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G.

Craighead and P. L. McEuen, Nano Lett., 2008, 8, 2458–2462.

16 H. King, R. D. Schroll, B. Davidovitch and N. Menon, Proc. Natl Acad. Sci. USA,

2012, 109, 9716–9720.

17 H. M. Jensen, Engng Fract. Mech., 1991, 40, 475–486.

18 J. J. Vlassak and W. D. Nix, J. Mater. Res., 1992, 7, 3242–3249.

19 D. Vella, A. Ajdari, A. Vaziri and A. Boudaoud, J. R. Soc. Interface, 2012, 9,

448–455.

20 D. Vella, H. Ebrahimi, A. Vaziri and B. Davidovitch, Europhys. Lett., 2015, 112,

24007.

21 S. P. Koenig, N. G. Boddeti, M. L. Dunn and J. S. Bunch, Nat. Nanotech., 2011,

6, 543–546.

22 A. Castellanos-Gomez, M. Poot, A. Amor-Amorós, G. A. Steele, H. S. J. van der

Zant, N. Agraït and G. Rubio-Bollinger, Nano Res, 2012, 5, 550–557.

23 A. Castellanos-Gomez, V. Singh, H. S. J. van der Zant and G. A. Steele, Ann.

Phys., 2015, 527, 27–44.

24 K. Tanizawa and K. Yamamoto, Theo. Appl. Mech. Jpn, 2004, 53, 75–82.

25 D. Vella, J. Huang, N. Menon, T. P. Russell and B. Davidovitch, Phys. Rev. Lett.,

2015, 114, 014301.

26 B. Davidovitch and F. Guinea, In Preparation, 2016.

27 N. M. Bhatia and W. Nachbar, Int. J. Nonlinear Mech., 1968, 3, 307–324.

28 J. Chopin, D. Vella and A. Boudaoud, Proc. R. Soc. Lond. A, 2008, 464, 2887–

2906.

29 B. Davidovitch, R. D. Schroll, D. Vella, M. Adda-Bedia and E. Cerda, Proc. Natl.

Acad. Sci. USA, 2011, 108, 18227–18232.

30 E. Hohlfeld and B. Davidovitch, Phys. Rev. E, 2015, 91, 012407.

31 B. Davidovitch, R. D. Schroll and E. Cerda, Phys. Rev. E, 2012, 85, 066115.

32 R. D. Schroll, M. Adda-Bedia, E. Cerda, J. Huang, N. Menon, K. B. Toga, T. P.

Russell, D. Vella and B. Davidovitch, Phys. Rev. Lett., 2013, 111, 014301.

1–15 | 15

Page 15 of 16 Soft Matter

So
ft
M
at
te
rA
cc
ep
te
d
M
an
us
cr
ip
t

P
u
b
li

sh
ed

 o
n
 2

4
 F

eb
ru

ar
y
 2

0
1
7
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
O

x
fo

rd
 o

n
 2

7
/0

2
/2

0
1
7
 0

9
:5

0
:5

9
. 

View Article Online

DOI: 10.1039/C6SM02451C

http://dx.doi.org/10.1039/c6sm02451c


clamped 
boundary

Page 16 of 16Soft Matter

So
ft
M
at
te
rA
cc
ep
te
d
M
an
us
cr
ip
t

http://dx.doi.org/10.1039/c6sm02451c

