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Abstract: The load-penetration depth (P–h) curves of different metallic coating materials can be
determined by nanoindentation experiments, and it is a challenge to obtain stress–strain response and
elastoplastic properties directly using P–h curves. These problems can be solved by means of finite
element (FE) simulation along with reverse analyses and methods, which, however, typically occupy
a lengthy time, in addition to the low generality of FE methodologies for different metallic materials.
To eliminate the challenges that exist in conventional FE simulations, a long short-term memory
(LSTM) neural network is proposed in this study and implemented to deep learn the time series of
P–h curves, which is capable of mapping P–h curves to the corresponding stress–strain responses for
elastoplastic materials. Prior to the operation of the neural network, 1000 sets of indentation data of
metallic coating materials were generated using the FE method as the training and validating sets.
Each dataset contains a set of P–h curves as well as the corresponding stress–strain curves, which are
used as input data for the network and as training targets. The proposed LSTM neural networks,
with various numbers of hidden layers and hidden units, are evaluated to determine the optimal
hyperparameters by comparing their loss curves. Based on the analysis of the prediction results of
the network, it is concluded that the relationship between the P–h curves of metallic coating materials
and their stress–strain responses is well predicted, and this relationship basically coincides with the
power-law equation. Furthermore, the deep learning method based on LSTM is advantageous to
interpret the elastoplastic behaviors of coating materials from indentation measurement, making the
predictions of stress–strain responses much more efficient than FE analysis. The established LSTM
neural network exhibits the prediction accuracy up to 97%, which is proved to reliably satisfy the
engineering requirements in practice.

Keywords: elastoplastic coating; indentation; reverse analysis; FE simulation; LSTM neural network

1. Introduction

Coatings are frequently employed to protect materials and structures in harsh envi-
ronments and to reduce or stop damage caused by outside forces. Particularly, metallic
coatings have a wide variety of applications due to their excellent properties. For instance,
in the aerospace industry, titanium-based coatings are frequently used to protect aerospace
engines, because of their excellent corrosion resistance and stable strength [1–4]. To achieve
corrosion resistance of steel components in automotive industry, aluminum, zinc, and
zinc-boron compounds are the most popular metals utilized as coatings [5].

In order to assure the coating’s reliability during applications, it is essential to under-
stand and quantify its mechanical qualities, especially the in situ properties after the coating
process with high temperature, plastic formation, and strain rate. Apparently, the coating
is essentially adhered to the substrate material, and the presence of the substrate material
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directly affects the findings of macroscopic testing of coating materials if the substrate effect
cannot be reasonably excluded. In this regard, experimental nanoindentation methods have
been presented for analyzing the microscale characterization features of materials [6–9].
In instrumented nanoindentations, the indenter penetrates the material’s surface at a con-
trolled speed or load, and the applied load P and the penetration depth h of the indenter are
simultaneously recorded. By examining the P–h curves under various working situations, a
deep understanding can be made for the material’s mechanical properties. By following the
pioneering Oliver–Pharr model, the hardness and elastic modulus can be obtained based on
the P–h curve [10–13]. Nevertheless, the material’s stress–strain response cannot be derived
directly from the P–h curve. In spite of the fact that the mapping from the P–h curve to the
stress–strain curve can be resolved by inverse analysis with finite element (FE) software,
this is not only necessary to consider the relationship between several physical quantities
during the analysis process, but also it is time-consuming to perform a parametric study of
FE simulations. This means that the method simply based on exhausting FE simulations is
ineffective in capturing the essence of such an inverse problem for elastoplastic materials.

