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Indentation of ultrathin elastic films and the emergence of asymptotic isometry

Dominic Vella1, Jiangshui Huang2,3, Narayanan Menon2, Thomas P. Russell3 and Benny Davidovitch2
1Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom

2Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
3Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, USA

We study the indentation of a thin elastic film floating at the surface of a liquid. We focus on the
onset of radial wrinkles at a threshold indentation depth and the evolution of the wrinkle pattern as
indentation progresses far beyond this threshold. Comparison between experiments on thin polymer
films and theoretical calculations shows that the system very quickly reaches the Far from Threshold
(FT) regime, in which wrinkles lead to the relaxation of azimuthal compression. Furthermore, when
the indentation depth is sufficiently large that the wrinkles cover most of the film, we recognize
a novel mechanical response in which the work of indentation is transmitted almost solely to the
liquid, rather than to the floating film. We attribute this unique response to a nontrivial isometry
attained by the deformed film, and discuss the scaling laws and the relevance of similar isometries
to other systems in which a confined sheet is subjected to weak tensile loads.

PACS numbers: 46.32.+x,46.70.De,62.20.mq

When an elastic sheet is subjected to external forces, it
is often implicitly assumed that the work done is stored
in the deformed sheet. Under purely tensile loads, the
work is stored primarily by stretching energy. When the
forces are purely compressive, as in uniaxial buckling,
the strain is typically negligible, and the work is instead
stored as bending energy [1]. Under more complicated
compressive forces, such as those required to confine a
sheet in a box [2], the work is stored in localized (stress-
focusing) zones that involve bending and stretching. In
this Letter, we report a new response exhibited by the
indentation of an elastic film floating at a liquid–gas in-
terface. We show that for sufficiently large indentations,
only a negligible fraction of the work done by the inden-
ter is stored as elastic energy — the majority is stored in
the gravitational and surface energies of the liquid.

Interest in the indentation of elastic objects includes a
range of metrological applications. Just as one tests an
object’s stiffness by poking it, controlled indentation is
used in the measurement of internal pressure within poly-
meric [3] and biological [4–8] capsules and to determine
the modulus of thin membranes [9]. These applications
motivated theoretical studies of indented spherical shells,
which suggested that ‘mirror-buckling’ [10] (fig. 1a) oc-
curs in the presence of an internal pressure [8]. Mirror
buckling is the simplest possible isometric (i.e. strainless)
deformation of an infinitely thin shell so the work done
in indenting the shell is nearly independent of the elastic
moduli; instead it goes into compressing the gas within
the shell [8].

In contrast to shells, the indentation of elastic sheets
is highly sensitive to tension. If a sheet is not under
tension, indentation typically leads to the formation of a
developable cone (“d-cone”) [11–13], which is isometric
everywhere except within a small region around the in-
denter (fig. 1b). The formation of this nearly isometric
shape involves large vertical deflections of the initially
planar sheet and is therefore unattainable when vertical
displacements are penalized. This is the case for thin

elastic films floating on a liquid as formed by vulcaniza-
tion of a liquid polymer drop, in which case an unknown
pre-stress is hypothesized [14], or by deposition, in which
case the liquid surface tension acts at the film’s edge [15].
Experiments on the latter system are better controlled
than the former and show that indentation gives rise to
a shape full of radial wrinkles that transform into sharp
folds beyond a threshold indentation [15].

The striking difference between the observed wrin-
kled/folded shape and the nearly isometric d-cone, was
interpreted in [15] as an indication of considerable strain
in the film induced by the combination of indentation and
boundary tension. Here we focus on the wrinkle pattern,
and show that wrinkling reveals a new isometry of the
film with the strain at the pre-indentation level. As a
result, the indentation force exhibits a nontrivial depen-
dence on the surface tension and density of the liquid,
but is independent of the film’s elastic moduli. This type
of isometry is novel in the elasticity of thin bodies [2], be-
ing achieved only in the doubly asymptotic limit of weak
applied tension and small bending stiffness; we therefore
refer to it as an asymptotic isometry.

Our experimental setup consists of polystyrene films
(Young’s modulus E = 3.4 GPa, Poisson ratio ν = 0.33
and radius Rfilm = 1.14 cm) floating at the surface of
deionized water [16]. The interfacial tension, γlv, was
varied in the range 36 mN/m ≤ γlv ≤ 72 mN/m us-
ing surfactant. The thickness of the film, t, satisfied
85 nm ≤ t ≤ 246 nm [35]. Stainless steel needles (tip
radii rtip ≈ 25 µm, 135 µm) were used to impose a ver-
tical displacement, δ, at the center of the film. Indenta-
tions up to δ ≈ 0.75 mm were applied and measured to
within 10 µm. The deformed film was viewed from above
using a microscope.

