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ABSTRACT 

The indentation size effect (ISE) has been observed in numerous nanoindentation 

studies on crystalline materials; it is found that the hardness increases dramatically with 

decreasing indentation size – a “smaller is stronger” phenomenon. Some have attributed 

the ISE to the existence of strain gradients and the geometrically necessary dislocations 

(GNDs). Since the GND density is directly related to the local lattice curvature, the 

Scanning X-ray Microdiffraction (µSXRD) technique, which can quantitatively measure 

relative lattice rotations through the streaking of Laue diffractions, can used to study the 
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strain gradients. The synchrotron µSXRD technique we use – which was developed at the 

Advanced Light Source (ALS), Berkeley Lab – allows for probing the local plastic 

behavior of crystals with sub-micrometer resolution. Using this technique, we studied the 

local plasticity for indentations of different depths in a Cu single crystal. Broadening of 

Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to 

the indentation-induced plastic deformation. A quantitative analysis of the streaking 

allows us to estimate the average GND density in the indentation plastic zones. The size 

dependence of the hardness, as found by nanoindentation, will be described, and its 

correlation to the observed lattice rotations will be discussed. 
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I. INTRODUCTION 

 

Modern devices are currently being aggressively scaled. Increasingly, the dimensions 

of these devices are at the sub-micrometer and nanometer scale. Although most of these 

devices are primarily functional and not mechanical, their reliability and lifetimes are 

often controlled by the mechanical properties of the materials that comprise the device. 

Thus, the creation of such small components requires a thorough understanding of the 

mechanical properties of materials at these small length scales. Furthermore, as 

specimens are reduced in size to the scale of the microstructure, their mechanical 

properties deviate from those of bulk materials. For example, in thin films – where only 

one dimension, the thickness, reaches the micron scale and below – the flow stress is 

found to be higher than its bulk value and becomes even higher as the film gets thinner. 

This size effect is usually attributed to the confinement of dislocations by the substrate.
1-3

 

In nanoindentation experiments, where the length-scale of the deformation reaches 

the microstructural length-scale of the material, the governing relations between stress 

and strain deviate from the classical laws that apply to bulk materials. For crystalline 

materials, the hardness of a small indentation is usually higher than that of a large 

indentation. This indentation size effect (ISE) has been explained using the concept of 

geometrically necessary dislocations (GNDs) and strain gradients.
4-18

 According to this 

picture, for a self-similar indenter, for example, a Berkovich-shape pyramidal indenter, 

the total length of GNDs forced into the solid by the indenter scales with the square of the 

indentation depth, while the volume in which these dislocations are found scales with the 

cube of the indentation depth; thus, the GND density (ρG) depends inversely on the 
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indentation depth. The higher dislocation densities expected at smaller indentation depths 

lead naturally to higher strengths through the Taylor relation,
19

 and this leads to the ISE. 

Characterizing the deformation zone below indentations has been a focus of many 

researchers.
20-23

 In recent years, the use of focused ion beam (FIB) has enabled more 

accurate scanning electron microscope (SEM) imaging,
24-26

 as well as crystal orientation 

mapping using electron backscatter diffraction (EBSD)
27,28

 and transmission electron 

microscopy (TEM).
29,30

 Scanning X-ray microdiffraction (µSXRD) using a focused 

polychromatic/white synchrotron X-ray beam can be used to determine the lattice 

rotation which is directly related to the local lattice curvature,
31

 strain gradients, and the 

GND density. Compared to many other techniques, such as EBSD and TEM, two 

advantages of µSXRD are non-destructive and a much larger detection depth. µSXRD 

has been described in a complete manner in the literature,
32

 and its capability as a local 

plasticity probe at small scales stems from the high brilliance of the synchrotron source, 

as well as the recent advances in X-ray focusing optics. This capability is also related to 

the continuous range of wavelengths in a white X-ray beam, allowing Bragg's law to be 

satisfied even when the lattice is locally rotated or bent, resulting in the observation of 

streaked Laue spots. µSXRD has been used in the study of the early stages of 

electromigration failure in metallic interconnect lines,
33,34

 wherein lattice bending and 

GNDs are created by electromigration processes.
33,34

  

The use of spatially resolved X-ray diffraction to measure local lattice rotations 

induced by indentation was pioneered by Ice’s group.
35-40

 In particular, they have 

provided a methodology for a clean measurement of lattice rotation associated with a 

2�m-deep Berkovich indentation.
35,36

 They demonstrated that,
35,36

 at the center of one 
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particular indentation side-face (position A as shown in Fig. 2(a)), the X-ray beam 

encounters a single rotation axis; at other positions, the X-ray beam may encounter 

multiple rotation axes, which complicates the resulting diffracted beams.  

The present study builds upon and is complementary to this body of knowledge, and 

our primary focus is to compare ρG estimated through the observed lattice rotation to that 

expected from nanoindentation hardness results. Using µSXRD, we quantitatively study 

the streaking/broadening of Cu Laue peaks corresponding to different indentation depths, 

allowing us to estimate ρG in the individual indentation-induced plastic zones. Then, a 

revised Nix and Gao model
16,17

 is used to correlate the experimental hardness 

measurement with ρG. Finally, the values of ρG estimated through both µSXRD 

observation and hardness measurement will be compared and discussed.  

