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Abstract

Given an undirected graphG and a positive integerk, thek-vertex-connectivity augmenta-
tion problem is to find a smallest setF of new edges for whichG+ F is k-vertex-connected.
Polynomial algorithms for this problem have been found only fork≤ 4 and a major open ques-
tion in graph connectivity is whether this problem is solvable in polynomial time in general.

In this paper we develop an algorithm which delivers an optimal solution in polynomial
time for every fixedk. In the case when the size of an optimal solution is large compared to
k, our algorithm is polynomial for allk. We also derive a min-max formula for the size of a
smallest augmenting set in this case. A key step in our proofs is a complete solution of the
augmentation problem for a new family of graphs which we callk-independence free graphs.
We also prove new splitting off theorems for vertex connectivity.

1 Introduction

An undirected graphG = (V,E) is k-vertex-connected, or more simplyk-connected, if |V| ≥ k+1
and the deletion of anyk−1 or fewer vertices leaves a connected graph. Given a graphG = (V,E)
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and a positive integerk, thek-vertex-connectivity augmentation problem is to find a smallest setF
of new edges for whichG′ = (V,E∪F) is k-connected. This problem (and a number of versions
with different connectivity requirements and/or edge weights) is an important and well-studied
optimization problem in network design. The complexity of the vertex-connectivity augmentation
problem is one of the most challenging open questions of this area. It is open even if the graphG
to be augmented is(k−1)-vertex-connected. Polynomial algorithms have been developed only for
k = 2,3,4 by Eswaran and Tarjan [5], Watanabe and Nakamura [22] and Hsu [11], respectively.
Values ofk close to|V|= n are also of interest. The casek = n−1 is easy,k = n−2 is equivalent
to finding a maximum matching, andk = n−3 is open. Near optimal solutions can be found in
polynomial time for everyk, see [13], [12].

In this paper we give an algorithm which delivers an optimal solution in polynomial time for
any fixedk ≥ 2. We also obtain a min-max formula which determines the size of an optimal
solution when it is large compared tok. In this case the running time of the algorithm isO(n6),
wheren is the size of the input graph. When the size of an optimal solution is small compared to
k, the running time is bounded byO(ckn3), whereck is a constant ifk is fixed. A key step in our
proofs is a complete solution of the augmentation problem for a new family of graphs which we call
k-independence free graphs. We follow some of the ideas of the approach of [15], which obtained
a near optimal solution in the special case when the graph to be augmented is(k−1)-connected.
We also develop new ‘splitting off’ theorems fork-vertex-connectivity.

We remark that the other three basic augmentation problems (where one wants to makeG
k-edge-connected or wants to make a digraphk-edge- ork-vertex-connected) have been shown
to be polynomially solvable. These results are due to Watanabe and Nakamura [21], Frank [6],
and Frank and Jordán [8], respectively. For more results on connectivity augmentation and its
algorithmic aspects, see the survey papers by Frank [7] and Nagamochi [20], respectively. In the
remainder of this section, we introduce some definitions and our new lower bounds for the size of
an augmenting set which makesG k-vertex-connected. We also state our main min-max results.

In what follows we deal with finite undirected graphs. We shall reserve the term ‘graph’ for
graphs without loops or multiple edges and and use ‘multigraph’ if loops and multiple edges are
allowed. LetG = (V,E) be a multigraph,v ∈ V and X ⊆ V − v. We usedG(v) to denote the
degreeof v in G anddG(v,X) for the number of edges ofG from v to X. Let NG(X) denote the
set ofneighboursof X, that is,NG(X) = {v∈V−X : uv∈ E for someu∈ X}, andnG(X) denote
|NG(X)|. (We will supress the subscriptG in the above functions when it is obvious to which
graph we are referring.) We useX∗ to denoteV−X−NG(X). We say thatX is a fragmentof G
if X 6= /0 6= X∗. A k-deficient fragmentis a fragmentX for which n(X) < k, for some integerk.
For two verticesx,y of G we shall useκ(x,y,G) to denote the maximum number of openly disjoint
paths fromx to y in G. We useκ(G) to denote the minimum ofκ(x,y,G) over all pairs of vertices of
G. By Menger’s theoremκ(G) equals the minimum size of a vertex cut inG, unlessG is complete.

Let G be a graph with at leastk+ 1 vertices. Ak-augmenting setfor G is a set of edgesF
such thatG+ F is k-connected. (When the value ofk is obvious we shall refer toF simply as an
augmenting setfor G.) Let ak(G) denote the size of a smallestk-augmenting set forG. It is easy to
see that everyk-augmenting set forG must contain at leastk−n(X) edges fromX to X∗ for every
fragmentX. By summing up these ‘deficiencies’ over pairwise disjointk-deficient fragments, we
may obtain a useful lower bound onak(G), similar to the one used in the corresponding edge-
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connectivity augmentation problem. Let

tk(G) = max{
r

∑
i=1

k−n(Xi) : X1, ...,Xr are pairwise disjoint fragments inV}.

Then

ak(G)≥ dtk(G)/2e. (1)

Another lower bound forak(G) comes from ‘shredders’. ForK ⊂ V let bG(K), or simply
b(K) when it is clear to which graph we are referring to, denote the number of components in
G−K. We say thatK is ans-shredder(or simply ashredder) in G if |K| = s andb(K) ≥ 3. Let
bk(G) = max{b(K) : K is a(k−1)-shredder inG}. Since(G+ F)−K has to be connected for
everyk-augmenting setF and every(k−1)-shredderK, we have|F | ≥ b(K)−1. This gives the
second lower bound:

ak(G)≥ bk(G)−1. (2)

These lower bounds extend the two natural lower bounds used for example in [5, 11, 15].
Although these bounds suffice to characterizeak(G) for k≤ 3, there are examples showing that
ak(G) can be strictly larger than the maximum of these lower bounds. For example, if we takeG to
be the complete bipartite graphK3,3 with target connectivityk = 4, we havet4(G) = 6, b4(G) = 3
anda4(G) = 4. We shall show in Section 3 thatak(G) = max{bk(G)−1,dtk(G)/2e} whenG is a
‘k-independence free graph’. We use this result in Section 4 to show that ifG is (k−1)-connected
andak(G) is large compared tok, then again we haveak(G) = max{bk(G)−1,dtk(G)/2e}. Our
proof technique is to find a set of edgesF1 such thatak(G+ F1) = ak(G)− |F1| and G+ F1 is
k-independence free. The same result is not valid if we remove the hypothesis thatG is (k−1)-
connected. To see this consider the graphG obtained fromKm,k−2 by adding a new vertexx and
joining x to j vertices in them set of theKm,k−2, where j < k < m. Thenbk(G) = m, tk(G) =
2m+ k−2 j andak(G) = m−1+ k− j. We shall see in Section 7, however, that if we modify the
definition ofbk(G) slightly, then we may obtain an analogous min-max theorem for augmenting
graphs of arbitrary connectivity. For a(k−1)-shredderK of G we defineδ(K) = max{0,max{k−
d(x) : x∈K}} andb̂(K) = b(K)+δ(K). We letb̂k(G) = max{b̂(K) : K is a(k−1)-shredder inG}.
It is easy to see that

ak(G)≥ b̂k(G)−1.

We shall prove in Section 7 that ifG is a graph of arbitrary connectivity andak(G) is large com-
pared tok, then

ak(G) = max{b̂k(G)−1,dtk(G)/2e}.

Our proof technique is to find a set of edgesF1 such thatak(G+F1) = ak(G)−|F1| and eitherG+F1

is (k−1)-connected orG+ F1 is (k−2)-connected and has a special structure. In the former case
we apply the result of Section 4 toG+ F1. In the latter case we find an optimalk-augmenting set
for G+F1 using a result on ‘detachments’ of 2-connected graphs.

Our proofs are algorithmic and give rise to polynomial algorithms for finding an optimalk-
augmenting set in each of the cases mentioned above. In the remaining case, whenak(G) is small
compared tok, we simply check all possiblek-augmenting sets (spanned by a small set of vertices)
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to find an optimal solution. This is the only part where our algorithm is polynomial only ifk is
fixed.

In what follows, we shall suppress the subscriptk in the parameterstk(G),bk(G), b̂k(G) when
the value ofk is obvious.

2 Preliminaries

In this section we first introduce some submodular inequalities for the functionn and then describe
the ‘splitting off’ method. We also prove some preliminary results on edge splittings and shredders.

2.1 Submodular inequalities

The following inequalitites are fundamental to our proof technique. Inequality (4) is well-known,
see for example [15].

Proposition 2.1 In a graph H= (V,E) every pair X,Y ⊆V satisfies

n(X)+n(Y) = n(X∩Y)+n(X∪Y)+ |(N(X)∩N(Y))−N(X∩Y)|
+ |(N(X)∩Y))−N(X∩Y)|+ |(N(Y)∩X))−N(X∩Y)|. (3)

Proof: Readers may find it helpful to follow the proof given below if they imagineV(G) rep-
resented by a 3×3 grid, in which the two pairs of opposite sides represent(X,X∗) and(Y,Y∗),
respectively, and the 9 subsquares represent the corresponding partition ofV(G) into 9 subsets.
Then (3) follows from the following equalities:

n(X) = |N(X)∩Y|+ |N(X)∩N(Y)|+ |N(X)∩Y∗|,

n(Y) = |X∩N(Y)|+ |N(X)∩N(Y)|+ |X∗∩N(Y)|,
n(X∪Y) = |N(X)∩Y∗|+ |N(X)∩N(Y)|+ |X∗∩N(Y)|,

and
n(X∩Y) = |N(X∩Y)∩X|+ |N(X∩Y)∩Y|+ |N(X∩Y)∩ (N(X)∩N(Y)) |.

•

Proposition 2.2 In a graph H= (V,E) every pair X,Y ⊆V satisfies

n(X)+n(Y) ≥ n(X∩Y)+n(X∪Y), (4)

n(X)+n(Y) ≥ n(X∩Y∗)+n(Y∩X∗). (5)

Proof: Inequality (4) follows immediately from (3). Inequality (5) can be proved in a similar way
to Proposition 2.1 •

The following inequality is new and may be applicable in other vertex-connectivity problems
as well.
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Proposition 2.3 In a graph H= (V,E) every triple X,Y,Z⊆V satisfies

n(X)+n(Y)+n(Z) ≥ n(X∩Y∩Z)+n(X∩Y∗∩Z∗)+n(X∗∩Y∗∩Z)+
n(X∗∩Y∩Z∗)−|N(X)∩N(Y)∩N(Z)|. (6)

Proof: Readers may find it helpful to follow the proof given below if they imagineV(G) repre-
sented by a 3×3×3 grid, in which the three pairs of opposite faces represent(X,X∗), (Y,Y∗), and
(Z,Z∗), respectively, and the 27 subcubes represent the corresponding partition ofV(G) into 27
subsets. We have

n(X) = |N(X)∩Y∩Z|+ |N(X)∩N(Y)∩Z|+ |N(X)∩Y∗∩Z|+
+|N(X)∩Y∩N(Z)|+ |N(X)∩N(Y)∩N(Z)|+ |N(X)∩Y∗∩N(Z)|+
+|N(X)∩Y∩Z∗|+ |N(X)∩N(Y)∩Z∗|+ |N(X)∩Y∗∩Z∗|,

and

n(X∩Y∩Z) ≤ |X∩Y∩N(Z)|+ |X∩N(Y)∩Z|+ |X∩N(Y)∩N(Z)|+
+|N(X)∩Y∩Z|+ |N(X)∩Y∩N(Z)|+ |N(X)∩N(Y)∩Z|+
+|N(X)∩N(Y)∩N(Z)|.

The lemma follows from the above (in)-equalities and similar (in)-equalities forn(Y),n(Z), n(X∩
Y∗∩Z∗), n(X∗∩Y∗∩Z) andn(X∗∩Y∩Z∗). •

2.2 Extensions and Splittings

In the so-called ‘splitting off method’ one extends the input graphG by a new vertexsand a set of
appropriately chosen edges incident tos and then obtains an optimal augmenting set by splitting
off pairs of edges incident tos. This approach was initiated by Cai and Sun [2] for thek-edge-
connectivity augmentation problem and further developed and generalized by Frank [6]. Here we
adapt the method to vertex-connectivity and prove several basic properties of the extended graph
as well as the splittable pairs.

Given the input graphG = (V,E), an extension G+ s = (V + s,E + F) of G is obtained by
adding a new vertexs and a setF of new edges froms to V. Note thatF may contain multiple
edges even thoughG does not, and henceG+ s may be a multigraph. InG+ s we defineX∗ =
V−X−NG(X) andd̄(X) = nG(X)+d(s,X) for everyX ⊆V. We say thatG+s is (k,s)-connected
if |V| ≥ k+1 and

d̄(X)≥ k for every fragmentX of G. (7)

If, in addition, F is an inclusionwise minimal set with respect to (7), then we say thatG+ s is a
k-critical extensionof G. In this case, the minimality ofF implies that every edgesu is k-critical,
that is, deletingsufrom G+sdestroys (7). (Thus an edgesu is k-critical if and only if there exists
a fragmentX of G with u ∈ X and d̄(X) = k.) A fragmentX with d(s,X) ≥ 1 andd̄(X) = k is
calledtight. A fragmentX with d(s,X)≥ 2 andd̄(X)≤ k+ 1 is calleddangerous. Observe that if
G is l -connected then for everyv∈V we haved(s,v)≤ k− l in anyk-critical extension ofG. The
following lemma characterises when we can haved(s,v)≥ 2.
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Lemma 2.4 Let G+s be a k-critical extension of G. Suppose d(s,v)≥ 2 for some v∈V. Let X be
a fragment of G with v∈ X and|X| ≥ 2. Thend̄(X)> k. Furthermore dG+s(v) = k.

Proof: If d̄(X) = k thend̄(X−v)≤ k−d(s,v)+1< k which contradicts (7). Thus̄d(X)> k. Since
G+ s is k-critical we may choose a tight setY in G+ s with v ∈ Y. The first part of the lemma
implies thatY = {v}. HencedG+s(v) = d̄(v) = k. •

Since the functiond(s,X) is modular on the subsets ofV in G+s, Propositions 2.1, 2.2 and 2.3
yield the following (in)equalities.

Proposition 2.5 In a graph G+s every pair X,Y ⊆V satisfies

d̄(X)+ d̄(Y) = d̄(X∩Y)+ d̄(X∪Y)+ |(N(X)∩N(Y))−N(X∩Y)|
+ |(N(X)∩Y)−N(X∩Y)|+ |(N(Y)∩X)−N(X∩Y)|, (8)

d̄(X)+ d̄(Y) ≥ d̄(X∩Y)+ d̄(X∪Y), (9)

d̄(X)+ d̄(Y) ≥ d̄(X∩Y∗)+ d̄(Y∩X∗)+d(s,X−Y∗)+d(s,Y−X∗). (10)

Proposition 2.6 In a graph G+s every triple X,Y,Z⊆V satisfies

d̄(X)+ d̄(Y)+ d̄(Z) ≥ d̄(X∩Y∩Z)+ d̄(X∩Y∗∩Z∗)+ d̄(X∗∩Y∗∩Z)+ d̄(X∗∩Y∩Z∗)
−|NG(X)∩NG(Y)∩NG(Z)|+2d(s,X∩Y∩Z). (11)

Lemma 2.7 Let G+ s be a(k,s)-connected extension of G. Then there exists a k-augmenting set
F of G with V(F)⊆ N(s).

Proof: Let F be a set of edges such thatA= N(s) induces a complete graph inH = G+F . Suppose
H is notk-connected. Then there exists ak-deficient fragmentX in H. SinceA induces a clique in
H, we have eitherA∩X = /0 or A∩X∗ = /0. Assuming, without loss of generality, thatA∩X = /0,
we haved̄G+s(X) = nH(X)< k. This contradicts the hypothesis thatG+s is (k,s)-connected. •

We can use Lemma 2.7 to obtain upper and lower bounds ofak(G) in terms ofdG+s(s). The
following result is an easy consequence of a theorem of Mader [18, Satz 1]. It was used in [15, p
16] in the special case whenG is (k−1)-connected.

Theorem 2.8 Let F be a minimal k-augmenting set for a graph G and let B be the set of those
vertices of G which have degree at least k+1 in G+F. Then F induces a forest on B.

Lemma 2.9 Let G+ s be a(k,s)-connected extension of G and let A be a minimal k-augmenting
set for G in which every edge in A connects two vertices of N(s). Then|A| ≤ d(s)−1.
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Proof: Let B = {v ∈ N(s) : dG+A(v) ≥ k + 1} and letC = N(s)−B. SincedG+A(x) = k and
dG+s(x)≥ k, we havedA(x)≤ d(s,x) for eachx∈C. By Theorem 2.8,B induces a forest inA. Let
eA(B) andeA(C) denote the number of those edges ofA which connect two vertices ofB and ofC,
respectively. The previous observations imply the following inequality.

|A| = eA(C)+dA(B,C)+eA(B)≤ ∑
x∈C

dA(x)+ |B|−1≤

≤ (d(s)−|B|)+ |B|−1 = d(s)−1.

This proves the lemma. •

To obtain a lower bound onak(G) in terms ofd(s), we introduce a new parameter. LetG =
(V,E) be a graph. We say that a fragmentX of G separatesa pair of verticesu,v∈V if {u,v}∩X 6=
/0 6= {u,v}∩X∗. A family F of fragments ofG is half-disjoint if every pair of vertices ofG is
separated by at most two fragments inF . Let t ′(G) = max{∑X∈F k−n(X)} where the maximum
is taken over all half-disjoint familiesF of k-deficient fragments inG. Note that every family of
pairwise disjoint fragments is half-disjoint and hencet ′(G)≥ t(G). Since everyk-augmenting set
for G must contain at leastk−n(X) edges fromX to X∗ for every fragmentX of G, we obtain the
lower bound:

ak(G)≥ dt ′(G)/2e. (12)

Lemma 2.10 Let G+s be a k-critical extension of a graph G. Then

dd(s)/2e ≤ ak(G)≤ d(s)−1.

Proof: The last inequality follows immediately from Lemma 2.9. To verify the first inequality
we choose a familyX = {X1, ...,Xm} of tight fragments ofG such thatN(s) ⊆ ∪m

i=1Xi and such
that m is minimum and∑m

i=1 |Xi | is minimum. Such a family exists since the edges incident tos
in G+ s arek-critical. We claim that for every 1≤ i < j ≤m eitherXi ∩Xj = /0 or at least one of
X∗i ⊆N(Xj) or X∗j ⊆N(Xi) holds. Note that in the latter case no pair of vertices can simultaneously
be separated byXi andXj .

To verify the claim, suppose thatXi ∩Xj 6= /0. Then by the minimality ofm the setXi ∪Xj

cannot be tight. Thus (9) implies thatX∗i ∩X∗j = /0. Hence either one ofX∗i ⊆N(Xj) or X∗j ⊆N(Xi)
holds orXi ∩X∗j andXj ∩X∗i are both non-empty. In the former case we are done. In the latter case
we apply (10) toXi andXj and conclude thatXi ∩X∗j andXj ∩X∗i are both tight and all the edges
from s to Xi ∪Xj enter(Xi ∩X∗j )∪ (Xj ∩X∗i ). Thus we could replaceXi andXj in X by two strictly
smaller setsXi ∩X∗j andXj ∩X∗i , contradicting the choice ofX . This proves the claim.

