Independence Free Graphs and Vertex Connectivity Augmentation *

Bill Jackson ${ }^{\dagger}$
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, England.
b.jackson@qmul.ac.uk
and
Tibor Jordán ${ }^{\ddagger}$
Department of Operations Research
Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
jordan@cs.elte.hu

December 24, 2004

Abstract

Given an undirected graph G and a positive integer k, the k-vertex-connectivity augmentation problem is to find a smallest set F of new edges for which $G+F$ is k-vertex-connected. Polynomial algorithms for this problem have been found only for $k \leq 4$ and a major open question in graph connectivity is whether this problem is solvable in polynomial time in general.

In this paper we develop an algorithm which delivers an optimal solution in polynomial time for every fixed k. In the case when the size of an optimal solution is large compared to k, our algorithm is polynomial for all k. We also derive a min-max formula for the size of a smallest augmenting set in this case. A key step in our proofs is a complete solution of the augmentation problem for a new family of graphs which we call k-independence free graphs. We also prove new splitting off theorems for vertex connectivity.

1 Introduction

An undirected graph $G=(V, E)$ is k-vertex-connected, or more simply k-connected, if $|V| \geq k+1$ and the deletion of any $k-1$ or fewer vertices leaves a connected graph. Given a graph $G=(V, E)$

[^0]and a positive integer k, the k-vertex-connectivity augmentation problem is to find a smallest set F of new edges for which $G^{\prime}=(V, E \cup F)$ is k-connected. This problem (and a number of versions with different connectivity requirements and/or edge weights) is an important and well-studied optimization problem in network design. The complexity of the vertex-connectivity augmentation problem is one of the most challenging open questions of this area. It is open even if the graph G to be augmented is $(k-1)$-vertex-connected. Polynomial algorithms have been developed only for $k=2,3,4$ by Eswaran and Tarjan [5], Watanabe and Nakamura [22] and Hsu [11], respectively. Values of k close to $|V|=n$ are also of interest. The case $k=n-1$ is easy, $k=n-2$ is equivalent to finding a maximum matching, and $k=n-3$ is open. Near optimal solutions can be found in polynomial time for every k, see [13], [12].

In this paper we give an algorithm which delivers an optimal solution in polynomial time for any fixed $k \geq 2$. We also obtain a min-max formula which determines the size of an optimal solution when it is large compared to k. In this case the running time of the algorithm is $O\left(n^{6}\right)$, where n is the size of the input graph. When the size of an optimal solution is small compared to k, the running time is bounded by $O\left(c_{k} n^{3}\right)$, where c_{k} is a constant if k is fixed. A key step in our proofs is a complete solution of the augmentation problem for a new family of graphs which we call k-independence free graphs. We follow some of the ideas of the approach of [15], which obtained a near optimal solution in the special case when the graph to be augmented is $(k-1)$-connected. We also develop new 'splitting off' theorems for k-vertex-connectivity.

We remark that the other three basic augmentation problems (where one wants to make G k-edge-connected or wants to make a digraph k-edge- or k-vertex-connected) have been shown to be polynomially solvable. These results are due to Watanabe and Nakamura [21], Frank [6], and Frank and Jordán [8], respectively. For more results on connectivity augmentation and its algorithmic aspects, see the survey papers by Frank [7] and Nagamochi [20], respectively. In the remainder of this section, we introduce some definitions and our new lower bounds for the size of an augmenting set which makes $G k$-vertex-connected. We also state our main min-max results.

In what follows we deal with finite undirected graphs. We shall reserve the term 'graph' for graphs without loops or multiple edges and and use 'multigraph' if loops and multiple edges are allowed. Let $G=(V, E)$ be a multigraph, $v \in V$ and $X \subseteq V-v$. We use $d_{G}(v)$ to denote the degree of v in G and $d_{G}(v, X)$ for the number of edges of G from v to X. Let $N_{G}(X)$ denote the set of neighbours of X, that is, $N_{G}(X)=\{v \in V-X: u v \in E$ for some $u \in X\}$, and $n_{G}(X)$ denote $\left|N_{G}(X)\right|$. (We will supress the subscript G in the above functions when it is obvious to which graph we are referring.) We use X^{*} to denote $V-X-N_{G}(X)$. We say that X is a fragment of G if $X \neq \emptyset \neq X^{*}$. A k-deficient fragment is a fragment X for which $n(X)<k$, for some integer k. For two vertices x, y of G we shall use $\kappa(x, y, G)$ to denote the maximum number of openly disjoint paths from x to y in G. We use $\kappa(G)$ to denote the minimum of $\kappa(x, y, G)$ over all pairs of vertices of G. By Menger's theorem $\kappa(G)$ equals the minimum size of a vertex cut in G, unless G is complete.

Let G be a graph with at least $k+1$ vertices. A k-augmenting set for G is a set of edges F such that $G+F$ is k-connected. (When the value of k is obvious we shall refer to F simply as an augmenting set for G.) Let $a_{k}(G)$ denote the size of a smallest k-augmenting set for G. It is easy to see that every k-augmenting set for G must contain at least $k-n(X)$ edges from X to X^{*} for every fragment X. By summing up these 'deficiencies' over pairwise disjoint k-deficient fragments, we may obtain a useful lower bound on $a_{k}(G)$, similar to the one used in the corresponding edge-
connectivity augmentation problem. Let

$$
t_{k}(G)=\max \left\{\sum_{i=1}^{r} k-n\left(X_{i}\right): X_{1}, \ldots, X_{r} \text { are pairwise disjoint fragments in } V\right\} .
$$

Then

$$
\begin{equation*}
a_{k}(G) \geq\left\lceil t_{k}(G) / 2\right\rceil . \tag{1}
\end{equation*}
$$

Another lower bound for $a_{k}(G)$ comes from 'shredders'. For $K \subset V$ let $b_{G}(K)$, or simply $b(K)$ when it is clear to which graph we are referring to, denote the number of components in $G-K$. We say that K is an s-shredder (or simply a shredder) in G if $|K|=s$ and $b(K) \geq 3$. Let $b_{k}(G)=\max \{b(K): K$ is a $(k-1)$-shredder in $G\}$. Since $(G+F)-K$ has to be connected for every k-augmenting set F and every $(k-1)$-shredder K, we have $|F| \geq b(K)-1$. This gives the second lower bound:

$$
\begin{equation*}
a_{k}(G) \geq b_{k}(G)-1 \tag{2}
\end{equation*}
$$

These lower bounds extend the two natural lower bounds used for example in [5, 11, 15]. Although these bounds suffice to characterize $a_{k}(G)$ for $k \leq 3$, there are examples showing that $a_{k}(G)$ can be strictly larger than the maximum of these lower bounds. For example, if we take G to be the complete bipartite graph $K_{3,3}$ with target connectivity $k=4$, we have $t_{4}(G)=6, b_{4}(G)=3$ and $a_{4}(G)=4$. We shall show in Section 3 that $a_{k}(G)=\max \left\{b_{k}(G)-1,\left\lceil t_{k}(G) / 2\right\rceil\right\}$ when G is a ' k-independence free graph'. We use this result in Section 4 to show that if G is $(k-1)$-connected and $a_{k}(G)$ is large compared to k, then again we have $a_{k}(G)=\max \left\{b_{k}(G)-1,\left\lceil t_{k}(G) / 2\right\rceil\right\}$. Our proof technique is to find a set of edges F_{1} such that $a_{k}\left(G+F_{1}\right)=a_{k}(G)-\left|F_{1}\right|$ and $G+F_{1}$ is k-independence free. The same result is not valid if we remove the hypothesis that G is $(k-1)$ connected. To see this consider the graph G obtained from $K_{m, k-2}$ by adding a new vertex x and joining x to j vertices in the m set of the $K_{m, k-2}$, where $j<k<m$. Then $b_{k}(G)=m, t_{k}(G)=$ $2 m+k-2 j$ and $a_{k}(G)=m-1+k-j$. We shall see in Section 7, however, that if we modify the definition of $b_{k}(G)$ slightly, then we may obtain an analogous min-max theorem for augmenting graphs of arbitrary connectivity. For a $(k-1)$-shredder K of G we define $\delta(K)=\max \{0, \max \{k-$ $d(x): x \in K\}\}$ and $\hat{b}(K)=b(K)+\delta(K)$. We let $\hat{b}_{k}(G)=\max \{\hat{b}(K): K$ is a $(k-1)$-shredder in $G\}$. It is easy to see that

$$
a_{k}(G) \geq \hat{b}_{k}(G)-1 .
$$

We shall prove in Section 7 that if G is a graph of arbitrary connectivity and $a_{k}(G)$ is large compared to k, then

$$
a_{k}(G)=\max \left\{\hat{b}_{k}(G)-1,\left\lceil t_{k}(G) / 2\right\rceil\right\} .
$$

Our proof technique is to find a set of edges F_{1} such that $a_{k}\left(G+F_{1}\right)=a_{k}(G)-\left|F_{1}\right|$ and either $G+F_{1}$ is $(k-1)$-connected or $G+F_{1}$ is $(k-2)$-connected and has a special structure. In the former case we apply the result of Section 4 to $G+F_{1}$. In the latter case we find an optimal k-augmenting set for $G+F_{1}$ using a result on 'detachments' of 2-connected graphs.

Our proofs are algorithmic and give rise to polynomial algorithms for finding an optimal k augmenting set in each of the cases mentioned above. In the remaining case, when $a_{k}(G)$ is small compared to k, we simply check all possible k-augmenting sets (spanned by a small set of vertices)
to find an optimal solution. This is the only part where our algorithm is polynomial only if k is fixed.

In what follows, we shall suppress the subscript k in the parameters $t_{k}(G), b_{k}(G), \hat{b}_{k}(G)$ when the value of k is obvious.

2 Preliminaries

In this section we first introduce some submodular inequalities for the function n and then describe the 'splitting off' method. We also prove some preliminary results on edge splittings and shredders.

2.1 Submodular inequalities

The following inequalitites are fundamental to our proof technique. Inequality (4) is well-known, see for example [15].