 

II. EXPERIMENTAL 

 

A copper single crystal specimen with a <111> out-of-plane orientation, in the form 

of a 2mm-thick, 10mm-diameter disk, was purchased from Monocrystals Company. A 

flat edge was cut along a <110> direction (normal to a <112> direction) to provide a 

reference for the crystal orientation. The indented sample surface was mirror-finished and 

electropolished.  

Three-sided Berkovich indentation tests were performed using a Nanoindenter XP
TM

 

with the continuous stiffness measurement module. Figure 1 shows an optical image of 

the 5 indentation arrays (each consisting of 8 indents, namely a 3×3 array without the 

center), corresponding to indentation depths of 3�m, 1.5�m, 1�m, 0.5�m and 0.25�m. 
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The horizontal edges of the indents were lined up within 1° to the flat edge, namely a 

<110> type direction of the single Cu disk as shown in Figs. 1 and 2(a). In order to locate 

the indentations using X-ray, square platinum markers were then deposited at the 

corresponding array centers using a focused ion beam (FIB), and the size of the markers 

are 5�m, 5�m, 4�m, 3�m and 1.5�m for the 5 indentation depths from 3�m to 0.25�m, 

respectively.  

 

 

FIG. 1. An optical image of Berkovich indentation arrays on a single crystal (111) Cu with 

indentation depths ranging from 3 �m to 0.25 �m. Here, each of the labels from “3�m” to 

“0.25�m” indicates the indentation depth for the corresponding indentation array. This optical 

image is taken before depositing the Pt markers. Here, the inserted image bounded with thick 

shaded lines is a magnification of 2× for the corresponding 0.25�m indentation array.  

  

The white beam X-ray microdiffraction (�XRD) experiment was performed on 

beamline 7.3.3. at the Advanced Light Source, Berkeley, CA. The sample was mounted 

on a precision XY Huber stage and oriented at an angle of 45° with respect to the incident 

beam (see Fig. 2(b)). Firstly, the indented sample surface was raster scanned at room 
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temperature under the X-ray beam to provide X-ray micro-fluorescence (�XRF), which 

revealed the Pt markers on the Cu sample to locate the indentation arrays. Then, finer 

�XRD scanning was conducted on the individual indents using a constant 0.8�m beam 

size (namely, full width at half maximum (FWHM) of the focused beam intensity is equal 

to about 0.8�m). As with typical synchrotron experiments, the scanning quantity and 

quality (resolution) were always balanced against the limited beam time. Only the 3�m, 

1�m and 0.25�m indents were �XRD scanned with step sizes of 2�m, 1�m and 0.5�m, 

respectively. For each indentation depth, we scanned 3 individual indentations. The 

�XRD patterns were collected using a MAR133 X-ray charge-coupled device (CCD) 

detector and analyzed using the XMAS (X-ray microdiffraction analysis software) 

software package.
32

 For the same experimental setup as shown in Fig. 2(b), Yang et al 

found that,
35-37

 even after penetrating a copper sample as deep as 30~50�m, the incident 

beam can still generate detectable diffracted beams, indicating that the effective 

penetration length of X-ray microbeam for copper is at least 30~50�m.  
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FIG. 2. The experimental setup for �XRD following the methodology by Yang et al.
35,36

 (a) The 

optical image of a 3�m-deep indentation, showing that an indent edge was aligned with the 

[110]  of the Cu single crystal, where position A is the center of the corresponding indent side 

face. (b) The schematic illustrating the cross-section of (a) on the plane containing both the 

incident beam at position A and the diffracted beams, where �ω represents the local lattice 

rotation with respect to the undeformed lattice. (c) The schematic of lattice curvature. (d) The 

schematic of X-ray beam scanning showing the non-symmetry in the volumes probed by X-ray. 

Here, in (a), (b) and (d), thick dash-dot lines replicate the plastic zone boundary corresponding to 

0.2% plastic strain contour determined by Finite Element Analysis (FEA) (see Fig. 8(b)), while 
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the thin dot lines schematically represent the volumes probed by the X-rays with an effective 

30�m X-ray penetration length. 

 

III. RESULTS & DISCUSSION 

 

A. Mapping of Laue Peaks on the Area Covering an Individual Indent 

 

We first describe the �SXRD map of an individual 3�m indentation with the incident 

beam scanning the indented and surrounding areas as in Fig. 3. The effective scanning 

step in the map, namely the distance between images, is 4�m, and each image in the map 

is the (111) Laue spot for the corresponding location scanned. Here, each image 

represents a two-dimensional (2D) diffraction intensity contour in the diffractometer χ-θ 

coordinates. Although the CCD detector records χ-2θ as illustrated in Fig. 2(b), the 

XMAS software processes the original CCD data and produces χ-θ plots; thus, in the 

following, the �SXRD results always refer to the χ-θ coordinates. In Fig. 3, the triangle 

represents the (Berkovich) indented area; the inner circle represents the equivalent 

circular contact area with a radius equal to a, while the outer dash-dot circle represents 

the simulated plastic zone boundary at the sample surface as in Figs. 2(a) and 2(b). For 

this 3�m deep indentation, a≈8.4�m, and the radius of the plastic zone boundary at the 

surface is about 3a, namely about 25�m. It should be noticed that, even at an X-ray-

probed (X-ray-entering) position which is outside the plastic zone boundary at the 

surface, X-rays may still be able to probe the plastic zone due to the deep X-ray 

penetration as indicated in Fig. 2(d). In fact, Fig. 2(d) also indicates that, if the X-ray 
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penetration length can be known precisely, the �SXRD map as shown in Fig. 3 may be 

used to determine the size and the shape of a plastic zone. 