To finish the proof of the lemma, observe that∑m
i=1k−n(Xi) = ∑m

i=1d(s,Xi) ≥ d(s). In other
words, the sum of ‘k-deficiencies’ of the fragments inX is at leastd(s). We shall show thatX is
half disjoint. Suppose on the contrary that some pairu,v∈V is simultaneously separated by three
sets inX , sayX1,X2,X3. By the above claim,X1,X2,X3 are pairwise disjoint. This contradicts the
fact that they each separateu,v and hence{u,v}∩Xi 6= /0 for all 1≤ i ≤ 3. HenceX is half-disjoint
andd(s)≤ t ′(G), as required. •

Let G+ s be a(k,s)-connected extension ofG. Splitting off two edgessu,sv in G+ s means
deletingsu,sv and adding a new edgeuv. Note that if we perform a sequence of splittings ats
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starting with graphG+ s, and denote the resulting graph byG′+ s, thenG′ is the graph obtained
from G by adding the split edges. A split isk-admissibleif the graph obtained by the splitting also
satisfies (7). We will also say that the pair of edgessu,sv is k-admissible, or simplyadmissible
when the valuek is obvious. Notice that ifG+shas no edges incident tos then (7) is equivalent to
thek-connectivity ofG. Hence it would be desirable to know, whenG+ s is ak-critical extension
andd(s) is even, that there is a sequence of admissible splittings such thats is an isolated vertex in
the resulting graphG′+s. In this case we would have|E(G′)−E(G)|= dG(s)/2, and, using the fact
thatak(G)≥ d(s)/2 by Lemma 2.10, the graphG′ would be anoptimal k-augmentation ofG. This
approach works for thek-edge-connectivity augmentation problem [6] but does not always work in
the vertex connectivity case. The reason is that such ‘complete splittings’ do not necessarily exist.
On the other hand, we shall prove results which are ‘close enough’ to yield an optimal algorithm
for k-connectivity augmentation using the splitting off method, which is polynomial fork fixed.

Pairs of edgessx,sy which do not givek-admissible splits can be characterized by tight and
dangerous ‘certificates’ as follows. The proof of the following simple lemma is omitted.

Lemma 2.11 Let G+ s be a(k,s)-connected extension of G and x,y∈ N(s). Splitting off the pair
sx,sy is not k-admissible in G+s if and only if one of the following holds:
(i) there exists a tight set T with x∈ T, y∈ N(T),
(ii) there exists a tight set U with y∈U, x∈ N(U),
(iii) there exists a dangerous set W with x,y∈W.

2.3 Local separators and shredders

For two verticesu,v∈V a uv-cutis a setK ⊆V−{u,v} for which there is nouv-path inG−K.
A setS⊂V is a local separatorif there existu,v∈V−Ssuch thatS is an inclusionwise minimal
uv-cut. We also sayS is a local uv-separatorand we call the components ofG−S containingu
andv essential componentsof S(with respect to the pairu,v). Note thatSmay be a local separator
with respect to several pairs of vertices and hence it may have more than two essential components.
Clearly,N(C) = Sfor every essential componentC of S. If S is a localuv-separator andT is a local
xy-separator then we sayT meshes Sif T intersects the two essential components ofScontaining
u andv, respectively.

Lemma 2.12 If T meshes S then S intersects every essential component of T (and hence S meshes
T).

Proof: SupposeSis auv-separator and letCu,Cv be the two essential components ofScontainingu
andv respectively. LetC be an essential component ofT. We need to showS intersectsC. Choose
w∈V(C). Without loss of generality,w 6∈ Sandw /∈V(Cv). Chooset ∈ T ∩Cv. Thent 6∈ S. Let P
be a path in the subgraph ofC∪T from w to t such thatP∩T = {t}. ThenP contains a vertex of
SsinceSseparatesw from t. HenceC∩S 6= /0. •

Lemma 2.12 extends a result of Cheriyan and Thurimella [4, Lemma 4.3(1)]. The next lemma
extends a key observation from the same paper [4, Proposition 3.1] and will be used when we
discuss algorithms in Section 8.
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Lemma 2.13 Let K be a local uv-separator of size k−1 and suppose that there exist k−1 openly
disjoint paths P1, ...,Pk−1 from u to v in G. Let Q= ∪k−1

i=1V(Pi).
(a) For each component C of G−K either C∩{u,v} 6= /0 or C is a component of G−Q;
(b) If K has at least three essential components then K= N(C) for some component C of G−Q.

Proof: (a) SinceK is a localuv-separator of sizek− 1, K contains exactly one vertex from
each pathP1, . . . ,Pk−1. Let Cu,Cv,C be distinct components ofK with u ∈Cu andv ∈Cv. Then
Q−K ⊆Cu∪Cv. ThusC∩Q = /0. HenceC is a component ofG−Q.
(b) SupposeK has at least three essential components. Then we chooseC to be an essential com-
ponent ofK distinct fromCu,Cv. ThenK = N(C) holds by (a). •

Let K be a(k−1)-shredder ofG andG+sbe a(k,s)-connected extension ofG. A component
C of G−K is called aleaf component of K in G+s if d(s,C) = 1 holds. Note thatd(s,C′)≥ 1 for
each componentC′ of G−K by (7). The next lemma is easy to verify by (7).

Lemma 2.14 Let G+ s be a(k,s)-connected extension of a graph G and K be a(k−1)-shredder
in G.
(a) Let C1,C2 be leaf components of K in G+ s. Then there exist k−1 openly disjoint paths in the
subgraph of G induced by C1∪C2∪K from every vertex of C1 to every vertex of C2.
(b) If d(s)≤ 2b(K)−2 then K has at least two leaf components, K is a local separator and every
leaf component of K is an essential component of K in G.

Proof: Assertion (a) follows from (7). Assertion (b) follows from the fact thatd(s,C) ≥ 1 for
every componentC of G−K, and from (a). •

We shall use the following lemma to find(k−1)-shredders with many components in a graph
G when some edge incident tos in G+s belongs to many non-admissible pairs.

Lemma 2.15 Let G+ s be a(k,s)-connected extension of a graph G. Suppose there exist r
dangerous sets W1,W2, . . . ,Wr and a tight set X0 in G+ s such that r≥ 3, Wi ∩Wj = X0, and
Wi ∩W∗j ∩W∗h 6= /0 for all distinct i, j,h∈ {1,2, . . . , r}. Then K= NG(X0) is a (k−1)-shredder in
G with leaf components C0,C1, . . .Cr , where V(C0) = X0 and V(Ci) = Wi−X0 for all 1≤ i ≤ r.

Proof: Applying (11) and using the facts that:d(s,Wi ∩Wj ∩Wh) ≥ 1, sinceWi ∩Wj ∩Wh = X0,
andX0 is tight; andnG(Wi) = d̄(Wi)−d(s,Wi)≤ k−1 sinceWi is dangerous; we obtain

3k+3 ≥ d̄(Wi)+ d̄(Wj)+ d̄(Wh)≥ d̄(Wi ∩Wj ∩Wh)+ d̄(Wi ∩W∗j ∩W∗h )+

+d̄(Wj ∩W∗i ∩W∗h )+ d̄(Wh∩W∗i ∩W∗j )−|NG(Wi)∩NG(Wj)∩NG(Wh)|+
+2d(s,Wi ∩Wj ∩Wh)

≥ 4k−|NG(Wi)∩NG(Wj)∩NG(Wh)|+2≥ 3k+3. (13)

Thus equality must hold throughout. Henced(s,X0) = 1, and|NG(Wi)∩NG(Wj)∩NG(Wh)| =
nG(Wi) = k−1. ThusNG(Wi) = NG(Wj) for all i, j ∈ {1,2, . . . , r}. This implies thatNG(Wi)∩Wj =
/0 for all i, j ∈ {1,2, . . . , r} and hence thatNG(X0) ⊆ NG(Wi). Sinced̄(X0) = k, d(s,X0) = 1 and
nG(Wi) = k−1; we haveNG(X0) = NG(Wi) = K, say, for alli ∈ {1,2, . . . , r}.
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The fact thatWi∩NG(Wj) = /0 for all i, j ∈ {1,2, . . . , r} also implies thatWi is the disjoint union
of Wi ∩Wj ∩Wh andWi ∩W∗j ∩W∗h . ThusWi ∩W∗j ∩W∗h = Wi −X0 for all i, j,h ∈ {1,2, . . . , r}.
Equality in (13) implies that̄d(Wi) = k+ 1. SincenG(Wi) = k−1, we haved(s,Wi) = 2. The fact
that d(s,X0) = 1 now implies thatd(s,Wi −X0) = 1. SinceNG(Wi) = K we haveNG(W∗i ) ⊆ K
for all i ∈ {1,2, . . . , r}. ThusNG(Wi−X0) = NG(Wi ∩W∗j ∩W∗h )⊆ K. Sinced(s,Wi−X0) = 1 and
|K|= k−1 we haveNG(Wi−X0) = K. It follows thatK is the required(k−1)-shredder inG. •

Note that the existence of a(k−1)-shredderK as described in Lemma 2.15 certifies that no
pair of edges froms to∪r

i=0Ci is k-admissible since each of the setsV(Ci)∪V(Cj) is dangerous.

3 Independence Free Graphs

In this section we give a complete solution of thek-connectivity augmentation problem for a special
family of graphs which we callk-independence free graphs. This result is a key step in our proofs
concerning arbitrary graphs. However, we shall only need a special case of the main result of this
section: when we augment the connectivity of a(k−1)-connectedk-independence free graph by
one. This is important from an algorithmic point of view, since, as we shall see in Subsection 8.1,
we are able to check whether a(k−1)-connected graph isk-independence free. Thus the reader
may decide to focus on this special case at first reading.

Let G = (V,E) be a graph andk be an integer. LetX1,X2 be disjoint non-empty subsets of
V. We say(X1,X2) is a k-deficient pairif d(X1,X2) = 0 and|V − (X1∪X2)| ≤ k− 1. We say
two k-deficient pairs(X1,X2) and (Y1,Y2) are independentif for some i ∈ {1,2} we have either
Xi ⊆V− (Y1∪Y2) orYi ⊆V− (X1∪X2). In this case no edge can simultaneously connectX1 to X2

andY1 toY2 and hence the two pairs give ‘independent constraints’ in thek-augmentation problem
for G. We sayG is k-independence freeif G does not have two independentk-deficient pairs. The
following observations follow from these definitions.

1. If (X1,X2) is ak-deficient pair inG thenX1 is ak-deficient fragment.

2. If X is ak-deficient fragment inG then(X,X∗) is ak-deficient pair.

3. (k−1)-connected chordal graphs arek-independence free.

4. Graphs with minimum degree at least 2k−2 arek-independence free.

5. All graphs are 1-independence free and all connected graphs are 2-independence free.

6. A graph with no edges and at leastk+1 vertices is notk-independence free for anyk≥ 2.

7. If G is k-independence free andH is obtained by adding edges toG then H is alsok-
independence free.

8. A k-independence free graph isl -independence free for alll ≤ k.
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In general, a main difficulty in vertex-connectivity problems is that vertex cuts (and hence tight
and dangerous sets) can cross each other in many different ways. In the case of an independence
free graphG we can overcome these difficulties and provide both a complete characterisation of
the case when there is no admissible split containing a specified edge in an extension ofG, and a
min/max formula which determines the number of edges in an optimalk-augmentation forG.

Lemma 3.1 Let G+ s be a(k,s)-connected extension of a k-independence free graph G and X,Y
be fragments of G.
(a) If X and Y are tight then either: X∪Y is tight, X∩Y 6= /0 and d̄(X∩Y) = k; or X∩Y∗ and
Y∩X∗ are both tight and d(s,X−Y∗) = 0 = d(s,Y−X∗).
(b) If X is a minimal tight set and Y is tight then either: X∪Y is tight, d(s,X ∩Y) = 0 and
nG(X∩Y) = k; or X ⊆Y; or X⊆Y∗.
(c) If X is a tight set and Y is a maximal dangerous set then either X⊆Y or d(s,X∩Y) = 0.
(d) If X is a tight set, Y is a dangerous set and d(s,Y−X∗)+d(s,X−Y∗)≥ 2 then X∩Y 6= /0 and
d̄(X∩Y)≤ k+1.

Proof: (a) SupposeX ∩Y∗,Y∩X∗ 6= /0. Then (10) implies that̄d(X ∩Y∗) = k = d̄(Y∩X∗) and
d(s,X−Y∗) = 0 = d(s,Y−X∗). ThusX∩Y∗ andY∩X∗ are both tight. Hence we may assume
that eitherX∩Y∗ or Y∩X∗ is empty. SinceG is k-independence free, it follows thatX∗ ∩Y∗ 6=
/0 6= X∩Y (for example ifX∩Y∗ = /0 = X∗∩Y∗ thenY∗ ⊆V− (X∪X∗), and(X,X∗) and(Y,Y∗)
are independentk-deficient pairs). ThusX∪Y is a fragment inG. Using (9) we deduce thatX∪Y
is tight andd̄(X∩Y) = k.

(b) This follows from (a) using the minimality ofX.

(c) SupposeX 6⊆Y andd(s,X∩Y)≥ 1. If X∩Y∗ 6= /0 6= Y∩X∗ then we can use (10) to obtain the
contradiction

2k+1≥ d̄(X)+ d̄(Y)≥ d̄(X∩Y∗)+ d̄(Y∩X∗)+2≥ 2k+2.

Thus eitherX∩Y∗ orY∩X∗ is empty and, sinceG is k-independence free,X∗∩Y∗ 6= /0. ThusX∪Y
is a fragment inG. Using (9) we deduce thatX∪Y is dangerous contradicting the maximality of
Y.

(d) Using (10), we deduce that eitherX∩Y∗ or Y∩X∗ is empty and, sinceG is k-independence
free,X∩Y 6= /0 6= X∗∩Y∗. We can now use (9) to deduce thatd̄(X∩Y)≤ k+1. •

Using Lemma 3.1 we deduce

Corollary 3.2 If G+s is a k-critical extension of a k-independence free graph G then d(s) = t(G).
Furthermore there exists a unique minimal tight set in G+s containing x for each x∈ N(s).

Proof: Let F be a family of tight sets which coverN(s) such that∑X∈F |X| is as small as possible.
Since every edge incident tos is k-critical, such a family exists. We show that the members ofF
are pairwise disjoint. ChooseX,Y ∈ F and suppose thatX ∩Y 6= /0. By Lemma 3.1(a) we may
replaceX andY in F either byX∪Y, or by X∩Y∗ andY∩X∗. Both alternatives contradict the
minimality of ∑X∈F |X|. Since the members ofF are pairwise disjoint, tight, and coverN(s), we
haved(s) = ∑X∈F (k−nG(X))≤ t(G). The inequalityd(s)≥ t(G) follows easily from (7). Thus
d(s) = t(G), as required.
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The second assertion of the corollary follows immediately from criticality and Lemma 3.1(b).•

Lemma 3.3 Let G+s be a k-critical extension of a k-independence free graph G and x1,x2∈N(s).
Then the pair sx1,sx2 is not k-admissible for splitting in G+s if and only if there exists a dangerous
set W in G+s with x1,x2 ∈W.

Proof: Suppose the lemma is false. Using Lemma 2.11 we may assume without loss of generality
that there exists a tight setX1 in G+ s such thatx1 ∈ X1 andx2 ∈ NG(X1). Let X2 be the minimal
tight set inG+ s containingx2. Sincex2 ∈ N(s)∩ (X2−X∗1 ), it follows from Lemma 3.1(a) that
X1∪X2 is a tight, and hence dangerous, set inG+s containingx1,x2. •

Theorem 3.4 Let G+s be a k-critical extension of a k-independence free graph G and x0 ∈N(s).
(a) There is no k-admissible split in G+ s containing sx0 if and only if either: d(s) = b(G); or
d(s) is odd and there exist maximal dangerous sets W1,W2 in G+ s such that N(s) ⊆W1∪W2,
x0 ∈W1∩W2, d(s,W1∩W2) = 1, d(s,W1∩W∗2 ) = (d(s)−1)/2 = d(s,W∗1 ∩W2), and W1∩W∗2 and
W2∩W∗1 are tight.

(b) If there is no admissible split containing sx0 and3 6= d(s) 6= b(G) then there is an admissible
split containing sx1 for all x1 ∈ N(s)−x0.

Proof: Note that sinceG+s is ak-critical extension,d(s)≥ 2.
(a) Using Lemma 3.3, we may choose a family of dangerous setsW = {W1,W2, . . . ,Wr} in G+ s
such thatx0 ∈ ∩r

i=1Wi , N(s)⊆ ∪r
i=1Wi andr is as small as possible. We may assume that each set

in W is a maximal dangerous set inG+s. If r = 1 thenN(s)⊆W1 and

d̄(W∗1 ) = nG(W∗1 )≤ nG(W1)≤ k+1−d(s,W1)≤ k−1,

sinceW1 is dangerous. This contradicts the fact thatG+s is (k,s)-connected. Hencer ≥ 2.

Claim 3.5 Let Wi ,Wj ∈W . Then Wi ∩W∗j 6= /0 6= Wj ∩W∗i and d(s,Wi−W∗j ) = 1 = d(s,Wj−W∗i ).

Proof: SupposeWi ∩W∗j = /0. SinceG is k-independence free, it follows thatW∗i ∩W∗j 6= /0 and
henceWi ∪Wj is a fragment ofG. The minimality ofr now implies thatWi ∪Wj is not dangerous,
and henced̄(Wi ∪Wj)≥ k+2. Applying (9) we obtain

2k+2≥ d̄(Wi)+ d̄(Wj)≥ d̄(Wi ∩Wj)+ d̄(Wi ∪Wj)≥ 2k+2.

Hence equality holds throughout. Thus̄d(Wi ∩Wj) = k and, sincex0 ∈Wi ∩Wj , Wi ∩Wj is tight.
Choosexi ∈ N(s)∩ (Wi−Wj) and letXi be the minimal tight set inG+ s containingxi . Since

xi ∈ N(s)∩Xi ∩Wi , it follows from Lemma 3.1(c) thatXi ⊆Wi . SinceG is k-independence free,
Xi 6⊆N(Wj). The asumption thatWi ∩W∗j = /0 now implies thatXi ∩Wi ∩Wj 6= /0. Applying Lemma
3.1(b), we deduce thatXi ∪ (Wi ∩Wj) is tight. NowXi ∪ (Wi ∩Wj) andWj contradict Lemma 3.1(c)
sincex0∈Wi∩Wj andWj is a maximal dangerous set. Hence we must haveWi∩W∗j 6= /0 6=Wj∩W∗i .
The second part of the claim follows from (10) and the fact thatx0 ∈Wi ∩Wj . •
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Supposer = 2. Using Claim 3.5, we haved(s) = 1+ d(s,W1∩W∗2 ) + d(s,W2∩W∗1 ). Without
loss of generality we may suppose thatd(s,W1∩W∗2 )≤ d(s,W2∩W∗1 ). Then

d̄(W∗2 ) = d(s,W1∩W∗2 )+nG(W∗2 )≤ d(s,W2∩W∗1 )+nG(W2) = d̄(W2)−1≤ k.

Thus equality must hold throughout. Henced(s,W1∩W∗2 ) = d(s,W2∩W∗1 ) = (d(s)−1)/2, d(s) is
odd,W1∩W∗2 andW2∩W∗1 are tight and the second alternative in (a) holds.

Finally we suppose thatr ≥ 3. ChooseWi ,Wj ,Wh ∈W , xi ∈ (N(s)∩Wi)− (Wj ∪Wh). Then
Claim 3.5 implies thatxi ∈Wi∩W∗j ∩W∗h , and henceWi∩W∗j ∩W∗h 6= /0. SinceG+s is k-critical, we
may choose a maximal tight setX0 in G+swith x0∈X0. Lemma 3.1(c) implies thatX0⊆Wt for all
1≤ t ≤ r. Sincexh∈W∗i ∩W∗j ∩Wh we haveW∗i ∩W∗j 6= /0. We can use (9) to deduce thatWi∩Wj is
tight. SinceX0⊆Wi∩Wj , the maximality ofX0 now implies thatWi∩Wj = X0 for all 1≤ i < j ≤ r.
Applying Lemma 2.15 we deduce thatK = NG(X0) is a(k−1)-shredder inG with bG(K) = d(s).
Since the(k,s)-connectivity ofG+s implies thatb(G)≤ d(s), we haveb(G) = d(s).

