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Summary

This work deals with an incompressible inhomogeneous layer bonded to a rigid substrate and
indented without friction by a rigid circular indenter. The corresponding mixed boundary-value
problem of elasticity is reduced to equivalent dual integral equations. It is shown that the
pliability function in these equations may be found from a system of nonlinear differential
equations and that its behaviour is peculiar when the elastic medium is incompressible. A
novel technique taking into account this peculiarity is developed in order to reduce the dual
integral equations to Fredholm integral equations of the second kind with symmetric strictly
coercive operators. For a homogeneous layer and a flat indenter, the structure of the Fredholm
integral equations permits an approximate analytical solution which is very accurate for any
layer thickness. For an indenter of three-dimensional profile, leading asymptotic terms of the
solution are derived in the case of a thin inhomogeneous layer.

1. Introduction

In this paper we consider the indentation problem of a rigid circular indenter in frictionless contact
with an elastic layer occupying in the system of cylindrical coordinates (r, θ, z) the region 0 � r <
∞, 0 � θ � 2π, 0 � z � h. The lower surface of the layer z = 0 is bonded to a rigid foundation.
The indenter is pressed, under action of the vertical force P at the point θ = 0, r = d, against the
surface z = h. A contact zone between the indenter and the solid is assumed to be a circle of radius
R. The medium, in the frame of the infinitesimal theory of elasticity, is supposed to be isotropic and
incompressible; its shear modulus G(z) is a piecewise smooth function.

The model of an incompressible inhomogeneous layer arises in design of functionally graded
rubber covers. This model requires special investigation because the solution of the contact problem
of an incompressible layer bonded to a rigid foundation has a peculiar asymptotic behaviour as a
layer becomes thin. One might find theories for the thin homogeneous incompressible layer derived
by physical arguments and the relevant discussions in the papers by Barber (1) and Jaffar (2), and the
book by Johnson (3). The axisymmetric case for the homogeneous incompressible layer was studied
by Alexandrov (4) with asymptotic methods. The method of this paper is a further development of
the author’s approach for a compressible layer (5). This method is based on the operators which
transform kernels of the Hankel transform into the kernels of the Weber–Orr transform. It gives
regular equations which are convenient for numerical and analytical studies.
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344 P. MALITS

Pliability functions for an inhomogeneous elastic layer are studied in section 2. They are shown
to be solutions of an initial-value problem for a certain system of nonlinear differential equations.
The important point is that in a neighbourhood of the origin the behaviour of these functions for the
incompressible medium is different from the behaviour in the compressible case.

A novel approach to the contact problem is suggested in sections 3 and 4. It takes into account
the peculiarity which originates from incompressibility and reduces the governing dual integral
equations to Fredholm integral equations of the second kind with strictly coercive operators. The
structure of these Fredholm integral equations enables us to derive the leading terms of the asymp-
totic expansions for a flat indenter.

A homogeneous incompressible layer indented by a circular flat indenter is studied in section 5,
where a very accurate approximate solution is derived for any layer thickness. This result is com-
pared with the asymptotic solutions reported in the literature in order to estimate the ranges of their
applicability.

In section 6, we investigate the problem of a rigid circular indenter of three-dimensional profile
and derive simple asymptotic formulae in the case of a thin layer.

2. Pliability functions

The boundary conditions of the indentation problem for the layer 0 � z � h, 0 � r < ∞,
0 � θ � 2π, are

uz(r, θ, h) = −c − c1r cos θ + w(r, θ), 0 � r � R, (2.1)

σz(r, θ, h) = 0, R � r < ∞, (2.2)

τr z(r, θ, h) = τθ z(r, θ, h) = 0, 0 < r < ∞, (2.3)

uz(r, θ, 0) = ur (r, θ, 0) = uθ (r, θ, 0) = 0, 0 < r < ∞, (2.4)

where −c − c1r cos θ is the indenter displacement and w(r, θ) is the indenter profile.
Since the present problem is linear and the tangential stress is zero on the boundary z = h, the

relation connecting the Fourier transform of the normal displacement uz(x1, x2, h) with the Fourier
transform of the contact stress σz(x1, x2, h) ((x1, x2, z) are Cartesian coordinates) is linear as well.
This relation should be found by satisfying the boundary conditions (2.3) and (2.4), and can be
taken in the form

G0(h)uz(ξ1, ξ2, h) = p−1 f (p, h)σ z(ξ1, ξ2, h), p =
√

ξ2
1 + ξ2

2 , (2.5)

where G0(z) = G(z)/(1 − ν(z)), ν(z) is Poisson’s ratio and f (p, z) is a certain pliability function.
The dependence of the factor f (p, h)/p on the variable p only is dictated by the requirement that
(2.5) must be valid for any strain state and, in particular, for the axisymmetric state. The assumption
of incompressibility does not facilitate our further work and we shall seek f (p, h) for an arbitrary
ν, 0 < ν(z) � 0·5, setting ν(z) = 0·5 in final formulae.

We note that the pliability function f (p, z) for a layer with piecewise constant G(z) and ν(z) can
be determined explicitly via certain recurrence relations (6).