Proposition 2.1 In a graph $H=(V, E)$ every pair $X, Y \subseteq V$ satisfies

$$
\begin{align*}
n(X)+n(Y) & =n(X \cap Y)+n(X \cup Y)+|(N(X) \cap N(Y))-N(X \cap Y)| \\
& +\mid(N(X) \cap Y))-N(X \cap Y)|+|(N(Y) \cap X))-N(X \cap Y) \mid \tag{3}
\end{align*}
$$

Proof: Readers may find it helpful to follow the proof given below if they imagine $V(G)$ represented by a 3×3 grid, in which the two pairs of opposite sides represent $\left(X, X^{*}\right)$ and $\left(Y, Y^{*}\right)$, respectively, and the 9 subsquares represent the corresponding partition of $V(G)$ into 9 subsets. Then (3) follows from the following equalities:

$$
\begin{gathered}
n(X)=|N(X) \cap Y|+|N(X) \cap N(Y)|+\left|N(X) \cap Y^{*}\right|, \\
n(Y)=|X \cap N(Y)|+|N(X) \cap N(Y)|+\left|X^{*} \cap N(Y)\right|, \\
n(X \cup Y)=\left|N(X) \cap Y^{*}\right|+|N(X) \cap N(Y)|+\left|X^{*} \cap N(Y)\right|,
\end{gathered}
$$

and

$$
n(X \cap Y)=|N(X \cap Y) \cap X|+|N(X \cap Y) \cap Y|+|N(X \cap Y) \cap(N(X) \cap N(Y))| .
$$

Proposition 2.2 In a graph $H=(V, E)$ every pair $X, Y \subseteq V$ satisfies

$$
\begin{align*}
& n(X)+n(Y) \geq n(X \cap Y)+n(X \cup Y) \tag{4}\\
& n(X)+n(Y) \geq n\left(X \cap Y^{*}\right)+n\left(Y \cap X^{*}\right) \tag{5}
\end{align*}
$$

Proof: Inequality (4) follows immediately from (3). Inequality (5) can be proved in a similar way to Proposition 2.1

The following inequality is new and may be applicable in other vertex-connectivity problems as well.

Proposition 2.3 In a graph $H=(V, E)$ every triple $X, Y, Z \subseteq V$ satisfies

$$
\begin{align*}
n(X)+n(Y)+n(Z) \geq & n(X \cap Y \cap Z)+n\left(X \cap Y^{*} \cap Z^{*}\right)+n\left(X^{*} \cap Y^{*} \cap Z\right)+ \\
& n\left(X^{*} \cap Y \cap Z^{*}\right)-|N(X) \cap N(Y) \cap N(Z)| . \tag{6}
\end{align*}
$$

Proof: Readers may find it helpful to follow the proof given below if they imagine $V(G)$ represented by a $3 \times 3 \times 3$ grid, in which the three pairs of opposite faces represent $\left(X, X^{*}\right),\left(Y, Y^{*}\right)$, and $\left(Z, Z^{*}\right)$, respectively, and the 27 subcubes represent the corresponding partition of $V(G)$ into 27 subsets. We have

$$
\begin{aligned}
n(X)= & |N(X) \cap Y \cap Z|+|N(X) \cap N(Y) \cap Z|+\left|N(X) \cap Y^{*} \cap Z\right|+ \\
& +|N(X) \cap Y \cap N(Z)|+|N(X) \cap N(Y) \cap N(Z)|+\left|N(X) \cap Y^{*} \cap N(Z)\right|+ \\
& +\left|N(X) \cap Y \cap Z^{*}\right|+\left|N(X) \cap N(Y) \cap Z^{*}\right|+\left|N(X) \cap Y^{*} \cap Z^{*}\right|,
\end{aligned}
$$

and

$$
\begin{aligned}
n(X \cap Y \cap Z) \leq & |X \cap Y \cap N(Z)|+|X \cap N(Y) \cap Z|+|X \cap N(Y) \cap N(Z)|+ \\
& +|N(X) \cap Y \cap Z|+|N(X) \cap Y \cap N(Z)|+|N(X) \cap N(Y) \cap Z|+ \\
& +|N(X) \cap N(Y) \cap N(Z)| .
\end{aligned}
$$

The lemma follows from the above (in)-equalities and similar (in)-equalities for $n(Y), n(Z), n(X \cap$ $\left.Y^{*} \cap Z^{*}\right), n\left(X^{*} \cap Y^{*} \cap Z\right)$ and $n\left(X^{*} \cap Y \cap Z^{*}\right)$.

2.2 Extensions and Splittings

In the so-called 'splitting off method' one extends the input graph G by a new vertex s and a set of appropriately chosen edges incident to s and then obtains an optimal augmenting set by splitting off pairs of edges incident to s. This approach was initiated by Cai and Sun [2] for the k-edgeconnectivity augmentation problem and further developed and generalized by Frank [6]. Here we adapt the method to vertex-connectivity and prove several basic properties of the extended graph as well as the splittable pairs.

Given the input graph $G=(V, E)$, an extension $G+s=(V+s, E+F)$ of G is obtained by adding a new vertex s and a set F of new edges from s to V. Note that F may contain multiple edges even though G does not, and hence $G+s$ may be a multigraph. In $G+s$ we define $X^{*}=$ $V-X-N_{G}(X)$ and $\bar{d}(X)=n_{G}(X)+d(s, X)$ for every $X \subseteq V$. We say that $G+s$ is (k, s)-connected if $|V| \geq k+1$ and

$$
\begin{equation*}
\bar{d}(X) \geq k \text { for every fragment } X \text { of } G \tag{7}
\end{equation*}
$$

If, in addition, F is an inclusionwise minimal set with respect to (7), then we say that $G+s$ is a k-critical extension of G. In this case, the minimality of F implies that every edge $s u$ is k-critical, that is, deleting $s u$ from $G+s$ destroys (7). (Thus an edge $s u$ is k-critical if and only if there exists a fragment X of G with $u \in X$ and $\bar{d}(X)=k$.) A fragment X with $d(s, X) \geq 1$ and $\bar{d}(X)=k$ is called tight. A fragment X with $d(s, X) \geq 2$ and $\bar{d}(X) \leq k+1$ is called dangerous. Observe that if G is l-connected then for every $v \in V$ we have $d(s, v) \leq k-l$ in any k-critical extension of G. The following lemma characterises when we can have $d(s, v) \geq 2$.

Lemma 2.4 Let $G+s$ be a k-critical extension of G. Suppose $d(s, v) \geq 2$ for some $v \in V$. Let X be a fragment of G with $v \in X$ and $|X| \geq 2$. Then $\bar{d}(X)>k$. Furthermore $d_{G+s}(v)=k$.

Proof: If $\bar{d}(X)=k$ then $\bar{d}(X-v) \leq k-d(s, v)+1<k$ which contradicts (7). Thus $\bar{d}(X)>k$. Since $G+s$ is k-critical we may choose a tight set Y in $G+s$ with $v \in Y$. The first part of the lemma implies that $Y=\{v\}$. Hence $d_{G+s}(v)=\bar{d}(v)=k$.

Since the function $d(s, X)$ is modular on the subsets of V in $G+s$, Propositions 2.1, 2.2 and 2.3 yield the following (in)equalities.

Proposition 2.5 In a graph $G+$ s every pair $X, Y \subseteq V$ satisfies

$$
\begin{align*}
& \bar{d}(X)+\bar{d}(Y) \geq \bar{d}(X \cap Y)+\bar{d}(X \cup Y)+|(N(X) \cap N(Y))-N(X \cap Y)| \\
&+|(N(X) \cap Y)-N(X \cap Y)|+|(N(Y) \cap X)-N(X \cap Y)|, \tag{8}\\
& \bar{d}(X)+\bar{d}(Y) \geq \bar{d}(X \cap Y)+\bar{d}(X \cup Y), \tag{9}\\
& \bar{d}(X)+\bar{d}(Y) \geq \bar{d}\left(X \cap Y^{*}\right)+\bar{d}\left(Y \cap X^{*}\right)+d\left(s, X-Y^{*}\right)+d\left(s, Y-X^{*}\right) . \tag{10}
\end{align*}
$$

Proposition 2.6 In a graph $G+$ s every triple $X, Y, Z \subseteq V$ satisfies

$$
\begin{align*}
\bar{d}(X)+\bar{d}(Y)+\bar{d}(Z) \geq & \bar{d}(X \cap Y \cap Z)+\bar{d}\left(X \cap Y^{*} \cap Z^{*}\right)+\bar{d}\left(X^{*} \cap Y^{*} \cap Z\right)+\bar{d}\left(X^{*} \cap Y \cap Z^{*}\right) \\
& -\left|N_{G}(X) \cap N_{G}(Y) \cap N_{G}(Z)\right|+2 d(s, X \cap Y \cap Z) . \tag{11}
\end{align*}
$$

Lemma 2.7 Let $G+s$ be a (k, s)-connected extension of G. Then there exists a k-augmenting set F of G with $V(F) \subseteq N(s)$.

Proof: Let F be a set of edges such that $A=N(s)$ induces a complete graph in $H=G+F$. Suppose H is not k-connected. Then there exists a k-deficient fragment X in H. Since A induces a clique in H, we have either $A \cap X=\emptyset$ or $A \cap X^{*}=\emptyset$. Assuming, without loss of generality, that $A \cap X=\emptyset$, we have $\bar{d}_{G+s}(X)=n_{H}(X)<k$. This contradicts the hypothesis that $G+s$ is (k, s)-connected.

We can use Lemma 2.7 to obtain upper and lower bounds of $a_{k}(G)$ in terms of $d_{G+s}(s)$. The following result is an easy consequence of a theorem of Mader [18, Satz 1]. It was used in [15, p $16]$ in the special case when G is $(k-1)$-connected.

Theorem 2.8 Let F be a minimal k-augmenting set for a graph G and let B be the set of those vertices of G which have degree at least $k+1$ in $G+F$. Then F induces a forest on B.

Lemma 2.9 Let $G+s$ be a (k, s)-connected extension of G and let A be a minimal k-augmenting set for G in which every edge in A connects two vertices of $N(s)$. Then $|A| \leq d(s)-1$.

Proof: Let $B=\left\{v \in N(s): d_{G+A}(v) \geq k+1\right\}$ and let $C=N(s)-B$. Since $d_{G+A}(x)=k$ and $d_{G+s}(x) \geq k$, we have $d_{A}(x) \leq d(s, x)$ for each $x \in C$. By Theorem 2.8, B induces a forest in A. Let $e_{A}(B)$ and $e_{A}(C)$ denote the number of those edges of A which connect two vertices of B and of C, respectively. The previous observations imply the following inequality.

$$
\begin{aligned}
|A| & =e_{A}(C)+d_{A}(B, C)+e_{A}(B) \leq \sum_{x \in C} d_{A}(x)+|B|-1 \leq \\
& \leq(d(s)-|B|)+|B|-1=d(s)-1 .
\end{aligned}
$$

This proves the lemma.
To obtain a lower bound on $a_{k}(G)$ in terms of $d(s)$, we introduce a new parameter. Let $G=$ (V, E) be a graph. We say that a fragment X of G separates a pair of vertices $u, v \in V$ if $\{u, v\} \cap X \neq$ $\emptyset \neq\{u, v\} \cap X^{*}$. A family \mathcal{F} of fragments of G is half-disjoint if every pair of vertices of G is separated by at most two fragments in \mathcal{F}. Let $t^{\prime}(G)=\max \left\{\sum_{X \in \mathcal{F}} k-n(X)\right\}$ where the maximum is taken over all half-disjoint families \mathcal{F} of k-deficient fragments in G. Note that every family of pairwise disjoint fragments is half-disjoint and hence $t^{\prime}(G) \geq t(G)$. Since every k-augmenting set for G must contain at least $k-n(X)$ edges from X to X^{*} for every fragment X of G, we obtain the lower bound:

$$
\begin{equation*}
a_{k}(G) \geq\left\lceil t^{\prime}(G) / 2\right\rceil \tag{12}
\end{equation*}
$$

Lemma 2.10 Let $G+s$ be a k-critical extension of a graph G. Then

$$
\lceil d(s) / 2\rceil \leq a_{k}(G) \leq d(s)-1
$$

Proof: The last inequality follows immediately from Lemma 2.9. To verify the first inequality we choose a family $\mathcal{X}=\left\{X_{1}, \ldots, X_{m}\right\}$ of tight fragments of G such that $N(s) \subseteq \cup_{i=1}^{m} X_{i}$ and such that m is minimum and $\sum_{i=1}^{m}\left|X_{i}\right|$ is minimum. Such a family exists since the edges incident to s in $G+s$ are k-critical. We claim that for every $1 \leq i<j \leq m$ either $X_{i} \cap X_{j}=\emptyset$ or at least one of $X_{i}^{*} \subseteq N\left(X_{j}\right)$ or $X_{j}^{*} \subseteq N\left(X_{i}\right)$ holds. Note that in the latter case no pair of vertices can simultaneously be separated by X_{i} and X_{j}.