(b) Using (a) we haved(s) is odd and there exist maximal dangerous setsW1,W2 in G+ssuch that
N(s)⊆W1∪W2, x0 ∈W1∩W2, d(s,W1∩W2) = 1, d(s,W1∩W∗2 ) = d(s,W∗1 ∩W2) = (d(s)−1)/2≥
2, andW1∩W∗2 andW∗1 ∩W2 are tight. Supposex1∈N(s)∩W1∩W∗2 and there is no admissible split
containingsx1. Then applying (a) tox1 we find maximal dangerous setsW3,W4 with x1 ∈W3∩W4

andd(s,W3∩W4) = 1. Using Lemma 3.1(c) we haveW1∩W∗2 ⊆W3 andW1∩W∗2 ⊆W4. Thus
W1∩W∗2 ⊆W3∩W4 andd(s,W3∩W4)≥ 2. This contradicts the fact thatd(s,W3∩W4) = 1. •

We can use this splitting result to determineak(G) whenG is k-independence free. We first
solve the case whenb(G) is large compared tod(s).

Lemma 3.6 Let G+ s be a k-critical extension of a k-independence free graph G and K be a
(k−1)-shredder in G. If d(s)≤ 2b(K)−2 then d(s,K) = 0.

Proof: Let b(K) = b. Supposex∈ N(s)∩K and letX be the minimal tight set inG+s containing
x. Let L = {X1,X2, . . . ,Xr} be the leaf components ofK. Sinced(s) ≤ 2b− 2 we haver ≥ 2.
ChooseXi ∈ L andxi ∈ N(s)∩Xi . ThenXi is tight. Sincex∈ K = NG(Xi) we haveX 6⊆ X∗i . Using
Lemma 3.1(b), we deduce thatX∪Xi is tight, nG(X∩Xi) = k andd(s,X∩Xi) = 0. Hencexi 6∈ X
andN(X)∩Xi 6= /0. Since this holds for allXi ∈ L andx∈ X∩K, we have

|N(X)∩ (X1∪X2 . . .Xr)| ≥ r. (14)

Furthermore, sinceX∩X2 6= /0 andX∩X2⊆ X∩X∗1 we haveX∩X∗1 6= /0. Using (10) and the fact
thatd(s,X−X∗1 )≥ 1 sincex∈X∩NG(X1), it follows thatX∗∩X1 = /0. Using symmetry we deduce
thatX∗∩Xi = /0 for all Xi ∈ L .

SinceX1∪X2 is dangerous andx1,x2 6∈X∗, we can use Lemma 3.1(d) to deduce thatd̄(X∩(X1∪
X2))≤ k+1. Using the facts thatnG(X∩X1) = k = nG(X∩X2), NG(X∩(X1∪X2)) = NG(X∩X1)∪
NG(X∩X2), andNG(X∩Xi)∩Xi 6= /0 for eachi ∈ {1,2}, we have|NG(X∩Xi)∩Xi | = 1 for each
i ∈ {1,2} andK = NG(X∩X1)∩NG(X∩X2). Thusx∈NG(X∩X1), K⊆X∪NG(X) andX∗∩K = /0.
SinceX∗∩Xi = /0 for all Xi ∈ L , X∗∩Y 6= /0 for some non-leaf componentY of G−K. Using (14)
and the facts thatNG(X∗∩Y) ⊆ (NG(X)∩Y)∪ (NG(X)∩K) andnG(X) ≤ k−1, we deduce that
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nG(X∗ ∩Y) ≤ k−1− r. SinceG+ s is (k,s)-connected we haved(s,Y) ≥ d(s,X∗ ∩Y) ≥ r + 1.
Thus

d(s) = d(s,Y)+d(s,X1∪X2 . . .Xr)+d(s,(Y1∪Y2 . . .Yb−r)−Y)+d(s,K)
≥ (r +1)+ r +2(b− r−1)+1≥ 2b.

This contradicts the hypothesis thatd(s)≤ 2b−2. •

Lemma 3.7 Let G+s be a k-critical extension of a k-independence free graph G such that b(G)+
1≤ d(s)≤ 2b(G)−2. Then there exists an admissible split at s such that, for the resulting graph
G′+s, we have b(G′) = b(G)−1.

Proof: Let b(G) = b and letK be a(k− 1)-shredder inG with bG(K) = b and, subject to this
condition, with the maximum numberr of leaves inG+s. LetC1,C2, . . . ,Cr be the leaf components
of K and letN(s)∩Ci = {xi} for 1≤ i ≤ r. Sinced(s) ≤ 2b(G)−2 we haver ≥ 2. Sinced(s) ≥
b(G) + 1 andr ≥ 2, we may use Theorem 3.4 to deduce without loss of generality that there is an
admissible split inG+scontainingsx1. Chooseswsuch thatsx1,swis an admissible split inG+s.
Splittingsx1,swwe obtainG′+s wheredG′+s(s) = dG+s(s)−2 andG′ = G+x1w.

Supposeb(G′) = b(G). ThenG has a(k−1)-shredderK′ with bG(K′) = b(G) such thatx1,w
belong to the same componentC′ of G−K′. (Note that{x1,w}∩K′ = /0 by Lemma 3.6.) We shall
prove that such aK′ cannot exist inG.

Supposex1,x2, . . . ,xr ∈V(C′). Sincew is also contained inC′ we haved(s,C′)≥ r + 1. Since
d(s)≤ 2b−2 it follows thatK′ has at leastr +1 leaf components, contradicting the maximality of
r. Hence we may assume without loss of generality that

x2 6∈C′. (15)

ThusK′ separatesx1 andx2. Since, by Lemma 2.14, the subgraph ofG induced byC1∪C2∪K
containsk−1 openly disjointx1x2-paths, we have

K′ ⊆C1∪C2∪K. (16)

Claim 3.8 K and K′ are meshing local separators.

Proof: Arguing by contradicition we assume thatK andK′ do not mesh. LetC′2 be the component
of G−K′ containingx2. Since everyx1w-path inG contains a vertex ofK we haveC′ ∩K 6= /0.
Also sinceG has(k−1) x1x2-paths by Lemma 2.14, bothC′ andC′2 are essentialK′-components.
SinceK andK′ do not mesh, we haveC′2∩K = /0. HenceC′2 is a connected subgraph ofG−K.
Sincex2∈V(C′2), this imples thatC′2⊆C2 andK′∩C2 6= /0 (sinceK 6= K′). SinceK′ does not mesh
K, we haveC1∩K′ = /0. ThusC1 is a connected subgraph ofG−K′. Sincex1 ∈V(C′), it follows
thatC1 ⊆C′. SinceN(C1) = K we haveK−C′ ⊆ K′. Let C′1 be a leaf component ofK′ distinct
fromC′2. Sincex1,w∈V(C′), C′ is not a leaf component ofK′ and henceC′1 6= C′. The assumption
that K andK′ do not mesh and the fact thatC′ is an essentialK′ component intersectingK now
givesK∩C′1 = /0. ThusC′1 is a connected subgraph ofG−K.

SinceC′1 andC′2 are leaf components ofK′, Lemma 2.14 implies that there are(k−1) openly
disjoint paths inC′1∪C′2∪K′ from each vertex ofC′1 to x2. SinceK ∩C′ 6= /0, we have|K ∩ (C′1∪
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C′2∪K′)| ≤ k−2. ThusC′1 is contained in the same component ofG−K asx2, and henceC′1⊆C2.
But x2 is the onlys-neighbour inC2. Thusd(s,C′1) = 0, a contradiction. •

Claim 3.9 r = 2.

Proof: Supposer ≥ 3. By Lemma 3.6,x1,x2 6∈ K′. By Lemma 2.14, the subgraph ofG induced
by C1∪C2∪K containsk− 1 openly disjointx1x2-paths. SinceK andK′ mesh by Claim 3.8,
K′∩C3 6= /0, so|K′∩ (C1∪C2∪K)| ≤ k−2. Hence at least one of the abovek−1 openly disjoint
x1x2-paths avoidsK′. This contradicts (15). •

We can now complete the proof of the lemma. LetCw be the component ofG−K containing
w. Sincesx1,sw is an admissible split andC1 is a leaf component ofK, it follows thatCw is not a
leaf component ofK. Using (16), we deduce thatCw is a connected subgraph ofG−K′ and hence
Cw⊆C′. Sinced(s,Cw)≥ 2 andx1 ∈ N(s)∩ (C′−Cw) we haved(s,C′)≥ 3. Sinced(s)≤ 2b−2,
it follows thatK′ has at least three leaf components. This contradicts the maximality ofr by Claim
3.9. ThusK′ does not exist and we haveb(G′) = b(G)−1. •

Lemma 3.10 Let G+ s be a k-critical extension of a k-independence free graph G and p be an
integer such that0≤ p≤ 1

2d(s)−1. Then there exists a sequence of p admissible splits at s if and
only if p≤ d(s)−b(G).

Proof: We first suppose that there exists a sequence ofp admissible splits ats in G. Let the
resulting graph beG1 + s. ThendG1+s(s) = dG(s)−2p andb(G1) ≥ b(G)− p. SinceG1 + s is
(k,s)-connected we must havedG1+s(s)≥ b(G1) and hencep≤ d(s)−b(G).

We next suppose thatp≤ d(s)−b(G). We shall show by induction onp thatG+ s has a se-
quence ofp admissible splits ats. If p = 0 then there is nothing to prove. Hence we may assume
p≥ 1. Sincep≤ 1

2d(s)−1 we haved(s)≥ 4. By Theorem 3.4 there is an admissible split ats. Let
the resulting graph beG2 + s. If p−1≤ dG2+s(s)−b(G2) then we are done by induction. Hence
we may assume thatp≥ dG2+s(s)−b(G2) + 2≥ dG(s)−b(G). Hencep = dG(s)−b(G). Since
p≤ 1

2dG(s)−1, we havedG(s) ≤ 2b(G)−2. By Lemma 3.7 there exists an admissible split ats
such that the resulting graphG3 + s satisfiesb(G3) = b(G)−1. It now follows by induction that
G3 +s has a sequence ofp−1 admissible splits ats. •

Lemma 3.11 Let G+ s be a k-critical extension of a k-independence free graph G. If d(s) ≤
2b(G)−2 then ak(G) = b(G)−1.

Proof: Supposed(s) = b(G). Let K be a(k− 1)-shredder inG with b(K) = b(G). Then all
components ofG−K are leaf components. LetF be the edge set of a treeT on the vertices of
N(s). We shall show thatG+ F is k-connected. If not, then we can partitionV into three sets
{X,Y,Z} such that|Z|= k−1 and no edge ofG+F joinsX toY. Each pair of vertices ofN(s) are
joined byk openly disjoint paths inG+F , consisting of(k−1) paths inG (which exist by Lemma
2.14) and one path inT. Thus eitherX orY is disjoint fromN(s). AssumingX∩N(s) = /0, we have
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d̄(X) = n(X)≤ k−1, contradicting the fact thatG+ s satisfies (7). HenceG+ F is ak-connected
augmentation ofG with b(G)−1 edges.

Henceforth we may assume thatd(s) > b(G). By Lemma 3.7, there exists an admissible split
atssuch that, for the resulting graphG′+s, we haveb(G′) = b(G)−1. SinceG′+s is ak-critical
extension ofG′, the lemma follows by induction ondG+s(s)−b(G). •

Theorem 3.12 If G is k-independence free then ak(G) = max{dt(G)/2e,b(G)−1} .

Proof: Let G+ s be ak-critical extension ofG. By Corollary 3.2,d(s) = t(G). If d(s) ≤ 3 then
ak(G) = dt(G)/2e by Lemma 2.10. Hence we may suppose thatd(s) ≥ 4. If d(s) ≤ 2b(G)−2
thenak(G) = b(G)−1 by Lemma 3.11. Hence we may suppose thatd(s)≥ 2b(G)−1.

By Lemma 3.10, there exists a sequence ofbd(s)/2c−1 admissible splits ats. Let the resulting
graph beG′+s. ThenG′+s is ak-critical extension ofG′, dG′+s(s)≤ 3, andak(G′) = ddG′+s(s)/2e
by Lemma 2.10. This gives the required augmenting setF for G with |F | = ddG+s(s)/2e =
dt(G)/2e. •

4 Augmenting Connectivity by One

Throughout this section we assume thatG = (V,E) is a(k−1)-connected graph on at leastk+ 1
vertices. We shall show that ifak(G) is large compared tok, thenak(G) = max{b(G)−1,dt(G)/2e}.
Our proof uses Theorem 3.12 and some results from [15]. With the following result we can verify
the desired min-max equality whenb(G)−1≥ dt(G)/2e.

Theorem 4.1 [15] Suppose G is a(k−1)-connected graph such that b(G) ≥ k and b(G)−1≥
dt(G)/2e. Then ak(G) = b(G)−1.

We will apply Theorem 4.1 to graphs which do not satisfyb(G)− 1 ≥ dt(G)/2e using the
following concept. A setF of new edges issaturatingfor G if t(G+ F) = t(G)−2|F |. Thus an
edgee= uv is saturatingif t(G+e) = t(G)−2.

Lemma 4.2 If F is a saturating set of edges for a(k−1)-connected graph G with
b(G+F)−1 = dt(G+F)/2e ≥ k−1 then ak(G) = dt(G)/2e.

Proof: By Theorem 4.1 the graphG+ F can be madek-connected by adding a setF ′ of dt(G+
F)/2e edges. SinceF is saturating, we havet(G) = t(G+ F) + 2|F |. Therefore the setF ∪F ′ is
an augmenting set forG of sizedt(G)/2e. Sinceak(G)≥ dt(G)/2e, the lemma follows. •

We shall show that ifak(G) is large, then we can find a saturating set of edgesF for G so
that G+ F is k-independence free. In order to do this we need to measure how closeG is to
beingk-independence free. We use the following concepts. SinceG is (k−1)-connected, we have
nG(X) = k− 1 for everyk-deficient fragment ofG. Following [15], we call the (inclusionwise)
minimal k-deficient fragments inG the k-coresof G. A k-core B is active in G if there exists
a (k− 1)-cut K with B⊆ K. OtherwiseB is said to bepassive. Let α(G) andπ(G) denote the
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numbers of active, respectively passive,k-cores ofG. SinceG is (k−1)-connected, the definition
of k-independence implies thatG is k-independence free if and only ifα(G) = 0. The following
characterisation of activek-cores also follows easily from the above definitions.

Lemma 4.3 Let B be a k-core in G. Then B is active if and only ifκ(G−B) = k−|B|−1.

A set S⊆ V is a k-deficient fragment coverfor G if S∩T 6= /0 for everyk-deficient fragment
T. Clearly,S is ak-deficient fragment cover forG if and only if Scovers everyk-core ofG. Note
thatS is a minimalk-deficient fragment cover forG if and only if the extensionG+ s obtained by
joining s to each vertex ofS is k-critical. We shall need the following results from [15].

Lemma 4.4 (a) Every minimal augmenting set for G induces a forest.
(b) For every k-deficient fragment cover S for G, there exists a minimal augmenting set F for G
with V(F)⊆ S.
(c) If F is a minimal augmenting set for G, e= xy∈ F, and H= G+ F−e, then H has precisely
two k-cores X, Y . Furthermore X∩Y = /0; x ∈ X, y∈Y; for any edge e′ = x′y′ with x′ ∈ X,y′ ∈Y,
the graph H+ e′ is k-connected; and, for every k-deficient fragment Z in H, we have X⊆ Z or
Y ⊆ Z.

Proof: Assertion (a) is given in [15, p 16].
To prove (b), note that sinceScovers allk-deficient fragments,G becomesk-connected when we
add all edges between the vertices ofS.
Assertion (c) follows from [15, Lemma 3.2]. •

Based on these facts we can prove the following lemma.

Lemma 4.5 Let S be a minimal k-deficient fragment cover for G and let F be a minimal augment-
ing set with V(F)⊆ S. Let dF(v) = 1 and let e= uv be the leaf of F incident with v. Let X and Y
be the k-cores of G+ F−e and suppose that for a set F′ of edges we haveκ(x,y,G+ F ′) ≥ k for
some vertices x∈ X,y∈Y. Then S−{v} is a k-deficient fragment cover of G+F ′.

Proof: Without loss of generality we may assume thatu∈ X andv∈Y. By the minimality ofS,
there exists ak-coreZ of G such thatZ∩S= {v}. SinceZ is alsok-deficient inG+F−e, it must
contain ak-core ofG+ F −e, soY ⊆ Z by Lemma 4.4(c). Now, sinceY is alsok-deficient inG
andZ is a k-core inG, we must haveZ = Y andY∩S= {v}. For a contradiction suppose that
there is ak-deficient fragmentP in G+F ′ which is not covered byS−{v}. ThenP∩S= {v} and
so P is alsok-deficient inG+ F ′+ F −e and inG+ F −e. Thus, by Lemma 4.4(c),Y ⊆ P and
y∈P hold. Furthermore, sinceG+F ′+F−e+xy is k-connected by Lemma 4.4(c), we must have
x /∈ P∪N(P) in G+ F ′+ F −e. Thusx /∈ P∪N(P) holds inG+ F ′ as well. This contradicts the
fact thatκ(x,y,G+F ′)≥ k. •

We need some further results from [15].

Lemma 4.6 [15, Lemma 2.1, Claim I(a)] Suppose t(G) ≥ k. Then the k-cores of G are pairwise
disjoint and the number of k-cores of G is equal to t(G). Furthermore, if t(G) ≥ k+ 1, then for
each k-core X, there is a unique maximal k-deficient fragment SX ⊆ V with the properties that
X ⊆ SX, and SX ∩Y = /0 for every k-core Y of G with X6= Y. In addition, for two different k-cores
X,Y we have SX ∩SY = /0.
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Lemma 4.7 [15, Lemma 2.2] Let K and L be distinct(k−1)-cuts in G with b(K) ≥ k. Then L
intersects precisely one component D of G−K.

Lemma 4.8 Suppose t(G)≥ k+1. Let K be a(k−1)-shredder in G with b(K)≥ k. Then
(a) if C = SX for some component C of G−K and for some k-core X then X is passive,
(b) if some component D of G−K contains precisely two k-cores X,Y and no edge of G joins SX

to SY then both X and Y are passive.

Proof: (a) Suppose thatX is active and letL be a(k−1)-cut withX ⊆ L. Sinceb(K)≥ k, we have
L⊂ K∪C by Lemma 4.7. SinceG is (k−1)-connected andL 6= K, G−L−C is connected. Hence
G−L has a componentC′′ with C′′ ⊂C. ThereforeC contains a (minimal)k-deficient setX′ with
X∩X′ = /0, contradictingC = SX.
(b) SupposeX is active and letL be a(k−1)-cut with X ⊆ L. As in the proof of (a), this implies
thatG−L has a componentC with C⊆ D−L. SinceD contains precisely twok-cores,Y ⊂C and
hence, sinceSY is the unique maximalk-deficient fragment containingY which is disjoint from
everyk-core,C⊆ SY must hold. On the other hand, sinceC is a component ofG−L, we have
X ⊆ N(C) and soX∩N(SY) 6= /0. This contradicts our assumption that no edge ofG joins SX to
SY. •

Recall that an edgee= uv is saturatingif t(G+ e) = t(G)−2. We say that twok-coresX,Y
form asaturating pairif there is a saturating edgee= xy with x∈ X,y∈Y and otherwise that the
pairX,Y is non-saturating.

If t(G) ≥ k + 2 andX,Y are a saturating pair, then every edgexy with x ∈ X and y ∈ Y is
saturating. (To see this suppose thate = xy is not saturating. Thent(G+ e) ≥ t(G)−1≥ k+ 1
and hence thek-cores ofG+ e are pairwise disjoint by Lemma 4.6. This implies that allk-cores
of G other thanX,Y arek-cores ofG+ e and that there is ak-coreS in G+ e which is disjoint
from all k-cores ofG other thanX,Y. SinceS is ak-core inG+ e, S is k-deficient inG. We may
assume thatS∩X 6= /0. By applying (4) toSandX and using the minimality ofX we can deduce
thatX ⊆ S. SinceX,Y is a saturating pair, this impliesS∩Y∗ 6= /0 andY∩S∗ 6= /0. By applying (5)
to SandY we obtain thatY∩S∗ is k-deficient inG. SinceS is k-deficient inG+ e, we must have
y∈ S∪NG(S) and henceY∩S∗ is a proper subset ofY. This contradicts the minimality ofY.)