Because (2.5) holds for arbitrary strain states, we consider plane strain in the (x, z)-plane in order
to find f (p, h) for a layer bonded to a rigid foundation. In this case uz(ξ1, ξ2, h) = uz(ξ1, h) δ(ξ2)
and σ z(ξ1, ξ2, h) = σ z(ξ1, h) δ(ξ2), where δ(ξ2) is the impulse function. Then (2.5) becomes
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INDENTATION OF AN INCOMPRESSIBLE INHOMOGENEOUS LAYER 345

equivalent to the equation

G0(h)uz(ξ1, h) = p−1 f (p, h)σ z(ξ1, h), p = |ξ1| . (2.6)

The Fourier transforms of the corresponding equilibrium equations and elastic stress–strain rela-
tions,

dσ z

dz
− iξ1τ xz = 0,

dτ xz

dz
− iξ1σ x = 0, (2.7)

2G
duz

dz
= (1 − ν) σ z − νσ x ,

dux

dz
− iξ1uz = 1

G
τ xz, (2.8)

−2iξ1Gux = (1 − ν) σ x − νσ z, (2.9)

should be subjected to the boundary conditions

ux (ξ1, 0) = uz(ξ1, 0) = 0. (2.10)

We shall seek a solution of the above equations for plane strain under the conditions (2.10) in the
form

G0(z) |ξ1| uz(ξ1, z) = f (|ξ1|, z)σ z(ξ1, z) − (iξ1/|ξ1|)s(|ξ1|, z)τ xz(ξ1, z), (2.11)

G0(z) |ξ1| ux (ξ1, z) = (iξ1/|ξ1|)r(|ξ1|, z)σ z(ξ1, z) + g(|ξ1|, z)τ xz(ξ1, z), (2.12)

where the functions f (|ξ1|, z), g(|ξ1|, z), s(|ξ1|, z) and r(|ξ1|, z) have to be determined. Such rela-
tions exist for every z because the problem is linear. In particular, the first of these relations turns
into (2.6) at z = h as τ xz(ξ1, h) = 0.

Since displacements uz(x, z), ux (x, z) and stresses σz(x, z), τxz(x, z) may be taken smooth at
every point and decreasing as |x | → ∞, the functions

f ∗(|ξ1|, z) = f (|ξ1|, z)/G0(z), g∗(|ξ1|, z) = g(|ξ1|, z)/G0(z), (2.13)

s∗(|ξ1|, z) = s(|ξ1|, z)/G0(z), r∗(|ξ1|, z) = r(|ξ1|, z)/G0(z) (2.14)

have to be continuous functions of the variable z for every real ξ1. In addition, G0(z)|ξ |uz =
f (|ξ |, z)Q when σz = Q exp(i xξ), τxz = 0, and G0(z)|ξ |ux = g(|ξ |, z)T when σz = 0, τxz =
T exp(i xξ). Because the corresponding displacements should be non-zero for any fixed z > 0, this
requires that f (|ξ1| , z) and g(|ξ1| , z) have no zeros for ξ1 �= 0 and, therefore, do not change their
signs. It also follows from (2.10) that

f (|ξ1|, 0) = s(|ξ1|, 0) = r(|ξ1|, 0) = g(|ξ1|, 0) = 0. (2.15)

Substituting (2.11) and (2.12) into (2.8), then expressing σ x , dτ xz/dz and dσ z/dz by means of
(2.7), (2.9), (2.11) and (2.12) in terms of σ z and τ xz , we obtain after elementary manipulations[

G0

(
f

G0

)′
− |ξ1| A1

]
σ z(ξ1, z) − iξ1

|ξ1|
[
G0

(
s

G0

)′
− |ξ1| A2

]
τ xz(ξ1, z) = 0,

iξ1

|ξ1|
[
G0

(
r

G0

)′
− |ξ1| Â2

]
σ z(ξ1, z) +

[
G0

(
g

G0

)′
− |ξ1| A3

]
τ xz(ξ1, z) = 0,

(2.16)
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346 P. MALITS

where the prime denotes differentiation with respect to z,

A1 = A1(s, r) = 1 − 2ν(z)

2(1 − ν(z))2 − ν(z)

1 − ν(z)
(r + s) − 2rs,

A2 = A2(s, f, g) = f − ν(z)

1 − ν(z)
g − 2gs, Â2 = A2(r, f, g),

A3 = A3(s, r, g) = 1

1 − ν(z)
+ s + r − 2g2.

Equating to zero the coefficients in (2.16), we get the equations

G0 ( f/G0)
′ = |ξ1| A1(s, r), G0 (g/G0)

′ = |ξ1| A3(s, r, g), (2.17)

G0 (s/G0)
′ = |ξ1| A2(s, f, g), G0 (r/G0)

′ = |ξ1| A2(r, f, g), (2.18)

which manifest that for given z the pliability functions really depend on p = |ξ1| only.
Equations (2.18) give

G0

[
s(p, z) − r(p, z)

G0

]′
= −2p [s(p, z) − r(p, z)] g(p, z). (2.19)

Because s(p, 0) − r(p, 0) = 0, it is seen that r(p, z) = s(p, z). Then the pliability functions are
solutions of the initial-value problem for the system of nonlinear differential equations

G0 ( f/G0)
′ = pA1(s, s), G0 (s/G0)

′ = pA2(s, f, g), G0 (g/G0)
′ = pA3(s, s, g) (2.20)

for 0 � z � h with f (p, 0) = s(p, 0) = g(p, 0) = 0.
Since the above initial-value problem is equivalent to the corresponding problem of elasticity, one

might expect that a bounded solution exists. Making the changes (2.13) and (2.14), the existence
and uniqueness of the solution may be proved rigorously in the standard way by employing integral
equations (see the Picard–Lindelöf theorem (7)) even though the right side may possess points of
ordinary discontinuity. Successive approximations converge to the solutions at least in the vicinity of
the point z = 0 for all values p. This solution can be continued at any z ∈ [0, h] . In a neighbourhood
of p = 0, the solution on the whole interval [0, h] can be written in the form of series which
converge absolutely (7) and whose terms are certain homogeneous polynomials of the parameter p.
Thus the series are analytic functions of p and may be extended analytically for all real p. When
ν = 1

2 and p is fixed, we obtain in the process of proof the following estimate which will be helpful
later:

f (p, h) = 2p3(γ2(h) − p2	) + f̃ (p, h), (2.21)