In light of the aforementioned challenges in the analysis process, machine learning
methods are more advantageous than FE simulation at handling nonlinear relationships
of data. Machine learning techniques are utilized in industrial manufacturing due to
their outstanding capabilities for data analysis [14,15]. The machine learning approach has
gained popularity in material inspection analysis because of its low development cost, short
development cycle, and excellent predictive performance when dealing with large amounts
of data [16]. Deep learning is one of the subfields of machine learning, which has been the
major research focus of computer applications in recent years. Compared with conventional
machine learning, deep learning can automatically execute the majority of data feature
extraction during network training and can work with significantly bigger datasets. On
the other hand, machine learning concentrates on applying statistical approaches to data,
but deep learning primarily imitates biological neural networks to extract data features
step by step. In recent years, convolutional neural networks (CNN), recurrent neural
networks (RNN), and generative adversarial networks (GAN) have been the most popular
deep learning models [17–21]. These three types of networks have their own application
scenarios based on different algorithms. Among them, CNN is frequently used to process
and analyze medical images due to its powerful image analysis capability [22,23]. The
special feature of GAN is that there are two networks inside it, and during the training
process, the two networks fight against each other to continuously approach the optimal
solution of the problem. Therefore, GAN is used to generate random data for applications
such as image enhancement and data denoising [24–26]. LSTM is derived from RNN,
compensating for the fact that RNN cells cannot effectively learn the relevant information
of the input data when the input time period is lengthy [27–31]. LSTM is frequently used
in text recognition, audio processing, and video processing due to its high effectiveness
with time series data [32–34]. For indentation problems, Long et al. [35] adopted the P–h
curves of metal materials to train the CNN network; some constitutive parameters are
regarded as the training objective. Their datasets are generated by means of FE modeling,
and the stress–strain relationship of the metallic material is described by a power-law
equation [36,37]. However, the datasets loose certain characteristics during the convolution
in the CNN network. Essentially, there is a close relationship between the P–h curve
and the constitutive equation, and all data are continuous in the time history. Compared
with CNN and GAN networks, a deep learning method based on LSTM could be more
advantageous to optimize the reverse process of the mechanical behavior of materials in
indentation studies.

In this study, an LSTM neural network is established to perform the inverse calcu-
lation of P–h curves to the stress–strain responses of metallic coating materials. Initially,
1000 datasets of matched P–h curves and stress–strain curves are constructed by performing
extensive FE simulations. After extracting the coordinates of the P–h curves with equal
spacing divisions, the maximum-minimum normalization technique is applied in order



Materials 2023, 16, 2617 3 of 15

to generate the network’s input data. The established network then processes the input
data and outputs the corresponding stress–strain response, which completes the crucial
training phase for the LSTM neural network. With the trained LSTM network, some inde-
pendent cases are further examined in the validating phase. This technology is promising
to effectively address the challenges of conventional nanoindentation inversion work and
markedly enhance computing efficiency. To guarantee the correctness of the proposed pro-
cedure, the predicted results from the LSTM network and the FE simulations are compared
by in-depth discussions with various statistical evaluation indicators.

2. Indentation Theory and Database Preparation
2.1. Theoretical Basis for Instrumented Indentation

To determine the deformation properties of metallic coating materials, in nanoinden-
tation tests, the indenter is usually controlled to penetrate into the material at a constant
load/displacement speed or at a constant indentation strain rate. If no holding stage is
considered, the process is separated into two stages based on the direction of the indenter’s
movement: the loading and the unloading stages. By applying geometric self-similar
indenters, the loading and deformation behavior of the material specimen usually satisfies
Kick’s law [38,39] as given by

P = Chm, (1)

where P is the load applied to the material by the indenter during loading, C represents the
curvature during loading, and h is the depth of indentation into the surface of the material.
For the exponent, m is equal to 2 for an ideal indention but is found to be usually less than
2 if uncertainties and imperfections of indenters and test samples are taken into account.

From the measured P–h curves, by continuously monitoring the applied load during
the loading stage, material hardness can be determined and identified as a critical parameter
to characterize the material properties. Hardness, defined as the average contact pressure
on the contact area Ac due to the applied load on the indenter, demonstrates the material’s
capacity to resist local deformation, specifically plastic deformation, indentation, and
scratching. The standard definition of hardness H is

H =
P
Ac

. (2)

The contact area Ac can be calculated with the indentation depth for the geometrically
self-similar indenter and is approximated as 24.5 h2 for a three-sided pyramid Berkovich in-
denter. In fact, the value of hardness was found to be closely related to the yield strength by
the constraint factor (i.e., 3) as proposed by Tabor [40]. In addition to the plastic properties,
the Young’s modulus, the most important elastic property, can also be determined from
the P–h curves by adopting the concept of reduced modulus. Apparently, the elastoplastic
properties are implied in the measured P–h curves. Even though intensive efforts [38,41–44]
have been made to establish reverse algorithms in recent decades, more reliable and efficient
approaches are still unavailable.