We shall need the following characterisation of saturating pairs.

Lemma 4.9 [15, p.13-14] Let t(G) ≥ k + 2 and suppose that two k-cores X,Y do not form a
saturating pair. Then one of the following holds: (a) X⊆ N(SY), (b) Y⊆ N(SX), (c) there exists a
k-deficient fragment M with SX,SY ⊂M, which is disjoint from every k-core other than X,Y.

For a k-core X let ν(X) be the number ofk-coresY (Y 6= X) for which the pairX,Y is
non-saturating. The following lemma implies that an activek-core cannot belong to many non-
saturating pairs.

Lemma 4.10 Suppose t(G)≥ k+2 and let X be an active k-core in G. Thenν(X)≤ 2k−3.

Proof: Let Y be the set of coresY (Y 6= X) for which X,Y is a non-saturating pair, and letY ′ =
{Y1,Y2, ...,Yr} be the set of those cores fromY for which Lemma 4.9(c) holds (with respect toX).
For eachYi , 1≤ i ≤ r, let Mi be ak-deficient fragment which is disjoint from everyk-core other
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thanX,Yi . Consider two setsMi ,M j , 1≤ i < j ≤ r. Sincet(G) ≥ k+ 2, Mi ∩M j is ak-deficient
fragment, and henceSX = Mi ∩M j must hold. This implies that each vertex ofV−SX belongs to
at most one setMi .

For a contradiction suppose thatν(X) ≥ 2k− 2. Let K = N(SX) and letY ′′ = {Yi ∈ Y ′ :
Mi ∩K = /0}. Since|K| = k− 1 andν(X) ≥ 2k− 2, it follows from Lemmas 4.6 and 4.9, that
|Y ′′| ≥ k−1.

SinceX is active, Lemma 4.8(a) implies thatb(K)≤ k−1. Thus, since the vertex set of one of
the components ofG−K is SX, and|Y ′′| ≥ k−1, there is a componentD of G−K which contains
at least two setsYi ,Yj from Y ′′. ConsiderMi . SinceSX ⊂Mi andK∩Mi = /0, we haveK ⊂N(Mi).
SinceYj ⊂D, we haveD−Mi 6= /0, and henceD∩N(Mi) 6= /0. Hencen(Mi)≥ |K|+1 = k, contra-
dicting the fact thatMi is ak-deficient fragment. •

For every passivek-core Bi (1 ≤ i ≤ π(G)) let Fi = {X ⊂ V : X is k-deficient inG, Bi ⊆
X, the subgraphG[X] is connected, andX contains at most 4k−8 activek-cores}. Let Mi =
∪X∈Fi X and letT(G) = ∪π(G)

i=1 (Mi ∪N(Mi)).

Lemma 4.11 Let Bi be a passive k-core for some1 ≤ i ≤ π(G) and let X = {X1, ...,Xt} be a
minimal family of members ofFi for which ∪t

j=1Xj = Mi . Then t≤ k and n(Mi) ≤ k(k− 1).
Moreover, ifα(G)≥ 5k−8, then Mi intersects at most k(4k−8) active k-cores.

Proof: First we prove thatt ≤ k. For a contradiction suppose thatt ≥ k+ 1. By the minimality
of the familyX we have thatX̂j = Xj −∪r 6= jXr is non-empty for all 1≤ j ≤ t. Note that the sets
X̂j are pairwise disjoint. By applying (4) to a pairXr ,Xj ∈ X , and using the facts thatXr ∩Xj 6= /0
sinceBi ⊆ Xr ∩Xj , that t ≥ k+ 1, and thatG is (k−1)-connected, we deduce thatXr ∩Xj is k-
deficient inG. SinceBi ⊆ Xr for eachXr ∈ X , a similar argument shows thatP = ∪ j 6=r(Xr ∩Xj) is
alsok-deficient. Note thatMi−P = ∪t

j=1X̂j , so|Mi−P| ≥ t ≥ k+1. SinceXr = X̂r ∪ (P∩Xr) and

G[Xr ] is connected, there exists a neighbour ofP in X̂r . Since the setŝXr are pairwise disjoint, these
neighbours are distinct. Hencen(P) ≥ t ≥ k+ 1, contradicting the fact thatP is k-deficient. Thus
t ≤ k. Since each neighbour ofMi is a neighbour of some set inX , andX consists ofk-deficient
fragments, we haven(Mi)≤ k(k−1).

To see the second part of the statement suppose that for someXr ∈ X and for some activek-
coreA we haveXr ∩A 6= /0 andXr −A 6= /0 6= A−Xr . Sinceα(G) ≥ 5k−8, Xr contains at most
4k−8 activek-cores, and the (active)k-cores are pairwise disjoint, we have|V− (Xr ∪A)| ≥ k−1.
Now (4) implies thatXr ∩A is k-deficient, a contradiction. Thus every activek-coreA for which
A∩Mi 6= /0 satisfiesA⊂ Xr for someXr ∈ X . Hence the definition ofFi implies thatMi intersects
at mostk(4k−8) activek-cores. •

We shall use the following lemmas to find a saturating setF for G such thatG+ F has many
passive cores. Informally, the idea is to pick a properly chosen activek-coreB and, by adding
a setF of at most 2k− 2 saturating edges between the activek-cores ofG other thanB, make
κ(G+ F−B) ≥ k−|B| = r. By Lemma 4.3, this will makeB passive, and will not eliminate any
of the passivek-cores ofG. We shall increase the connectivity ofG−B by choosing a minimal
r-deficient fragment coverS for G−B of size at mostk−1 and then iteratively add one or two
edges so that the new graph has anr-deficient fragment cover properly contained inS. Thus after at

19



mostk−1 such steps (and adding at most 2k−2 edges) we shall makeB passive. The first lemma
tells us how to choose the activek-coreB.

Lemma 4.12 Supposeπ(G)≤ 4(k−1) andα(G)≥ 20k(k−1)2. Then there exists an active k-core
B with B∩T(G) = /0.

Proof: Sinceα(G) ≥ 20k(k−1)2 ≥ 5k−8, Lemma 4.11 implies that for any passivek-coreBi ,
the setMi intersects at mostk(4k−8) activek-cores, andN(Mi) intersects at mostk(k−1) active
k-cores. ThusT(G) intersects at mostπ(G)(k(5k−9)) < 4(k−1)k(5k−5) = 20k(k−1)2 active
k-cores. Sinceα(G)≥ 20k(k−1)2, the lemma follows. •

Lemma 4.13 Supposeπ(G) ≤ 4(k−1) andα(G) ≥ 8k3 + 6k2−23k−16. Let B be an active k-
core in G, H= G−B, r = k−|B|, and S be a minimal r-deficient fragment cover of H. Suppose
every r-deficient fragment Z of H contains an active k-core of G. Then there exists a saturating
set of edges F for G such that|F | ≤ 2, F is not incident with B, and eitherπ(G+ F) > π(G); or
π(G+ F) = π(G), B is an active k-core in G+ F, and H+ F has an r-deficient fragment cover S′

which is properly contained in S.

Proof: SinceB is active,κ(H) = k−1−|B|= r−1.
By Lemma 4.4 there exists a minimalr-augmenting setF∗ for H such thatF∗ is a forest and
V(F∗)⊆ S. Let dF∗(v) = 1 and lete= uv be a leaf ofF∗. By Lemma 4.4(c), there exist precisely
two r-coresZ,W in H +F∗−ewith u∈Z,v∈W. ThenZ,W arer-deficient inH. By an hypothesis
of the lemma, there exist activek-coresX,Y of G with X ⊆ Z andY ⊆W.

SupposeX andY form a saturating pair inG. We may choose a saturating edgexy for G
with x ∈ X andy ∈ Y. Thenxy /∈ E and, sinceκ(G) = k− 1, we haveκ(x,y,G+ xy) ≥ k and
κ(x,y,H + xy) ≥ r. Hence eitherπ(G+ xy) > π(G); or every activek-core ofG other thanX,Y
remains active inG+ xy. If the second alternative holds thenB remains active inG+ xy and, by
Lemma 4.5,S′ = S−v is anr-deficient fragment cover inH +xy.

Hence we may assume thatX,Y is not a saturating pair inG. By Lemma 4.9 either

(i) there exists ak-deficient fragmentM in G with SX ∪SY ⊆ M which is disjoint from every
k-core other thanX,Y, or

(ii) Y ⊆ NG(SX) or X ⊆ NG(SY).

Choosex∈ X andy∈Y arbitrarily and letP1,P2, ...,Pk−1 bek−1 openly disjointxy-paths in
G. Let Q = ∪k−1

i=1V(Pi). It is easy to see that if some edge ofG joins SX to SY, then one of the
paths, sayP1, satisfiesV(P1)⊆ SX∪SY. On the other hand, if no edge ofG joinsSX to SY, then (ii)
cannot hold. Hence (i) holds and, either one of the paths, sayP1, satisfiesV(P1)⊆M, or each of the
k−1 paths intersectsNG(M). In the latter case, sincenG(M) = k−1, we have|NG(M)∩Pi | = 1,
V(Pi) ⊆M∪NG(M) for all 1≤ i ≤ k−1, and henceNG(M) ⊂ Q andQ⊂M∪NG(M). We shall
handle these two cases separately.

Case 1.No edge ofG joinsSX to SY, (i) holds, and we haveNG(M)⊂Q⊂M∪NG(M).

Let C1,C2, ...,Cp be the components ofG−NG(M). Using the properties ofM (M intersects
exactly twok-cores,M is the union of one or more components ofG−NG(M), andNG(M) = k−1)
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we can see that either, one componentCi containsSX andSY and is disjoint from everyk-core ofG
other thanX,Y andM = V(Ci), or each ofSX andSY corresponds to a component ofG−NG(M)
andM = SX ∪SY.

SinceX andY are activek-cores, Lemma 4.8, withK = NG(M), implies thatp≤ k−1. Since
α(G) ≥ (k−2)(2k+ 2) + k+ 3, G has at least(k−2)(2k+ 2) + 1 activek-cores disjoint fromB,
X, Y, andNG(M). Thus some componentCj of G−NG(M) is disjoint fromM and contains at
least 2k+3 activek-cores distinct fromB. By Lemma 4.10, there exists a saturating edgexa1 with
a1 ∈ A1 for some activek-coreA1 ⊂ Cj , A1 6= B. If π(G+ xa1) ≥ π(G) + 1 then we are done.
Otherwise all the activek-cores inG other thanX,A1 remain active inG+ xa1. Applying Lemma
4.10 again, we may pick a saturating edgeya2 with a2 ∈ A2 for some activek-coreA2 of G+ xa1,
with A2⊂Cj , A2 6= B.

We haveκ(x,y,G+ xa1 + ya2) ≥ k, since there is a path fromx to y, using the edgesxa1, ya2,
and vertices ofCj only, and thus this path is openly disjoint fromQ (sinceQ ⊆ M ∪NG(M)).
Henceκ(x,y,H + xa1 + ya2) ≥ r. Thus by Lemma 4.5,S′ = S− v is an r-deficient set cover in
H +xa1 +ya2.

Case 2.EitherV(P1)⊆ SX ∪SY or (i) holds andV(P1)⊆M.

Let us call a componentD of G−Q essentialif D intersects an activek-core other thanX, Y
or B. Let D1,D2, ...,Dp be the essential components ofG−Q. We say that a componentDi is
attached tothe pathPj if NG(Di)∩V(Pj) 6= /0 holds. LetR= SX∪SY if V(P1)⊆ SX∪SY holds and
let R= M if V(P1)⊆M. Then,R is disjoint from every activek-core other thanX,Y.

Claim 4.14 At most2k−2 essential components are attached to P1.

Proof: Focus on an essential componentD which is attached toP1 and letw ∈W∩D for some
activek-coreW 6= X,Y,B which has a vertex inD. There exists a pathPD from w to a vertex ofP1

whose inner vertices are inD. Sincew /∈ R andV(P1) ⊆ R, we haveD∩NG(R) 6= /0. The claim
follows since the essential components are pairwise disjoint andn(R)≤ 2k−2. •

Suppose that one of the pathsPi intersects at least 4k+ 4 activek-cores inG other thanX,
Y or B. For every such activek-coreA intersectingPi choose a representative vertexa ∈ A∩Pi .
Since thek-cores are pairwise disjoint, the representatives are pairwise distinct. Order the active
k-cores intersectingPi following the ordering of their representatives along the pathPi from x to
y. By Lemma 4.10, we may choose a saturating edgexa1 in G, wherea1 is among the 2k+ 2
rightmost representatives anda1 belongs to an activek-coreA1. If π(G+xa1)≥ π(G)+1 then we
are done. Otherwise all the activek-cores ofG other thanX,A1 remain active inG+ xa1. Again
using Lemma 4.10, we may choose a saturating edgeya2 in G+xa1, wherea2 is among the 2k+2
leftmost representatives. By the choice ofa1 anda2 there exist two openly disjoint paths fromx to
y in G+xa1 +ya2 using vertices ofV(Pi) only. Thusκ(x,y,G+xa1 +ya2)≥ k. Hence, by Lemma
4.5,S′ = S−v is anr-deficient set cover inH +xa1 +ya2.

Thus we may assume that each pathPi intersects at most 4k+ 3 activek-cores inG other than
X, Y or B. Hence there are at least

α(G)−3− (k−1)(4k+3)≥ (8k3 +6k2−23k−19)− (k−1)(4k+3) = (2k+2)(4k2−3k−8)
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activek-cores other thanB contained inG−Q. Note that sincek-cores are minimalk-deficient
fragments, they induce connected subgraphs inG. Hence eachk-core contained inG−Q is con-
tained in a component ofG−Q. If some component ofG−Q contains at least 2k+3 activek-cores
of G other thanB then the lemma follows as in Case 1. Hence we may assume that there are at
least 4k2−3k−8 essential components inG−Q, each containing an activek-core distinct fromX,
Y, andB.

Using Claim 4.14 we deduce that there are at least 4k2−3k−8−(2k−2) = (4k+3)(k−2)+1
essential componentsDi with all their attachments onP2,P3, . . . ,Pk−1, each containing an active
core other thanX,Y,B. SinceG is (k−1)-connected,n(Di)≥ k−1 and henceDi has at least two
attachments on at least one of the pathsP2,P3, . . . ,Pk−1. Relabelling the componentsD1, . . . ,Dp

and the pathsP2, . . . ,Pk−1 if necessary, we may assume thatDi has at least two attachments onPk−1
for 1≤ i ≤ 4k+4.

Let zi be the leftmost attachment ofDi onPk−1. Without loss of generality we may assume that
z1,z2, . . . ,z4k+4 occur in this order onPk−1 as we pass fromx to y. By Lemma 4.10, there exists a
saturating edgeyai whereai ∈ Ai for some activek-coreAi ⊆Di , whereAi 6= B and 1≤ i ≤ 2k+2.
If π(G+yai)≥ π(G)+1 then we are done. Otherwise every activek-core inG other thanY,Ai re-
mains active inG+yai . Using Lemma 4.10 again, there exists a saturating edgexaj wherea j ∈ A j

for some activek-coreA j ⊆ D j , whereA j 6= B and 2k+ 3≤ j ≤ 4k+ 4. Note thatzi is either to
the left of zj or zi = zj . Hence, using the fact thatD j has at least two attachments onPk−1 and
by the choice ofzi ,zj , there exist two openly disjoint paths inG+ xaj + yai , using vertices from
V(Pk−1)∪Di ∪D j only. Thereforeκ(x,y,G+xaj +yai)≥ k, and we are done as above. This com-
pletes the proof of the lemma. •

Lemma 4.15 Supposeπ(G) ≤ 4(k−1) and α(G) ≥ 20k(k−1)2. Then there exists a saturating
set of edges F for G such that|F | ≤ 2k−2 andπ(G+F)≥ π(G)+1.

Proof: Let B be an activek-core inG with B∩T(G) = /0. Such a set exists by Lemma 4.12. Let
H = G−B, andr = k−|B|. SinceB is active,κ(H) = r −1. Everyr-deficient fragmentX in H
is k-deficient inG andNG(B)∩X 6= /0. HenceNG(B) is anr-deficient fragment cover ofH. Let
S⊆ NG(B) be a minimalr-deficient fragment cover ofH. SinceB is k-deficient inG, we have
|S| ≤ nG(B) = k−1.

We shall prove by induction oni that, for 0≤ i ≤ k−1, there exists a saturating set of edgesFi

for G such that|Fi | ≤ 2i, Fi is not incident withB, and eitherπ(G+Fi)≥ π(G)+1; orπ(G+Fi) =
π(G), B is an activek-core ofG+ Fi , andH + Fi has anr-deficient fragment coverSi ⊆ S with
|Si | ≤ |S|− i. The lemma will follow since the second alternative cannot hold with|Si |= 0 (since
this would imply thatH +Fi is r-connected and hence thatB is passive inG+Fi).

The statement is trivially true fori = 0 takingFi = /0. Hence suppose that there exists a setFi

satisfying the above statement for some 0≤ i ≤ k−2. If π(G+ Fi) ≥ π(G) + 1 then we can put
Fi+1 = Fi . Hence we may suppose thatπ(G+Fi) = π(G), B is an activek-core ofG+Fi , andH +Fi

has anr-deficient fragment coverSi ⊆ Swith |Si | ≤ |S|− i. We would like to apply Lemma 4.13 to
B andG+ Fi . To do this we must show thatG+ Fi , B andSi satisfy the hypotheses of this lemma.
We haveπ(G+Fi) = π(G)≤ 4(k−1). Thusα(G+Fi) = α(G)−2|Fi | ≥ 8k3 +6k2−23k−16.

The last property we need to verify is that everyr-deficient fragmentZ in G+ Fi−B contains
at least one activek-core ofG+Fi . SinceFi is a saturating set forG, and since thek-cores ofG are

22



pairwise disjoint, eachk-core ofG+ Fi is ak-core ofG. Furthermore, sinceπ(G+ Fi) = π(G), if
A is an activek-core ofG andA is ak-core ofG+ Fi thenA is an activek-core ofG+ Fi . SinceZ
is r-deficient inG+ Fi−B, it is k-deficient inG+ Fi . ThusZ contains at least one core inG+ Fi .
If Z contains an activek-core inG+ Fi , then we are done, so suppose that everyk-core ofG+ Fi

in Z is passive. LetB j be such ak-core. ThenB j is a passivek-core inG soG[B j ] is connected.
Let C be the component ofG[Z] containingB j and letZ′ = V(C). SinceZ is k-deficient inG, Z′ is
k-deficient inG, andB⊆ NG(Z′). SinceB∩T(G) = /0 andB⊆ NG(Z′), it follows thatZ′ /∈ F j and
henceZ′ contains at least 4k−7 activek-cores inG. Since|Fi | ≤ 2(k−2) = 2k−4 and each edge
of Fi is incident to at most twok-cores ofG, it follows that there exists an activek-coreA in G with
A⊂ Z′ which is still an (active)k-core inG+Fi , contradicting the assumption that everyk-core of
G+ Fi in Z is passive. HenceG+ Fi , B andSi satisfy the hypotheses of Lemma 4.13. Thus there
exists a saturating set of edgesF for G+ Fi such that|F | ≤ 2, F is not incident withB, and either
π(G+Fi +F)> π(G+Fi) = π(G); or π(G+Fi +F) = π(G+Fi) = π(G) andG+Fi +F−B has an
r-deficient fragment coverSi+1 which is properly contained inSi . Hence the inductive statement
holds withFi+1 = Fi ∪F . •

Lemma 4.16 Suppose t(G)≥ 20k(k−1)2+(4k−3)(4k−4). Then there exists a saturating set of
edges F for G such that G+F is k-independence free and t(G+F)≥ 2k−1.