∣∣ f̃ (p, h)
∣∣ � M

∞∑
n=4

K n−1γn−1(h)

(n − 1)!
pn+1, (2.22)

where K and M are constants,

γn(z) = G(z)
∫ z

0

(z − t)n

G(t)
dt, 	 = 4G(h)

∫ h

0

γ 2
1 (t)

G(t)
dt, (2.23)

	 � 2δ1γ2(h) � 2δ0hγ2(h) and δn = sup
0�z�h

γn(z). (2.24)
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INDENTATION OF AN INCOMPRESSIBLE INHOMOGENEOUS LAYER 347

Expanding the pliability functions into series in ascending powers of p, we derive by substituting
into (2.20) and equating coefficients of like powers of p

f (p, z) =
∞∑

k=0

p2k+1 f2k+1(z), (2.25)

g(p, z) = pG(z)

1 − ν(z)

∫ z

0

dt

G(t)
+

∞∑
k=1

p2k+1g2k+1(z), (2.26)

s(p, z) =
∞∑

k=1

p2ksk(z), (2.27)

where fk(z), gk(z) and sk(z) satisfy certain recurrencd equations omitted here. In particular,

f1(z) = pG(z)

2 (1 − ν(z))

∫ z

0

1 − 2ν(t)

(1 − ν(t)) G(t)
dt,

f3(z) = − 2G(z)

1 − ν(z)

∫ z

0

ν(t)

G(t)
s1(t) dt,

s1(z) = G(z)

1 − ν(z)

∫ z

0

[∫ t

0

1 − 2ν(u)

2 (1 − ν(u)) G(u)
du − ν(t)

1 − ν(t)

∫ t

0

du

G(u)

]
dt.

The Maclaurin series (2.25) to (2.27) converge uniformly for small p because the pliability func-
tions are analytic functions of p. If ν = 1

2 , then f1(z) = 0 and p3 f3(z) is the leading term of the
expansion (2.25). On changing the order of integration we obtain in this case

f (p, z) = fin(p, z) = 2p3G(z)
∫ z

0

(z − t)2

G(t)
dt + O(p5). (2.28)

We observe that the behaviour of the pliability function f (p, h) in the vicinity of the origin is differ-
ent in the cases of incompressibility and compressibility. This affects the efficiency of algorithms,
as well as the asymptotic behaviour of the solution as a layer becomes thin.

The asymptotic expansions as p → ∞ are sought as series in descending powers of p at points
where G(z) and ν(z) are analytic (see (8, §36.2)). Equating coefficients of like powers leads to
algebraic equations. It is seen from (2.25) that for z > 0 the functions f (p, z) and g(p, z) are
positive in a neighbourhood of the point p = 0 and, therefore (see above), for all p > 0 as well.
Then the leading terms of the asymptotic expansions for f (p, z) and g(p, z) should be positive.
This observation enables us to select the correct solution whose two leading terms are

f (p, z) ∼ 1 + (2 − ν) G ′ + ν′G
2 (1 − ν) G

1

p
+ O

(
1

p2

)
, (2.29)

s(p, z) ∼ 1 − 2ν(z)

2 (1 − ν(z))
+ (1 − ν) [G/ (1 − ν)]′

2G

1

p
+ O

(
1

p2

)
, (2.30)

g(p, z) ∼ 1 + (1 − ν) [G/ (1 − ν)]′

2G

1

p
+ O

(
1

p2

)
. (2.31)
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348 P. MALITS

We note that the complete asymptotic expansions for p → ∞ contain, in addition to descending
powers of p, rapidly decreasing terms of order O (pm exp (−pς z)) which take into account the
initial conditions as well as points where G(z) is discontinuous or varies very rapidly.

3. Reducing dual equations to regular equations in the case of a flat circular indenter

The normal displacement uz of the upper boundary z = h is given by the two-dimensional Fourier
inverse of (2.5) and can be rewritten in cylindrical coordinates by means of the well-known relations
between two-dimensional Fourier transforms and Hankel transforms: if

q(x1, x2) =
∞∑

n=−∞
qn(r) einθ and q(ξ1, ξ2) =

∞∑
n=−∞

q̃n(p) einφ, (3.1)

with p =
√

ξ2
1 + ξ2

2 and φ = arctan (ξ2/ξ1), then

qn(r) =
∫ ∞

0
pq̃n(p) Jn(pr) dp and q̃n(p) =

∫ ∞

0
rqn(r) Jn(pr) dr, (3.2)

where Jn(p) is the Bessel function of the first kind.
The expression (2.5) is established in section 2 on satisfying the boundary conditions (2.3) and

(2.4). One might see that inserting the representations of uz(r, θ, h) and σz(r, θ, h) in the form of
the inverse integral transforms into the boundary conditions (2.1) and (2.2), which are not met yet,
gives equivalent dual integral equations. In the case of a flat indenter w(r, θ) = 0 and ν = 1

2 , these
dual integral equations are written due to (3.1) and (3.2) as

R
∫ ∞

0
σ̃z0(p) fin(p/R, h) J0(pρ) dp = 2G(h)u0(ρ), 0 � ρ � 1, (3.3)

∫ ∞

0
pσ̃z0(p) J0(pρ) dp = 0, 1 < ρ < ∞, (3.4)

and

R
∫ ∞

0
σ̃z1(p) fin(p/R, h) J1(pρ) dp = 2G(h)u1(ρ), 0 � ρ � 1, (3.5)

∫ ∞

0
pσ̃z1(p) J1(pρ) dp = 0, 1 < ρ < ∞, (3.6)

where ρ = r/R, u0(ρ) = −c, u1(ρ) = −ρRc1 and σ̃zn(p) are the unknown Hankel transform of
the nth harmonics of the integrable contact stress σz(ρR, θ, h) = σz0(ρ) + σz1(ρ) cos θ ,