Our theoretical study is based on the Föppl-von Kar-
man (FvK) equations for an elastic film, with stretching
modulus Y = Et and bending modulus B = Et3/12(1−
ν2), floating on a liquid of density ρl, subject to tension
γlv at its edge and a localized indentation force F caus-
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FIG. 1: (a) Schematic illustration of the indentation of a very
thin axisymmetric shell with or without an internal pressure,
which tends to an isometric “mirror buckling” deformation
[8, 10]. (b) Indenting a sheet with free boundaries leads to a
“d-cone”, which is isometric everywhere except close to the
indenter [12, 13]. (c) Schematic illustration showing the evolu-

tion of a floating film subject to increasing indentation, δ̃: pre-
indentation state (upper, flat); at small indentation (δ̃ ≪ δ̃c,
second from top) the tension is approximately uniform; at

intermediate indentation (δ̃c < δ̃ ≪ R2/3, second from bot-
tom), the hoop stress is compressive in an annular wrinkled

region (light blue); at large indentation (δ̃ ≫ R2/3, bottom),
wrinkles cover the entire film except for r < LI (black).

ing a vertical displacement δ at r = 0. We assume that
the film’s radius Rfilm is much larger than the capillary
length ℓc = (γlv/Kf )

1/2, where Kf = ρℓg.

It is useful to identify the dimensionless groups in the
problem by describing the characteristic behavior of the
film as δ increases (fig. 1c). For very small δ, the response
is similar to that of a fluid membrane: the stress remains
close to its pre-indentation state, σrr ≈ σθθ ≈ γlv, and
the vertical deformation ζ(r) decays over a horizontal
distance ℓc (fig. 1c). As δ is increased, the indentation-
induced strain, ∼ (δ/ℓc)

2, leads to a noticeable inhomo-
geneity in the stress (fig. 2a): the radial stress σrr(r)
decreases monotonically towards γlv for r ≫ ℓc, while
the hoop stress σθθ(r) decreases more sharply, overshoot-
ing γlv before approaching γlv from below. Intuitively,
this occurs because indentation causes material circles to
be pulled inwards and become relatively compressed. If
the indenter’s tip is sufficiently small, this purely geo-
metric effect is governed only by the “confinement ratio”
(δ/ℓc)

2/(γlv/Y ) between the indentation-induced strain,
and the purely tensile strain caused by surface tension.
We therefore introduce the dimensionless indentation

depth

δ̃ =
δ

ℓc
(Y/γlv)

1/2
, (1)

which determines the stress profiles fully. As δ̃ increases
above a threshold δ̃c, analysis of the FvK equations shows
that the hoop stress becomes compressive (σθθ < 0)
within a narrow annulus (blue solid curve, fig. 2a). As
these films are very thin, a compressive hoop stress causes
wrinkling (fig. 2b). For a film with infinite radius, numer-

ical analysis of the FvK equations yields δ̃c ≈ 11.75, in
good agreement with our experiments for a range of film
thicknesses, tensions and indenter sizes (fig. 3a).
Two crucial phenomena occur as the indentation am-

plitude is increased above δ̃c. First, the wrinkled zone
expands: a detailed calculation [17] shows that the outer

radius of the wrinkled zone LO/ℓc ∼ δ̃3/2 so that wrin-

kles reach the film’s edge when δ̃ ∼ (Rfilm/ℓc)
2/3. Second,

the thinness of the film means that the compressive hoop
stress is completely relaxed by wrinkling: σθθ(r) ≈ 0, a
qualitative change from the prebuckled and compressive
(but unwrinkled) profiles [the solid red and blue curves,
respectively, in Fig. 2a). We therefore use the Far-from-
Threshold (FT) approach, valid in the singular limit of
zero bending stiffness [18, 19]. These two phenomena are
characterized by the dimensionless radius, R, and “bend-
ability”, ǫ−1, [20] of the film, where:

R = Rfilm/ℓc, ǫ−1 = γlvℓ
2
c/B. (2)

For our experiments, ǫ . 10−5.
In the FT approach the energy is written U = Udom +

Usub with Usub the subdominant energy governed by the
bending cost of wrinkling, which vanishes as ǫ → 0, and
Udom the dominant energy, which remains finite as ǫ→ 0.
Minimization of Usub determines the number of wrinkles.
In the current study we employ tension field theory [18]
(minimizing Udom) to determine the mean deflection pro-
file ζ(r) and the extent of the wrinkles.
We write the axisymmetric FvK equations using an

Airy potential ψ (so that σrr = ψ/r and σθθ = ψ′). The
vertical force balance reads

B∇
4ζ −

1

r

d

dr

(

ψ
dζ

dr

)