Proof: Since every graph is 1-independence free and every connected graph is 2-independence
free, we may suppose thatk≥ 3. If π(G) ≤ 4(k−1) then we may apply Lemma 4.15 recursively
4k−3−π(G) times toG to find a saturating set of edgesF1 for G such thatπ(G+F1)≥ 4k−3. If
π(G)≥ 4k−3 we setF1 = /0. Applying Lemma 4.10 toG+F1, we can add saturating edges joining
pairs of activek-cores until the number of activek-cores is at most 2k−2. Thus there exists a sat-
urating set of edgesF2 for G+F1 such thatα(G+F1 +F2)≤ 2k−2 andπ(G+F1 +F2)≥ 4k−3.
Applying Lemma 4.10 toG+ F1 + F2, we can add saturating edges joining pairs consisting of
one active and one passivek-core until the number of activek-cores decreases to zero. Thus
there exists a saturating set of edgesF3 for G+ F1 + F2 such thatα(G+ F1 + F2 + F3) = 0 and
π(G+F1 +F2 +F3)≥ 2k−1. •

The main theorem of this section is the following.

Theorem 4.17 If ak(G)≥ 20k3 then

ak(G) = max{dt(G)/2e,b(G)−1}.

Proof: Since every graph is 1-independence free and every connected graph is 2-independence
free, the result follows from Theorem 3.12 ifk≤ 2. Hence we may suppose thatk≥ 3. LetG+ s
be ak-critical extension ofG. By Lemma 2.10 we haved(s)≥ ak(G) + 1≥ 20k3 > k+ 1. Hence,
by [15, Lemmas 3.4, 3.5] we havet(G) = d(s)≥ 20k3. (This equality will also follow from Lemma
5.2 in Subsection 5.) Ifb(G)−1≥ dt(G)/2e thenak(G) = b(G)−1 by Theorem 4.1 and we are
done. Thus we may assume thatdt(G)/2e> b(G)−1 holds. We shall show thatak(G) = dt(G)/2e.
By Lemma 4.16, there exists a saturating set of edgesF for G such thatG+ F is k-independence
free andt(G+ F) ≥ 2k− 1. Note that adding a saturating edge to a graphH reducesdt(H)/2e
by exactly one andb(H) by at most one. Thus, ifdt(G+ F)/2e ≤ b(G+ F)−1, then there exists
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F ′ ⊆ F such thatdt(G+F ′)/2e= b(G+F ′)−1 and the theorem follows by applying Lemma 4.2.
Hence we may assume thatdt(G+ F)/2e > b(G+ F)−1. SinceG+ F is k-independence free,
we can apply Theorem 3.12 to deduce thatak(G+ F) = dt(G+ F)/2e. Using (1) and the fact that
t(G) = t(G+F)+2|F | we haveak(G) = dt(G)/2e, as required. •

Theorem 4.17 gives an affirmative answer to a conjecture of the second author, [16, p 300].

5 Unsplittable Extensions

In this section we consider ak-critical extensionG+ s of an l -connected graphG on at least
k+ 1 vertices in whichd(s) is large. We show thatd(s) = t(G) and characterise when there is no
admissible split containing a given edge ats.

Lemma 5.1 Let X,Y ⊂V be two sets with X∩Y 6= /0. Suppose d(s)≥ (k− l)(k−1)+4.
(a) If X and Y are tight then X∪Y is tight andd̄(X∩Y) = k.
(b) If X is tight and Y is dangerous then X∪Y is dangerous.
(c) If d(s)≥ (k− l +1)(k−1)+4 and X and Y are dangerous then X∗∩Y∗ 6= /0.

Proof: We prove (a). LetX,Y be tight sets withX∩Y 6= /0. By (9) we have

2k = d̄(X)+ d̄(Y)≥ d̄(X∩Y)+ d̄(X∪Y). (17)

Clearly,X ∩Y is a fragment and hencēd(X ∩Y) ≥ k by (7). Using (17) we havēd(X ∪Y) ≤ k.
Thus ifX∗∩Y∗ 6= /0 thenX∪Y is also a fragment and hence is tight andd̄(X∩Y) = k.

SupposeX∗ ∩Y∗ = /0. Sinced̄(X ∪Y) ≤ k, we haven(X ∪Y) ≤ k−d(s,X ∪Y). SinceG is
l -connected andG+s is k-critical, d(s,v)≤ k− l for all v∈V. Thus

d(s) ≤ d(s,X∪Y)+d(s,N(X∪Y))≤ d(s,X∪Y)+(k− l)n(X∪Y)≤
≤ d(s,X∪Y)+(k− l)(k−d(s,X∪Y)) = (k− l)k− (k− l −1)d(s,X∪Y).

Sincek− l − 1≥ 0 andd(s,X ∪Y) ≥ 1, this givesd(s) ≤ (k− l)(k− 1) + 1, contradicting the
hypothesis ond(s).

The proofs of (b) and (c) are similar, using the fact thatd(s,X∪Y)≥ 2 in (b) and (c). •

The following lemma shows thatd(s) = t(G) whend(s) is large.

Lemma 5.2 If d(s)≥ (k− l)(k−1)+4 then d(s) = t(G).

Proof: Let F be a family of tight sets which coverN(s) such that|F | is as small as possible.
Since every edge incident tos is critical, such a family exists. We show that the members ofF are
pairwise disjoint. ChooseX,Y ∈ F and suppose thatX∩Y 6= /0. By Lemma 5.1(a),X∪Y is also
tight. So replacingX andY in F by X∪Y we contradict the minimality of|F |.

Since the members ofF are pairwise disjoint, tight, and coverN(s), we haved(s) = ∑X∈F (k−
n(X))≤ t(G). The inequalityd(s)≥ t(G) follows easily from (7). Thusd(s) = t(G), as required.•
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Lemma 5.3 Let sx0 be a designated edge of a k-critical extension G+ s of G and suppose that
there are q≥ (k− l + 1)(k−1) + 4 edges sy (y6= x0) incident to s for which the pair sx0,sy is not
admissible. Then there exists a(k−1)-shredder K in G such that K has q+ 1 leaf components
C0,C1, . . . ,Cq in G+s, where X0 = V(C0) is the maximal tight set containing x0 and K= NG(X0).

Proof: Let X0 be the maximal tight set inG+ s containingx0. Note that the setX0 is uniquely
determined by Lemma 5.1(a). LetT = {X1, ...,Xm} be the set of all maximal tight sets which
intersectN(X0). Note thatXi ∩Xj = /0 for 0 ≤ i < j ≤ m by Lemma 5.1(a). Thus we have
d(s,∪m

i=0Xi) = d(s,X0)+d(s,∪m
i=1Xi).

Since eachXi ∈ T contains a neighbour ofX0 andX0 is tight, we havem≤ n(X0) = k−d(s,X0).
Since eachXi ∈ T is tight andG is l -connected, we haved(s,Xi)≤ k− l . So

d(s,∪m
i=0Xi)≤ d(s,X0)+(k− l)(k−d(s,X0)) = k(k− l)−d(s,X0)(k− l −1). (18)

Let M = {y ∈ N(s)− x0 : sx0,sy is not admissible}. Since there existq≥ (k− l + 1)(k−1) + 4
edges incident tos which are not admissible withsx0, we can use (18) to deduce thatR := M−
∪m

i=0Xi 6= /0. By Lemma 2.11 and by the choice ofT there exists a family of maximal dangerous
setsW = {W1, ...,Wr} such thatx0 ∈Wi for all 1≤ i ≤ r andR⊆ ∪r

j=1Wi . Let us assume thatW
is chosen so thatr is as small as possible. By Lemma 5.1(b),X0 ⊆Wi for all 1≤ i ≤ r. Since
d(s,Wi−X0)≤ k+ 1− l −d(s,X0), we can use (18) and the fact thatq≥ (k− l + 1)(k−1) + 4 to
deduce thatr ≥ 2. ForWi ,Wj ∈W we haveW∗i ∩W∗j 6= /0 by Lemma 5.1(c). SinceWi ∪Wj is not
dangerous by the maximality ofWi , we may apply (9) to obtain

k+1+k+1≥ d̄(Wi)+ d̄(Wj)≥ d̄(Wi ∩Wj)+ d̄(Wi ∪Wj)≥ k+k+2. (19)

Thus equality holds throughout andWi ∩Wj is tight. SinceX0 is a maximal tight set andX0 ⊆
Wi ∩Wj we haveX0 = Wi ∩Wj . Furthermore, since we have equality in (19), we can use (8) to
deduce thatWj∩N(Wi)⊆N(Wi∩Wj). SoWj∩N(Wi)⊆N(X0) and, similarly,Wi∩N(Wj)⊆N(X0).
HenceN(s)∩Wi ∩N(Wj) ⊆ ∪m

i=0Xi . (Note that everyz∈ N(s)∩N(X0) is contained in one of the
Xi ’s by the criticality ofG+ s.) So by the choice ofW , R∩Wi ∩W∗j 6= /0 andR∩Wj ∩W∗i 6= /0
follows.

By (10),

2k+2 = d̄(Wi)+ d̄(Wj)≥ d̄(Wi ∩W∗j )+ d̄(W∗i ∩Wj)+d(s,Wi−W∗j )+d(s,Wj −W∗i )≥ 2k+2,

and so we have equality throughout. Thus all edges froms to Wi , other than the single edgesx0,
end inWi ∩W∗j and d(s,X0) = 1. HenceR∩Wj ∩W∗i = (R∩Wj)− x0. Sinced(s,Wi ∪Wj) =
d̄(Wi ∪Wj)− nG(Wi ∪Wj) ≤ k+ 2− l , we haved(s,(Wi ∪Wj)−X0) ≤ k+ 2− l − d(s,X0). We
can now use (18) and the fact thatq≥ (k− l + 1)(k− 1) + 4 to deduce thatr ≥ 3. Thus /0 6=
(R∩Wj)− x0 ⊆Wj ∩W∗i ∩W∗h holds for all distincti, j,h∈ {1, ..., r}. Applying Lemma 2.15 we
deduce thatK = NG(X0) is a (k−1)-shredder withr + 1 leaf componentsC0,C1, . . . ,Cr in G+ s,
whereV(C0) = X0 andV(Ci) = Wi−X0 for 1≤ i ≤ r.

We complete the proof of the lemma by showing thatM = R and hence thatr = q. Suppose
thatM 6= R. ThenT 6= /0 and we may chooseX1 ∈ T . SinceX1∩N(X0) 6= /0, we haveX1∩K 6= /0.
SinceX1∩R = /0, N(X1)∩Ci 6= /0 for 0≤ i ≤ r. Using r = |R| ≥ q−d(s,∪m

i=0Xi), and the facts
thatd(s,X0) = 1, andq≥ (k− l + 1)(k−1) + 4, we may use (18) to deduce thatr ≥ k+ 2. This
contradicts the fact thatX1 is tight sinced̄(X1)≥ nG(X1)≥ r +1. •
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6 Graphs Containing Shredders with many Components

We show in this section that if̂b(G) andt(G) are large compared tok andb̂(G)−1≥ dt(G)/2e
then ak(G) = b̂(G)− 1. We need several new observations on(k− 1)-shredders. We assume
throughout this section thatG+s is ak-critical extension of anl -connected graphG, and thatK is
a (k−1)-shredder ofG satisfyingd(s)≤ 2b̂(K)−2.

Lemma 6.1 Supposêb(K)≥ 4k+3(k− l)−1. Then

(a) the number of components C of G−K with d(s,C)≥ 3 is at most b(K)−2k−1,

(b) |N(s)∩K| ≤ 1, and

(c) if d(s,x) = j ≥ 1 for some x∈ K then k−dG(x) = j.

Proof: Let w be the number of componentsC of G−K with d(s,C) ≥ 3. Thend(s) ≥ 3w+
(b(K)−w). Thus

2w≤ d(s)−b(K)≤ 2b̂(K)−2−b(K) = 2b(K)+2δ(K)−2−b(K) = 2b(K)+3δ(K)−2− b̂(K).

Sinceδ(K)≤ k− l andb̂(K)≥ 4k+3(k− l)−1, we havew≤ b(K)−2k−1. This proves (a).
SinceG+ s is a critical extension ofG, each vertex inN(s) is contained in a tight set ofG+ s.

Thus (b) will follow from the next claim.

Claim 6.2 At most one vertex of K belongs to a tight set in G+s.

Proof: Suppose that there exist two distinct verticesx1,x2∈K and tight setsY1,Y2 in G+ssuch that
x1∈Y1, x2∈Y2. LetY = Y1∪Y2 and letD = {C : C is a component ofG−K,C∩(Y∪N(Y)) 6= /0}.
We have|D| ≤ 2k, sinced̄(Y) ≤ d̄(Y1) + d̄(Y2) ≤ 2k and for everyC ∈ D eitherC−Y 6= /0, in
which caseN(Y)∩C 6= /0 holds, orC⊂Y, in which cased(s,C∩Y)≥ 1 holds by (7).

Sinceb̂(K) ≥ 4k + 3(k− l)− 1 we haveb(K) ≥ 4k + 2(k− l)− 1. Thus we may choose a
componentC′ of G−K such thatC′ 6∈ D. ThenC′∩N(Y) = /0 and hencex1,x2 6∈ N(C′). Hence
n(C′) ≤ k−3 andd(s,C′) ≥ 3. Since we have at leastb(K)−2k choices forC′, this contradicts
(a). •

To prove (c), we choose a tight setX containingx. By Claim 6.2,X∩K = {x}. If X = {x} then,
sinceX is tight, we haved(s,x) = k−dG(x), as required. Thus we may suppose thatX−K 6= /0.
By Lemma 2.4,d(s,x) = 1.

We first consider the case whenX intersects two distinct componentsC1,C2 of G−K. Since
NG(C1∩X)⊆C1∪K andNG(C1∩X)⊆ NG(X)∪{x}, we have

d̄(X)≥ d̄(C1∩X)−1+d(s,x)+d(s,C2∩X)+ |NG(C2∩X)∩C2|.

If C2 ⊆ X thend(s,C2∩X) ≥ 1, and ifC2 6⊆ X then|NG(C2∩X)∩C2| ≥ 1. Sinced(s,x) = 1 and
d̄(C1∩X)≥ k, we deduce that̄d(X)≥ k+1. This contradicts the fact thatX is tight.
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ThusX intersects a unique componentC of G−K. Let M = C∩X. ThenNG(M) ⊆C∪K.
Since(NG(M)−{x})∪NG(x)⊆ NG(X), we may use (7) to obtain

k = d̄(X) ≥ d̄(M)−1+d(s,x)+ |NG(x)− (M∪NG(M))|
≥ k−1+d(s,x)+ |N(x)−M−N(M)|.

This implies thatNG(x)⊆M∪NG(M). Thereforêb(K)≤ b(K)+1, andx /∈NG(C′) for every com-
ponentC′ 6= C of G−K. Henced(s,C′)≥ k−nG(C′)≥ 2. ForC we haved(s,C)≥ 1 by (7). This
givesd(s)≥ 2(b(K)−1)+1+d(s,x) = 2b(K)≥ 2b̂(K)−2. Thus equality must hold throughout
b̂(K) = b(K) + 1 andδ(K) = 1. SinceN(s)∩K = {x} by (b), we havek−dG(x) = δ(K) = 1 =
d(s,x). •

We shall use the following construction to augmentG with b̂(G)−1 edges in the case when
d(s,K) = 0 and b(K) = b̂(G) = b. Let C1, ...,Cb be the components ofG− K and let wi =
dG+s(s,Ci), 1≤ i ≤ b. Note thatwi ≥ 1 by (7). Sinced(s) ≤ 2b− 2, there exists a treeT on
b verticesC1,C2, . . . ,Cb with degree sequenced1, ...,db such thatdi ≥ wi , for 1≤ i ≤ b. (It will be
clear from the context whether the labelCi refers to a component ofG−K or a vertex ofT.) Let F
be a set of edges joining vertices ofNG+s(s) with dF(v)≥ dG+s(s,v) for everyv∈V(G) and such
that the graph obtained from(V−K,F) by contractingC1,C2, . . . ,Cb to single vertices isT. Thus
|F |= |E(T)|= b−1. We shall say thatG+F is aforest augmentationof G with respect toK and
G+s, and prove thatG+F is k-connected. Note that sincedG+s(s,K) = 0, there are nok-deficient
fragments ofG contained inK by (7).

Lemma 6.3 Suppose d(s,K) = 0 and let G+ F be a forest augmentation of G with respect to K
and G+s. If X is a k-deficient fragment in G+F then|X∩K| ≥ 2.

Proof: We proceed by contradiction. SupposeX is ak-deficient fragment inG+F with |X∩K| ≤
1. LetX∗ = V−X−NG+F(X). ReplacingX by X∗ if necessary, we may assume that

|X∗∩K| ≥ |X∩K|. (20)

We first suppose thatL⊆ X for some leafL of T. Sinced(s,L)≤ dT(L), L is a leaf component
of K in G+s. HenceK ⊆X∪NG(X) by Lemma 2.14. It follows thatX∗∩K = /0. HenceX∩K = /0
by (20) andK ⊆NG(X). If X properly intersects some componentCi 6= L of G−K thennG(X)≥ k
follows, contradicting the fact thatX is k-deficient inG+F . SinceX∗ 6= /0, there exists a component
C of G−K for whichC∩X = /0. Choose a pathP from L to C in T. LetC′ be the first component
for which the edge onP which entersC′ corresponds to an edge inF which connectsX to V−X.
For this component we have|NG+F(X)∩C′| ≥ 1, sonG+F(X)≥ |K|+1 = k, as required. Thus we
may assume that

L∩X 6= L for each leafL of T. (21)

Choose a componentD of G−K such thatD∩X 6= /0 and letR be the set of edges ofF which
are incident withX ∩D. Let e1, ...,er be the edges incident toD in T, which correspond to the
edges inR. Chooser longest pathsP1, ...,Pr in T starting atD and containing the edgese1, ...,er .
Let A be the set of all pathsPj , 1≤ j ≤ r, which contain an edgeCsCt corresponding to an edge
u jv j in F with u j ∈ Cs∩X andv j ∈ Ct −X. For every such path we havev j ∈ NG+F(X). Let
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A′ = {v j : Pj ∈ A}. Let B be the set of pathsPj , 1≤ j ≤ r, which do not belong toA and choose
Pj ∈ B. Since the first edge ofPj corresponds to an edge inF which is incident toD∩X, every
edge ofPj corresponds to an edge ofF joining two vertices ofX. In particular, the last edge ofPj

is incident to a leafL j of T which is distinct fromD and for whichX∩L j 6= /0. SinceX∩L j 6= L j

by (21), we may choose a vertexw j ∈ NG(X)∩L j . Let B′ = {w j : Pj ∈ B}. Clearly, |A| = |A′|,
|B|= |B′| and|A|+ |B|= r. The above observations imply that

A′∪B′∪ (NG(D∩X)− (X∩K))∪ (NG(X∩K)−X)⊆ NG+F(X). (22)

SinceG+ s is (k,s)-connected,r ≥ k−nG(D∩X). SinceA′,B′,NG(D∩X) are pairwise disjoint,
we may deduce that, ifX∩K = /0, thenX is notk-deficient inG+F . HenceX∩K = {x} for some
x∈ K.

Let L be a leaf ofT distinct fromD. ThenL is a leaf component ofK in G+ssoNG(x)∩L 6= /0.
Hence either(NG(x)∩L)−X 6= /0, or X∩L 6= /0 and, by (21),NG(X)∩L 6= /0. It follows that, in
both cases, we may choosey∈ NG(X)∩L. Thus

A′∪B′∪ (NG(D∩X))∪{y} ⊆ NG+F(X).