σzn(ρ) =
∫ ∞

0
pσ̃zn(p) Jn(pρ) dp. (3.7)

Further we denote

χγ
µ,ν(p, t) = Yν(pt)Jµ(pγ ) − Yµ(pγ )Jν(pt), (3.8)

where Yν(pt) is the Bessel function of the second kind,

γ = 2

[
1

π
lim
p→0

fin(p/R, h)

p3

] 1
3 = 2

R

[
2G(h)

π

∫ h

0

(h − z)2

G(z)
dz

] 1
3

, (3.9)
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INDENTATION OF AN INCOMPRESSIBLE INHOMOGENEOUS LAYER 349

and employ the discontinuous integral (evaluated by means of the known integral (9, equation
2.13.22.5)) ∫ ∞

0
pχ

γ
2,2(p, t)J0(pρ) dp =

{
�0/(γ t)2, 0 < ρ < t − γ,

0, ρ > t − γ,
(3.10)

where

�0 = 2[(t2 + γ 2 − ρ2)2 − 2γ 2t2]

π
√

(t2 − (ρ + γ )2)(t2 − (ρ − γ )2)
.

Applying the inverse formula for the Hankel transform and the operation t−2(d/dt)t2 gives us
the operator transforming J0(pρ) into pχ

γ
2,1(p, t),

S0[J0(pρ)] = pχ
γ
2,1(p, t) with S0( · ) = 1

γ 2t2

d

dt

∫ t−γ

0
( · ) �0 ρ dρ. (3.11)

The solution of the dual integral equations (3.3) and (3.4) is sought in the form

Rσ̃z0(p)

πγ G(h)
= −p

∫ α

γ
sω0(s) χ

γ
2,1(p, s) ds (3.12)

= −αω0(α)χ
γ
2,2(p, α) +

∫ α

γ
s2χ

γ
2,2(p, s) d

(
ω0(s)

s

)
, (3.13)

where α = 1 + γ and ω0(s) is some auxiliary function possessing an integrable derivative. It will
be shown in section 4 that this representation leads to the integrable contact stress σz0(ρ).

Putting (3.13) in (3.4) and interchanging the order of integration, we ascertain by means of the
integral (3.10) that (3.4) is satisfied identically.

Applying the operator S0, defined by (3.11), to (3.3) yields

R
∫ ∞

0
pσ̃z0(p) fin(p/R, h)χ

γ
2,1(p, t) dp = 2G(h)S0[u0(ρ)], γ � t � 1 + γ. (3.14)

Substituting (3.12) into (3.14) and taking into account the inversion formula for the Weber–Orr
transform (10),

�(t) =
∫ ∞

0

p�̂ (p)χ
γ
ν,µ(p, t)

J 2
ν (pγ ) + Y 2

ν (pγ )
dp, �̂ (p) =

∫ ∞

γ
s�(s)χγ

ν,µ(p, t) ds, ν = µ + 1

2
± 1

2
,

we obtain a Fredholm integral equation of the second kind with a symmetric kernel,

(I + L0) ω0 = ψ0(t), γ � t � 1 + γ, (3.15)

with

Lnω =
∫ 1+γ

γ
sω(s)Ln(t, s) ds, ψ0(t) = −S0(u0(ρ)), (3.16)

Ln(t, s) =
∫ ∞

0
p [F(p) − 1]

χ
γ
2,n+1(p, t)χγ

2,n+1(p, s)

J 2
2 (pγ ) + Y 2

2 (pγ )
dp, (3.17)
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350 P. MALITS

where 2F(p) = πγ p fin(p/R, h)
[
J 2

2 (pγ ) + Y 2
2 (pγ )

]
; note that F(p) > 0, F(p) − 1 = O(p2)

as p → 0 and F(p) − 1 = O(p− j ) as p → ∞ with j � 1. The asymptotic formula (2.29)
together with asymptotic expansions of Bessel functions enables us to establish that the kernel
Ln(t, s) (n = 0, 1) possesses a logarithmic singularity at points t = s when G ′(h) �= 0 and Ln(t, s)
is continuous when G ′(h) = 0.

For the flat indenter, the right-hand part of the Fredholm equation (3.15) can be evaluated exactly,

1

c
ψ0(t) = S0(1) = lim

p→0
S0(J0(pρ)) = lim

p→0
pχ

γ
2,1(p, t) = 2t

πγ 2 . (3.18)

The dual integral equations (3.5) and (3.6) are treated in a similar way. We use the discontinuous
integral ∫ ∞

0
pχ

γ
2,1(p, t)J1(pρ) dp − 2t

πργ 2 =
{

�1/(ρtγ 2), 0 < ρ < t − γ,

0, ρ > t − γ,
(3.19)

evaluated from (3.10) by integration by parts, where

�1 = 2[γ 2(ρ2 + t2) − (ρ2 − t2)2]

π
√

((ρ + γ )2 − t2)((ρ − γ )2 − t2)
.

Inverting (3.19) gives

S1[J1(pρ)] = pχ
γ
2,2(p, t) with S1(·) = − t

γ 2

d

dt

1

t2

∫ t−γ

0
(·) �1 dρ.

These relations and the substitution

σ̃z1(p)

πγ G(h)
= −p

∫ α

γ
sω1(s)χ

γ
2,2(p, s) ds (3.20)

= αω1(α)χ
γ
2,1(p, α) − 2ω1(γ )

πp
−
∫ α

γ

1

s
χ

γ
2,1(p, s) d[s2ω1(s)] (3.21)

enable us to derive the Fredholm integral equation of the second kind,

(I + L1) ω1 = −S1(u1(ρ)) = ψ1(t), γ � t � 1 + γ, (3.22)

where the operator is defined by (3.16) and (3.17). For the flat indenter, the right-hand side of the
equation again can be evaluated exactly,

1

c1
ψ1(t) = S1(ρ) = lim

p→0
S1(2p−1 J1(pρ)) = 2 lim

p→0
χ

γ
2,2(p, t) = t4 − γ 4

πγ 2t2 . (3.23)

Now it is readily seen from (3.22) that ω1(γ ) = 0. It may be shown that ω1(γ ) = 0 for any
piecewise differentiable function u1(ρ) which is zero at the point ρ = 0.