For the regions far away from any indents (not shown in Fig. 3), the (111) Laue spots 

are circular without directional streaking, similar to the Laue spot at the lower right 

corner in Fig. 3. On the other hand, Fig. 3 shows various types and different extents of 

streaking in Laue spots, indicating the complexity of indentation-induced deformation. In 

order to determine the total indentation-induced lattice rotation, we should probe the X-

ray microbeam within the indent (the triangle region in Fig. 3) as illustrated in Fig. 2(d). 

Furthermore, Fig. 3 shows that the Laue spot in position A involves a single directional 

streaking, indicating that, among all positions within the triangular indent, the lattice 

rotation corresponding to position A may be the simplest and cleanest for analysis. In 

fact, the Laue spots corresponding to positions A and B (see Figs. 3-4) are similar to those 

observed by Ice’s group.
35,36

 Through theoretical analysis and simulation,
39

  Ice’s group 

found that the X-ray probed volume at position A involves one rotation axis ( [110] ) 

corresponding to two equally operating slip systems (111)[101]  and (111)[011] , 

representing the deformation associated with the corresponding indent side face. Here, 

the corresponding slip systems and the rotation axis can be easily understood through Fig. 

4(b). On the other hand, the probed volume at position B involves multiple rotation axes. 

By using spatially resolved 3D X-ray structural microscopy, Ice’s group could study the 

depth-profile of the rotation axis, and they found the following change of rotation axis 

along the X-ray penetration corresponding to position B:
35,36

 [011]  close to the surface 

(note: [101]  was addressed in Ref. 35, which should be [011]  as personally 

communicated with the first author of Ref. 35), then several sequential transition axes, 
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and finally [110] . This change of rotation axis can be understood by the comparison of 

Figs. 4(a) and 4(b) and explained as follows. For position B, the deformation close to the 

surface is dominated by the deformation induced by the side face B, so that the slip 

systems are (111)[101]  and (111)[110]  with an effective rotation axis of [011] . Then, 

for a deeper penetration of X-ray (see Fig. 4(a)), the deformation induced by side face A 

significantly contributes to the total deformation as well, so that the total effective 

rotation axis may be a convolution of the rotation axes [110]  for face A and [011]  for 

face B, and the total effective rotation axis would change along the X-ray penetration due 

to the different degrees of sequential rotation around [110]  and [011] . Finally, for deep 

enough X-ray penetration, the deformation induced by side face A would be dominant, so 

that the rotation axis becomes [110] .  

Thus, since the Laue streaking is the simplest at position A, for simplicity, all of our 

following attention will be focused on the streaked diffraction spots corresponding to 

position A for all indents studied. 
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FIG. 3. 40×40�m
2 

mapping of (111) Laue spots for different locations on the indented area of a 

3�m indentation as well as areas surrounding it. Here, every image in the map is a 2D diffraction 

intensity contour plot with χ and θ as the horizontal and vertical coordinates, respectively, and the 

width (�χ) and height (�θ) of each image are 13.5
o
 and 14.5

o
, respectively. Distance between 

images in this map is 4 �m (twice the 2�m step size for clarity). The triangle is the schematic of 

the Berkovich indent; the inner circle is the equivalent contact circle with a radius a, while the 

outer circle is the finite element analysis (FEA) determined plastic zone boundary at the surface 

with a radius about 3a (see Fig. 8(b)). Here, “A” and “B” denote the two positions which have 

been studied by Yang et al.
35,36

 

a 

3a 

A 

 B 
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FIG. 4. (a)-(b) The comparison of a Berkovich indentation and the corresponding slip systems. (a) 

The same optical image as in Fig. 2(a), schematically showing the probed volumes corresponding 

to positions A, B, and C, respectively, where positions A, B, and C are the centers of the 

corresponding indent side faces A, B and C, respectively. (b) The projection of the slip systems 

into the indented (111) plane. Here, each indent side face mainly activates two slip systems which 

can be directly read from the corresponding part of (b), for instance, (111)[110]  and 

(111)[011]  for face C. In (b), the triangle (with thick solid black edges) represents a Berkovich 

indentation. Moreover, the rotation axis for each indent side face can also be directly read from 

(b), which is parallel to the corresponding indent edge, for instance, [101]  for face C. (c) The 

relative X-ray beam sizes compared to the corresponding indents; the 3 circles from the smallest 

to the largest represent the relative beam sizes corresponding to 3�m, 1�m, and 0.25�m 

indentations, respectively (for easy illustration, the indents of 3 different indentation depths are 

scaled to be the same, and the constant beam sizes are accordingly scaled to be different). 
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B. Comparison of Laue Peak Streaking for Different Indentation 

Depths 

 

For each of the three indentation depths analyzed (3�m, 1�m and 0.25�m), we 

selected the particular (111) Laue diffraction spots coming from position A (we had three 

data sets for each indentation depth), and analyzed one representative diffraction spot for 

each indentation depth as shown in Figs. 5(a)-5(e). Here, Fig. 4(c) shows the relative X-

ray beam sizes compared to the corresponding indents. 