Clearlyy 6∈ NG(D∩X). SinceX is k-deficient inG+F , we must havey∈ A′∪B′. Thus

L∩ (A′∪B′) 6= /0 for each leafL of T distinct fromD. (23)

The definitions ofA′,B′ now imply that the pathsPj , 1≤ j ≤ r, coverT, and hence that each
edge ofF which is incident withD, is incident withD∩X. SinceV(F) = NG+s(s), we have
NG+s(s)∩D⊆ X. SinceD can be any component ofG−K which intersectsX we may deduce that

If D∩X 6= /0 for some componentD of G−K thenNG+s(s)∩D⊆ X. (24)

SupposeC is a component ofG−K with C∩X = /0. Then (23) implies thatC is a leaf ofT and
A′∩C 6= /0. Furthermore, the argument used in the derivation of (23) givesA′∩C= {y}= NG(x)∩L.
Sincey∈ A′ ⊆ NG+s(s), y is the unique neighbour ofs in C. Thus

If C∩X = /0 for some componentC of G−K thenNG+s(s)∩C⊆ NG(x). (25)

Properties (24) and (25) imply thatNG+s(s)⊆X∪NG(X). ThusNG+s(s)∩X∗= /0 andd̄(X∗)≤
nG(X) < k. This contradicts the(k,s)-connectivity ofG+ s and completes the proof of Lemma
6.3. •

Lemma 6.4 Suppose d(s,K) = 0 and b̂(K) = b(K) ≥ 4k+ 3(k− l)− 1. Let G+ F be a forest
augmentation of G with respect to K and G+s. Then G+F is k-connected.

Proof: We proceed by contradiction. LetX be ak-deficient fragment inG+ F . ThenX∗ is
also k-deficient so by Lemma 6.3,|X ∩K| ≥ 2 and |X∗ ∩K| ≥ 2. Since|V − (K ∪X ∪X∗)| ≤
V− (X∪X∗)| ≤ k−1, there are at leastbG(K)− (k−1) componentsC of G−K which are con-
tained inX∪X∗. There is no edge fromX to X∗ in G+F , so for each such component eitherC⊆X
orC⊆ X∗ holds. Thus we haveNG(C)⊆ K−X∗ or NG(C)⊆ K−X, and sonG(C)≤ k−3. Hence
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dG(s,C)≥ 3 by (7). This contradicts Lemma 6.1(a). •

Our final step is to show how to augmentG with b̂(K)−1 edges whend(s,K) 6= 0. In this case,
Lemma 6.1(b) implies that there is exactly one vertexx∈K which is adjacent tos. We use the next
lemma to split off all edges froms to x and hence reduce to the case whend(s,K) = 0.

Lemma 6.5 Suppose d(s,x)≥ 1 for some x∈ K and d(s)≥ (k+1)(k− l +1). Then there exists a
sequence of d(s,x) admissible splits at s which split off all edges from s to x.

Proof: We haved(s,x)≤ k− l . Suppose we get stuck after splitting off some copies ofsx, i.e. we
obtain a graphH + s where some edgesx cannot be split off. SincedH+s(s) ≥ dG+s(s)−2(k−
l −1) ≥ (k− l + 1)(k−1) + 4, we can use Lemma 5.3 to deduce that there is a(k−1)-shredder
K′ in H with bH(K′) = dH+s(s) and withx in one of the components ofH−K′. Let u,v be two
neighbours ofs in H distinct fromx and letCu andCv be the components ofH−K′ containingu
andv respectively. By Lemma 2.14, there existk−1 openly disjoint paths betweenu andv in H
containing only verticies ofCu, Cv andK′, and hence avoidingx. Since all edges ofE(H)−E(G)
are incident withx, these paths exist inG as well.

SincebG(K)≥ b̂G(K)−(k− l)≥ (dG+s(s)+2)/2−(k− l)≥ k+1≥dG+s(s,V−x)−dH+s(s,V−
x)+2, and each component ofG−K contains a neighbour ofs in G, we can choose the two neigh-
boursu,v of s in H + s to belong to different components inG−K. But for such a choice ofu,v
there do not existk−1 disjoint paths fromu to v in G−x, contradicting the above claim. •

We can now prove our augmentation result for graphsG for which b̂(G) is large.

Theorem 6.6 Suppose that G is l-connected,b̂(G) ≥ 4k+ 4(k− l)−1, t(G) ≥ (k+ 1)(k− l + 1)
andb̂(G)−1≥ dt(G)/2e. Then ak(G) = b̂(G)−1.

Proof: Let G+ s be ak-critical extension ofG. Thend(s) = t(G) by Lemma 5.2. LetK be a
(k−1)-shredder inG with b̂(K) = b̂(G). Then 2̂b(K)−2≥ t(G) = d(s). Supposed(s,K) = 0.
Thenb̂(G) = b(K). Let G+ F be a forest augmentation ofG with respect toK andG+ s. Then
|F | = b(G)−1 and by Lemma 6.4,G+ F is the requiredk-augmentation ofG. Hence we may
assume thatd(s,K)≥ 1.

Applying Lemma 6.1(c), we deduce thatδG(K) = dG+s(s,K) = dG+s(s,x) for somex∈ K. By
Lemma 6.5, we can construct a graphH +sby performing a sequence ofdG(s,x) admissible splits
at s which split off all edges froms to x in G+ s. Since we only split edges incident tox∈ K to
form H +s, we haveG−K = H−K and sobG(K) = bH(K). Hence

dH+s(s) = dG+s(s)−2dG+s(s,x) = dG+s(s)−2δG(K)≤ 2b̂G(K)−2−2δG(K) =
= 2bG(K)+2δG(K)−2−2δG(K) = 2bG(K)−2 = 2bH(K)−2.

Thus we havedH+s(s)≤ 2bH(K)−2, anddH+s(s,K) = 0. Also note that the splittings add a setF0

of δG(K) new edges toG to formH, and thatbH(K) = bG(K)≥ b̂G(K)−(k− l)≥ 4k+3(k− l)−1.
Let H + F1 be a forest augmentation ofH with respect toK andH + s. Then|F1| = bH(K)−1 =
bG(K)−1, andH + F1 is k-connected by Lemma 6.4. ThusG+ F0 + F1 = H + F1 is the required
k-augmentation ofG with δG(K)+bG(K)−1 = b̂G(K)−1 edges. •
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We will apply Theorem 6.6 to graphs which do not satisfyb̂(G)−1≥dt(G)/2e using saturating
edges. Recall that a setF of new edges is saturating forG if t(G+F) = t(G)−2|F |.

Lemma 6.7 If F is a saturating set of edges for an l-connected graph G withb̂(G+ F) ≥ 4k+
4(k− l)− 1, t(G+ F) ≥ (k + 1)(k− l + 1), and b̂(G+ F)− 1 = dt(G+ F)/2e, then ak(G) =
dt(G)/2e.

Proof: By Theorem 6.6 the graphG+ F can be madek-connected by adding a setF ′ of dt(G+
F)/2e edges. SinceF is saturating, we havet(G) = t(G+ F) + 2|F |. Therefore the setF ∪F ′ is
an augmenting set forG of sizedt(G)/2e. Sinceak(G)≥ dt(G)/2e, the lemma follows. •

7 Augmenting Connectivity by at least Two

Throughout this section we assume thatG= (V,E) is anl -connected graph on at leastk+1 vertices
and thatl ≤ k−2. We shall show that ifak(G) is large compared tok, thenak(G) = max{b̂(G)−
1,dt(G)/2e}. Our proof uses Theorems 4.17 and 6.6. We shall show that ifak(G) is large then
either we can add a saturating set of edgesF so thatG+ F is (k− 1)-connected, or elseG has
a (k− 2)-shredder with many components. If the latter occurs then we show directly that we
can makeG k-connected by addingdt(G)/2e edges. We will occasionally consider two different
extensions of the same graphH. To distinguish between them we shall label one of them asH + s
and the other asH⊕s.

Let G+ s be ak-critical extension ofG. Construct a(k−1)-critical extensionG⊕s of G from
G+ s by deleting a set of edges incident tos. Let f = (k− l + 1)(k−1) + 4 be the bound on the
number of non-admissible pairs containing a fixed edge given by Lemma 5.3.

Lemma 7.1 If dG+s(s)≥ f (k− l +1)/(k− l) then dG+s(s)−dG⊕s(s)≥ dG+s(s)/(k− l +1).

Proof: If dG⊕s(s)≤ f then the lemma is trivial. Otherwise by Lemma 5.2(a) there exists a family
F of pairwise disjoint(k− 1)-deficient fragments inG such thatdG⊕s(s) = ∑F (k− 1− n(X)).
SinceG+s is (k,s)-connected we havedG+s(s)≥∑F (k−n(X)). HencedG+s(s)≥ dG⊕s(s)+ |F |.
SincedG⊕s(s,X)≤ k− l for eachX ∈F , we have|F | ≥ dG⊕s(s)/(k− l). ThusdG+s(s)≥ dG⊕s(s)+
dG⊕s(s)/(k− l) = (k− l +1)dG⊕s(s)/(k− l). HencedG+s(s)−dG⊕s(s)≥ dG+s(s)/(k− l +1). •

We next perform a sequence of(k−1)-admissible splits ats in G⊕sand obtainG1⊕s. We do
this according to the following rules. IfdG⊕s(s) ≤ 2 f then we putG1⊕ s = G⊕ s. If dG⊕s(s) ≥
2 f + 1 then we perform(k−1)-admissible splits until eitherdG1⊕s(s)≤ 2 f , or dG1⊕s(s)≥ 2 f + 1
and there is no(k−1)-admissible split ats in G1⊕s. We then add all the edges of(G+s)−(G⊕s)
to G1⊕sand obtainG1+s. We shall refer to the edges of(G+s)−(G⊕s) asnew edgesof G1+s.

Lemma 7.2 If dG+s(s)≥ f (k+ l −1) then G1 +s is a k-critical extension of G1.

Proof: SupposeG1 + s is not (k,s)-connected. IfdG1⊕s(s) ≤ f thenG1⊕ s = G⊕ s andG1 +
s = G+ s, contradicting the assumption thatG+ s is (k,s)-connected. HencedG1⊕s(s) ≥ f + 1.
Choose a minimal fragmentX of G1 such thatd̄G1+s(X) < k. Sinced̄G1⊕s(X) ≥ k− 1 we have
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d̄G1+s(X) = k−1 = d̄G1⊕s(X) and no new edge ofG1 + s is incident withX. Sinced̄G+s(X) ≥ k,
there exists an edgesx in G+ s with x ∈ X. Thensx∈ E(G⊕ s), since no new edge is incident
with X. Hencesx is (k− 1)-critical in G⊕ s so there exists a minimal tight setY with x ∈ Y
and d̄G⊕s(Y) = k− 1. Henced̄G1⊕s(Y) = k− 1. Working in G1⊕ s we may use Lemma 5.1(a)
to deduce thatd̄G1⊕s(X ∩Y) = k− 1. Since there are no new edges incident toX, this gives
d̄G1+s(X∩Y) = k−1. Now the minimality ofX implies thatX ⊆Y. Sinced̄G⊕s(Y) = d̄G1⊕s(Y),
we now deduce that̄dG⊕s(X) = d̄G1⊕s(X). Thusd̄G⊕s(X) = k−1 and the minimality ofY gives
X = Y. Since no new edge is incident withX this givesd̄G+s(Y) = d̄G⊕s(Y) = k−1. ThusY is
k-deficient inG+s, contradicting the fact thatG+s is (k,s)-connected.

Criticality of G1 +s follows from the criticality ofG+s, since splitting off pairs of edges from
s cannot increasēd(X) for anyX ⊆V. •

Using Lemma 5.3, we can deduce that eitherdG1⊕s(s) is small or else there exists a(k−2)-
shredderK in G1 such thatG1−K hasdG1⊕s(s) components. In the first case, we show that there
exists a sequence ofk-admissible splits inG1 + s such that, in the resulting graphG′1 + s, G′1 is
(k− 1)-connected and then apply Theorems 6.6 and 4.17. We accomplish this by ensuring that
κ(x,y,G′1)≥ k−1 for everyx,y∈ NG1⊕s(s). This is possible since there are many new edges and
hencedG1+s(s) is large compared todG1⊕s(s). We proceed incrementally using the lemmas below.
In the second case, we show directly that we can makeG k-connected by addingdt(G)/2e edges.

Henceforth we shall assume thatG′1 + s is obtained fromG1 + s by performing a sequence of
k-admissible splits and thatT ⊆V is a cover of all(k−1)-deficient fragments ofG′1. (In proving
the theorem we will takeT = NG1⊕s(s).) Let |T|= τ.

Lemma 7.3 If κ(u,v,G′1)≥ k−1 for all u,v∈ T then G′1 is (k−1)-connected.

Proof: SupposeG′1 has a fragmentX with n(X) ≤ k− 2. Then we may chooseu ∈ X ∩T and
v∈ X∗∩T, contradicting the fact thatκ(u,v)≥ k−1. •

Lemma 7.4 Let sz,sw∈E(G′1+s) and suppose that the pair sz,sw is not k-admissible. Ifκ(z,w,G′1)≤
k−2 then there are at most f pairs of edges sz,sx which are not k-admissible in G′1 +s.

Proof: Let R = {sx : sz,sx is notk-admissible inG′1 +s}. Suppose thatr = |R| > f . Then by
Lemma 5.3, there is a(k−1)-shredderK in G′1 with r +1 leaf components inG′1 +ssuch thatzas
well as each vertexx, sx∈ R, is in one of these components. By Lemma 2.14,κ(z,x) ≥ k−1 for
every suchx. Takingx = w gives a contradiction. •

Lemma 7.5 Suppose that dG′1+s(s) ≥ ( f + 1)(2(k−2)( f + 2) + τ) + (k−2)(k− l −2). Choose
u,v ∈ T and suppose thatκ(u,v,G′1) = m≤ k− 2. Then there exists a sequence of at most two
k-admissible splits such that, for the resulting graph G′′1 +s, we haveκ(u,v,G′′1) = m+1.

Proof: Let Xu andXv be the smallest sets which containu andv, respectively, separateu andv, and
have preciselym neighbours. It is well-known that these unique smallest separators exist. Since
nG′1

(Xu) = nG′1
(Xv) = m≤ k−2, there exist verticesx∈ Xu∩NG′1+s(s) andy∈ Xv∩NG′1+s(s). It

is also known that there existm pathsP1, ...,Pm from u to v, and two pathsP0 andPm+1, one from
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u to x and the other fromv to y such that all thesem+ 2 paths are vertex-disjoint apart from at
u andv. (Note thatu = x or v = y is possible.) We may assume, without loss of generality, that
NG′1+s(s)∩ (V(P0)−x) = /0 andNG′1+s(s)∩ (V(Pm+1)−y) = /0. Let Q = ∪m

i=1V(Pi)−{u,v}. If the
pairsx,sy is k-admissible, we haveκ(u,v,G′1 +xy)≥m+1, as required. If not, we need to choose
k-admissible pairs in a more complicated way, as in the proof of Lemma 4.13.

Suppose there exists a pathPi (1≤ i ≤m) with dG′1+s(s,V(Pi))≥ 2 f + (k− l) + 1. By Lemma
7.4 we may choose an admissible pairsx,sa in G′1 + s such thata is a neighbour ofs on Pi as
close tov as possible. Lemma 7.4 implies that there are at mostf edges froms to Pi(a,v]. If
κ(u,v,G′1 + xa) ≥m+ 1 then we are done. Otherwise we may splitsy,sb in G′1 + s+ xa, whereb
a neighbour ofs on Pi as close tou as possible. Lemma 7.4 implies that there are at mostf edges
from s to Pi [u,b). Sinced(s,w) ≤ k− l for eachw ∈ V(Pi), the verticesx,b,a,y appear onPi in
this order. Hence there exist two vertex-disjointuv-paths on vertex setV(Pi)∪V(P0)∪V(Pm+1),
showingκ(u,v,G′1 + xa+ yb)≥m+ 1, as required. Thus we may assume that no such path exists
and hencedG′1+s(s,V−Q)> dG′1+s(s)−m(2 f +k− l)≥ ( f +1)(2(k−2)( f +1)+ τ).

LetH be the graph obtained fromG′1−Qby deleting any edges joininguandv. LetC0,C1, ...,Cp+1

be the components ofH which each contain at least one neighbour ofs, whereu,x ∈ V(C0) and
v,y ∈ V(Cp+1). Supposed(s,Cj) ≥ f + 2 for some 1≤ j ≤ p. We may perform ak-admissible
split sx,sa for somea ∈ Cj , and then ak-admissible splitsy,sb in G′1 + s+ sa for someb ∈ Cj .
These admissible pairs exist by Lemma 7.4. It is easy to see thatκ(u,v,G′1 + xa+ yb) ≥ m+ 1,
as required. Thus we may assume that no such component exists. Similarly, ifd(s,C0) ≥ f + 1,
then we may splitsy,sc for somec∈C0 which is admissible withsy in G′1 + s, and we again have
κ(u,v,G′1+yc)≥m+1, as required. A similar construction holds ifd(s,Cp+1)≥ f +1. Hence we
have at leastd(s,V−Q)/( f + 1)≥ 2(k−2)( f + 1) + τ components inH, each containing at least
one neighbour ofs.

Since each componentCi with nG′1
(C) ≤ k− 2 must contain a vertex fromT, andu,v ∈ T,

there are at least 2(k−2)( f + 1) componentsCi , 1≤ i ≤ p, with at leastk−1 attachments onQ.
Sincem≤ k−2, we have at least 2f +2 componentsD1, ...,Dr which have two attachments on the
same path,P1 say. We now proceed as in the final part of the proof of Lemma 4.13. Leta j be the
attachment ofD j on P1 closest tou for 1≤ j ≤ r. We first pick aDi whereai is among thef + 1
attachment verticesa j closest tou onP1 and we choose ak-admissible pairsy,sbwith b∈Di . This
pair exists by Lemma 7.4. Then we pick aDh whereah is among thef + 1 attachment verticesa j

closest tov onP1 and we choose ak-admissible pairsx,sawith a∈Dh. This pair exists by Lemma
7.4. Note thatai either occurs beforeah onP1 or ai = ah. Hence, using the fact that the components
D j have at least two attachments onP1 and by the choice ofai ,ah, there exist two openly disjoint
uv-paths inG′1 + xa+ yb, using vertices fromV(P1)∪V(P0)∪V(Pm+1)∪Di ∪Dh only. Therefore
κ(u,v,G′1 +xa+yb)≥m+1, as required. •

Applying this lemma iteratively to all pairs of vertices inT, starting withG′1 + s= G1 + s and
using the fact thatf is a decreasing function ofl , we obtain:

Corollary 7.6 Suppose that

dG1+s(s)≥ ( f +1)(2(k−2)( f +2)+ τ)+(k−2)(k− l −2)+2τ2(k− l −1).

Then there exists a sequence of at mostτ2(k− l −1) k-admissible splits such that, for the resulting
graph G′1 +s, we haveκ(G′1)≥ k−1.
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Theorem 7.7 If G is l-connected and ak(G) ≥ 10(k− l + 2)3(k+ 1)3 then ak(G) = max{b̂(G)−
1,dt(G)/2e}.

Proof: We havedG+s(s) = t(G) ≥ ak(G) + 1≥ 10(k− l + 2)3(k+ 1)3 by Lemmas 2.10 and 5.2.
If b̂(G)−1≥ dt(G)/2e thenak(G) = b̂(G)−1 by Theorem 6.6 and we are done. Thus we may
assume thatdt(G)/2e ≥ b̂(G) holds. We shall show thatak(G) = dt(G)/2e. We constructG⊕ s,
G1⊕ s, andG1 + s as above. By Lemma 7.2,G1 is obtained fromG by adding a saturating setF
of edges. Note that adding a saturating edge to a graphG0 reducesdt(G0)/2e by exactly one and
b̂(G0) by at most one. Thus, ifdt(G+ F)/2e ≤ b̂(G+ F)−1, then there existsF ′ ⊆ F such that
dt(G+ F ′)/2e = b̂(G+ F ′)−1 and the theorem follows by applying Lemma 6.7. Hence we may
assume thatdt(G1)/2e ≥ b̂(G1)−1. We have

t(G1) = dG1+s(s)≥ dG+s(s)−dG⊕s(s)≥ 10(k− l +2)2(k+1)3 (26)

by Lemma 7.1. Using Lemma 5.3, we either havedG1⊕s(s) ≤ 2 f or elsedG1⊕s(s) ≥ 2 f + 1 and
there exists a(k−2)-shredderK in G1 such thatbG1(K) = dG1⊕s(s).