The operators I + Ln , n = 0, 1, are strictly coercive in the Hilbert space induced by the inner
product

(a(t), b(t)) =
∫ 1+γ

γ
ta(t)b(t) dt. (3.24)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/59/3/343/1851934 by guest on 20 August 2022



INDENTATION OF AN INCOMPRESSIBLE INHOMOGENEOUS LAYER 351

To prove this, we note that

(ω(t), (I + Ln) ω) =
∫ ∞

0

pF(p)ω̂2(p)

J 2
2 (pγ ) + Y 2

2 (pγ )
dp. (3.25)

Then the Parseval theorem for the Weber–Orr transforms,∫ ∞

0

pω̂2(p)

J 2
2 (pγ ) + Y 2

2 (pγ )
dp =

∫ ∞

γ
tω2(t) dt = ‖ω‖2 , (3.26)

leads to the estimate

‖ω‖2 m− � (ω(t), (I + Ln) ω) � ‖ω‖2 m+, (3.27)

where m− = inf F(p) > 0 and m+ = sup F(p) < ∞. This indicates that the Fredholm integral
equations possess unique solutions which can be determined with iterative or projective methods
(11). The norm of the integral operator Ln is estimated in the same way,

‖Ln‖ = sup
‖ω‖=1

|(ω(t), Lnω)| � sup |F(p) − 1| , n = 0, 1. (3.28)

It follows from the properties of the kernels Ln(t, s) that the solutions are continuous. One may
readily ascertain that the integral operators Ln transform continuous functions into functions pos-
sessing an integrable derivative. Then the solutions possess integrable derivatives as was presup-
posed. These derivatives are continuous when G ′(h) = 0 or have logarithmic singularities when
G ′(h) �= 0.

4. Indenter displacement and contact stresses

In order to find relations between the indenter displacement and the imbedding force P , we use the
equilibrium conditions which are expressed directly via σ̃zn(p) and the arm d,

2π R2σ̃z0(0) = −P, 2π R3 lim
p→0

σ̃z1(p)

p
= −Pd.

On substituting (3.12) and (3.20) these conditions become

P = 4πG(h)R

γ

∫ 1+γ

γ
s2ω(s) ds, Pd = πG(h)R3

γ

∫ 1+γ

γ

s4 − γ 4

s
ω1(s) ds. (4.1)

The contact stresses are evaluated by applying Hankel transforms to (3.13) and (3.21),

γ R

2G(h)
σz0(ρ) = 2γ 2(1 + γ )2 − (1 − ρ2 + 2γ (1 + γ ))2

(1 + γ )
√

(1 − ρ2)[(1 + 2γ )2 − ρ2]
ω0(1 + γ )

+
∫ 1+γ

ρ+γ

(s2 + γ 2 − ρ2)2 − 2γ 2s2√
(s2 − (ρ + γ )2)(s2 − (ρ − γ )2)

d

(
ω0(s)

s

)
,

γρ

2G(h)
σz1(ρ) = −2γ 2(1 + γ ) + (1 − ρ2)(1 − ρ2 + 4γ + 3γ 2)√

(1 − ρ2)[(1 + 2γ )2 − ρ2]
ω1(1 + γ )

−
∫ 1+γ

ρ+γ

γ 2(ρ2 + s2) − (ρ2 − s2)2√
(s2 − (ρ + γ )2)(s2 − (ρ − γ )2)

d(s2ω1(s)).
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352 P. MALITS

Then we find a very simple expression for the stress intensity factor at the edge of the indenter

lim
r→R

σz(r, θ, h)
√

R2 − r2 = −2G(h)
√

γ (1 + γ ) [ω0(1 + γ ) + ω1(1 + γ )R cos θ ] . (4.2)

The structure of the Fredholm integral equations (3.15) and (3.22) is convenient for deriving
asymptotic solutions when there are limit relations of the form

lim
γ→0

8 fin(p/R, h)

πp3γ 3 = 1 (4.3)

or

lim
γ→∞ fin(p/R, h) = 1. (4.4)

One might observe that these limit relations involve limγ→∞ ‖Ln‖ = limγ→0 ‖Ln‖ = 0, n = 0, 1.
Then we establish for the flat indenter as γ → 0 or γ → ∞: ωn(t) ∼ ψn(t),

P
2G(h)Rc

∼ P = (1 + γ )4 − γ 4

γ 3 ∼
{

4 if γ → ∞,

γ −3 if γ → 0,
(4.5)

Pd

c1G(h)R3 ∼ M = (1 + 2γ )3(1 + 2γ + 4γ 2)

6γ 3(1 + γ )2 ∼
{

16/3 if γ → ∞,

γ −3/6 if γ → 0,
(4.6)

lim
r→R

σz(r, θ, h)
√

R2 − r2 ∼ − P
2π R2

{
R + 3d cos θ if γ → ∞,

4γ 3/2(R + 6d cos θ) if γ → 0.
(4.7)

By virtue of the formulae (2.21) to (2.24) and the inequality

γn(h) = 3G(h)

∫ h

0

(h − t)2

G(t)

(
G(t)

∫ t

0

(h − s)n−3

G(s)
ds

)
dt � 3δ0hn−3γ2(h),

for n � 3, we have

8 fin(p/R, h)

πγ 3 p3 = 1 + ϕ
( p

R
, h
)

,

∣∣∣ϕ ( p

R
, h
)∣∣∣ � 2δ0h

R2 p2 + 3Mδ0

2

∞∑
n=4

K n−1hn−4 pn−3

Rn−3 (n − 1)!