= −Kfζ −
F

2πr
δ(r), (3)

where F is the point-like indentation force, found as part
of the solution for a given indentation. The compatibility
of strains in the unwrinkled zone (where both σrr and σθθ
are tensile) gives [1]

r
d

dr

[

1

r

d

dr
(rψ)

]

= −
1

2
Y

(

dζ

dr

)2

. (4)

We note that equations (3)-(4) are invariant under ζ →

−ζ, F → −F ; our results therefore apply equally to the
cases of pushing down on (considered here) and pulling
up on [15] a floating membrane. Invoking tension field
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FIG. 2: (Color online) The profiles of the hoop (solid curves)
and radial (dashed curves) stresses within an indented, un-

wrinkled film (with R ≫ 1) at indentation depths δ̃ = 7.5

(red curves) and δ̃ = 15 (blue curves). Notice that σθθ is

negative for intermediate values of r when δ̃ = 15 so that
sufficiently thin films will, in fact, wrinkle. (b) Just beyond
the onset of instability (δ = 0.48 mm) wrinkles are confined
to an annulus LI ≤ r ≤ LO. (c) Ultimately wrinkles reach
the edge of the film (here δ = 0.56 mm) and wrinkles occupy
LI ≤ r ≤ Rfilm. Here t = 85 nm.

theory, we neglect the bending term in Eq. (3), and re-
place Eq. (4) by ψ = constant in the wrinkled zone (since
σθθ = 0) [35].

We turn now to large indentations δ̃ ≫ R2/3, where the
wrinkles cover the whole film except in 0 < r < LI (see
fig. 2c). Noting that σrr(Rfilm) = γlv, and that σθθ → 0
in the wrinkled zone, we find that σrr(r) = γlvRfilm/r for
LI < r < Rfilm; Eq. (3) then reduces to Airy’s equation
[22]:

ζ(r) = Aout ·Ai(r/ℓcurv), ℓcurv = R
1/3ℓc. (5)

Here ℓcurv, which increases with film size ∼ R
1/3
film, re-

places ℓc as the decay length of membrane deflections.
The prefactor Aout and the inner radius, LI , are found

by patching the wrinkled zone to the unwrinkled core
(r < LI). In the limit δ̃ ≫ R2/3 we find, using standard
techniques [23–25, 35], that Aout ≈ −δ/Ai(0) and the
radial displacement at the edge of the film approaches a
limiting value:

ur(Rfilm) ≈ −0.243 δ2/ℓcurv ; (6)

a result whose importance will become apparent shortly.
Our asymptotic calculations also reveal that

LI

ℓcurv
≈ 6.20

(

δ̃/R2/3
)

−2

⇒ LI ∼
R

5/3
filmγ

5/3
lv

Y K
2/3
f

δ−2 . (7)
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FIG. 3: (Color online) (a) Experimentally measured threshold

indentation for wrinkling, δc, as a function of ℓc(γlv/Y )1/2.
Experiments with varying film thickness (59 nm ≤ t ≤

246 nm), γlv = 72 mN/m are shown for indenter radii rtip =
135 µm (N) and rtip = 25 µm (•). Experiments with vary-
ing surface tension coefficient (36 mN/m ≤ γlv ≤ 72 mN/m)
and t = 121 nm (�). The theoretical prediction for R ≫ 1,

δ̃c ≈ 11.75, is also shown (dashed line). Good agreement
with experiment justifies our neglect of indenter size and any
(hypothesized) manufacture-dependent pre-stress, which were
both attributed crucial roles previously [14]. (b) The inner
wrinkle radius, r = LI , decreases with increasing indenta-
tion, δ̃, when wrinkles reach the film’s edge. Experiments
with γlv = 72 mN/m and: t = 85 nm (2), t = 121 nm
(©), t = 158 nm (△), t = 207 nm (×), t = 246 nm (✩).
Experiments with t = 121 nm and: γlv = 58 mN/m (�),
γlv = 50 mN/m (◮) and γlv = 42 mN/m (◭). The predic-
tion of the FT theory (solid curve) and the asymptotic result
(7) (dashed line) are also shown. The wrinkle number scales
similarly to that found in other studies [21] (data not shown).

At the scaling level, Eq. (7) can be understood by not-
ing that in the tensile core the indentation-induced ra-
dial stress ∼ Y (δ/ℓcurv)

2, whereas in the wrinkled zone
σrr = γlvRfilm/r. Continuity of the radial stress at
r = LI yields the scaling in (7). Figure 3b shows that
this result agrees well with numerical solutions of the
full problem and with experiments. Strikingly, Eq. (7)
shows that the size of the tensile core is affected by all
physical parameters in the problem (except the bending
modulus).