To verify the claim, suppose that $X_{i} \cap X_{j} \neq \emptyset$. Then by the minimality of m the set $X_{i} \cup X_{j}$ cannot be tight. Thus (9) implies that $X_{i}^{*} \cap X_{j}^{*}=\emptyset$. Hence either one of $X_{i}^{*} \subseteq N\left(X_{j}\right)$ or $X_{j}^{*} \subseteq N\left(X_{i}\right)$ holds or $X_{i} \cap X_{j}^{*}$ and $X_{j} \cap X_{i}^{*}$ are both non-empty. In the former case we are done. In the latter case we apply (10) to X_{i} and X_{j} and conclude that $X_{i} \cap X_{j}^{*}$ and $X_{j} \cap X_{i}^{*}$ are both tight and all the edges from s to $X_{i} \cup X_{j}$ enter $\left(X_{i} \cap X_{j}^{*}\right) \cup\left(X_{j} \cap X_{i}^{*}\right)$. Thus we could replace X_{i} and X_{j} in X by two strictly smaller sets $X_{i} \cap X_{j}^{*}$ and $X_{j} \cap X_{i}^{*}$, contradicting the choice of X. This proves the claim.

To finish the proof of the lemma, observe that $\sum_{i=1}^{m} k-n\left(X_{i}\right)=\sum_{i=1}^{m} d\left(s, X_{i}\right) \geq d(s)$. In other words, the sum of ' k-deficiencies' of the fragments in X is at least $d(s)$. We shall show that \mathcal{X} is half disjoint. Suppose on the contrary that some pair $u, v \in V$ is simultaneously separated by three sets in X, say X_{1}, X_{2}, X_{3}. By the above claim, X_{1}, X_{2}, X_{3} are pairwise disjoint. This contradicts the fact that they each separate u, v and hence $\{u, v\} \cap X_{i} \neq \emptyset$ for all $1 \leq i \leq 3$. Hence X is half-disjoint and $d(s) \leq t^{\prime}(G)$, as required.

Let $G+s$ be a (k, s)-connected extension of G. Splitting off two edges $s u, s v$ in $G+s$ means deleting $s u, s v$ and adding a new edge $u v$. Note that if we perform a sequence of splittings at s
starting with graph $G+s$, and denote the resulting graph by $G^{\prime}+s$, then G^{\prime} is the graph obtained from G by adding the split edges. A split is k-admissible if the graph obtained by the splitting also satisfies (7). We will also say that the pair of edges su,sv is k-admissible, or simply admissible when the value k is obvious. Notice that if $G+s$ has no edges incident to s then (7) is equivalent to the k-connectivity of G. Hence it would be desirable to know, when $G+s$ is a k-critical extension and $d(s)$ is even, that there is a sequence of admissible splittings such that s is an isolated vertex in the resulting graph $G^{\prime}+s$. In this case we would have $\left|E\left(G^{\prime}\right)-E(G)\right|=d_{G}(s) / 2$, and, using the fact that $a_{k}(G) \geq d(s) / 2$ by Lemma 2.10, the graph G^{\prime} would be an optimal k-augmentation of G. This approach works for the k-edge-connectivity augmentation problem [6] but does not always work in the vertex connectivity case. The reason is that such 'complete splittings' do not necessarily exist. On the other hand, we shall prove results which are 'close enough' to yield an optimal algorithm for k-connectivity augmentation using the splitting off method, which is polynomial for k fixed.

Pairs of edges $s x, s y$ which do not give k-admissible splits can be characterized by tight and dangerous 'certificates' as follows. The proof of the following simple lemma is omitted.

Lemma 2.11 Let $G+s$ be a (k, s)-connected extension of G and $x, y \in N(s)$. Splitting off the pair $s x, s y$ is not k-admissible in $G+s$ if and only if one of the following holds:
(i) there exists a tight set T with $x \in T, y \in N(T)$,
(ii) there exists a tight set U with $y \in U, x \in N(U)$,
(iii) there exists a dangerous set W with $x, y \in W$.

2.3 Local separators and shredders

For two vertices $u, v \in V$ a $u v$-cut is a set $K \subseteq V-\{u, v\}$ for which there is no $u v$-path in $G-K$. A set $S \subset V$ is a local separator if there exist $u, v \in V-S$ such that S is an inclusionwise minimal $u v$-cut. We also say S is a local $u v$-separator and we call the components of $G-S$ containing u and v essential components of S (with respect to the pair u, v). Note that S may be a local separator with respect to several pairs of vertices and hence it may have more than two essential components. Clearly, $N(C)=S$ for every essential component C of S. If S is a local $u v$-separator and T is a local $x y$-separator then we say T meshes S if T intersects the two essential components of S containing u and v, respectively.

Lemma 2.12 If T meshes S then S intersects every essential component of T (and hence S meshes $T)$.

Proof: Suppose S is a $u v$-separator and let C_{u}, C_{v} be the two essential components of S containing u and v respectively. Let C be an essential component of T. We need to show S intersects C. Choose $w \in V(C)$. Without loss of generality, $w \notin S$ and $w \notin V\left(C_{v}\right)$. Choose $t \in T \cap C_{v}$. Then $t \notin S$. Let P be a path in the subgraph of $C \cup T$ from w to t such that $P \cap T=\{t\}$. Then P contains a vertex of S since S separates w from t. Hence $C \cap S \neq \emptyset$.

Lemma 2.12 extends a result of Cheriyan and Thurimella [4, Lemma 4.3(1)]. The next lemma extends a key observation from the same paper [4, Proposition 3.1] and will be used when we discuss algorithms in Section 8.

Lemma 2.13 Let K be a local uv-separator of size $k-1$ and suppose that there exist $k-1$ openly disjoint paths P_{1}, \ldots, P_{k-1} from u to v in G. Let $Q=\cup_{i=1}^{k-1} V\left(P_{i}\right)$.
(a) For each component C of $G-K$ either $C \cap\{u, v\} \neq \emptyset$ or C is a component of $G-Q$;
(b) If K has at least three essential components then $K=N(C)$ for some component C of $G-Q$.

Proof: (a) Since K is a local $u v$-separator of size $k-1, K$ contains exactly one vertex from each path P_{1}, \ldots, P_{k-1}. Let C_{u}, C_{v}, C be distinct components of K with $u \in C_{u}$ and $v \in C_{v}$. Then $Q-K \subseteq C_{u} \cup C_{v}$. Thus $C \cap Q=\emptyset$. Hence C is a component of $G-Q$.
(b) Suppose K has at least three essential components. Then we choose C to be an essential component of K distinct from C_{u}, C_{v}. Then $K=N(C)$ holds by (a).

Let K be a $(k-1)$-shredder of G and $G+s$ be a (k, s)-connected extension of G. A component C of $G-K$ is called a leaf component of K in $G+s$ if $d(s, C)=1$ holds. Note that $d\left(s, C^{\prime}\right) \geq 1$ for each component C^{\prime} of $G-K$ by (7). The next lemma is easy to verify by (7).

Lemma 2.14 Let $G+s$ be a (k, s)-connected extension of a graph G and K be a $(k-1)$-shredder in G.
(a) Let C_{1}, C_{2} be leaf components of K in $G+s$. Then there exist $k-1$ openly disjoint paths in the subgraph of G induced by $C_{1} \cup C_{2} \cup K$ from every vertex of C_{1} to every vertex of C_{2}.
(b) If $d(s) \leq 2 b(K)-2$ then K has at least two leaf components, K is a local separator and every leaf component of K is an essential component of K in G.

Proof: Assertion (a) follows from (7). Assertion (b) follows from the fact that $d(s, C) \geq 1$ for every component C of $G-K$, and from (a).

We shall use the following lemma to find $(k-1)$-shredders with many components in a graph G when some edge incident to s in $G+s$ belongs to many non-admissible pairs.

Lemma 2.15 Let $G+s$ be a (k, s)-connected extension of a graph G. Suppose there exist r dangerous sets $W_{1}, W_{2}, \ldots, W_{r}$ and a tight set X_{0} in $G+s$ such that $r \geq 3, W_{i} \cap W_{j}=X_{0}$, and $W_{i} \cap W_{j}^{*} \cap W_{h}^{*} \neq \emptyset$ for all distinct $i, j, h \in\{1,2, \ldots, r\}$. Then $K=N_{G}\left(X_{0}\right)$ is a $(k-1)$-shredder in G with leaf components $C_{0}, C_{1}, \ldots C_{r}$, where $V\left(C_{0}\right)=X_{0}$ and $V\left(C_{i}\right)=W_{i}-X_{0}$ for all $1 \leq i \leq r$.

Proof: Applying (11) and using the facts that: $d\left(s, W_{i} \cap W_{j} \cap W_{h}\right) \geq 1$, since $W_{i} \cap W_{j} \cap W_{h}=X_{0}$, and X_{0} is tight; and $n_{G}\left(W_{i}\right)=\bar{d}\left(W_{i}\right)-d\left(s, W_{i}\right) \leq k-1$ since W_{i} is dangerous; we obtain

$$
\begin{align*}
3 k+3 \geq & \bar{d}\left(W_{i}\right)+\bar{d}\left(W_{j}\right)+\bar{d}\left(W_{h}\right) \geq \bar{d}\left(W_{i} \cap W_{j} \cap W_{h}\right)+\bar{d}\left(W_{i} \cap W_{j}^{*} \cap W_{h}^{*}\right)+ \\
& +\bar{d}\left(W_{j} \cap W_{i}^{*} \cap W_{h}^{*}\right)+\bar{d}\left(W_{h} \cap W_{i}^{*} \cap W_{j}^{*}\right)-\left|N_{G}\left(W_{i}\right) \cap N_{G}\left(W_{j}\right) \cap N_{G}\left(W_{h}\right)\right|+ \\
& +2 d\left(s, W_{i} \cap W_{j} \cap W_{h}\right) \\
\geq & 4 k-\left|N_{G}\left(W_{i}\right) \cap N_{G}\left(W_{j}\right) \cap N_{G}\left(W_{h}\right)\right|+2 \geq 3 k+3 . \tag{13}
\end{align*}
$$

Thus equality must hold throughout. Hence $d\left(s, X_{0}\right)=1$, and $\left|N_{G}\left(W_{i}\right) \cap N_{G}\left(W_{j}\right) \cap N_{G}\left(W_{h}\right)\right|=$ $n_{G}\left(W_{i}\right)=k-1$. Thus $N_{G}\left(W_{i}\right)=N_{G}\left(W_{j}\right)$ for all $i, j \in\{1,2, \ldots, r\}$. This implies that $N_{G}\left(W_{i}\right) \cap W_{j}=$ 0 for all $i, j \in\{1,2, \ldots, r\}$ and hence that $N_{G}\left(X_{0}\right) \subseteq N_{G}\left(W_{i}\right)$. Since $\bar{d}\left(X_{0}\right)=k, d\left(s, X_{0}\right)=1$ and $n_{G}\left(W_{i}\right)=k-1$; we have $N_{G}\left(X_{0}\right)=N_{G}\left(W_{i}\right)=K$, say, for all $i \in\{1,2, \ldots, r\}$.