� δ0

h

[
2p2
(

h

R

)2

+ M K 3 p

4

h

R
exp

(
K p

h

R

)]
.

The above estimate elucidates the dependence of the limit (4.3) on G(z), h and R. Since

γ � 2

(
2δ0

πh

)1/3 h

R
, (4.8)
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INDENTATION OF AN INCOMPRESSIBLE INHOMOGENEOUS LAYER 353

this allows us to infer that the asymptotic solutions obtained above for γ → 0 may be employed
under one of the sufficient conditions

δ0

h
= O(1),

h

R
� 1, (4.9)

(
δ0

R

)1/3

=
[

1

R
sup

(
G(z)

∫ z

0

dt

G(t)

)]1/3

� 1,
h

R
= O(1). (4.10)

Coarse upper estimates for δ0/h are given by

δ0

h
� 1

h
sup

zG(z)

inf0�t�z G(t)
� sup G(z)

inf G(z)
. (4.11)

It is seen that δ0/h � 1 for a monotone decreasing G(z). Then (4.9) is valid as h/R → 0.
The requirements (4.10) are fulfilled when h is fixed and R is sufficiently large. Then the ex-

pression (4.7) implies that the condition of perfect contact between the flat indenter and a very thin
incompressible layer is d � R/6. This is different from that obtained for a thin compressible layer,
namely d � R/4 (5).

Note that (4.10) remains valid when (δ0/h)1/3 � 1, h/R = O(1). This shows that for a varying
shear modulus the concept of a thin layer might hold even as the geometric characteristics are of the
same order. For instance, we observe such a situation for G(z) = G0 e−az , ah  1.

If h is fixed and R → 0, then the condition (4.4) is fulfilled and we can use the asymptotic
solutions for γ  1. However, it is unclear what simple restrictions should be imposed on the
varying shear modulus G(z), the indenter radius R and the layer thickness h to indicate the range
of applicability for the asymptotic formulae. In general, all terms of the asymptotic expansion for
fin(p/R, h) − 1, including exponentially decreasing terms, should be examined to be small as
p/R  1 and 1/p = O(1). For instance, for the layer with the shear modulus

G(z) =
{

G0, 0 � z � h0,

G1, h0 � z � h,
(4.12)

where G0 and G1 are constants, all power terms of the asymptotic expansion discussed in section 2
are equal to zero. In this case one might ascertain by a change z = z1 R that, when h − h0 = R and
h/R → ∞, fin(p/R, h) turns into the pliability function for a layer of unit thickness bonded to an
elastic half-space with different elastic properties. This shows that in order to get fin(p/R, h) → 1
we must impose the additional requirement (h − h0)/R → ∞ which is caused by the exponentially
decreasing terms.

5. Homogeneous layer indented by a flat indenter

The pliability function fin(p, h) for a homogeneous layer can be written explicitly,

fin(p/R, h) = sinh 2pλ − 2pλ

cosh 2pλ + 2p2λ2 + 1
, λ = h

R
.

Then γ = [16/(3π)]
1
3 λ, m+ = 1·05754 and m− = 0·74279.

For both limiting cases of a thin layer (γ � 1) and a thick layer (γ  1), we can use the asymp-
totic formulae derived in the preceding section when λ � 1 and λ  1, respectively.
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354 P. MALITS

Since the operators in the Fredholm equations (3.15) and (3.22) are self-adjoint, their spectrums,
by virtue of (3.27), are localized within the interval

[
m−, m+

]
of the positive semi-axis. Then we

can write

(I − Bn) ωn = ηψn(t), n = 0, 1, (5.1)

Bn = (1 − η)I−ηLn, η = 2/(m+ + m−), (5.2)

and solve equations (5.1) with the iterative algorithm (11):

ωn,k+1(t) = Bnωn,k(t) + ηψn(t), (5.3)

‖ωn(t) − ωn,k(t)‖ � ‖ωn,0(t)‖θ, θ = q‖ωn(t) − ωn,k−1(t)‖/‖ωn,0(t)‖, (5.4)

q = (m+ − m−)/(m+ + m−) = 0·17481. (5.5)

Taking ωn,0(t) = ψn(t) and making the next iteration, we obtain the approximate solutions

ω̂n(t) = ψn(t) − η

πγ 2

∫ ∞

0
[F(p) − 1]

χ
γ
2,n(p, t)χγ

n (p)

J 2
2 (pγ ) + Y 2

2 (pγ )
dp, n = 0, 1, (5.6)

χ
γ
0 (p) = 2(1 + γ )2χ

γ
2,2(p, 1 + γ ), (5.7)

χ
γ
1 (p) = (1 + γ )4χ

γ
2,3(p, 1 + γ ) + γ 4χ

γ
2,1(p, 1 + γ )/(1 + γ ); (5.8)

the error factor θ has the estimate |θ | � q ‖Ln‖ /m− � 0·06053, π ‖ψ0(t)‖ = √
P/γ and

π ‖ψ1(t)‖ = √
M/γ , where P and M are defined in (4.5) and (4.6), respectively.