Our calculation also yields the indentation force F ≈

4.581γlvR
2/3δ, consistent with previous measurements

[15, 35]. Two features of the scaling F ∼ γ
2/3
lv K

1/3
f R2/3δ,

are surprising. Firstly, F ∝ δ, even though the FvK
equations are highly non-linear. Secondly, the force is in-
dependent of the elastic moduli of the film. Understand-
ing this mechanical response requires reconsideration of
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the dominant energy of the wrinkle pattern:

Udom = −(Windent +Wsurf) + (Ugpe + Ustretch). (8)

Here Windent,Wsurf are the work done by the inden-
tation force and surface tension acting at the edge of
the film, respectively. Ugpe, Ustretch are the gravita-
tional energy of the displaced liquid and the elastic
energy of the film, respectively. The work done by
the indentation force Windent =

∫

F dδ ∼ γlvR
2/3δ2.

One might assume that Windent would be transmitted
to the elastic energy Ustretch due to the tensile com-
ponents of the compression-free stress field. However,
integrating the strain energy density σ2

ij/Y we obtain:

Ustretch/Windent ∼ (δ̃/R2/3)−2 ≪ 1. Indeed, using
Eqs. (5,6) to evaluate the workWsurf ∼ Rfilmγlvur(Rfilm)
of the surface tension, and the energetic cost Ugpe ∼

Kf

∫ Rfilm

0
ζ2r dr of the vertically-displaced liquid, we find

the asymptotic relation:

for ǫ−1
≫ 1, δ̃ ≫ R

2/3 : Windent → −Wsurf + Ugpe (9)

This energetic structure describes a novel mechanical
response of an elastic film, whereby the work of the in-
denter is transmitted predominantly to the subphase (in-
creasing gravitational energy and uncovering surface area
of the liquid), while an asymptotically negligible fraction
is stored as elastic energy in the film. This simple ener-
getic structure reflects a nontrivial geometric feature: the
wrinkled film becomes isometric to its pre-indentation
state in the doubly asymptotic limit of small bending
modulus (ǫ ≪ 1) and small exerted tensile strain (since

δ̃ ≫ R2/3 ⇒ (γlv/Y ) ≪ ur(Rfilm)/Rfilm by eqn (6)).
In this doubly asymptotic limit, the hoop strain ǫθθ is
and asymptotic isometry follows from Eqs. (5,6), which
yield the elimination of radial stretching in the limit
δ̃R−2/3 → ∞ (the apparent stretching, ∼

√

δ2 + ℓ2curv −
ℓcurv, is completely cancelled by the lateral displacement
ur(Rfilm) of the edge). Thus, the formation of wrinkles at
negligible energetic cost enables the metric of the film to
remain almost identical to its pre-indentation state, even
though the film suffers a large deflection, Eq. (5), that is
determined by indentation, gravity, and surface tension.
In other words, the film lies in a “no-man’s-land” – too
stiff to be stretched significantly (since the applied ten-
sile strain γlv/Y is small), and yet perfectly deformable
(since the bending modulus B is also small).

In conclusion, we have shown that an indented float-
ing film starts with a purely tensile response but evolves,

with the aid of wrinkles, into a state that is asymptot-
ically isometric to its initial state. This demonstrates a
novel mechanical response, in which the indenter does
work mainly on the liquid with only a negligible frac-
tion transmitted to the elastic film. This response also
underlies the stability of the poked film to two com-
mon failure modes of floating objects: the film would
sink if the displacement at the edge exceeds ℓc [26],
but ζ(Rfilm) ∝ δAi(R2/3) ≪ ℓc (since R ≫ 1). Simi-
larly, pulling-induced delamination will occur if the ad-
hesive energy, ∆γR2

film, is smaller than the alternative
deformation energy [27]. Here, the alternative deforma-
tion energy, Udom, is barely affected by the elastic mod-
ulii of the sheet, so delamination is expected only for

δ >
√

∆γ/γlvR
2/3
filmℓ

1/3
c , which is beyond the reach of ex-

isting experiments [15] and the validity of our small slope
theory.

The concept of asymptotic isometry should be relevant
to other systems, where a thin elastic object is forced into
a curved, nondevelopable shape, in the presence of weak
tensile loads. Representative examples include the wet-
ting of a film by a liquid meniscus [28, 29] or its adhesion
to a sphere [30, 31], and the twisting of a stretched ribbon
[32, 33]. Such systems may also have parameter regimes
in which the object is highly deformed yet nearly iso-
metric to its undeformed state; consequently, the work
done by external forces is not stored in the object it-
self. Finally, it is important to realize that asymptot-
ically isometric states may not necessarily be wrinkled:
the wrinkle-fold transition [15, 34] and other secondary
instabilities may also exhibit a similar phenomenology.
We hope that our work will provide a suitable framework
for studying these phenomena.
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