The fact that $W_{i} \cap N_{G}\left(W_{j}\right)=\emptyset$ for all $i, j \in\{1,2, \ldots, r\}$ also implies that W_{i} is the disjoint union of $W_{i} \cap W_{j} \cap W_{h}$ and $W_{i} \cap W_{j}^{*} \cap W_{h}^{*}$. Thus $W_{i} \cap W_{j}^{*} \cap W_{h}^{*}=W_{i}-X_{0}$ for all $i, j, h \in\{1,2, \ldots, r\}$. Equality in (13) implies that $\bar{d}\left(W_{i}\right)=k+1$. Since $n_{G}\left(W_{i}\right)=k-1$, we have $d\left(s, W_{i}\right)=2$. The fact that $d\left(s, X_{0}\right)=1$ now implies that $d\left(s, W_{i}-X_{0}\right)=1$. Since $N_{G}\left(W_{i}\right)=K$ we have $N_{G}\left(W_{i}^{*}\right) \subseteq K$ for all $i \in\{1,2, \ldots, r\}$. Thus $N_{G}\left(W_{i}-X_{0}\right)=N_{G}\left(W_{i} \cap W_{j}^{*} \cap W_{h}^{*}\right) \subseteq K$. Since $d\left(s, W_{i}-X_{0}\right)=1$ and $|K|=k-1$ we have $N_{G}\left(W_{i}-X_{0}\right)=K$. It follows that K is the required $(k-1)$-shredder in G.

Note that the existence of a $(k-1)$-shredder K as described in Lemma 2.15 certifies that no pair of edges from s to $\cup_{i=0}^{r} C_{i}$ is k-admissible since each of the sets $V\left(C_{i}\right) \cup V\left(C_{j}\right)$ is dangerous.

3 Independence Free Graphs

In this section we give a complete solution of the k-connectivity augmentation problem for a special family of graphs which we call k-independence free graphs. This result is a key step in our proofs concerning arbitrary graphs. However, we shall only need a special case of the main result of this section: when we augment the connectivity of a $(k-1)$-connected k-independence free graph by one. This is important from an algorithmic point of view, since, as we shall see in Subsection 8.1, we are able to check whether a $(k-1)$-connected graph is k-independence free. Thus the reader may decide to focus on this special case at first reading.

Let $G=(V, E)$ be a graph and k be an integer. Let X_{1}, X_{2} be disjoint non-empty subsets of V. We say $\left(X_{1}, X_{2}\right)$ is a k-deficient pair if $d\left(X_{1}, X_{2}\right)=0$ and $\left|V-\left(X_{1} \cup X_{2}\right)\right| \leq k-1$. We say two k-deficient pairs $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ are independent if for some $i \in\{1,2\}$ we have either $X_{i} \subseteq V-\left(Y_{1} \cup Y_{2}\right)$ or $Y_{i} \subseteq V-\left(X_{1} \cup X_{2}\right)$. In this case no edge can simultaneously connect X_{1} to X_{2} and Y_{1} to Y_{2} and hence the two pairs give 'independent constraints' in the k-augmentation problem for G. We say G is k-independence free if G does not have two independent k-deficient pairs. The following observations follow from these definitions.

1. If $\left(X_{1}, X_{2}\right)$ is a k-deficient pair in G then X_{1} is a k-deficient fragment.
2. If X is a k-deficient fragment in G then $\left(X, X^{*}\right)$ is a k-deficient pair.
3. $(k-1)$-connected chordal graphs are k-independence free.
4. Graphs with minimum degree at least $2 k-2$ are k-independence free.
5. All graphs are 1-independence free and all connected graphs are 2-independence free.
6. A graph with no edges and at least $k+1$ vertices is not k-independence free for any $k \geq 2$.
7. If G is k-independence free and H is obtained by adding edges to G then H is also k independence free.
8. A k-independence free graph is l-independence free for all $l \leq k$.

In general, a main difficulty in vertex-connectivity problems is that vertex cuts (and hence tight and dangerous sets) can cross each other in many different ways. In the case of an independence free graph G we can overcome these difficulties and provide both a complete characterisation of the case when there is no admissible split containing a specified edge in an extension of G, and a $\mathrm{min} / \mathrm{max}$ formula which determines the number of edges in an optimal k-augmentation for G.

Lemma 3.1 Let $G+$ s be a (k, s)-connected extension of a k-independence free graph G and X, Y be fragments of G.
(a) If X and Y are tight then either: $X \cup Y$ is tight, $X \cap Y \neq \emptyset$ and $\bar{d}(X \cap Y)=k$; or $X \cap Y^{*}$ and $Y \cap X^{*}$ are both tight and $d\left(s, X-Y^{*}\right)=0=d\left(s, Y-X^{*}\right)$.
(b) If X is a minimal tight set and Y is tight then either: $X \cup Y$ is tight, $d(s, X \cap Y)=0$ and $n_{G}(X \cap Y)=k$; or $X \subseteq Y$; or $X \subseteq Y^{*}$.
(c) If X is a tight set and Y is a maximal dangerous set then either $X \subseteq Y$ or $d(s, X \cap Y)=0$.
(d) If X is a tight set, Y is a dangerous set and $d\left(s, Y-X^{*}\right)+d\left(s, X-Y^{*}\right) \geq 2$ then $X \cap Y \neq \emptyset$ and $\bar{d}(X \cap Y) \leq k+1$.

Proof: (a) Suppose $X \cap Y^{*}, Y \cap X^{*} \neq \emptyset$. Then (10) implies that $\bar{d}\left(X \cap Y^{*}\right)=k=\bar{d}\left(Y \cap X^{*}\right)$ and $d\left(s, X-Y^{*}\right)=0=d\left(s, Y-X^{*}\right)$. Thus $X \cap Y^{*}$ and $Y \cap X^{*}$ are both tight. Hence we may assume that either $X \cap Y^{*}$ or $Y \cap X^{*}$ is empty. Since G is k-independence free, it follows that $X^{*} \cap Y^{*} \neq$ $\emptyset \neq X \cap Y$ (for example if $X \cap Y^{*}=\emptyset=X^{*} \cap Y^{*}$ then $Y^{*} \subseteq V-\left(X \cup X^{*}\right)$, and $\left(X, X^{*}\right)$ and $\left(Y, Y^{*}\right)$ are independent k-deficient pairs). Thus $X \cup Y$ is a fragment in G. Using (9) we deduce that $X \cup Y$ is tight and $\bar{d}(X \cap Y)=k$.
(b) This follows from (a) using the minimality of X.
(c) Suppose $X \nsubseteq Y$ and $d(s, X \cap Y) \geq 1$. If $X \cap Y^{*} \neq \emptyset \neq Y \cap X^{*}$ then we can use (10) to obtain the contradiction

$$
2 k+1 \geq \bar{d}(X)+\bar{d}(Y) \geq \bar{d}\left(X \cap Y^{*}\right)+\bar{d}\left(Y \cap X^{*}\right)+2 \geq 2 k+2
$$

Thus either $X \cap Y^{*}$ or $Y \cap X^{*}$ is empty and, since G is k-independence free, $X^{*} \cap Y^{*} \neq \emptyset$. Thus $X \cup Y$ is a fragment in G. Using (9) we deduce that $X \cup Y$ is dangerous contradicting the maximality of Y.
(d) Using (10), we deduce that either $X \cap Y^{*}$ or $Y \cap X^{*}$ is empty and, since G is k-independence free, $X \cap Y \neq \emptyset \neq X^{*} \cap Y^{*}$. We can now use (9) to deduce that $\bar{d}(X \cap Y) \leq k+1$.

Using Lemma 3.1 we deduce

Corollary 3.2 If $G+s$ is a k-critical extension of a k-independence free graph G then $d(s)=t(G)$. Furthermore there exists a unique minimal tight set in $G+s$ containing x for each $x \in N(s)$.

Proof: Let \mathcal{F} be a family of tight sets which cover $N(s)$ such that $\sum_{X \in \mathcal{F}}|X|$ is as small as possible. Since every edge incident to s is k-critical, such a family exists. We show that the members of \mathcal{F} are pairwise disjoint. Choose $X, Y \in \mathcal{F}$ and suppose that $X \cap Y \neq \emptyset$. By Lemma 3.1(a) we may replace X and Y in \mathcal{F} either by $X \cup Y$, or by $X \cap Y^{*}$ and $Y \cap X^{*}$. Both alternatives contradict the minimality of $\sum_{X \in \mathcal{F}}|X|$. Since the members of \mathcal{F} are pairwise disjoint, tight, and cover $N(s)$, we have $d(s)=\sum_{X \in \mathcal{F}}\left(k-n_{G}(X)\right) \leq t(G)$. The inequality $d(s) \geq t(G)$ follows easily from (7). Thus $d(s)=t(G)$, as required.

The second assertion of the corollary follows immediately from criticality and Lemma 3.1(b).

Lemma 3.3 Let $G+s$ be a k-critical extension of a k-independence free graph G and $x_{1}, x_{2} \in N(s)$. Then the pair $s x_{1}, s x_{2}$ is not k-admissible for splitting in $G+s$ if and only if there exists a dangerous set W in $G+s$ with $x_{1}, x_{2} \in W$.

Proof: Suppose the lemma is false. Using Lemma 2.11 we may assume without loss of generality that there exists a tight set X_{1} in $G+s$ such that $x_{1} \in X_{1}$ and $x_{2} \in N_{G}\left(X_{1}\right)$. Let X_{2} be the minimal tight set in $G+s$ containing x_{2}. Since $x_{2} \in N(s) \cap\left(X_{2}-X_{1}^{*}\right)$, it follows from Lemma 3.1(a) that $X_{1} \cup X_{2}$ is a tight, and hence dangerous, set in $G+s$ containing x_{1}, x_{2}.