Approximate formulae relating the indenter displacement with the imbedding forceP now follow
from (4.1). Denoting

P̃ = P
2G(h)Rc

and M = Pd

G(h)R3c1
,

we write

P̃ ≈ P̃1 = P − 4 (1 + γ )4 η

γ 3

∫ ∞

0

[F(p) − 1][χγ
2,2(p, 1 + γ )]2

p[J 2
2 (pγ ) + Y 2

2 (pγ )]
dp, (5.9)

M ≈M1 = M − η

γ 3

∫ ∞

0

[F(p) − 1]χ2
1 (p, γ )

p[J 2
2 (pγ ) + Y 2

2 (pγ )]
dp. (5.10)

Upper estimates for the relative errors of the approximate formulae (5.9) and (5.10) can be readily
found by using the Schwartz inequality together with (5.4),∣∣P̃ − P̃1

∣∣ � 2π

γ

∫ 1+γ

γ
s2|ω1(s) − ω̂1(t)|ds � π

√
γ P‖ω1(s) − ω̂1(t)‖, (5.11)

or
∣∣P̃− P̃1

∣∣ � θ P = εP P̃1, where εP = θ P/P̃1. In the same manner |M−M1| � εMM1, where
εM = θ M/M1. Calculations show that for all values of λ the upper estimates of the relative errors,
εP and εM , do not exceed 6·14 per cent and 6·38 per cent, respectively.
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INDENTATION OF AN INCOMPRESSIBLE INHOMOGENEOUS LAYER 355

Evaluating the integrals asymptotically for λ → 0 (12), (5.9) and (5.10) become

P̃1 = 1

β3

[
1 +

5∑
k=1

Dkβ
k

]
+ O(β3) with β = γ

γ + 1
= 2

4
3 λ

2
4
3 λ + (3π)

1
3

, (5.12)

D1 = D2 = 1·9235, D3 = −2·5201, D4 = −2·4109 and D5 = 7·1567, and

M1 = 1

β3

[
1

6
+

6∑
k=1

Bkβ
k

]
+ O(β4), (5.13)

with B1 = 0·7309, B2 = 1·6926, B3 = 0·4598, B4 = −2·8566, B5 = 13·2328 and B6 =
−10·6227.

Taking the asymptotic expansions of the integrals and results of numerical calculations, we con-
struct the next approximate formulae for λ � 4:

P̃ ≈ P̃ap = P + 0·9235(1 + 3γ )γ −2 + 1·22 ln β − 1·17β2 + 2·1β8, (5.14)

M ≈Map = M + 0·9235(1 + 5γ )

4γ 2 − 0·285(1·03 + 0·82β2)2 ln β − 2·7631β2 + 3·66β4.

(5.15)

For λ � 4, P̃ can be evaluated by Alexandrov’s asymptotic formulae (4) andM1 by the approx-
imate formula

M ≈Map = 16

3
+ 19·5

λ4 . (5.16)

Another highly effective approximate solution can be derived from (5.1) if we write

ωn = (I − Bn)
−1 ηψn(t) = −ηq−1 Ql(q

−1Bn)ψn(t) + ηq−1Uψn(t),

where U = (q−1I − q−1Bn)
−1 + Ql(q−1Bn), q is defined in (5.5), Ql(x) is some polynomial and

the operator U is a function of the self-adjoint operator Bn/q whose spectrum is localized within
the interval [−1, 1]. In accordance with the spectral theory of self-adjoint operators (13),

‖U‖ � sup
|x |�1

∣∣∣∣ 1

x − 1/q
− Ql (x)

∣∣∣∣ . (5.17)

This estimate is minimized by choosing Ql(x) as the polynomial of least deviation from 1/(x−1/q).
Explicit formulae for this polynomial and its maximal deviation are known (14),

Ql(x) = 1

x − 1/q
− ql+2 cos [l arccos x + φ(x)]

(1 − q2)(1 +√1 − q2)l
,

sup
|x |�1

∣∣∣∣ 1

x − 1/q
− Ql(x)

∣∣∣∣ = ql+2

(1 − q2)(1 +√1 − q2)l
= θl ,

say, where φ(x) = arccos [(x − q)/(qx − 1)]. Then the approximate solution

ω̃n = −ηq−1 Ql(q
−1Bn)ψn(t) (5.18)

has the error whose norm is less than θ̃l ‖ψn(t)‖, with θ̃l = µθl/q.
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356 P. MALITS

For l = 1,

−ηq−1 Q1(q
−1Bn) = η(1 − q2)−1/2I + η(1 − q2)−1Bn, (5.19)

ω̃n = η0[η1ψn(t) + ω̂n(t)], (5.20)

where ω̂n(t) is defined by (5.6), η0 = η/(1 − q2) ≈ 1·1459248 and η1 = √1 − q2 − η ≈
−0·126305. The error factor for this solution is θ̃1 ≈ 0·017645.

The formulae relating the indenter displacement with P and the arm d become

P̃ ≈ P̃2 = η0[η1 P + P̃1] and M ≈M2 = η0[η1M +M1]. (5.21)

The upper estimates of the relative errors |1 − P̃/P̃2| × 100 per cent and |1 −M/M2| × 100 per
cent do not exceed 1·77 per cent.

Results of approximate calculations for P̃ andM are summarized in Table 1, where P̃A are the
corresponding values calculated by Alexandrov’s asymptotic solutions; P̃n andMn , n = 1, 2, are
results of calculations using (5.9), (5.10) and (5.21); P̃as andMas are the values calculated accord-
ing to the asymptotic formulae (5.12) and (5.13); P̃ap andMap are found from the approximations
(5.14), (5.15) and (5.16).

We see that the discrepancies of the approximations (5.14) from (5.9) do not exceed 1
3 per cent

as λ � 4, and the approximations (5.15) and (5.16) from (5.10) are less than 0·3 per cent for all λ.
The formulae for P̃1 andM1, as seen from (4.5) and (4.6), are asymptotically correct as λ → ∞

and λ → 0. The formulae for P̃2 andM2 are preferable in the interval 0·02 � λ < 2. As λ → ∞
and λ → 0, the limiting errors of P̃2 andM2 are 0·12 per cent.