In order to identify the stress–strain variation relationship of metal-coated materials
during indentation experiments, the elastoplastic properties of the material can be extracted
using a reversal method based on the measured material indentation dataset, whereas for
metallic or alloy materials, their plastic behavior can be approximated using a power-law
constitutive model [37,45,46] in the following form of

σ =

{
Eε ε ≤ εy
Rεn

y ε ≥ εy
, (3)

where E is Young’s modulus, R is the strength factor, n is the strain hardening index, and εy
is the yield strain corresponding to the yield strength.

It is essential to emphasize that the purpose of this study is to propose an efficient but
reliably accurate prediction method of constitutive properties for elastoplastic materials
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by instrumented indentations. As a powerful and effective method for data analysis, deep
learning allows the dataset consisting of indentation response of materials to function as
input data, whilst the output data consists of the material’s elastoplastic properties. The
prediction model based on deep learning theory not only has excellent prediction capacity,
but also can save a lot of time to improve the efficiency of engineering practice, which
is of great help to realize the analysis of in situ mechanical properties of metallic coating
materials. Therefore, the theories and formulae mentioned above are regarded as the
theoretical basis for generating datasets for deep learning.

2.2. FE Simulation of Indentation

In order to generate sufficient reliable data, FE simulations are performed with a
three-sided pyramid Berkovich. Note that for a Berkovich indenter, the hardness values
of three-dimensional and axisymmetric indentations can be measured over the range
from micro to nano-indentations, despite the indentation size effect. In this study, the
Berkovich indenter is modeled as an axisymmetric part with a half angle of 70.3◦ to
maintain the equivalent contact area with the three-dimensional indenter. The substrate
material is a cylinder with a height of 100 µm and a radius of 100 µm, which is discretized
with 49,349 axisymmetric elements. With a maximum indentation depth of 2000 nm,
the substrate’s mesh size of 50 nm is sufficiently fine to capture the high strain gradient
underneath the indenter. Figure 1 shows the experimental model of nano-indentation
constructed during the FE simulation. It should be noted that the applied indentation
depth is much smaller than the height of the substrate material. The entire indentation
process is examined by fixing the radial displacement of the reference point assigned on the
indenter. Post-processing work allows for accurate output of the P–h curve and stress–strain
curve, laying the groundwork for reliable further numerical verification, where variations
of Young’s modulus, yield strength and hardening exponent are taken into account. While
employing the FE simulation approach for gathering training data, the noise in all data is
uniformly reduced to improve model prediction robustness.
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3. Methodology
3.1. LSTM Neural Network

With the rapid development of machine learning, deep learning as one of its primary
branches has been widely applied to scientific and practical engineering problems [47],
and the most appropriate deep learning algorithms can be utilized to handle practical
engineering problems as effectively as feasible. In the present work, it is crucial to analyze
the nanoindentation experimental data generated by the FE simulation program in order
to identify an appropriate algorithm. The metallic coating materials indentation dataset
has two attributes. On the one hand, it is sequential in the sense that each point on the P–h
curve created by the material during the nanoindentation experiment is closely connected,
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which conforms to the nonlinear relationship between pressure and material deformation
as stated by Kick’s law. The second factor is dimension-transformability. Each P–h curve
created by the material during indentation trials is mapped by the inversion algorithm onto
the associated stress–strain curve.