Theorem 3.4 Let $G+s$ be a k-critical extension of a k-independence free graph G and $x_{0} \in N(s)$. (a) There is no k-admissible split in $G+s$ containing x_{0} if and only if either: $d(s)=b(G)$; or $d(s)$ is odd and there exist maximal dangerous sets W_{1}, W_{2} in $G+s$ such that $N(s) \subseteq W_{1} \cup W_{2}$, $x_{0} \in W_{1} \cap W_{2}, d\left(s, W_{1} \cap W_{2}\right)=1, d\left(s, W_{1} \cap W_{2}^{*}\right)=(d(s)-1) / 2=d\left(s, W_{1}^{*} \cap W_{2}\right)$, and $W_{1} \cap W_{2}^{*}$ and $W_{2} \cap W_{1}^{*}$ are tight.
(b) If there is no admissible split containing sx x_{0} and $3 \neq d(s) \neq b(G)$ then there is an admissible split containing $s x_{1}$ for all $x_{1} \in N(s)-x_{0}$.

Proof: Note that since $G+s$ is a k-critical extension, $d(s) \geq 2$.
(a) Using Lemma 3.3, we may choose a family of dangerous sets $\mathcal{W}=\left\{W_{1}, W_{2}, \ldots, W_{r}\right\}$ in $G+s$ such that $x_{0} \in \cap_{i=1}^{r} W_{i}, N(s) \subseteq \cup_{i=1}^{r} W_{i}$ and r is as small as possible. We may assume that each set in \mathcal{W} is a maximal dangerous set in $G+s$. If $r=1$ then $N(s) \subseteq W_{1}$ and

$$
\bar{d}\left(W_{1}^{*}\right)=n_{G}\left(W_{1}^{*}\right) \leq n_{G}\left(W_{1}\right) \leq k+1-d\left(s, W_{1}\right) \leq k-1,
$$

since W_{1} is dangerous. This contradicts the fact that $G+s$ is (k, s)-connected. Hence $r \geq 2$.
Claim 3.5 Let $W_{i}, W_{j} \in \mathcal{W}$. Then $W_{i} \cap W_{j}^{*} \neq \emptyset \neq W_{j} \cap W_{i}^{*}$ and $d\left(s, W_{i}-W_{j}^{*}\right)=1=d\left(s, W_{j}-W_{i}^{*}\right)$.
Proof: Suppose $W_{i} \cap W_{j}^{*}=\emptyset$. Since G is k-independence free, it follows that $W_{i}^{*} \cap W_{j}^{*} \neq \emptyset$ and hence $W_{i} \cup W_{j}$ is a fragment of G. The minimality of r now implies that $W_{i} \cup W_{j}$ is not dangerous, and hence $\bar{d}\left(W_{i} \cup W_{j}\right) \geq k+2$. Applying (9) we obtain

$$
2 k+2 \geq \bar{d}\left(W_{i}\right)+\bar{d}\left(W_{j}\right) \geq \bar{d}\left(W_{i} \cap W_{j}\right)+\bar{d}\left(W_{i} \cup W_{j}\right) \geq 2 k+2
$$

Hence equality holds throughout. Thus $\bar{d}\left(W_{i} \cap W_{j}\right)=k$ and, since $x_{0} \in W_{i} \cap W_{j}, W_{i} \cap W_{j}$ is tight.
Choose $x_{i} \in N(s) \cap\left(W_{i}-W_{j}\right)$ and let X_{i} be the minimal tight set in $G+s$ containing x_{i}. Since $x_{i} \in N(s) \cap X_{i} \cap W_{i}$, it follows from Lemma 3.1(c) that $X_{i} \subseteq W_{i}$. Since G is k-independence free, $X_{i} \nsubseteq N\left(W_{j}\right)$. The asumption that $W_{i} \cap W_{j}^{*}=\emptyset$ now implies that $X_{i} \cap W_{i} \cap W_{j} \neq \emptyset$. Applying Lemma 3.1(b), we deduce that $X_{i} \cup\left(W_{i} \cap W_{j}\right)$ is tight. Now $X_{i} \cup\left(W_{i} \cap W_{j}\right)$ and W_{j} contradict Lemma 3.1(c) since $x_{0} \in W_{i} \cap W_{j}$ and W_{j} is a maximal dangerous set. Hence we must have $W_{i} \cap W_{j}^{*} \neq \emptyset \neq W_{j} \cap W_{i}^{*}$. The second part of the claim follows from (10) and the fact that $x_{0} \in W_{i} \cap W_{j}$.

Suppose $r=2$. Using Claim 3.5, we have $d(s)=1+d\left(s, W_{1} \cap W_{2}^{*}\right)+d\left(s, W_{2} \cap W_{1}^{*}\right)$. Without loss of generality we may suppose that $d\left(s, W_{1} \cap W_{2}^{*}\right) \leq d\left(s, W_{2} \cap W_{1}^{*}\right)$. Then

$$
\bar{d}\left(W_{2}^{*}\right)=d\left(s, W_{1} \cap W_{2}^{*}\right)+n_{G}\left(W_{2}^{*}\right) \leq d\left(s, W_{2} \cap W_{1}^{*}\right)+n_{G}\left(W_{2}\right)=\bar{d}\left(W_{2}\right)-1 \leq k
$$

Thus equality must hold throughout. Hence $d\left(s, W_{1} \cap W_{2}^{*}\right)=d\left(s, W_{2} \cap W_{1}^{*}\right)=(d(s)-1) / 2, d(s)$ is odd, $W_{1} \cap W_{2}^{*}$ and $W_{2} \cap W_{1}^{*}$ are tight and the second alternative in (a) holds.

Finally we suppose that $r \geq 3$. Choose $W_{i}, W_{j}, W_{h} \in \mathcal{W}, x_{i} \in\left(N(s) \cap W_{i}\right)-\left(W_{j} \cup W_{h}\right)$. Then Claim 3.5 implies that $x_{i} \in W_{i} \cap W_{j}^{*} \cap W_{h}^{*}$, and hence $W_{i} \cap W_{j}^{*} \cap W_{h}^{*} \neq \emptyset$. Since $G+s$ is k-critical, we may choose a maximal tight set X_{0} in $G+s$ with $x_{0} \in X_{0}$. Lemma 3.1(c) implies that $X_{0} \subseteq W_{t}$ for all $1 \leq t \leq r$. Since $x_{h} \in W_{i}^{*} \cap W_{j}^{*} \cap W_{h}$ we have $W_{i}^{*} \cap W_{j}^{*} \neq \emptyset$. We can use (9) to deduce that $W_{i} \cap W_{j}$ is tight. Since $X_{0} \subseteq W_{i} \cap W_{j}$, the maximality of X_{0} now implies that $W_{i} \cap W_{j}=X_{0}$ for all $1 \leq i<j \leq r$. Applying Lemma 2.15 we deduce that $K=N_{G}\left(X_{0}\right)$ is a $(k-1)$-shredder in G with $b_{G}(K)=d(s)$. Since the (k, s)-connectivity of $G+s$ implies that $b(G) \leq d(s)$, we have $b(G)=d(s)$.
(b) Using (a) we have $d(s)$ is odd and there exist maximal dangerous sets W_{1}, W_{2} in $G+s$ such that $N(s) \subseteq W_{1} \cup W_{2}, x_{0} \in W_{1} \cap W_{2}, d\left(s, W_{1} \cap W_{2}\right)=1, d\left(s, W_{1} \cap W_{2}^{*}\right)=d\left(s, W_{1}^{*} \cap W_{2}\right)=(d(s)-1) / 2 \geq$ 2 , and $W_{1} \cap W_{2}^{*}$ and $W_{1}^{*} \cap W_{2}$ are tight. Suppose $x_{1} \in N(s) \cap W_{1} \cap W_{2}^{*}$ and there is no admissible split containing $s x_{1}$. Then applying (a) to x_{1} we find maximal dangerous sets W_{3}, W_{4} with $x_{1} \in W_{3} \cap W_{4}$ and $d\left(s, W_{3} \cap W_{4}\right)=1$. Using Lemma 3.1(c) we have $W_{1} \cap W_{2}^{*} \subseteq W_{3}$ and $W_{1} \cap W_{2}^{*} \subseteq W_{4}$. Thus $W_{1} \cap W_{2}^{*} \subseteq W_{3} \cap W_{4}$ and $d\left(s, W_{3} \cap W_{4}\right) \geq 2$. This contradicts the fact that $d\left(s, W_{3} \cap W_{4}\right)=1$.

We can use this splitting result to determine $a_{k}(G)$ when G is k-independence free. We first solve the case when $b(G)$ is large compared to $d(s)$.

Lemma 3.6 Let $G+s$ be a k-critical extension of a k-independence free graph G and K be a $(k-1)$-shredder in G. If $d(s) \leq 2 b(K)-2$ then $d(s, K)=0$.

Proof: Let $b(K)=b$. Suppose $x \in N(s) \cap K$ and let X be the minimal tight set in $G+s$ containing x. Let $\mathcal{L}=\left\{X_{1}, X_{2}, \ldots, X_{r}\right\}$ be the leaf components of K. Since $d(s) \leq 2 b-2$ we have $r \geq 2$. Choose $X_{i} \in \mathcal{L}$ and $x_{i} \in N(s) \cap X_{i}$. Then X_{i} is tight. Since $x \in K=N_{G}\left(X_{i}\right)$ we have $X \nsubseteq X_{i}^{*}$. Using Lemma 3.1(b), we deduce that $X \cup X_{i}$ is tight, $n_{G}\left(X \cap X_{i}\right)=k$ and $d\left(s, X \cap X_{i}\right)=0$. Hence $x_{i} \notin X$ and $N(X) \cap X_{i} \neq \emptyset$. Since this holds for all $X_{i} \in \mathcal{L}$ and $x \in X \cap K$, we have

$$
\begin{equation*}
\left|N(X) \cap\left(X_{1} \cup X_{2} \ldots X_{r}\right)\right| \geq r . \tag{14}
\end{equation*}
$$

Furthermore, since $X \cap X_{2} \neq \emptyset$ and $X \cap X_{2} \subseteq X \cap X_{1}^{*}$ we have $X \cap X_{1}^{*} \neq \emptyset$. Using (10) and the fact that $d\left(s, X-X_{1}^{*}\right) \geq 1$ since $x \in X \cap N_{G}\left(X_{1}\right)$, it follows that $X^{*} \cap X_{1}=\emptyset$. Using symmetry we deduce that $X^{*} \cap X_{i}=\emptyset$ for all $X_{i} \in \mathcal{L}$.