It should be mentioned that, as shown in Fig. 5(f) which is a landscape view of  Fig. 

5(c), there is some anomalous (extra diffraction) intensity at �θ≈15° away from the main 

(111) Laue peak, and this anomalous intensity is not observable for the 1�m and 3�m 

indentations (not shown here). We think this anomalous intensity could be an artifact as 

the background residue due to surface scattering after the routine background removal, 

and this conclusion is based on the following observations and the related arguments. 

Firstly, because of our experimental setup as shown in Fig. 2(a), there is a very strong 

broad background scattering (reflection) centered exactly around the location (in χ-θ) 

where the anomalous intensity appears, and the background scattering would be normally 

removed through the routine background removal; however, if there are some irregular 

surface scattering from an imperfectly flat sample surface, some background residue 

might be left after the routine background removal. Secondly, in fact, Fig. 5(g) shows a 

similar anomalous intensity at the same position (in χ-θ), which is corresponding to 

another spatial position (rather than position A) around the same 0.25�m indentation, 

indicating that this anomalous intensity is not uniquely corresponding to the position A 
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for the indentation. Finally and most importantly, if this anomalous intensity resulted 

from a real lattice rotation due to deformation, a similar anomalous intensity associated 

with each of other (hkl) Laue peaks would appear in the Laue pattern, which is not the 

case for this particular anomalous intensity in question as shown in Figs. 5(f) and 5(g); on 

the other hand, as shown in Fig. 5(g), there is a L-shape intensity tail associated with the 

(111) Laue peak, which can be also seen from (224), (204), (202), and (313) peaks, 

indicating that this L-shape intensity tail is due to a real lattice rotation. Therefore, we can 

conclude that this anomalous intensity close to the (111) peak as shown in Fig. 5(f) is 

very probably an artifact as the background residue coming from the sample surface 

reflection. Thus, as shown in Fig. 5(c), for the 0.25�m indentation, we analyzed only the 

associated main (111) Laue peak excluding the anomalous intensity.  

Figures 5(a)-5(e) show the streaked Laue diffraction spots and the intensity profiles 

along the corresponding streaking directions (dashed lines in the contour plots). Figures 

5(a)-5(c) show that the streaking directions are at a small angle from the vertical 

direction, namely, �χ ≠0, which may be due to the slight misalignment of the incident 

beam with respect to the proposed direction as illustrated in Figs. 2(a) and 2(b). In fact, 

the �XRD scanning for the 3�m and 0.25�m indents were done with the same sample 

stage setting, so that they correspond to the same streaking off-angle as in Figs. 5(a) and 

5(c), whereas the �XRD scanning for the 1�m indent has a different streaking off-angle 

as in Fig. 5(b) due to the detaching and re-attaching of the sample to the sample stage.  

Figures 5(a)-5(e) also shows that the shapes and extents of Laue streaking are very 

similar for the three different indentation depths, although it seems that a smaller 

indentation depth corresponds to a slightly larger streaking. Here, since the streaking off-
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angles are small, for simplicity, the lattice rotation �ω (see Fig. 2(b)) may be 

approximated by the extent of Laue streaking measured along the streaking direction 

(dash lines in Figs. 5(a)-5(c)). Using 1% of the maximum intensity as the threshold, Fig. 

5(e) indicates that the Laue streakings (≈�ω) for the indentation depths of 3�m, 1�m and 

0.25�m are 4.6
o
, 6.5

o
, and 5.5

o
, respectively, which could be used to determine the strain 

gradients, or equivalently ρG as discussed below. 
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FIG. 5. (a)-(e) The Laue streakings for the representative (111) Laue diffraction peaks from 

position A corresponding to 3�m, 1�m, and 0.25�m indentation depths. (a)-(c) 2D rainbow 
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diffraction intensity contour plots in χ-θ coordinate (10.8°×10.8°) for the 3 indents;
41

 here, the 

diffraction intensity is normalized by its corresponding maximum intensity, and the white contour 

lines (2.5%/contour) represent the normalized intensity from 1% to 21%. (d) The corresponding 

intensity profiles along the dashed lines in (a)-(c), respectively. (e) The Log-Linear plot of (d) 

with the 1% threshold. (f) The representative Laue pattern (a landscape view of (c)) for the same 

0.25�m indentation. (g) The Laue pattern from another position (not A) around the same 0.25�m 

indentation. 

 

C. The Relationship between the Laue Peak Streaking and the GND 

Density 

 

In this section, we derive the essential equations for predicting ρG through �XRD 

data. As illustrated in Fig. 2(c), the relationship between lattice rotation (�ω) and lattice 

curvature (κ) can be approximated by
31,33,34,42

 

    
x x
ω ω

κ
∂ �

= ≈
∂ �

,          (1) 

where xω∂ ∂  is the strain gradient, and �x is the transition distance along x between the 

two viewing locations (see Fig. 2(c)). Here, the extent of Laue streaking is a direct 

measure of �ω as discussed in the previous section; although it is obvious that the beam 

direction is the x direction, it is difficult to precisely determine �x associated with the 

Laue streaking �ω. Since the lattice rotation due to elastic deformation is generally 

negligible compared to that due to plasticity, as a first order estimation, as illustrated in 

Fig. 2(b), �x may be approximated by the size of the plastic zone in the case that the 

incident beam can penetrate the entire plastic zone. As mentioned before, the X-ray 
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penetration length is over 30-50�m, which is large enough for X-rays to penetrate the 

entire plastic zone of the 3�m indentation as shown in Fig. 2(b). Thus, for all indentation 

depths studied, �x can be estimated by the corresponding plastic zone size. Moreover, as 

indicated in Fig. 2(b), the plastic zone could be approximated by an equivalent 

hemisphere with the center at the surface. Thus, by taking β as the ratio of the plastic 

zone radius to the equivalent contact radius (a), we have �x≈ βa. 