For λ � 2, P̃1 is in excellent agreement with Alexandrov’s formula which gives the exact asymp-
totic expansion in this range. The maximal discrepancy is 0·32 per cent for λ = 2 and becomes
negligibly small as λ � 3. The formula for P̃2 also gives very accurate results in this range.

Alexandrov’s asymptotic solution for small λ is approximate. This solution for 0·06 � λ < 2 is
essentially different from our error controlled solution. The discrepancy becomes small as λ → 0.

Table 1 P̃ andM: results of calculations

λ P̃A P̃2 P̃1 P̃as P̃ap M2 M1 Mas Map

0·1 949·60 1024·3 1010·7 1010·7 1009·8 222·07 218·16 218·18 218·08
0·2 165·16 199·75 199·00 199·01 198·83 53·382 52·136 52·127 52·277
0·3 63·109 87·564 87·008 86·953 87·057 27·189 26·530 26·480 26·597
0·4 32·777 52·003 51·619 51·502 51·728 18·226 17·804 17·748 17·819
0·5 20·021 36·095 35·824 35·681 35·892 13·969 13·674 13·648 13·654
0·75 8·446 20·317 20·185 20·139 20·179 9·421 9·286 9·388 9·259
1 4·693 14·654 14·358 14·534 14·328 7·603 7·543 7·728 7·546
2 7·778 7·829 7·753 8·796 7·734 5·724 5·737 5·651 5·723
3 6·148 6·180 6·152 – 6·134 5·446 5·459 4·950 5·445
4 5·479 5·493 5·481 – 5·490 5·406 5·410 – 5·410
5 5·123 5·128 5·122 – 5·174 5·354 5·358 – 5·364

10 4·504 4·502 4·501 – 4·708 5·338 5·335 – 5·335
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INDENTATION OF AN INCOMPRESSIBLE INHOMOGENEOUS LAYER 357

For small λ, only the first (leading) terms in the asymptotic expansion (5.12) and Alexandrov’s
expansion are the same and the difference is caused by the subsequent terms.

Note that the leading asymptotic term of P̃ for a very thin layer was first established by intuitive
arguments in the paper by Barber (1). We observe that Barber’s theory gives the error (587λ ± 2)
per cent and is valid only for a very thin layer. An error of less than 10 per cent cannot be achieved
for λ � 0·021 and can be ensured for λ � 0·014.

6. Circular indenter of three-dimensional profile

Consider a circular indenter of three-dimensional profile

w(r, θ) = w0(r) +
∞∑

n=1

[
wn(r) cos nθ + w∗

n(r) sin nθ
]
. (6.1)

If a contact stress is expanded into the trigonometric Fourier series

σz(r, θ, h) = σz0(r) +
∞∑

n=1

[
σzn(r) cos nθ + σ ∗

zn(r) sin nθ
]
,

then, for the harmonics n = 0 and n = 1, we again have the dual equations (3.3), (3.4) and (3.5),
(3.6), where now u0(ρ) = w0(Rρ) − c, and u1(ρ) = w1(Rρ) − c1 Rρ or u1(ρ) = w∗

1(Rρ) −
c2 Rρ. The coefficients of the unknown indenter displacement −c − c1r cos θ − c2r sin θ should be
determined from the equilibrium equations,

2π R2σ z0(0) = −P and 2π R3 lim
p→0

σ̃z1(p) + i σ̃ ∗
z1(p)

p
= −Pd.

Using the substitutions (3.12) and (3.20), we obtain

P = 4πG(h)R

γ

∫ 1+γ

γ
s2ω(s) ds, (6.2)

Pd = πG(h)R3

γ

∫ 1+γ

γ

s4 − γ 4

s

[
ω1(s) + iω∗

1(s)
]

ds, (6.3)

where ω(s) is the solution of the Fredholm equation (3.15) with the right-hand part S0[w0(Rρ)−c];
ω1(s) and ω∗

1(s) obey the Fredholm equation (3.22) with the right-hand parts S1[w1(Rρ) − c1 Rρ]
and S1[w∗

1(Rρ) − c2 Rρ], respectively.
Leading terms of the asymptotic expansions as γ → 0 can be readily found in the same manner

as for the flat indenter:

γ 3P
8G(h)R

= c

4
− 1

2π R4

∫ R

0

∫ 2π

0
r(R2 − r2)w(r, θ) dθ dr, (6.4)

γ 3Pd

G(h)R3 = c1 + ic2

6
− 2

π R6

∫ R

0

∫ 2π

0
(R4 − 3R2r2 + 2r4)w(r, θ) eiθ dθ dr. (6.5)
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The corresponding asymptotic formula for the axisymmetric component of the contact stress in
the general case is given by

πγ 3 R3

8G(h)
σz0(r) =

[
2γ 2 R4 − (R2 − r2 + 2γ R2)2√
(R2 − r2)[(1 + 2γ )2 R2 − r2]

+ R2 − r2

]
q(R) + q0(r), (6.6)

q(R) = c

2
− 1

2π R2

∫ R

0

∫ 2π

0
sw(s, θ) dθ ds,

q0(r) = r2 − R2

2
c − 1

π

∫ R

0

∫ 2π

0
sw(s, θ) ln

∣∣∣∣max(r, s)

R

∣∣∣∣ dθ ds.

This formula is valid at every point where w0(r) possesses a continuous derivative, excepting very
narrow neighbourhoods of the points r = rm where w′

0(r) is discontinuous. If the discontinuity is
ordinary, then the contact pressure has a singularity of the form γ 2g(r, rm, γ ) ln |r − rm |, where the
continuous function g(r, rm, γ ) is o(1) as γ � 1.

We note in conclusion that Jaffar’s intuitive solution for a rigid sphere (2) may by derived from
(6.4) and (6.6).
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