Since $X_{1} \cup X_{2}$ is dangerous and $x_{1}, x_{2} \notin X^{*}$, we can use Lemma 3.1(d) to deduce that $\bar{d}\left(X \cap\left(X_{1} \cup\right.\right.$ $\left.\left.X_{2}\right)\right) \leq k+1$. Using the facts that $n_{G}\left(X \cap X_{1}\right)=k=n_{G}\left(X \cap X_{2}\right), N_{G}\left(X \cap\left(X_{1} \cup X_{2}\right)\right)=N_{G}\left(X \cap X_{1}\right) \cup$ $N_{G}\left(X \cap X_{2}\right)$, and $N_{G}\left(X \cap X_{i}\right) \cap X_{i} \neq \emptyset$ for each $i \in\{1,2\}$, we have $\left|N_{G}\left(X \cap X_{i}\right) \cap X_{i}\right|=1$ for each $i \in\{1,2\}$ and $K=N_{G}\left(X \cap X_{1}\right) \cap N_{G}\left(X \cap X_{2}\right)$. Thus $x \in N_{G}\left(X \cap X_{1}\right), K \subseteq X \cup N_{G}(X)$ and $X^{*} \cap K=\emptyset$. Since $X^{*} \cap X_{i}=\emptyset$ for all $X_{i} \in \mathcal{L}, X^{*} \cap Y \neq \emptyset$ for some non-leaf component Y of $G-K$. Using (14) and the facts that $N_{G}\left(X^{*} \cap Y\right) \subseteq\left(N_{G}(X) \cap Y\right) \cup\left(N_{G}(X) \cap K\right)$ and $n_{G}(X) \leq k-1$, we deduce that
$n_{G}\left(X^{*} \cap Y\right) \leq k-1-r$. Since $G+s$ is (k, s)-connected we have $d(s, Y) \geq d\left(s, X^{*} \cap Y\right) \geq r+1$. Thus

$$
\begin{aligned}
d(s) & =d(s, Y)+d\left(s, X_{1} \cup X_{2} \ldots X_{r}\right)+d\left(s,\left(Y_{1} \cup Y_{2} \ldots Y_{b-r}\right)-Y\right)+d(s, K) \\
& \geq(r+1)+r+2(b-r-1)+1 \geq 2 b .
\end{aligned}
$$

This contradicts the hypothesis that $d(s) \leq 2 b-2$.

Lemma 3.7 Let $G+s$ be a k-critical extension of a k-independence free graph G such that $b(G)+$ $1 \leq d(s) \leq 2 b(G)-2$. Then there exists an admissible split at s such that, for the resulting graph $G^{\prime}+s$, we have $b\left(G^{\prime}\right)=b(G)-1$.

Proof: Let $b(G)=b$ and let K be a $(k-1)$-shredder in G with $b_{G}(K)=b$ and, subject to this condition, with the maximum number r of leaves in $G+s$. Let $C_{1}, C_{2}, \ldots, C_{r}$ be the leaf components of K and let $N(s) \cap C_{i}=\left\{x_{i}\right\}$ for $1 \leq i \leq r$. Since $d(s) \leq 2 b(G)-2$ we have $r \geq 2$. Since $d(s) \geq$ $b(G)+1$ and $r \geq 2$, we may use Theorem 3.4 to deduce without loss of generality that there is an admissible split in $G+s$ containing $s x_{1}$. Choose $s w$ such that $s x_{1}, s w$ is an admissible split in $G+s$. Splitting $s x_{1}, s w$ we obtain $G^{\prime}+s$ where $d_{G^{\prime}+s}(s)=d_{G+s}(s)-2$ and $G^{\prime}=G+x_{1} w$.

Suppose $b\left(G^{\prime}\right)=b(G)$. Then G has a $(k-1)$-shredder K^{\prime} with $b_{G}\left(K^{\prime}\right)=b(G)$ such that x_{1}, w belong to the same component C^{\prime} of $G-K^{\prime}$. (Note that $\left\{x_{1}, w\right\} \cap K^{\prime}=\emptyset$ by Lemma 3.6.) We shall prove that such a K^{\prime} cannot exist in G.

Suppose $x_{1}, x_{2}, \ldots, x_{r} \in V\left(C^{\prime}\right)$. Since w is also contained in C^{\prime} we have $d\left(s, C^{\prime}\right) \geq r+1$. Since $d(s) \leq 2 b-2$ it follows that K^{\prime} has at least $r+1$ leaf components, contradicting the maximality of r. Hence we may assume without loss of generality that

$$
\begin{equation*}
x_{2} \notin C^{\prime} \tag{15}
\end{equation*}
$$

Thus K^{\prime} separates x_{1} and x_{2}. Since, by Lemma 2.14, the subgraph of G induced by $C_{1} \cup C_{2} \cup K$ contains $k-1$ openly disjoint $x_{1} x_{2}$-paths, we have

$$
\begin{equation*}
K^{\prime} \subseteq C_{1} \cup C_{2} \cup K \tag{16}
\end{equation*}
$$

Claim 3.8 K and K^{\prime} are meshing local separators.
Proof: Arguing by contradicition we assume that K and K^{\prime} do not mesh. Let C_{2}^{\prime} be the component of $G-K^{\prime}$ containing x_{2}. Since every $x_{1} w$-path in G contains a vertex of K we have $C^{\prime} \cap K \neq \emptyset$. Also since G has $(k-1) x_{1} x_{2}$-paths by Lemma 2.14, both C^{\prime} and C_{2}^{\prime} are essential K^{\prime}-components. Since K and K^{\prime} do not mesh, we have $C_{2}^{\prime} \cap K=\emptyset$. Hence C_{2}^{\prime} is a connected subgraph of $G-K$. Since $x_{2} \in V\left(C_{2}^{\prime}\right)$, this imples that $C_{2}^{\prime} \subseteq C_{2}$ and $K^{\prime} \cap C_{2} \neq \emptyset$ (since $K \neq K^{\prime}$). Since K^{\prime} does not mesh K, we have $C_{1} \cap K^{\prime}=\emptyset$. Thus C_{1} is a connected subgraph of $G-K^{\prime}$. Since $x_{1} \in V\left(C^{\prime}\right)$, it follows that $C_{1} \subseteq C^{\prime}$. Since $N\left(C_{1}\right)=K$ we have $K-C^{\prime} \subseteq K^{\prime}$. Let C_{1}^{\prime} be a leaf component of K^{\prime} distinct from C_{2}^{\prime}. Since $x_{1}, w \in V\left(C^{\prime}\right), C^{\prime}$ is not a leaf component of K^{\prime} and hence $C_{1}^{\prime} \neq C^{\prime}$. The assumption that K and K^{\prime} do not mesh and the fact that C^{\prime} is an essential K^{\prime} component intersecting K now gives $K \cap C_{1}^{\prime}=\emptyset$. Thus C_{1}^{\prime} is a connected subgraph of $G-K$.

Since C_{1}^{\prime} and C_{2}^{\prime} are leaf components of K^{\prime}, Lemma 2.14 implies that there are $(k-1)$ openly disjoint paths in $C_{1}^{\prime} \cup C_{2}^{\prime} \cup K^{\prime}$ from each vertex of C_{1}^{\prime} to x_{2}. Since $K \cap C^{\prime} \neq \emptyset$, we have $\mid K \cap\left(C_{1}^{\prime} \cup\right.$
$\left.C_{2}^{\prime} \cup K^{\prime}\right) \mid \leq k-2$. Thus C_{1}^{\prime} is contained in the same component of $G-K$ as x_{2}, and hence $C_{1}^{\prime} \subseteq C_{2}$. But x_{2} is the only s-neighbour in C_{2}. Thus $d\left(s, C_{1}^{\prime}\right)=0$, a contradiction.

Claim 3.9 $r=2$.
Proof: Suppose $r \geq 3$. By Lemma 3.6, $x_{1}, x_{2} \notin K^{\prime}$. By Lemma 2.14, the subgraph of G induced by $C_{1} \cup C_{2} \cup K$ contains $k-1$ openly disjoint $x_{1} x_{2}$-paths. Since K and K^{\prime} mesh by Claim 3.8, $K^{\prime} \cap C_{3} \neq \emptyset$, so $\left|K^{\prime} \cap\left(C_{1} \cup C_{2} \cup K\right)\right| \leq k-2$. Hence at least one of the above $k-1$ openly disjoint $x_{1} x_{2}$-paths avoids K^{\prime}. This contradicts (15).

We can now complete the proof of the lemma. Let C_{w} be the component of $G-K$ containing w. Since $s x_{1}, s w$ is an admissible split and C_{1} is a leaf component of K, it follows that C_{w} is not a leaf component of K. Using (16), we deduce that C_{w} is a connected subgraph of $G-K^{\prime}$ and hence $C_{w} \subseteq C^{\prime}$. Since $d\left(s, C_{w}\right) \geq 2$ and $x_{1} \in N(s) \cap\left(C^{\prime}-C_{w}\right)$ we have $d\left(s, C^{\prime}\right) \geq 3$. Since $d(s) \leq 2 b-2$, it follows that K^{\prime} has at least three leaf components. This contradicts the maximality of r by Claim 3.9. Thus K^{\prime} does not exist and we have $b\left(G^{\prime}\right)=b(G)-1$.

Lemma 3.10 Let $G+s$ be a k-critical extension of a k-independence free graph G and p be an integer such that $0 \leq p \leq \frac{1}{2} d(s)-1$. Then there exists a sequence of p admissible splits at s if and only if $p \leq d(s)-b(G)$.

Proof: We first suppose that there exists a sequence of p admissible splits at s in G. Let the resulting graph be $G_{1}+s$. Then $d_{G_{1}+s}(s)=d_{G}(s)-2 p$ and $b\left(G_{1}\right) \geq b(G)-p$. Since $G_{1}+s$ is (k, s)-connected we must have $d_{G_{1}+s}(s) \geq b\left(G_{1}\right)$ and hence $p \leq d(s)-b(G)$.

We next suppose that $p \leq d(s)-b(G)$. We shall show by induction on p that $G+s$ has a sequence of p admissible splits at s. If $p=0$ then there is nothing to prove. Hence we may assume $p \geq 1$. Since $p \leq \frac{1}{2} d(s)-1$ we have $d(s) \geq 4$. By Theorem 3.4 there is an admissible split at s. Let the resulting graph be $G_{2}+s$. If $p-1 \leq d_{G_{2}+s}(s)-b\left(G_{2}\right)$ then we are done by induction. Hence we may assume that $p \geq d_{G_{2}+s}(s)-b\left(G_{2}\right)+2 \geq d_{G}(s)-b(G)$. Hence $p=d_{G}(s)-b(G)$. Since $p \leq \frac{1}{2} d_{G}(s)-1$, we have $d_{G}(s) \leq 2 b(G)-2$. By Lemma 3.7 there exists an admissible split at s such that the resulting graph $G_{3}+s$ satisfies $b\left(G_{3}\right)=b(G)-1$. It now follows by induction that $G_{3}+s$ has a sequence of $p-1$ admissible splits at s.

Lemma 3.11 Let $G+s$ be a k-critical extension of a k-independence free graph G. If $d(s) \leq$ $2 b(G)-2$ then $a_{k}(G)=b(G)-1$.