The relationship between the lattice curvature (κ) and the GND density (ρG) 

associated with that curvature is
31

 

    
1

G b b

κ ω
ρ

∂
= =

∂x xx
,     (2) 

where bx is the component of the dislocation Burgers vector projected onto the transition 

direction (the x direction) shown in Fig. 2(c). Combining Eqs. 1 and 2, and noticing �x≈ 

βa, we get 

    
tan

G b a b h

ω ω
ρ

β β α
� �

≈ ≈
x x

,         (3) 

where α is the semi-angle (70.3
o
) of the Berkovich-equivalent conical indenter. To derive 

Eq. 3, since the indentation sink-in is small as indicated in Fig. 2(a), we neglect the 

difference between the contact indentation depth and the total indentation depth. 

It should be noticed that, for the case of indentation, the strain gradient, i.e. xω∂ ∂ , 

decreases rapidly from the indented surface into the sample, i.e. along the X-ray 

penetration (the x direction);
13,35,36,43

 thus, Eq. 2 indicates that ρG is not a constant but 

rapidly decreases along the line of penetration. Thus, Eq. 3 is only an estimation of the 

average GND density. The determination of the dimensionless plastic zone size (β) is 

essential to estimate ρG using Eq. 3, which will be discussed below. 
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D. The Relationship between the Indentation Data and the GND Density 

 

Figure 6 shows the indentation data for a 3�m indentation and also two corresponding 

finite element analysis (FEA) simulations. Here, the continuous stiffness measurement 

(CSM) module in Nanoindenter XP
TM

 can continuously record the contact stiffness 

during an indentation, so that the hardness depth profile can be obtained through a single 

indentation as shown in Fig. 6(b). There were 8 data sets for 3�m indentations (see Fig. 

1); since all 8 data sets overlap each other nearly perfectly (not shown here), we did the 

analysis for a representative one, as shown in Fig. 6. Fig. 2(a) indicates that the indent 

shows a slight sink-in, which is consistent with the fact that the sample is an annealed 

good quality crystal,
44,45

 indicating that the Cu crystal may exhibit significant strain-

hardening.
44,45

 In order to eliminate any uncertainties due to the sink-in effect, surface 

roughness, and area function of the indenter, we calculated the “true” hardness as shown 

in Fig. 6(b) based on the continuously measured contact stiffness and by inputting the 

following elastic properties of Cu: Young’s modulus E=120.5GPa, and Poissons’ ratio ν 

=0.35; the details of calculating the “true” hardness are described in Ref. 46.
46

 Fig. 6(b) 

clearly shows the indentation-depth-dependent hardness (smaller is harder), i.e. the 

indentation size effect (ISE). It should be noticed that there is a softening phenomenon 

for indentation depth less than 250nm, which might be due to the non-self-similar 

expansion of plastic zone and/or the tip bluntness,
43,46

 and this softening phenomenon 

was also observed for single crystal Ni and Cu by other researchers.
18,47
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FIG. 6. (a) The indentation load (P) vs. the indentation depth (h) plot for a 3�m indentation and 

also two corresponding FEA simulations, where σy0 is the yield strength, Sh is the strain 

hardening rate of linear hardening, and n is the power of power law hardening. (b) The 

corresponding Hardness (H) vs. the indentation depth (h) plot for (a).  

 

Following the work of Stelmashenko et al
4
 and De Guzman et al,

5
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provided a simple explanation for this depth-dependent hardness, in terms of the 

geometrically necessary dislocation (GND) density as a function of indentation depth. 

Durst and Goken
16

 as well as Feng
17

 later modified the model to account primarily for the 

fact that the plastic zone radius is not equal to the contact radius, as Nix and Gao had 

assumed. Still the revised model takes the form: 

    0

0

1= +
hH

H h
,                                    (4) 

which can also be expressed equivalently as: 

     
0

1
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where     
2 2

0

2 2 2 2 2 3

0

1.5cot 1
S

H t n

H

M C b b h

α
ρ

α � β
= = .   (6) 

H0 is the limit of the hardness when the indentation depth becomes indefinitely large 

(h→∞), and h0 is a material length scale. In Eq. 6, ρS is the density of statistically stored 

dislocations (SSDs); M is the Taylor factor, and M=3.06 for face center cubic (FCC) 

materials;
9,43

 CH is the ratio of H0 to the effective flow stress (σye) corresponding to an 

indefinitely large indentation; αt is the Taylor constant, and it in the range of 0.2~0.5 for 

FCC metals;
8,10,31

 � is the shear modulus; b is the magnitude of the Burgers vector, and bn 

is the component of the Burgers vector projected onto the normal axis ([111] here) of the 

indented sample surface; α is the semi-angle (70.3
o
) of the Berkovich-equivalent conical 

indenter, and β is the ratio of the plastic zone size to the contact radius. To derive Eq. 6, 

as indicated in Figs. 2(a) and 6(a), we have neglected the differences among the residual 

indentation depth, the contact depth, and the maximum indentation depth. Here, ρS is the 

dislocation density corresponding to the local plastic strain, and ρG is the excess 

dislocation (GND) density corresponding to the local gradient of plastic strain.
31

 It should 

be noticed that, although both ρS and ρG can be defined locally, ρS and ρG in Eqs. 3, 5, 

and 6 are referred as the average values of the corresponding densities throughout the 

plastic zone. 