Case 1:dG1⊕s(s)≤ 2 f .

Let T = NG1⊕s(s). Then|T| = τ ≤ 2 f . Corollary 7.6 and the fact thatf ≤ (k− l + 1)(k+ 1)−2
imply that there exists a sequence of at most 4(k− l +1)3(k+1)2 k-admissible splits inG1+ssuch
that, for the resulting graphG′1 +s, we haveκ(G′1)≥ k−1. Note thatdG′1+s(s)≥ 2(k− l +2)2(k+
1)3, by (26). Thus there exists a saturating set of edgesF for G such thatG′1 = G+ F is (k−1)-
connected andt(G+ F) ≥ 2(k− l + 2)2(k+ 1)3. As above, we may assume thatdt(G+ F)/2e ≥
b̂(G+ F)− 1≥ b(G+ F)− 1 (otherwise we are done by Lemma 6.7). SinceG+ F is (k− 1)-
connected, we can apply Theorem 4.17 to deduce thatak(G+ F) = dt(G+ F)/2e. Using (1) and
the fact thatt(G) = t(G+F)+2|F | we haveak(G) = dt(G)/2e, as required.

Case 2: dG1⊕s(s)≥ 2 f +1 and there is no(k−1)-admissible split ats in G1⊕s.

By Lemma 5.3, there exists a(k− 2)-shredderK in G1 such thatbG1(K) = dG1⊕s(s) and hence
each component ofG1−K is a leaf component. Using Lemma 2.14, and the fact thatNG1⊕s(s)
covers all(k−1)-deficient fragmentsX in G1, we deduce:

Claim 7.8 G1 is (k−2)-connected.

SinceG1 +s is k-critical, Claim 7.8 and Lemma 2.4 imply:

Claim 7.9 For all v ∈ V we have dG1+s(s,v) ≤ 2. Furthermore dG1+s(s,v) = 2 if and only if
dG1(v) = k−2.

Let G2 + s be the graph obtained fromG1 + s by splitting off as manyk-admissible pairs of
edgessx,syas possible inG1 +ssuch thatx andy belong to the same component ofG1−K. Then
G2 + s is ak-critical extension ofG2. Let C1,C2, . . . ,Cr be the components ofG2−K. Note that
these components have the same vertex sets as the components ofG1−K and hence

r = dG1⊕s(s)≥ 2 f +1. (27)

Let dG2+s(s,Ci) = di . Relabelling if necessary, we haved1≥ d2≥ . . .≥ dr .
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Claim 7.10 dG2+s(s,K) = 0.

Proof: SupposeG2 + s has an edgesxwith x∈ K. By criticality there exists a fragmentX of G2

such thatx ∈ X and d̄G2+s(X) = k. Since, by Caim 7.8,x ∈ NG1(Ci) for all 1≤ i ≤ r, we have
x∈ NG2(Ci). Hence eitherNG2(X)∩Ci 6= /0, or Ci ⊆ X anddG2+s(s,X∩Ci) ≥ 1, for all 1≤ i ≤ r.
Thusd̄G2+s(X)≥ r > k, a contradiction. •

Using Lemma 6.7 we may suppose that

b̂(G2)≤ dt(G2)/2e= ddG2+s(s)/2e. (28)

Claim 7.11 d1≤ (∑r
i=2di)−1.

Proof: Supposed1 ≥ (∑r
i=2di). Sinced1 + (∑r

i=2di) = dG2+s(s) ≥ r ≥ 2 f + 1 by Claim 7.10 and
(27), we haved1≥ f + 1. Since there is nok-admissible pair of edges joinings to C1 in G2 + s, it
follows from Lemma 5.3 that there is a(k−1)-shredderK̂ in G2 with each of thed1 neighbours ofs
in C1 in distinct components ofG2− K̂ and at least one other component containing the remaining
neighbours ofs in G2 +s. Thusb(G2)≥ d1 +1, andb̂(G2)≥ b(G2)≥ d1 +1≥ (dG2+s(s)/2)+1.
This contradicts (28). •

Claim 7.12 Suppose X is a fragment in G2 with |X∩K| ≤ |X∗∩K|.
(a) If nG2(X) = k−2, then either X= Ci1 ∪Ci2 ∪ . . .∪Cip for some{i1, i2, . . . , ip} ⊂ {1,2, . . . , r};
or X = Zi ⊂Ci for some1≤ i ≤ r;
(b) If nG2(X) = k−1, then either X= Zi1 ∪Ci2 ∪ . . .∪Cip for some{i1, i2, . . . , ip} ⊆ {1,2, . . . , r}
and Zi1 ⊆Ci1; or X = Zi1∪Zi2 for some1≤ i1< i2≤ r, Zi1 ⊆Ci1, Zi2 ⊆Ci2, and nG2(Zi1) = k−2=
nG2(Zi2).

Proof: SupposeX ∩K 6= /0. ThenX∗ ∩K 6= /0. SinceNG2(Ci) = K by Claim 7.8, it follows that
Ci 6⊆ X andCi 6⊆ X∗ for all 1≤ i ≤ r, and hence thatnG2(X) = |V− (X∪X∗)| ≥ r > k. Thus we
may suppose thatX∩K = /0. Let

S= {i : X∩Ci is a proper subset ofCi , 1≤ i ≤ r}.

Since the claim holds whenS= /0 we may suppose that|S| ≥ 1. LetZi = X∩Ci for i ∈S. By Claim
7.8,nG2(Zi) ≥ k−2. Hence|NG2(X)∩ (K ∪Ci)| ≥ k−2 and|NG2(X)∩Ci | ≥ 1 for all i ∈ S. The
claim now follows using the hypothesis of (a) and (b) thatnG2(X) = k− 2 andnG2(X) = k− 1,
respectively. •

Claim 7.13 For each i, 1 ≤ i ≤ r, there exists a unique minimal subset Yi ⊆ V(Ci) such that
nG2(Yi) = k−2.

Proof: The existence of such a set follows from the fact thatnG2(Ci) = k−2. To prove uniqueness
we suppose to the contrary thatX1 andX2 are two minimal subsets ofCi satisfyingnG2(X1) =
k−2 = nG2(X2). ThennG1(X1) = k−2 = nG1(X2), sinceG1 is (k−2)-connected by Claim 7.8,
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and the operation used in going fromG1 to G2 (splitting off pairs of edges froms) cannot decrease
n(Xi). Let sw be the unique edge ofG1⊕ s from s to Ci . SinceG1⊕ s is (k− 1,s)-connected,
we must havew∈ X1∩X2. SinceX1∪X2 ⊆Ci , X1∪X2 is a fragment ofG2, and hence we have
nG2(X1∪X2)≥ k−2, by Claim 7.8. Submodularity ofnG2, now implies thatnG2(X1∩X2)≤ k−2,
contradicting the minimality ofX1 andX2. •

For eachi, 1≤ i ≤ r, choose two distinct edgessyi ,sy′i in G2 + s with yi ,y′i ∈ Yi . Note that these
edges exist by the(k,s)-connectivity ofG2. Furthermore, by Claim 7.9,yi = y′i , if and only if
Yi = {yi} anddG2(yi) = k−2.

We are now ready to construct the required augmentation ofG. LetG2⊕sbe the graph obtained
from G2 + s by adding an extra edge froms to C2 if dG2+s(s) is odd. ThusdG2⊕s(s) = 2dt(G2)/2e
is even. First we try to define a good augmenting set by a method similar to forest augmentation.
Since we need to increase the connectivity ofG2 by two, we now look for a loopless 2-connected
multigraphH on r vertices whose degree sequence isd1,d′2, ...,dr , whered′2 = dG2⊕s(s,C2) (sod′2
is eitherd2 or d2 + 1, depending on whetherdG2+s(s) is even or odd). If such a multigraph exists,
it leads to a good augmenting set in a natural way, as we shall see in Subcase 2.1. However, such a
graph may not exist, as the following example shows. LetG be obtained fromKr,k−2 by replacing
some vertexv in ther-set by a copy ofKk−1,4 and then connecting each vertex of the(k−2)-set to
each vertex of the(k−1)-set. It can be seen that the degree sequence defined by the corresponding
extensionG2⊕sof G is 4,2,2, ...,2. There is no loopless 2-connected multigraph with this degree
sequence. When such a multigraph does not exist, we need a somewhat more involved method to
define the augmenting set. This will be described in Subcase 2.2.

Subcase 2.1There exists a loopless 2-connected multigraphH on r vertices with degree sequence
d1,d′2, ...,dr .

Let F be a set of edges joining the components ofG2−K such thatdF(v) = dG2⊕s(s,v) for all
v ∈ V and such that the graph obtained from(V −K,F) by contracting each componentCi to a
single vertexci , is H. SinceH is 2-connected, each vertexci ∈ V(H) has at least two distinct
neighbours inH, and thus each componentCi is joined to at least two other components by edges
of F . Furthermore, sinceH is loopless, each edge ofF is incident with two distinct components
of G2−K. Let yi ,y′i be the neighbours ofs in Ci as defined after Claim 7.13. Since we are free to
interchange the end vertices of the edges ofF within each component, we may chooseF to have
the additional property that, for each 1≤ i ≤ r, the two edges ofF incident toyi andy′i join Ci to
different components ofG2−K. We can now use Claim 7.12 to deduce thatG2+F is k-connected.
Suppose to the contrary thatG2 +F has a fragmentX with nG2+F(X)≤ k−1. ReplacingX by X∗

if necesssary we may assume that|X∩K| ≤ |X∗∩K|. By Claim 7.8,nG2(X)≥ k−2 and by Claim
7.12, we have one of the following four alternatives.
(a1)nG2(X) = k−2 andX = Ci1∪Ci2∪ . . .∪Cip for somep≤ r−1. Supposep≤ r−2. Then the
2-connectivity ofH implies that there are two edges ofF from X to distinct componentsCj1,Cj2
disjoint fromX. HencenG2+F(X)≥ k. Supposep = r−1. There are at least two edges fromX to
Cir , whereCir is the unique component ofG2−K disjoint fromX. If Cir has only one vertex then
NG2+F(X) = V−X andX is not a fragment. If all edges ofF join X to the same vertexv∈Cir ,
then we havenG2(Cir − v) ≤ k−1 anddG2+s(s,Cir − v) = 0, contradicting the(k,s)-connectivity
of G2 + s. Thus at least two edges ofF join X to distinct vertices ofCir and we again have
nG2+F(X)≥ k.
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(a2)nG2(X) = k−2 andX = Zi ⊂Ci for some 1≤ i ≤ r. By Claim 7.13,yi ,y′i ∈ X. Sinceyi ,y′i are
joined byF to distinct componentsCj1,Cj2 disjoint fromCi , we again havenG2+F(X)≥ k.
(b1) nG2(X) = k−1, andX = Zi1∪Ci2∪ . . .∪Cip for somep≤ r andZi1 ⊆Ci1. Suppose 2≤ p≤
r −1. Then the 2-connectivity ofH implies that there is at least one edge ofF from X−Ci1 to
a componentCj1 disjoint from X. HencenG2+F(X) ≥ k. Supposep = r. SinceG2 + s is (k,s)-
connected, it has an edge froms to a vertexv∈ X∗ ⊆Ci1−Zi1. Since all edges ofF are incident
to distinct componentsv is joined by an edge ofF to some vertex ofX−Ci1, and again we have
nG2+F(X) ≥ k. Supposep = 1. SinceG2 + s is (k,s)-connected, it has an edge froms to at least
one vertexv∈ Zi1. Since all edges ofF are incident to distinct components,v is joined by an edge
of F to some component distinct fromCi1, and again we havenG2+F(X)≥ k.
(b2) nG2(X) = k−1 andX = Zi1∪Zi2 for someZi1⊆Ci1, Zi2⊆Ci2, andnG2(Zi1) = k−2= nG2(Zi2).
By Claim 7.13,yi1,y

′
i1 ∈ Zi1. Sinceyi1,y

′
i1 are joined byF to two distinct componentsCj1,Cj2

disjoint fromCi1, at least one of these components is also disjoint fromCi2 and we again have
nG2+F(X)≥ k.

ThusG2 +F is k-connected. PuttingF0 = E(G2)−E(G), we deduce thatF0∪F is the required
augmenting set of edges forG of sizeddG+s(s)/2e= dt(G)/2e.
Subcase 2.2There is no loopless 2-connected multigraph onr vertices with degree sequence
d1,d′2, ...,dr .

Hakimi [10] characterised the degree sequences of loopless 2-connected multigraphs, see also [14,
Corollary 3.2].

Theorem 7.14 There exists a 2-connected loopless multigraph with degree sequence d1 ≥ d2 ≥
. . .≥ dr ≥ 2 if and only if d1 +d2 + . . .+dr is even and d1≤ d2 +d3 + . . .+dr −2r +4.

This characterisation implies that in Subcase 2.2 we have either:d1 ≥ d′2 andd1 ≥ d′2 + d3 +
...+ dr −2r + 5; or d1 = d′2−1 andd′2 ≥ d1 + d3 + ...+ dr −2r + 5. SincedG2⊕s(s) = d1 + d′2 +
d3 + ...+dr anddG2⊕s(s) is even, both alternatives imply that

dG2⊕s(s)≤ 2d1 +2r−4. (29)

We shall use the following concept to find a good augmenting set in this subcase. LetH0 =
(V,E) be a multigraph,s∈V, andm1,m2, . . . ,mq be a partition ofdH0(s). Then an(m1,m2, . . . ,mq)-
detachment of H0 at sis a multigraphH1 obtained fromH0 by ‘splitting’ s intoqverticess1,s2, . . . ,sq

with degreesm1,m2, . . . ,mq, respectively. We refer tos1,s2, . . . ,sq as thepiecesof s in H1. Note
that the graphH used in Subcase 2.1 can be viewed as a loopless 2-connected(d1,d′2,d3 . . . ,dr)-
detachment ats of the graphH0 consisting of exactly one vertexs incident withdG2⊕s(s)/2 loops.
Inequality (29) tells us that if this detachmentH does not exist, thend1 is ‘large’ compared to
dG2⊕s(s). We modify our approach in this case by finding a loopless 2-connected(d′2,d3, . . . ,dr)-
detachment of the multigraph obtained from(G2⊕s)−K−∪r

i=2Ci by adding a suitable number of
loops tos. The pieces ofs in the detachment will represent the componentsC2,C3, . . . ,Cr . We use
the following lemma from [14] to construct the required detachment.

Given a multigraphH andv1,v2, . . . ,vm∈V(H), let b(v1,v2, . . . ,vm) be the number of compo-
nents ofH−{v1,v2, . . . ,vm}.

Lemma 7.15 [14, Corollary 3.3] Let H0 = (V,E) be a multigraph, s∈V and m1,m2, ...,mq be a
partition of d(s) into at least two positive integers, such that m1 ≥ m2 ≥ ... ≥ mq ≥ 2. Let e(u)
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denote the number of loops incident to each vertex u in H0. Then H0 has a loopless2-connected
(m1,m2, . . . ,mq)-detachment at s if and only if
(a) H0 is 2-edge-connected,
(b) b(v)+e(v) = 1 for all v ∈V−s,
(c) m2 +m3 + . . .+mq≥ b(s)+e(s)+q−2, and
(d) d(s,V−v)+e(s)≥ q+b(s,v)−1 for all v ∈V−s.

Let G3 + s be the multigraph obtained from(G2⊕s)−K−∪r
i=2Ci by addingp = (dG2⊕s(s)−

2d1)/2−1 loops ats. Note thatp is a non-negative integer by Claim 7.11 and the fact thatdG2⊕s(s)
is even. Applying Lemma 7.15 toG3 +s we deduce:

Claim 7.16 G3 + s has a loopless 2-connected(d∗2,d3, . . . ,dr−1)-detachment H1 at s, where d∗2 =
d′2 +dr −2.

Proof: We haved∗2 +d3+ . . .+dr−1 = dG2⊕s(s)−d1−2= 2p+d1 = dG3+s(s) so(d∗2,d3, . . . ,dr−1)
partitionsdG3+s(s). SinceG2⊕ s is (k,s)-connected andG3 is connected and loopless, it follows
that G3 + s satisfies Lemma 7.15(a) and Lemma 7.15(b). Usingdi ≥ 2 for all 3≤ i ≤ r −1 and
(29), we haved′2 + dr ≤ dG2⊕s(s)− d1− 2(r − 3) ≤ dG2⊕s(s)− dG2⊕s(s)/2+ r − 2− 2(r − 3) =
dG2⊕s(s)/2− r +4. Thusd3 + ...+dr−1 = dG2⊕s(s)−d1−d′2−dr ≥ dG2⊕s(s)−d1−dG2⊕s(s)/2+
r − 4 = 1+ e(s) + r − 4, proving that Lemma 7.15(c) holds forG3 + s. To show that Lemma
7.15(d) holds focus on a vertexv of C1. Considering the graphG2− (K + v) and using Claim
7.9, we havêb(G2) ≥ bG3(v) + r − 1+ β, whereβ = 2 if dG2⊕s(s,v) = 2 andβ = 0, otherwise,
since if dG2⊕s(v) = 2 thendG2(v) = k− 2. By (28), b̂(G2) ≤ dt(G2)/2e = dG2⊕s(s)/2. Hence
dG2⊕s(s)/2≥ bG3(v)+ r−1+ β. Thus

dG3+s(s,V(C1)−v)+e(s) = d1−dG2⊕s(s,v)+e(s)
= dG2⊕s(s)/2−1−dG2⊕s(s,v)
≥ bG3(v)+ r−1+ β−1−dG2⊕s(s,v)
≥ (r−2)+bG3+s(s,v)−1,

as required. •

Label the detached vertices ofH1 asc2,c3,c4 . . . ,cr−1 wheredH1(ci) = di for 3≤ i ≤ r−1 and
dH1(c2) = d∗2. The edgee= c jy1 is in E(H1) for some 2≤ j ≤ r−1. We next subdivide the edge
e with a new vertexcr to form the multigraphH2, and then ‘flip’ some edges fromc2 to cr in H2

preserving 2-connectivity and increasing the degree ofcr up todr while maintaining the property
thaty1 andy′1 are joined to different pieces ofs. We use the following result to accomplish this.

Lemma 7.17 [14, Corollary 2.17] Let t≥ 3 be an integer. Let H be a loopless2-connected multi-
graph, x,y∈V(H) and xzi ∈ E(H−y) for 1≤ i ≤ t. If t ≥ d(y)−d(y,x) + 1, then H−xzi + yzi is
loopless and2-connected for some i,1≤ i ≤ t.

We construct the new multigraphH3 from H2 as follows. Ifdr = 2 then we putH3 = H2. If
dr ≥ 3 then we use Lemma 7.17 to find a set of edgesS= {c2zi ∈ E(H2) : 1≤ i ≤ dr −2} such
that c2y′1 6∈ S and H3 = H2−S+ {crzi : 1≤ i ≤ dr − 2} is 2-connected and loopless. This is
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possible sincedH2(cr) = 2, dH2(cr ,c2)≤ 1, anddH2(c2) = d′2+dr−2≥ dr +dr−2. In H3 we have
y1cr ∈E(H3), y′1cr 6∈E(H3), dH3(ci) = di for 3≤ i ≤ r, anddH3(c2) = d′2. (Note that we could have
used Lemma 7.15 directly to construct a 2-connected loopless detachment with the same degree
sequence asH3 from G3 + s plus one extra loop ats. The reason we go viaH1 andH2 is to ensure
thaty1 andy′1 are adjacent to distinct pieces ofs in H3.)