Based on the features of the metallic coating indentation dataset and the nature of the
problem to be solved, LSTM neural networks are quite effective deep learning methods. In
1997, Jürgen Schmidhuber’s complete derivation of the LSTM algorithm, which extracts
attributes of a dataset over an extended time interval, made its debut [48]. The LSTM
neural network uses memory cells and gating units to control the storage and deletion of
data. The gating units used are the input gate, which sets the size of the amount of data fed
into the network each time. The forgetting gate controls the information that is ignored
by the memory cells. The output gate determines the final output sequence feature value.
The neural network’s operation at time t is illustrated in Figure 2. Analysis of the LSTM
neural network’s data flow operation and its mathematical model can be expressed as
follows [49–53]:

ft = S(W f · [ht−1, xt] + bt), (4)

it = S(Wi · [ht−1, x] + bi), (5)

→
C t = tanh(Wc · [ht−1, x] + bc), (6)

Ct = ft × Ct−1 + it ×
→
Ct, (7)

ot = S(Wo · [ht−1, xt] + bo), (8)

ht = ot × tanh(Ct), (9)

where it, ft, and ot represent the input gate forgetting gate and the output gate’s result,
respectively. Ct represents the cell’s state at time t, which can be utilized to form the

connection between memory cells via
→
C t. ht represents the state of the hidden layer at

moment t. Wx and bx (x = i, f, o, c) are the weight and bias values of the matrices in
the LSTM neural network for input gates, forgetting gates, output gates, and cell state
updates. S (Sigmoid) and tanh indicate the activation functions utilized by the appropriate
gating units.

The indentation data processed in this study contain metallic materials with a wide
range of Young’s modulus, as reflected in the series over time. For different materials, the
time series are different. Regarding this kind of time series, the LSTM method based on
RNN can be a good solution to the problem of time series variation. The data in different
time stages are understood in the same network, which can well reflect the stress–strain
response pattern in each time stage of the indentation process. The key point of this
model is the use of recursive network approach to understand the temporal nature of the
indentation process through multi-layer calculations.
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Figure 2. LSTM working schematic at time t.

3.2. Normalization for Data Preparation

After producing sufficient data on metallic coating indentation by the FE model, 1000
sets of data were chosen for network training, of which 90% are training data and 10% are
validation data. For data preparation, the horizontal coordinates of the P–h curve of the
metal coating material during the loading stage are divided into forty points spaced by fifty
nanometers, and the vertical coordinates of these forty points serve as the input for each
deep learning training. In order to increase the generalization of the training network to the
dataset and the stable robustness of the prediction effect, the network parameter dropout
is also set during the construction of the LSTM neural network. This aims to counteract
the effect of overfitting in the deep learning process and improve the network’s ability to
process the data. The workflow of the LSTM neural network constructed in this paper is
shown in Figure 3.
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Normalization of the dataset is an essential component as well. This is due to the
fact that the input data and network output data have different scales and units during
the training process, as well as a considerable variation in order of magnitude, which
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may result in smaller feature quantities being disregarded during training. However, data
normalization can not only minimize the influence of scale between input and output
responses, but also make the data metrics comparable by standardizing their magnitudes.
The dataset normalizing method utilized in this paper is normalization, which has the
benefits of effectively enhancing the convergence speed and accuracy of the network and
reducing the negative impacts caused by odd sample data. Following are the formulae for
the max-min normalization approach:

X =
x− xmin

xmax − xmin
, (10)

where x is the current input value, X is the input value after reduction to the interval [0,1].
xmin and xmax are the minimum and maximum values. In the final output stage, the inverse
normalization method can be used to obtain the corresponding prediction results.

3.3. Evaluation Indicators

Through a great number of repetitive calculations, the training stage of the LSTM
neural network consists of seeking the optimal solution to the present system of nonlinear
equations in the real number range. To effectively handle this optimization problem, the
adaptive moment estimation (ADAM) was selected to obtain the optimal real number
solution. The ADAM optimizer enables faster gradient reduction than conventional opti-
mization methods, resulting in more accurate updating of the weight and deviation values
obtained during computation [54].

In this research, the mean square error (MSE) is used to calculate the loss function
in the network, which indicates the error between the predicted and actual values of the
network throughout each cycle, and the root mean square error (RMSE) is utilized to
complement the error computation. In addition, for a more straightforward evaluation of
the performance of the LSTM neural network, the coefficient of determination R2 is utilized
to describe the correlation between the network-predicted values and the target values.
The aforementioned evaluation metrics are defined by

MSE =
1
n

n

∑
i=1

(xpred − xtrue)
2, (11)

RMAS =
√

MSE =

√
1
n

n

∑
i=1

(xpred − xtrue)
2, (12)

R2 = 1−

n
∑

i=1
(xpred − xtrue)

2

n
∑

i=1
(xtrue − x)2

(13)

where n represents the total number of samples, xpred represents the value predicted by
the LSTM neural network, xtrue represents the value obtained through validation of the
power-law equation, and x represents the corresponding mean value.