Equation 4 implies that the square of H has a linear relationship with 1/h, as shown in 

Fig. 7.  
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FIG. 7. The H2
 vs. 1/h plot for the experimental data in Fig. 6(b). Here the square symbol 

represents the experimental data for h>250nm, and the dash-dot line represents the fitting result 

using Eq. 4. 

 

Because the average SSD density (ρS) is nominally independent of indentation depth,
8
 

the indentation-depth-dependent hardness (see Fig. 7) implies an indentation-depth-

dependent average GND density (ρG), or equivalently, an indentation-depth-dependent 

average strain gradient ( xω� � ) (see Eqs. 1-3). By rearranging Eqs. 4-6, we can express 

ρG in different ways:  

    
2

0 0

2 2 2 2 2G
H t

H h

M C b h
ρ

α �
= ,             (7a) 

    
2 2

0

2 2 2 2 2 2
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H H
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ρ
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,            (7b) 

    
2

3

1.5cot 1
G

nb h

α
ρ

β
= .               (7c) 

Equations 7(a) and 7(b) can be used to predict ρG as a function of h through the 

experimental hardness data. Eq. 7(c) is an interesting result, indicating that the product of 
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h and ρG is a constant which depends on the indenter geometry (α) and bn, and the effect 

of material mechanical properties is indirectly represented only through the size of the 

plastic zone (β). The comparison between Eqs. 6 and 7(c) indicates that ρG increases with 

decreasing h and is equal to ρS at h=h0. Moreover, according to Eqs. 2-3 and 7(c), by 

matching ρG, the average indentation-induced strain gradient ( ω� �x ) may be given by 

    
2 2

3 3 3

1.5cot 1.5cot 1.5cot

n

b

h b h a

ω α α α
β β β

�
≈ ≈ =

�
x

x
.  (8a) 

Equation 8(a) indicates that the average strain gradient ( ω� �x ) would be proportional 

to 1/h as expected, and that ω� �x  may depend on the probing direction (x) through the 

direction-dependence of bx. Here, Eq. 8(a) is consistent with Nix and Gao’s estimation,
8
 

namely, cot aω α� � ≈x , in which β is taken to be 1.0. Then, according to Eqs. 1-3 and 

8(a), we have the following relation between the lattice rotation �ω, namely, the 

observed Laue streaking, and the plastic zone size (β) as 

    
2 2

1.5cot 1.5cot

n

b

b

α α
ω

β β
� ≈ ≈x ,    (8b) 

indicating that the lattice rotation �ω may be independent of the indentation depth as 

roughly shown in Figs. 5(a)-5(e). Furthermore, Eq. 8(b) can be used to estimate β through 

the observed Laue streaking; thus, the average �ω ≈5.5
o
 for the 3 indentation depths as in 

Fig. 5 implies β ≈2.3. 

In addition, Eq. 6 provides the condition of model self-consistency, namely,   

    
23 2 2
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2 2 2

0 0

3
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2 tan
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H n

M b b

C H h b

αβ �
α

α
= = .  (9) 
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Here, based on the slip systems illustrated in Fig. 4(b), bn/b=0.816. To derive Eq. 9, we 

have used the following values: M=3.06, �=44.7GPa, b=0.256nm, α=70.3
o
, H0=0.75GPa, 

h0=246nm, and bn=0.209nm. For FCC metals, αt is in the range of 0.2~0.5.
8,10,31

 By 

satisfying the condition of model self-consistency (Eq. 9), it is obvious that Eqs. 7(a)-7(c) 

are identical, so that we will use Eq. 7(c) in the following due to its simple form. In fact, 

the hardness data are not explicitly expressed in Eq. 7(c) but indirectly represented in the 

condition of model self-consistency (Eq. 9). 

As indicated in Eqs. 3 and 7(c), in order to calculate ρG, β is the essential parameter. 

Although β and CH for work-hardened metals may be well approximated by 1.9 and 

2.6,
45,48,49

 respectively, the corresponding values of β and CH for annealed metals may be 

larger.
44,48

 In the following section, we will first discuss the ways to estimate β, and then 

we will compare the two values of ρG calculated using Eqs. 3 and 7. 