Let F be a set of edges joining the components ofG2−K such thatdF(v) = dG2⊕s(s,v) for
all v ∈ V − K and such that the graph obtained from(V − K,F) by contractingC2, . . . ,Cr to
c2,c3, . . . ,cr , respectively, isH3. SinceH3 is 2-connected, each vertexci in H3 has at least two
distinct neighbours. SinceH3 is loopless, every edge ofF which is incident to a componentCi ,
2≤ i ≤ r, is incident to distinct components ofG2−K. Let yi ,y′i be the neighbours ofs in Ci

as defined after Claim 7.13. Since we are free to interchange the end vertices of the edges ofF
within each component,Ci , for 2≤ i ≤ r we may chooseF to have the additional property that, for
2≤ i ≤ r, the two edges ofF incident toyi andy′i join Ci to different vertices ofG−K−Ci , which
either belong to different components ofG−K−Ci , or both belong toC1. Furthermore, sincey1

andy′1 are joined to different detached vertices inH3, the two edges ofF incident toy1 andy′1 join
C1 to different components ofG2−K−C1.

We can now use Claim 7.12 to deduce thatG2 + F is k-connected as in Subcase 2.1. Putting
F0 = E(G2)−E(G) we deduce thatF0∪F is the required augmenting set of edges forG of size
ddG+s(s)/2e= dt(G)/2e. •

8 Algorithmic aspects and corollaries

In this section we discuss the algorithmic aspects of our results and also show that our main theo-
rems imply (partial) solutions to a number of conjectures in this area.

8.1 Algorithms

The proofs of our min-max theorems (Theorems 4.17 and 7.7) are algorithmic and lead to a poly-
nomial algorithm which finds an optimal augmenting set with respect tok for any l -connected
input graphG and targetk≥ l + 1, providedak(G) ≥ 10(k− l + 2)3(k+ 1)3 (or ak(G) ≥ 20k3, if
k = l +1). As we shall see, the running time in this case can be bounded byO(n6), even ifk is part
of the input. Our algorithm for the general case first decides whetherak(G) is large, compared to
k, or not. Since, by Lemma 2.10,ak(G) is large if and only ifd(s) is large in ak-critical extension
G+ s of G, the first step is to create such an extension. Ifak(G) is small then our algorithm per-
forms an exhaustive search on all possible augmenting setsF with V(F) ⊆ N(s) and outputs the
smallest augmenting set which makesG k-connected. The number of possibilities depends only
on k, since|N(s)| is also small. We shall present the algorithm as a sequence of sub-algorithms.
Most of the steps of these algorithms are easy to implement in polynomial time by network flow
techniques.
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8.1.1 CRITICAL EXTENSION

Input: A graphG and an integerk≥ 1.
Output: Ak-critical extensionG+s of G.
Step 1. Add a new vertexs to G and max{1,k−d(v)} edges froms to each vertexv of G. (This
gives a(k,s)-connected extensionG⊕s of G by Lemma 2.4.)
Step 2. Delete edges incident tos greedily until the the remaining graphG+ s is a k-critical
extension. (We check whether each edge deletion preserves(k,s)-connectivity using a max-flow
computation.)

8.1.2 EXHAUSTIVE SEARCH

Input: A k-critical extensionG+s of a graphG.
Output: An optimalk-augmenting set forG.
For each set of edgesF with V(F) ⊆ N(s), check whetherG+ F is k-connected. Choose the
smallest suchk-augmenting set.

The following lemma implies that the output of EXHAUSTIVE SEARCH is indeed an optimal
k-augmentation forG.

Lemma 8.1 Let G+ s be a(k,s)-connected extension of a graph G. Then there exists an optimal
k-augmenting set F for G with V(F)⊆ N(s).

Proof: Let S= N(s) and letF be an optimal augmenting set with respect tok for which c(F) =
∑uv∈F |{u,v}−S| is as small as possible. Supposec(F) is positive and letuv∈ F be an edge
with {u,v}−S 6= /0. SinceF is optimal, we haveκ(G+ F −uv) = k−1 and, by Lemma 4.4(c),
it follows that G+ F − uv has precisely twok-cores (i.e. minimalk-deficient fragments)X,Y.
Clearly, X andY arek-deficient fragments inG. Thus, sinceG+ s is (k,s)-connected, we must
haveS∩X 6= /0 6= S∩Y. Lemma 4.4(c) also implies that by takingF ′ = F−uv+ xy for a pairx,y
of vertices withx∈ S∩X andy∈ S∩Y we have thatG+ F ′ is k-connected. Now|F ′| = |F | and
c(F ′) < c(F), contradicting the choice ofF . This proves thatc(F) = 0 must hold, and hence the
required augmentning set exists. •

It follows that, if ak(G) is small, then we only need to performck k-connectivity tests, where

ck = O(2(ak(G)
2 )) depends only onk, to find an optimalk-augmentation forG using CRITICAL

EXTENSION and EXHAUSTIVE SEARCH. Ifak(G) is large then our augmentation algorithm
has several sub-algorithms, according to the different subcases in our proofs. In what follows we
give a sketch of these algorithms to verify that they can be run in polynomial time. We do not
attempt to work out the details of an efficient implementation.

8.1.3 CORES

Input: A (k−1)-connected graphG = (V,E).
Output: The setC of all k-cores and the setA of all activek-cores inG.
For each non-adjacent pairu,v ∈ V such thatκ(u,v) = k− 1, find the minimal (with respect to
inclusion) setsXu,Xv such thatu∈ Xu, v∈ Xv andn(Xu) = k−1 = n(Xv). Let C ′ be the union of
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the sets{Xu,Xv} over all pairsu,v, and letC consist of the minimal members ofC ′. Let A = {X ∈
C : κ(G−X) = k−1−|X|}.

Note that CORES can be used to test if a(k−1)-connected graphG is k-independence free by
checking whetherG has any activek-cores. We do not know if there is a polynomial algorithm to
determine whether an arbitrary graph isk-independence free.

Cheriyan and Thurimella [4] give a polynomial algorithm for determiningbk(G) for a (k−1)-
connected graphG and finding all(k−1)-shreddersK in G with bG(K) = b(G). We can use this
to give a polynomial algorithm for finding an optimalk-augmentation of a(k−1)-connectedk-
independence free graph. Note, however, that it is unlikely that there exists an efficient algorithm to
determinebk(G) for an arbitrary graphG. This follows since the problem of determining whether
bk(G)≥ k for some 1≤ k≤ |V| is NP-complete by [1].

8.1.4 INDEPENDENCE FREE AUGMENTATION

Input: A (k−1)-connectedk-independence free graphG.
Output: An optimalk-augmenting setF for G with |F |= max{b(G)−1,dt(G)/2e}.
We first construct ak-critical extensionG+ s of G using CRITICAL EXTENSION. We have
d(s) = t(G) by Corollary 3.2. We construct the required setF by finding a sequence of admissible
splits ats (as in the proofs of Lemmas 3.7, 3.10 and 3.11 and Theorem 3.12) to giveG1 + s with
dG1+s(s) ∈ {3,b(G1)}. We then putF = F1∪F2 whereF1 = E(G1)−E(G) andF2 is the edge set
of a tree withV(F2) = NG1+s(s).

We next give algorithms for finding optimalk-augmentations for a graphG when ak(G) is
large. The first two algorithms determine whetherG has adominating shredder, that is to say a
(k−1)-shredderK with b̂G(K) = b̂(G) and 2̂b(K)−2≥ t(G), and find an optimalk-augmenting
set whenG does have such a shredder.

8.1.5 DOMINATING SHREDDER

Input: A k-critical extensionG+sof anl -connected graphG for whichdG+s(s)≥ k(k− l +1)+2.
Output: We find a dominating shredderK in G or deduce that no such shredder exists.
We construct a familyK of (k−1)-shredders in such a way that|K | is polynomial in|V| and, if
there is a dominating shredderK in G, thenK ∈ K . Once we haveK , we complete the algorithm
by computingb̂(K′) for all K′ ∈K .
For each triplex,u,v, wherex∈V andu,v∈ NG+s(s)−x, first we try to split off all copies of the
edgessx (if there are any). Suppose that all copies can be split off, and let the resulting graph be
Gx+s. Then we try to find a set{P1,P2, . . . ,Pk−1} of openly disjointuv-paths inGx. If we succeed,
then we letQ(x,u,v) = ∪k−1

i=1 Pi , C (x,u,v) = {C : C is a component ofG−Q(x,u,v)},

K1(x,u,v) = {NG(C) : C∈ C (x,u,v) andnG(C) = k−1},

K2(x,u,v) = {NG(C)∪{q} : C∈ C (x,u,v), nG(C) = k−2, q∈Q−{u,v}}.

Let K be the union of the setsK1(x,u,v)∪K2(x,u,v) over all choices ofx,u,v. Clearly, |K | ≤(n
3

)
n2.

Lemma 8.2 If G has a dominating shredder K then K∈K .
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Proof: Suppose there is a(k−1)-shredderK with d(s) ≤ 2b̂(G)−2 = 2b̂(K)−2. Then Lemma
6.1 implies that|N(s)∩K| ≤ 1, and ifx∈N(s)∩K thendG(x) = k−d(s,x), b̂(K) = b(K)+d(s,x),
and we can split off all copies ofsx (in any order) by admissible splittings. By splitting off these
copiesd(s) is reduced by 2d(s,x) andb̂(K) is reduced byd(s,x). Henced(s) ≤ 2b(K)−2 holds
in the resulting graphGx. This implies thatK has at least two leaf componentsC,C′ in Gx. By
Lemma 2.14 there existk−1 openly disjoint paths fromu∈ N(s)∩C to v∈ N(s)∩C′. Clearly,
Q⊆ K∪C∪C′ andK ⊂Q hold, whereQ is the union of the vertex sets of these paths. Moreover,
sincex∈K, the components ofG−K andGx−K are the same. Lemma 6.1 also implies thatG−K
has at least 2k+ 1≥ 3 componentsD with dG+s(s,D) ≤ 2, and hencenG(D) ≥ k−2. Thus there
is a componentD′ of G−K, which is a component ofG−Q, and satisfies that eitherK = NG(D′)
or K = NG(D′)+q for someq∈Q−{u,v}.

It follows that for some triplex,u,v we haveK ∈K1(x,u,v)∪K2(x,u,v), as required. •

Note that if DOMINATING SHREDDER finds a dominating shredderK whenl = k−1, then
we haved(s,K) = 0 andbG(K) = b̂(K) by Theorem 4.1.

8.1.6 DOMINATING SHREDDER AUGMENTATION

Input: A k-critical extensionG+sof anl -connected graphG for whichdG+s(s)≥ k(k− l +1)+2,
and a dominating shredderK for G.
Output: An optimal augmenting setF for G with |F |= b̂(G)−1.
We constructF by splitting off all edges froms to K and then adding a forest augmentation, as
described in Lemma 6.5 and after Lemma 6.1.

8.1.7 LARGE AUGMENT BY ONE

Input: A k-critical extensionG+ s of a (k−1)-connected graphG = (V,E) for which dG+s(s) ≥
20k3 +1.
Output: An optimal augmenting setF for G with |F |= max{b(G)−1,dt(G)/2e}.
We use DOMINATING SHREDDER, DOMINATING SHREDDER AUGMENTATION, CORE,
and the proof techniques of Lemmas 4.2, 4.15 and 4.16 to find a saturating set of edgesF1 such
that eitherF1 is an optimalk-augmenting set forG with |F |= max{b(G)−1,dt(G)/2e}, or G+F1

is k-independence free and has no dominating shredder. In the former case we putF = F1. In the
latter case we use INDEPENDENCE FREE AUGMENTATION to find ak-augmenting setF2 for
G+F1 and putF = F1∪F2.

Note that when we increase the number of passivek-cores by making an activek-core passive
in LARGE AUGMENT BY ONE, we do not need to computeT(G). We choose an arbitrary active
k-coreB and, if we fail to makeB passive (which meansB∩T(G) 6= /0), then we choose a different
activek-core.

8.1.8 LARGE AUGMENT

Input: A k-critical extensionG+ s of a graphG = (V,E) for which dG+s(s) ≥ 10(k− l + 2)3(k+
1)3 +1.
Output: An optimal augmenting setF for G with |F |= max{b̂(G)−1,dt(G)/2e}.
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We use DOMINATING SHREDDER, DOMINATING SHREDDER AUGMENTATION, and the
proof techniques of Lemmas 6.7 and 7.5 to find a saturating set of edgesF1 such that eitherF1

is an optimalk-augmenting set forG with |F1| = max{b̂(G)− 1,dt(G)/2e}, or G+ F1 is (k−
1)-connected, has no dominating shredder, anddG+s(s)− 2|F1| ≥ 20k3 + 1, or G+ F1 has ak-
augmenting setF2 of sizedt(G+ F1)/2e (which can be constructed using detachments as in the
proof of Case 2 of Theorem 7.7). In the first case we putF = F1. In the second case we use
LARGE AUGMENT BY ONE to find ak-augmenting setF3 for G+F1 of sizedt(G+F1)/2e and
putF = F1∪F3. In the third case we putF = F1∪F2.

8.1.9 AUGMENT

Input: An l -connected graphG and an integerk> l .
Output: An optimalk-augmenting setF for G.
Construct ak-critical extensionG+ s for G using CRITICAL EXTENSION. Ifk = l + 1 and
dG+s(s)≥ 20k3 + 1 then apply LARGE AUGMENT BY ONE. Ifl ≤ k−2 anddG+s(s)≥ 10(k−
l +2)3(k+1)3 +1 then apply LARGE AUGMENT. Otherwise apply EXHAUSTIVE SEARCH.

As noted above, most of the steps of the above algorithms are easy to implement in polynomial
time by network flow techniques. The only exception is finding the required loopless 2-connected
detachments as in the proof of Case 2 of Theorem 7.7. We shall not discuss this in this paper but
remark that there is a simple algorithm which findsH, if it exists, and we also have a similarly
simple and efficient algorithm which findsH3, whenH does not exist.

Before stating our bound on the running time of our algorithm AUGMENT, we note that by
inserting a preprocessing step, which works in linear time, we can make the input graph sparse,
and hence reduce the running time, as follows. LetG = (V,E) andk be the input of our problem.
Let n = |V| andm = |E|. It was shown in [3] and [19] thatG = (V,E) has a spanning subgraph
G′ = (V,E′) with |E′| ≤ k(n−1) satisfyingκ(u,v,G′) ≥min{k,κ(u,v,G)} for each pairu,v∈V.
It can be seen that by replacingG by G′ we do not change thek-deficient fragments (or their
deficiencies) and that for any augmenting setF the graphG+ F is k-connected if and only if
G′+ F is k-connected. Thus we can work withG′ and assume thatm = O(kn). Note also that
d(s) = O(kn) in any k-critical extensionG+ s of G. By using these facts and efficient network
flow algorithms for the basic operations (such as finding admissible splittings, checking whether
an edge isk-critical, etc) we can conclude with the following theorem.

Theorem 8.3 Given an l-connected graph G and a positive integer k, our algorithm AUGMENT
finds an optimal k-augmenting set. If ak(G) ≥ 10(k− l + 2)3(k + 1)3 then the running time is
O(kn5). Otherwise the running time is O(ckn3).

We close this subsection by noting that we can also use the theory developed in this paper to
derive a near optimal algorithm for the vertex connectivity augmentation problem which is similar
to the one given in [13].

8.1.10 NEAR OPTIMAL AUGMENT

Input: An l -connected graphG and an integerk> l .
Output: Ak-augmenting setF for G with |F | ≤ ak(G)+ 1

2k(k− l +1)+1.
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Construct ak-critical extensionG+ s for G using CRITICAL EXTENSION. We first suppose
that dG+s(s) ≥ k(k− l + 1) + 2. We use DOMINATING SHREDDER to determine ifG has a
dominating shredder. If it does then we use DOMINATING SHREDDER AUGMENTATION, to
find an optimalk-augmenting set forG. If G does not have a dominating shredder then, by Lemma
5.3, we can split off edges fromssuch that, in the resulting graphG1+s, we have eitherdG1+s(s)>
k(k− l +1)+2 andG1 has a dominating shredder, ork(k− l +1)+1≤ dG1+s(s)≤ k(k− l +1)+2.
In the former case we can use DOMINATING SHREDDER and DOMINATING SHREDDER
AUGMENTATION, to find an optimalk-augmenting set forG. In the latter case, Lemma 2.7
implies that we may construct a minimal augmenting setF1 for G1 with V(F1) ⊆ NG1+s(s). Let
F = F1∪ F2, whereF2 = E(G1)−E(G). Lemma 2.9 implies that|F2| ≤ dG1+s(s)− 1. Since
t(G) = dG+s(s) andt(G1) = dG1+s(s) we have|F | ≤ 1

2t(G)+ 1
2dG1+s(s)≤ ak(G)+ 1

2k(k− l +1)+1.
Finally, if dG+s(s) < k(k− l + 1) + 2, then we construct a minimal augmenting setF for G with
V(F)⊆ NG+s(s). Lemma 2.10 implies that|F | ≤ ak(G)+ 1

2dG+s(s)≤ ak(G)+ 1
2k(k− l +1)+1.

The running time of NEAR OPTIMAL AUGMENT isO(n6).

8.2 Corollaries

Our main results (Theorems 4.17 and 7.7) imply (partial) solutions to several related conjectures.
The extremal version of the connectivity augmentation problem is to find, for given parameters
n,k, t, the smallest integerm for which everyk-connected graph onn vertices can be made(k+ t)-
connected by addingmnew edges. Several special cases of this problem were solved in [17] and it
was conjectured that (at least ifn is large enough compared tok) the extremal value ofm for t ≥ 2,
k≥ 2 is dnt/2e (or bnt/2c, depending on the parities ofn,k, t). Sinceb̂(G)−1≤ n, the min-max
equality of Theorem 7.7 shows that ifn is large enough andt ≥ 2 thenak(G) is maximised if and
only if G is (almost)k-regular. This proves the conjecture (whenn is large compared tok), by
noting that such (almost) regular graphs exist fork≥ 2.

A different version of this problem, when the graphs to be augmented arek-regular, was studied
in [9]. It was conjectured there that ifG is ak-regulark-connected graph onn vertices, andn is
even and large compared tok, thenG can be made(k+ 1)-connected by addingn/2 edges. If
G is k-regular,b(K) ≤ k for any cut of sizek. Thus if n is large enough, we have max{b(G)−
1,dt(G)/2e}= n/2. Now the conjecture follows from Theorem 4.17.

A similar question is whetherak(T) = d(∑v∈V(T)(k−d(v))+)/2e holds when graphT is a tree,
wherex+ = max{0,x} for all integersx. It is known that the minimum number of edges needed to
make a treek-edge-connected (or an arborescencek-edge- ork-vertex-connected) is determined by
the sum of the (out)degree-deficiencies of its vertices. As above, using the fact thatb̂(G)−1≤ n,
Theorem 7.7 implies (whenn, and hence alsoak(T), is large compared tok) that if k≥ 3 then
ak(T) = dt(T)/2e. That is,ak(T) is determined by the total deficiency of a family of pairwise
disjoint subsets ofV(T). SinceT is a tree, each memberX of this family induces a forest. This
implies that there exists a vertexv∈ X with k−d(v) ≥ k−n(X). Therefore we can find a family
consisting of singletons with the same total deficiency. This yields an affirmative answer to our
question providedk≥ 3 andn is large compared tok. Note that the answer is negative fork = 2.

Frank and Jord́an [8, Corollary 4.8] prove that every(k−1)-connected graphG = (V,E) can
be madek-connected by adding a setF of new edges such that(V,F) consists of vertex-disjoint
paths. They conjectured that such anF can be found among the optimal augmenting sets as well.
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We can verify this, providedak(G) is large enough. In this case we may use the min-max formula
of Theorem 4.17. Ifak(G) = dt(G)/2e then an optimal augmenting set is a collection of vertex-
disjoint paths of length one or two. Ifak(G) = b(G)− 1, then a careful analysis of the forest
augmentation method shows that we can find an optimal augmenting setF satisfyingdF(v) ≤ 2
for all v∈V. SinceF is a forest, it induces vertex-disjoint paths, as claimed.
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