4. Results and Discussion
4.1. Hyperparameter Setting of LSTM Neural Network

Prior to the network training, the first step is to set the network’s hyperparameters.
The adequacy of the hyperparameter settings has a direct impact on the predictive power
of the final network. Consequently, the intention of the deep learning methodology is
to identify the optimal numerical solution to the nonlinear system of equations under
various hyperparameter settings. The ideal combination of hyperparameters for the current
problem is determined by comparing the network prediction results under each set of
hyperparameter settings. The most important hyperparameter is the learning rate, which
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indicates the decay efficiency of the network’s gradient in each cycle, which is typically set
between 10−2 and 10−6. When the learning rate is increased, the gradient reduces more
quickly and the network’s learning efficiency is accelerated, but the best solution will be
overlooked during network calculation. Smaller learning rates are appropriate for more
precise solutions, but excessively small learning rates result in prolonged training times
and poor gradient reduction. Based on the relationship between the P–h curve during the
nanoindentation test and the constitutive equation, the final learning rate for this study is
determined as 10−4. The number of training cycles of the network has the same features as
the learning rate, and 1000 training cycles are used to make the learning curve of the LSTM
neural network smooth and stable at a low order of magnitude.

Various types of deep learning networks have unique hyperparameters based on their
frameworks. For LSTM neural network, the specific hyperparameters include input size,
hidden size, and number of layers, which are defined as explained by the documentation
of PyTorch. The number of hidden size reflects the amount of network features in each
hidden layer, whereas the number of layers specifies the number of hidden layers utilized
for each operation. For the hidden size and layer number, the control variables method
was used to set multiple combinations of hyperparameters, and the optimal combination
was determined by comparing the loss curves generated from each group. The number
of hidden layers is set from 1 to 3, and the hidden size is set to 20, 40, 60, and 80 for
each hidden layer, respectively. Upon completion of the test, the loss curves for various
combinations are depicted in Figures 4 and 5. The solid lines in Figures 4 and 5 show the
loss curves for the training stage, while the dashed lines indicate the loss curves for the
validation stage.
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Figure 4. Loss curves of different numbers of hidden layers during the training and validating
phrases for indentation predictions. (a) Hidden size of 20; (b) Hidden size of 40; (c) Hidden size of 60;
(d) Hidden size of 80. In the legend, the cases of 1, 2, and 3 represent the number of hidden layers in
the LSTM neural network.
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Figure 5. Loss curves of different hidden sizes during the training and validating phrases for
indentation predictions. (a) The number of hidden layers is 1; (b) The number of hidden layers is
2; (c) The number of hidden layers is 3. In the legend, the cases of 20, 40, 60 and 80 represent the
number of hidden sizes the LSTM neural network.

Once the loss function’s value is absolutely minimal, it indicates that the network’s
predicted value exactly approximates the actual value. Focusing on the loss curves for the
combinations of hyperparameters in Figures 4 and 5, the change trend of the loss curve
with different combinations of hyperparameters can be initially determined. The larger the
hidden size and the number of layers, the steeper the loss curve’s decline and the lower the
loss value. For the findings depicted in Figures 4 and 5, the LSTM neural network with
three hidden layers and 80 hidden units in each hidden layer provides the most effective
training performance. During the testing of the optimal hyperparameter combinations
for the 12 sets of LSTM neural networks shown above, each network took about 7000 s to
complete a full calculation, while the difference value between the longest and shortest run
times was only 800 s.