 

E. The Comparison of the Two Values of GND Density through 

Hardness and Laue Streaking 

 

In order to have a better estimation of β, we performed finite element analysis (FEA) 

using the ABAQUS
TM

 software package. The FEA results are shown in Figs. 6 and 8 as 

well as listed in Table I. Figure 6 indicates that the FEA simulations assuming both linear 

hardening and power-law hardening match the experimental results, and it should be 

noticed that our FEA simulations was based on conventional plasticity and did not 

include the extra hardening associated with strain gradients. As illustrated in Fig. 8, the 

ratio of the contact radius to the maximum depth is about 0.92 for both the hardening 
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laws, indicating a small sink-in effect, which is consistent with the shape of the residual 

indents as shown in Fig. 2(a). Although the strain-hardening property of our annealed 

copper sample was not experimentally tested, Lim and Chaudhri found that
50

 the strain-

hardening law for well annealed polycrystalline copper is power-law hardening with 

n≈0.5. Furthermore, Figs. 6 and 8 as well as Table I indicate that the two significantly 

different hardening laws (linear and power-law) give very similar results, implying a 

small effect of changing hardening laws. Therefore, we will estimate the quantities for 

our Cu sample using the averages of the corresponding FEA-computed values determined 

from the two hardening laws.  

 

 

FIG. 8. The FEA-calculated equivalent plastic strain (PEEQ in ABAQUS
TM

) contour plots. (a) 

For σy0=50MPa, Sh=2.7GPa/plastic strain, assuming linear strain hardening. (b) For σy0=9MPa, 

(a) (b)
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n=0.5, assuming power-law hardening.
45

 Here, the two images are scaled to have the same 

contact radius for a better comparison. 

 

Since both Eqs. 3 and 7(c) are derived based on the averaging throughout the plastic 

zone, a representative quantity is needed for identifying the plastic zone boundary, and 

the equivalent plastic strain (εp) as in Fig. 8 may be a good candidate for the quantity. 

Figure 8 indicates that the indentation-induced plastic strain is highly non-uniform and 

concentrated below indentation. Consequently, there might be two kinds of effective 

plastic strain: one (εpb) for identifying the plastic zone boundary and the other one (εpe) 

equal to the average strain in the corresponding plastic zone; it is obvious εpe>>εpb due to 

the highly strain concentration under indentation as in Fig. 8. In fact, the definition of the 

average strain εpe is consistent with that of the representative indentation plastic strain 

(εpr) which is a measure of the average indentation-induced plastic strain, and the ratio of 

hardness to the flow stress corresponding to εpr is equal to about 3.
48

 Johnson suggested 

that εpr≈0.2tanα,
48

 namely, εpr≈7% for a Berkovich indentation, which is consistent with 

the FEA results (H/σy≈3.1 at εp≈7%) as listed in Table I. Thus, we should expect that the 

average strain εpe≈εpr≈7% is much larger than the effective strain at the plastic boundary 

(εpb); the 7%-plastic-strain contour may be an inner bound for estimating the plastic zone 

boundary, whereas the 0.2%-plastic-strain contour may be expected to be an outer bound 

for the plastic zone boundary. By measuring the strain contours in Fig. 8 using Scion
TM

 

Image software, the 7% and 0.2% plastic-strain contours correspond to β≈1.45 and β≈4.3, 

respectively, as listed in Table I; thus, β≈1.45 and β≈4.3 may be the lower and upper 
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bounds for β, respectively. By inserting the estimated values of β, ρG can be calculated 

using Eq. 7(c) based on the revised Nix-Gao model and using Eq. 3 through �XRD data.  

Figure 9 shows the comparison of the two values of ρG calculated using Eqs. 3 and 

7(c). Here, bx=0.781b=0.2nm, according to the corresponding slip systems (Fig. 4(b)) and 

the experimental setup (Fig. 2(b)). Figures 9(a) and 9(b) indicate that, by taking β = 1.45 

(β = 4.3), ρG calculated using Eq. 7 is much larger (smaller) than that calculated using 

Eq. 3. This large difference between the two predictions can be understood by the large 

gradient of ρS due to the plastic strain concentration as shown in Fig. 8 and also the large 

gradient of ρG as indicated by the rapid decrease of strain gradient along the X-ray 

penetration path.
13,35,36,43

 Moreover, as discussed above, β≈1.45 and β≈4.3 may be the 

lower and upper bounds for β, respectively; thus, as shown in Fig. 9(a), the over- or 

under-estimation of β would have a much larger effect through 31 ( )ρ β∝G h (Eq. 7(c)) 

than through 1 ( )ρ β∝G h (Eq. 3). 

As discussed in the previous section, based on Eq. 8(b) and the Laue streaking as in 

Fig. 5, β≈2.3. Alternatively, Figure 9 also shows that, if we take β≈2.3, i.e. εpb ≈1.8% (see 

Fig. 8 and Table I), the two estimates of ρG calculated from Eqs. 3 and 7(c) match nicely, 

implying that β ≈2.3 might be a nice estimation for the effective plastic zone size. In fact, 

this estimation of β (≈2.3) is consistent with Durst et al’s estimation (β ≈2.2) through 

their study of the ISE in single crystal Cu and Ni.
18

 Then, based on this estimation of β 

(≈2.3), ρG and ρS vs. h for the single crystal (111) Cu are plotted in Fig. 9(c); here, since 

h0 ≈250nm, ρG ≈ρS (≈300�m
-2

) at h=250nm. It should be noticed that, as discussed 

before, due to the strong plastic strain concentration, the effective plastic strain at the 
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plastic zone boundary (εpb≈1.8%) << the average plastic strain in the plastic zone 

(εpe≈εpr≈7%).
48

  