Proof: Suppose $d(s)=b(G)$. Let K be a $(k-1)$-shredder in G with $b(K)=b(G)$. Then all components of $G-K$ are leaf components. Let F be the edge set of a tree T on the vertices of $N(s)$. We shall show that $G+F$ is k-connected. If not, then we can partition V into three sets $\{X, Y, Z\}$ such that $|Z|=k-1$ and no edge of $G+F$ joins X to Y. Each pair of vertices of $N(s)$ are joined by k openly disjoint paths in $G+F$, consisting of $(k-1)$ paths in G (which exist by Lemma 2.14) and one path in T. Thus either X or Y is disjoint from $N(s)$. Assuming $X \cap N(s)=\emptyset$, we have
$\bar{d}(X)=n(X) \leq k-1$, contradicting the fact that $G+s$ satisfies (7). Hence $G+F$ is a k-connected augmentation of G with $b(G)-1$ edges.

Henceforth we may assume that $d(s)>b(G)$. By Lemma 3.7, there exists an admissible split at s such that, for the resulting graph $G^{\prime}+s$, we have $b\left(G^{\prime}\right)=b(G)-1$. Since $G^{\prime}+s$ is a k-critical extension of G^{\prime}, the lemma follows by induction on $d_{G+s}(s)-b(G)$.

Theorem 3.12 If G is k-independence free then $a_{k}(G)=\max \{\lceil t(G) / 2\rceil, b(G)-1\}$.
Proof: Let $G+s$ be a k-critical extension of G. By Corollary 3.2, $d(s)=t(G)$. If $d(s) \leq 3$ then $a_{k}(G)=\lceil t(G) / 2\rceil$ by Lemma 2.10. Hence we may suppose that $d(s) \geq 4$. If $d(s) \leq 2 b(G)-2$ then $a_{k}(G)=b(G)-1$ by Lemma 3.11. Hence we may suppose that $d(s) \geq 2 b(G)-1$.

By Lemma 3.10, there exists a sequence of $\lfloor d(s) / 2\rfloor-1$ admissible splits at s. Let the resulting graph be $G^{\prime}+s$. Then $G^{\prime}+s$ is a k-critical extension of $G^{\prime}, d_{G^{\prime}+s}(s) \leq 3$, and $a_{k}\left(G^{\prime}\right)=\left\lceil d_{G^{\prime}+s}(s) / 2\right\rceil$ by Lemma 2.10. This gives the required augmenting set F for G with $|F|=\left\lceil d_{G+s}(s) / 2\right\rceil=$ $\lceil t(G) / 2\rceil$.

4 Augmenting Connectivity by One

Throughout this section we assume that $G=(V, E)$ is a $(k-1)$-connected graph on at least $k+1$ vertices. We shall show that if $a_{k}(G)$ is large compared to k, then $a_{k}(G)=\max \{b(G)-1,\lceil t(G) / 2\rceil\}$. Our proof uses Theorem 3.12 and some results from [15]. With the following result we can verify the desired min-max equality when $b(G)-1 \geq\lceil t(G) / 2\rceil$.

Theorem 4.1 [15] Suppose G is a $(k-1)$-connected graph such that $b(G) \geq k$ and $b(G)-1 \geq$ $\lceil t(G) / 2\rceil$. Then $a_{k}(G)=b(G)-1$.

We will apply Theorem 4.1 to graphs which do not satisfy $b(G)-1 \geq\lceil t(G) / 2\rceil$ using the following concept. A set F of new edges is saturating for G if $t(G+F)=t(G)-2|F|$. Thus an edge $e=u v$ is saturating if $t(G+e)=t(G)-2$.

Lemma 4.2 If F is a saturating set of edges for a $(k-1)$-connected graph G with $b(G+F)-1=\lceil t(G+F) / 2\rceil \geq k-1$ then $a_{k}(G)=\lceil t(G) / 2\rceil$.

Proof: By Theorem 4.1 the graph $G+F$ can be made k-connected by adding a set F^{\prime} of $\lceil t(G+$ $F) / 2\rceil$ edges. Since F is saturating, we have $t(G)=t(G+F)+2|F|$. Therefore the set $F \cup F^{\prime}$ is an augmenting set for G of size $\lceil t(G) / 2\rceil$. Since $a_{k}(G) \geq\lceil t(G) / 2\rceil$, the lemma follows.

We shall show that if $a_{k}(G)$ is large, then we can find a saturating set of edges F for G so that $G+F$ is k-independence free. In order to do this we need to measure how close G is to being k-independence free. We use the following concepts. Since G is $(k-1)$-connected, we have $n_{G}(X)=k-1$ for every k-deficient fragment of G. Following [15], we call the (inclusionwise) minimal k-deficient fragments in G the k-cores of G. A k-core B is active in G if there exists a $(k-1)$-cut K with $B \subseteq K$. Otherwise B is said to be passive. Let $\alpha(G)$ and $\pi(G)$ denote the
numbers of active, respectively passive, k-cores of G. Since G is $(k-1)$-connected, the definition of k-independence implies that G is k-independence free if and only if $\alpha(G)=0$. The following characterisation of active k-cores also follows easily from the above definitions.

Lemma 4.3 Let B be a k-core in G. Then B is active if and only if $\kappa(G-B)=k-|B|-1$.
A set $S \subseteq V$ is a k-deficient fragment cover for G if $S \cap T \neq \emptyset$ for every k-deficient fragment T. Clearly, S is a k-deficient fragment cover for G if and only if S covers every k-core of G. Note that S is a minimal k-deficient fragment cover for G if and only if the extension $G+s$ obtained by joining s to each vertex of S is k-critical. We shall need the following results from [15].
Lemma 4.4 (a) Every minimal augmenting set for G induces a forest.
(b) For every k-deficient fragment cover S for G, there exists a minimal augmenting set F for G with $V(F) \subseteq S$.
(c) If F is a minimal augmenting set for $G, e=x y \in F$, and $H=G+F-e$, then H has precisely two k-cores X, Y. Furthermore $X \cap Y=\emptyset ; x \in X, y \in Y$; for any edge $e^{\prime}=x^{\prime} y^{\prime}$ with $x^{\prime} \in X, y^{\prime} \in Y$, the graph $H+e^{\prime}$ is k-connected; and, for every k-deficient fragment Z in H, we have $X \subseteq Z$ or $Y \subseteq Z$.
Proof: Assertion (a) is given in [15, p 16].
To prove (b), note that since S covers all k-deficient fragments, G becomes k-connected when we add all edges between the vertices of S.
Assertion (c) follows from [15, Lemma 3.2].
Based on these facts we can prove the following lemma.
Lemma 4.5 Let S be a minimal k-deficient fragment cover for G and let F be a minimal augmenting set with $V(F) \subseteq S$. Let $d_{F}(v)=1$ and let $e=u v$ be the leaf of F incident with v. Let X and Y be the k-cores of $G+F-e$ and suppose that for a set F^{\prime} of edges we have $\kappa\left(x, y, G+F^{\prime}\right) \geq k$ for some vertices $x \in X, y \in Y$. Then $S-\{v\}$ is a k-deficient fragment cover of $G+F^{\prime}$.

Proof: Without loss of generality we may assume that $u \in X$ and $v \in Y$. By the minimality of S, there exists a k-core Z of G such that $Z \cap S=\{v\}$. Since Z is also k-deficient in $G+F-e$, it must contain a k-core of $G+F-e$, so $Y \subseteq Z$ by Lemma 4.4(c). Now, since Y is also k-deficient in G and Z is a k-core in G, we must have $Z=Y$ and $Y \cap S=\{v\}$. For a contradiction suppose that there is a k-deficient fragment P in $G+F^{\prime}$ which is not covered by $S-\{v\}$. Then $P \cap S=\{v\}$ and so P is also k-deficient in $G+F^{\prime}+F-e$ and in $G+F-e$. Thus, by Lemma 4.4(c), $Y \subseteq P$ and $y \in P$ hold. Furthermore, since $G+F^{\prime}+F-e+x y$ is k-connected by Lemma 4.4(c), we must have $x \notin P \cup N(P)$ in $G+F^{\prime}+F-e$. Thus $x \notin P \cup N(P)$ holds in $G+F^{\prime}$ as well. This contradicts the fact that $\kappa\left(x, y, G+F^{\prime}\right) \geq k$.

We need some further results from [15].
Lemma 4.6 [15, Lemma 2.1, Claim $I(a)]$ Suppose $t(G) \geq k$. Then the k-cores of G are pairwise disjoint and the number of k-cores of G is equal to $t(G)$. Furthermore, if $t(G) \geq k+1$, then for each k-core X, there is a unique maximal k-deficient fragment $S_{X} \subseteq V$ with the properties that $X \subseteq S_{X}$, and $S_{X} \cap Y=\emptyset$ for every k-core Y of G with $X \neq Y$. In addition, for two different k-cores X, Y we have $S_{X} \cap S_{Y}=\emptyset$.

Lemma 4.7 [15, Lemma 2.2] Let K and L be distinct $(k-1)$-cuts in G with $b(K) \geq k$. Then L intersects precisely one component D of $G-K$.

Lemma 4.8 Suppose $t(G) \geq k+1$. Let K be a $(k-1)$-shredder in G with $b(K) \geq k$. Then (a) if $C=S_{X}$ for some component C of $G-K$ and for some k-core X then X is passive,
(b) if some component D of $G-K$ contains precisely two k-cores X, Y and no edge of G joins S_{X} to S_{Y} then both X and Y are passive.

Proof: (a) Suppose that X is active and let L be a $(k-1)$-cut with $X \subseteq L$. Since $b(K) \geq k$, we have $L \subset K \cup C$ by Lemma 4.7. Since G is $(k-1)$-connected and $L \neq K, G-L-C$ is connected. Hence $G-L$ has a component $C^{\prime \prime}$ with $C^{\prime \prime} \subset C$. Therefore C contains a (minimal) k-deficient set X^{\prime} with $X \cap X^{\prime}=\emptyset$, contradicting $C=S_{X}$.
(b) Suppose X is active and let L be a $(k-1)$-cut with $X \subseteq L$. As in the proof of (a), this implies that $G-L$ has a component C with $C \subseteq D-L$. Since D contains precisely two k-cores, $Y \subset C$ and hence, since S_{Y} is the unique maximal k-deficient fragment containing Y which is disjoint from every k-core, $C \subseteq S_{Y}$ must hold. On the other hand, since C is a component of $G-L$, we have $X \subseteq N(C)$ and so $X \cap N\left(S_{Y}\right) \neq \emptyset$. This contradicts our assumption that no edge of G joins S_{X} to S_{Y}.

Recall that an edge $e=u v$ is saturating if $t(G+e)=t(G)-2$. We say that two k-cores X, Y form a saturating pair if there is a saturating edge $e=x y$ with $x \in X, y \in Y$ and otherwise that the pair X, Y is non-saturating.

If $t(G) \geq k+2$ and X, Y are a saturating pair, then every edge $x y$ with $x \in X$ and $y \in Y$ is saturating. (To see this suppose that $e=x y$ is not saturating. Then $t(G+e) \geq t(G)-1 \geq k+1$ and hence the k-cores of $G+e$ are pairwise disjoint by Lemma 4.6. This implies that all k-cores of G other than X, Y are k-cores of $G+e$ and that there is a k-core S in $G+e$ which is disjoint from all k-cores of G other than X, Y. Since S is a k-core in $G+e, S$ is k-deficient in G. We may assume that $S \cap X \neq \emptyset$. By applying (4) to S and X and using the minimality of X we can deduce that $X \subseteq S$. Since X, Y is a saturating pair, this implies $S \cap Y^{*} \neq \emptyset$ and $Y \cap S^{*} \neq \emptyset$. By applying (5) to S and Y we obtain that $Y \cap S^{*}$ is k-deficient in G. Since S is k-deficient in $G+e$, we must have $y \in S \cup N_{G}(S)$ and hence $Y \cap S^{*}$ is a proper subset of Y. This contradicts the minimality of Y.)