In order to determine the optimal combination of hyperparameters, additional tests
are conducted to verify the validity of this trend. Figure 6 depicts the outcomes of the
extra tests. Additional studies demonstrate that increasing the number of hidden layers
or hidden units has a little influence on the loss curve, and that the final loss remains
stable and there is no significant decrease compared to the loss curves in Figures 4 and 5.
Adding extra hidden layers or hidden units during network training will dramatically
increase the computation and lengthen the training duration. When the number of hidden
layers is larger than three or the number of hidden units is greater than or equal to 120,
network training requires much more time. This result is approximately 30% longer than
the test findings presented in Figures 4 and 5. The combination of hyperparameters for
each network and the corresponding run times can be found in Table A1 in Appendix A.
Considering the training efficiency and network prediction accuracy, hidden size and
number of layers are set to 100 and 3, respectively.
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Figure 6. Loss curves of different hidden sizes during the training and validating phrases for
indentation predictions. (a) The number of hidden layers is 3; (b) The number of hidden layers is 4;
(c) The number of hidden layers is 5. In the legend, the cases of 100, 120, 140 and 160 represent the
number of hidden sizes the LSTM neural network.

4.2. LSTM Neural Network Performance Evaluation

To ensure the data-processing resilience of our LSTM neural network, the data used in
the training and validation sets in this paper are separated. In addition, the data used for
prediction are newly created by the FE simulation when network training is complete. In
this study, the coefficient of determination R2 and the root mean square error (RMSE) are
used to evaluate the LSTM neural network. The closer the value of R2 is to 1, the smaller the
difference between the prediction result of the network and the actual value, and the closer
the value of RMSE is to zero, the more accurate the network’s prediction is. Forty sets of
test data are used to put into the network for the validation of the prediction effect. Figure 7
shows the prediction results and the mean absolute percentage error (MAPE) distribution.
The formula for the MAPE is defined by

MAPE =
1
n

n

∑
i=1

∣∣∣∣ xpred − xtrue

xtrue

∣∣∣∣× 100%, (14)

Each set of test data contains 40 vertical coordinate points on the P–h curve, corre-
sponding to the pressure values applied by the indenter during the indentation test. After
the test data are calculated by the LSTM neural network, the network outputs a stress–strain
curve that describes the mechanical behavior of the metal coating material.

The results in Figure 8 show that the LSTM neural network established in this paper
can accurately predict the stress–strain response of metallic materials. More importantly,
the variation pattern of the predicted values of the network output is consistent with the
trend of the elastoplastic behavior of the metallic material described by the power-law
equation. In order to observe the performance of the LSTM neural network in practice
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more intuitively, a portion of the sample data is randomly selected as listed in Table 1 for
further demonstration of the accuracy of stress–strain response of metallic materials.
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Figure 7. The prediction performance of the LSTM neural network is demonstrated. (a) indicates the
prediction effect of the LSTM neural network on 40 sets of sample data, and the predicted stress values
are concentrated on the diagonal line of figure. (a,b) shows the MAPE distribution of each sample.
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Figure 8. Comparison of predicted stress–strain responses by FE model and the proposed and LSTM
neural network (a,b).

Table 1. The constitutive model parameters of the 10 specimens used in the model predictions.

Parameter E (GPa) R (GPa) εy n

Case 1 492 2.38 2.31 × 10−3 1.22 × 10−1

Case 2 473 2.87 2.25 × 10−3 1.63 × 10−1

Case 3 430 1.41 1.99 × 10−3 7.93 × 10−2

Case 4 191 1.62 2.67 × 10−3 1.95 × 10−1

Case 5 178 0.83 2.19 × 10−3 1.24 × 10−1

Case 6 293 1.24 1.80 × 10−3 1.36 × 10−1

Case 7 132 1.06 2.70 × 10−3 1.84 × 10−1

Case 8 373 1.44 1.79 × 10−3 1.21 × 10−1

Case 9 290 0.79 2.27 × 10−3 3.06 × 10−2

Case 10 224 1.16 1.94 × 10−3 1.57 × 10−2

As listed in Table 1, the Materials 1 to 4 typically represent the datasets prepared in
the FE simulation and LSTM network predictions. The solid line indicates the constitutive



Materials 2023, 16, 2617 12 of 15

relationship of metallic material used for the FE simulation, and the dashed line indicates
the stress–strain response predicted by the proposed LSTM neural network from the
corresponding P–h response.