In the following, we want to discuss some implications of the previous results on 

strain gradient plasticity. According to a law for strain gradient plasticity theory,
10

 we 

have 

    

2

ˆ1
y

l
σ

η
σ

 
= +  

 
,     (10) 

where σ is the flow stress, σy is the flow stress in the absence of strain gradients, η=ρGb 

is the strain gradient,
10

 and l̂  is a material length scale. Then, according to Eqs. 5, 6, and 

10, noticing that η=ρGb and H∝σ, we have  
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.   (11b) 

Equation 11(a) indicates that the material length scale l̂  depends on ρS which is 

dependent on the average plastic strain level; thus, l̂  is not a purely “intrinsic” material 

constant, and it also depends on the mode of deformation. For example, for an 

indentation problem, Eq. 11(b) indicates that l̂  depends on the indentation-induced 

effective flow stress (σye) corresponding to h→∞ or equivalently on the indentation-

induced average plastic strain (εpe); alternatively, l̂  depends on the material mechanical 

properties (indirectly through β) and also the indenter geometry (α). Then, by inputting 

the estimation of β≈2.3, Eq. 11(b) predicts that l̂ ≈13�m for copper indented with a 
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Berkovich indenter. Moreover, by taking σye≈252MPa corresponding to εpe≈εpr≈7% as 

listed in Table I, we have CH ≈3.1, and Eq. 11(b) (equivalently the condition of model 

self-consistency (Eq. 9)) predicts that the Taylor constant αt ≈0.4 for copper. Thus, based 

on Eqs. 8(b) and 9, using the indentation-depth-dependent hardness data (H0 and h0) and 

the corresponding �XRD data (�ω), we might obtain a way of estimating the Taylor 

constant αt by 

    

1/ 41/ 2
2 3

0 0

2 2 3

1.1 tan
t

H n

H h b

MC b b b

α
α

� ω
  

≈    �   

x .  (12) 

Here, as discussed above, the effective (average) indentation-induced flow stress (σye) 

corresponds to εpe≈εpr≈7% rather than εpe=0% or 0.2%; thus, CH (=H/σye, i.e. ≠ H/σy0) can 

be estimated nicely by 3.0 for most materials except those with high yield-strength-to-

modulus ratios.
48,49

  

In summary, by matching ρG predicted by the revised Nix and Gao model and that 

determined through �XRD data, we find that the dimensionless indentation plastic zone 

size β ≈2.3, which is corresponding to the 1.8%-plastic strain-contour determined through 

finite element analysis. Thus, the average SSD density (ρS) for a Berkovich indentation 

on (111) Cu single crystal is determined to be about 300�m
-2

, corresponding to a mean 

distance between SSDs of ~58nm. Through indentation hardness and the corresponding 

�XRD data, we could estimate the material length scale ( l̂ ) for copper indented with a 

Berkovich indenter and also the Taylor constant (αt) for copper: l̂ ≈13�m and αt ≈0.4.  
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TABLE I. The inputs and outputs of the FEA simulations
a) 

Strain-
hardening 

Law 

Simulation inputs 
H 

(GPa) 
hc/h 

εp 

(%) 
σy 

(MPa)  
H/σy β 

σ0 
(MPa) 

Sh 
(MPa) 

n 

Linear 50 2700 - 0.821 0.92 

0.2 55.4 14.8 4.3 

1.8 98.6 8.3 2.4 

7 239 3.4 1.5 

Power-law 9 - 0.5 0.765 0.92 

0.2 48.7 15.7 4.3 

1.8 136.6 5.6 2.2 

7 265 2.9 1.4 

Average - - - 0.793 0.92 

0.2 52 15.3 4.3 

1.8 118 6.7 2.3 

7 252 3.1 1.45 

 

a) Here, hc is the indentation contact depth. σ0 is the initial yield strength, Sh is the strain-

hardening rate for linear strain hardening, and n is the power of power-law hardening. εp is the 

plastic strain, and σy is the corresponding flow stress. Each plastic zone radius (βa) is estimated 

by the radius of an equivalent circle with the area equal to 4 times of the region surrounded by the 

corresponding iso-plastic-strain contour as shown in Fig. 8(a) or Fig. 8(b), and the images were 

analyzed using Scion
TM

 Image software.  
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FIG. 9. The comparison of ρG calculated using Eqs. 3 and Eq. 7(c): (a) the linear-linear plot, (b) 

the corresponding Log-Log plot. Here, for (a) and (b), the upper triangle, square, and lower 

triangle symbols correspond to the plastic strain equal to 7%, 1.8%, and 0.2%, i.e. β = 1.45, 2.3, 

and 4.3, respectively. (c) The plot of dislocation densities vs. 1/h corresponding to β =2.3.  

 

IV. CONCLUSION 

 

Using a synchrotron technique involving white-beam X-ray microdiffraction 

(�XRD), we have observed Laue peak streaking near small indentations in the (111) 

surface of a copper single crystal. The geometrically necessary dislocation density, ρG, 
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computed from the observed streaking increases with decreasing indentation depth, 

which is in good agreement with ρG computed from the observed indentation size effect 

(ISE) using a revised Nix-Gao model. This finding supports that the ISE is associated 

with geometrically necessary dislocations and related strain gradients. Moreover, it is 

demonstrated that �XRD is a good tool for probing the deformation mechanism at the 

sub-micrometer scale. 
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