5. Conclusions

In this paper, an LSTM-based deep learning method for completing the inversion of
P–h curves to material stress–strain response is provided. The prediction results of the net-
work achieved satisfactory results, with a value of 0.8645 for the coefficient of determination
R2. Moreover, based on the MAPE distribution of the test samples, the prediction accuracy
of the LSTM neural network is as high as 97.11. These satisfactory evaluation indicators
demonstrate that the network prediction values are generally in agreement with the FE
simulation values. The present study explored a wide range of materials with Young’s
modulus ranging from 200 GPa to 500 GPa. The deep learning model presented in this
paper is applicable to indentation data for the vast majority of metallic materials. This
study provides more evidence that the power-law instanton may accurately characterize
the mechanical behavior of the vast majority of metallic materials. In other words, using a
deep learning approach, the relationship between the material’s intrinsic structure and the
given material indentation data can be effectively reversed, which can then be employed
directly in FE computations. The LSTM neural network inverse performance of the intrinsic
structure relationship is applicable to a broader range of parameters, and the training
dataset includes the majority of typical metallic coating materials, including magnesium,
tungsten, and their compounds. The raw data also includes elastic and plastic data, which
can comprehensively characterize the mechanical behavior of metallic materials. In com-
parison to traditional FE modeling and nanoindentation experiments, the LSTM neural
network minimizes the consumption of experimental materials on the one hand and greatly
improves computational efficiency on the other.

Due to space limitations, the deep learning method proposed in this study is only used
for back-calculating the mechanical behavior of materials in the field of nanoindentation
research, and only a single power-law equation is used in the generation of the dataset. It
is worth noting that deep learning, as a data analysis method, is applicable for arbitrary
intrinsic structure models. With the availability of the corresponding dataset, the matching
numerical relationships can be derived by network operations. Therefore, it is a desirable
way to use deep learning methods to predict the service life of coating structures and even
the development of cracks in future research.

Author Contributions: Conceptualization, X.L., X.D. and J.L.; methodology, X.L., X.D., R.D. and Y.S.;
software, X.D. and Y.S.; validation, X.D.; formal analysis, J.L.; investigation, X.D. and Y.S.; resources,
Y.S.; data curation, Y.S.; Writing—original draft preparation, X.L. and X.D.; writing—review & editing,
Y.S. and C.C.; visualization, X.D.; supervision, X.L. and Y.S.; project administration, Y.S.; funding
acquisition, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Guangdong Basic and Applied Basic Research Foundation
(No. 2023A1515011170), National Natural Science Foundation of China (No. 51508464), the National
Key Laboratory Foundation 2022-JCJQ-LB-006 (No. 6142411232212), and the Regional Collaboration
Project of Shanxi Province (No. 2022104041101122).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is unavailable due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.



Materials 2023, 16, 2617 13 of 15

Appendix A

Table A1. LSTM neural network different hyperparameter combination and running time.

Hyperparameter Number Layer Hidden Size Training Time (s)

Combination 1 1 20 6.99 × 103

Combination 2 1 40 7.05 × 103

Combination 3 1 60 7.10 × 103

Combination 4 1 80 7.11 × 103

Combination 5 2 20 7.44 × 103

Combination 6 2 40 7.45 × 103

Combination 7 2 60 7.41 × 103

Combination 8 2 80 7.38 × 103

Combination 9 3 20 8.06 × 103

Combination 10 3 40 7.88 × 103

Combination 11 3 60 7.90 × 103

Combination 12 3 80 7.88 × 103

Combination 13 3 100 7.97 × 103

Combination 14 3 120 8.06 × 103

Combination 15 3 140 1.07 × 104

Combination 16 3 160 1.08 × 104

Combination 17 4 100 8.34 × 103

Combination 18 4 120 8.46 × 103

Combination 19 4 140 1.23 × 104

Combination 20 4 160 1.24 × 104

Combination 21 5 100 8.85 × 103

Combination 22 5 120 9.05 × 103

Combination 23 5 140 1.38 × 104

Combination 24 5 160 1.39 × 104
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