We shall need the following characterisation of saturating pairs.
Lemma 4.9 [15, p.13-14] Let $t(G) \geq k+2$ and suppose that two k-cores X, Y do not form a saturating pair. Then one of the following holds: (a) $X \subseteq N\left(S_{Y}\right)$, (b) $Y \subseteq N\left(S_{X}\right)$, (c) there exists a k-deficient fragment M with $S_{X}, S_{Y} \subset M$, which is disjoint from every k-core other than X, Y.

For a k-core X let $v(X)$ be the number of k-cores $Y(Y \neq X)$ for which the pair X, Y is non-saturating. The following lemma implies that an active k-core cannot belong to many nonsaturating pairs.

Lemma 4.10 Suppose $t(G) \geq k+2$ and let X be an active k-core in G. Then $v(X) \leq 2 k-3$.
Proof: Let \mathcal{Y} be the set of cores $Y(Y \neq X)$ for which X, Y is a non-saturating pair, and let $\mathcal{Y}^{\prime}=$ $\left\{Y_{1}, Y_{2}, \ldots, Y_{r}\right\}$ be the set of those cores from \mathcal{Y} for which Lemma 4.9(c) holds (with respect to X). For each $Y_{i}, 1 \leq i \leq r$, let M_{i} be a k-deficient fragment which is disjoint from every k-core other
than X, Y_{i}. Consider two sets $M_{i}, M_{j}, 1 \leq i<j \leq r$. Since $t(G) \geq k+2, M_{i} \cap M_{j}$ is a k-deficient fragment, and hence $S_{X}=M_{i} \cap M_{j}$ must hold. This implies that each vertex of $V-S_{X}$ belongs to at most one set M_{i}.

For a contradiction suppose that $v(X) \geq 2 k-2$. Let $K=N\left(S_{X}\right)$ and let $\mathcal{Y}^{\prime \prime}=\left\{Y_{i} \in \mathcal{Y}^{\prime}\right.$: $\left.M_{i} \cap K=\emptyset\right\}$. Since $|K|=k-1$ and $v(X) \geq 2 k-2$, it follows from Lemmas 4.6 and 4.9, that $\left|Y^{\prime \prime}\right| \geq k-1$.

Since X is active, Lemma 4.8(a) implies that $b(K) \leq k-1$. Thus, since the vertex set of one of the components of $G-K$ is S_{X}, and $\left|\mathcal{V}^{\prime \prime}\right| \geq k-1$, there is a component D of $G-K$ which contains at least two sets Y_{i}, Y_{j} from $\mathcal{Y}^{\prime \prime}$. Consider M_{i}. Since $S_{X} \subset M_{i}$ and $K \cap M_{i}=\emptyset$, we have $K \subset N\left(M_{i}\right)$. Since $Y_{j} \subset D$, we have $D-M_{i} \neq 0$, and hence $D \cap N\left(M_{i}\right) \neq \emptyset$. Hence $n\left(M_{i}\right) \geq|K|+1=k$, contradicting the fact that M_{i} is a k-deficient fragment.

For every passive k-core $B_{i}(1 \leq i \leq \pi(G))$ let $\mathcal{F}_{i}=\left\{X \subset V: X\right.$ is k-deficient in $G, B_{i} \subseteq$ X, the subgraph $G[X]$ is connected, and X contains at most $4 k-8$ active k-cores $\}$. Let $M_{i}=$ $\cup_{X \in \mathcal{F}_{i} X} X$ and let $T(G)=\cup_{i=1}^{\pi(G)}\left(M_{i} \cup N\left(M_{i}\right)\right)$.

Lemma 4.11 Let B_{i} be a passive k-core for some $1 \leq i \leq \pi(G)$ and let $X=\left\{X_{1}, \ldots, X_{t}\right\}$ be a minimal family of members of \mathcal{F}_{i} for which $\cup_{j=1}^{t} X_{j}=M_{i}$. Then $t \leq k$ and $n\left(M_{i}\right) \leq k(k-1)$. Moreover, if $\alpha(G) \geq 5 k-8$, then M_{i} intersects at most $k(4 k-8)$ active k-cores.

Proof: First we prove that $t \leq k$. For a contradiction suppose that $t \geq k+1$. By the minimality of the family \mathcal{X} we have that $\hat{X}_{j}=X_{j}-\cup_{r \neq j} X_{r}$ is non-empty for all $1 \leq j \leq t$. Note that the sets \hat{X}_{j} are pairwise disjoint. By applying (4) to a pair $X_{r}, X_{j} \in \mathcal{X}$, and using the facts that $X_{r} \cap X_{j} \neq \emptyset$ since $B_{i} \subseteq X_{r} \cap X_{j}$, that $t \geq k+1$, and that G is $(k-1)$-connected, we deduce that $X_{r} \cap X_{j}$ is k deficient in G. Since $B_{i} \subseteq X_{r}$ for each $X_{r} \in \mathcal{X}$, a similar argument shows that $P=\cup_{j \neq r}\left(X_{r} \cap X_{j}\right)$ is also k-deficient. Note that $M_{i}-P=\cup_{j=1}^{t} \hat{X}_{j}$, so $\left|M_{i}-P\right| \geq t \geq k+1$. Since $X_{r}=\hat{X}_{r} \cup\left(P \cap X_{r}\right)$ and $G\left[X_{r}\right]$ is connected, there exists a neighbour of P in \hat{X}_{r}. Since the sets \hat{X}_{r} are pairwise disjoint, these neighbours are distinct. Hence $n(P) \geq t \geq k+1$, contradicting the fact that P is k-deficient. Thus $t \leq k$. Since each neighbour of M_{i} is a neighbour of some set in X, and X consists of k-deficient fragments, we have $n\left(M_{i}\right) \leq k(k-1)$.

To see the second part of the statement suppose that for some $X_{r} \in \mathcal{X}$ and for some active k core A we have $X_{r} \cap A \neq \emptyset$ and $X_{r}-A \neq \emptyset \neq A-X_{r}$. Since $\alpha(G) \geq 5 k-8, X_{r}$ contains at most $4 k-8$ active k-cores, and the (active) k-cores are pairwise disjoint, we have $\left|V-\left(X_{r} \cup A\right)\right| \geq k-1$. Now (4) implies that $X_{r} \cap A$ is k-deficient, a contradiction. Thus every active k-core A for which $A \cap M_{i} \neq \emptyset$ satisfies $A \subset X_{r}$ for some $X_{r} \in X$. Hence the definition of \mathcal{F}_{i} implies that M_{i} intersects at most $k(4 k-8)$ active k-cores.

We shall use the following lemmas to find a saturating set F for G such that $G+F$ has many passive cores. Informally, the idea is to pick a properly chosen active k-core B and, by adding a set F of at most $2 k-2$ saturating edges between the active k-cores of G other than B, make $\kappa(G+F-B) \geq k-|B|=r$. By Lemma 4.3, this will make B passive, and will not eliminate any of the passive k-cores of G. We shall increase the connectivity of $G-B$ by choosing a minimal r-deficient fragment cover S for $G-B$ of size at most $k-1$ and then iteratively add one or two edges so that the new graph has an r-deficient fragment cover properly contained in S. Thus after at
most $k-1$ such steps (and adding at most $2 k-2$ edges) we shall make B passive. The first lemma tells us how to choose the active k-core B.

Lemma 4.12 Suppose $\pi(G) \leq 4(k-1)$ and $\alpha(G) \geq 20 k(k-1)^{2}$. Then there exists an active k-core B with $B \cap T(G)=\emptyset$.

Proof: Since $\alpha(G) \geq 20 k(k-1)^{2} \geq 5 k-8$, Lemma 4.11 implies that for any passive k-core B_{i}, the set M_{i} intersects at most $k(4 k-8)$ active k-cores, and $N\left(M_{i}\right)$ intersects at most $k(k-1)$ active k-cores. Thus $T(G)$ intersects at most $\pi(G)(k(5 k-9))<4(k-1) k(5 k-5)=20 k(k-1)^{2}$ active k-cores. Since $\alpha(G) \geq 20 k(k-1)^{2}$, the lemma follows.

Lemma 4.13 Suppose $\pi(G) \leq 4(k-1)$ and $\alpha(G) \geq 8 k^{3}+6 k^{2}-23 k-16$. Let B be an active k core in $G, H=G-B, r=k-|B|$, and S be a minimal r-deficient fragment cover of H. Suppose every r-deficient fragment Z of H contains an active k-core of G. Then there exists a saturating set of edges F for G such that $|F| \leq 2, F$ is not incident with B, and either $\pi(G+F)>\pi(G)$; or $\pi(G+F)=\pi(G), B$ is an active k-core in $G+F$, and $H+F$ has an r-deficient fragment cover S^{\prime} which is properly contained in S.

Proof: Since B is active, $\kappa(H)=k-1-|B|=r-1$.
By Lemma 4.4 there exists a minimal r-augmenting set F^{*} for H such that F^{*} is a forest and $V\left(F^{*}\right) \subseteq S$. Let $d_{F^{*}}(v)=1$ and let $e=u v$ be a leaf of F^{*}. By Lemma 4.4(c), there exist precisely two r-cores Z, W in $H+F^{*}-e$ with $u \in Z, v \in W$. Then Z, W are r-deficient in H. By an hypothesis of the lemma, there exist active k-cores X, Y of G with $X \subseteq Z$ and $Y \subseteq W$.

Suppose X and Y form a saturating pair in G. We may choose a saturating edge $x y$ for G with $x \in X$ and $y \in Y$. Then $x y \notin E$ and, since $\kappa(G)=k-1$, we have $\kappa(x, y, G+x y) \geq k$ and $\kappa(x, y, H+x y) \geq r$. Hence either $\pi(G+x y)>\pi(G)$; or every active k-core of G other than X, Y remains active in $G+x y$. If the second alternative holds then B remains active in $G+x y$ and, by Lemma 4.5, $S^{\prime}=S-v$ is an r-deficient fragment cover in $H+x y$.

Hence we may assume that X, Y is not a saturating pair in G. By Lemma 4.9 either
(i) there exists a k-deficient fragment M in G with $S_{X} \cup S_{Y} \subseteq M$ which is disjoint from every k-core other than X, Y, or
(ii) $Y \subseteq N_{G}\left(S_{X}\right)$ or $X \subseteq N_{G}\left(S_{Y}\right)$.

Choose $x \in X$ and $y \in Y$ arbitrarily and let $P_{1}, P_{2}, \ldots, P_{k-1}$ be $k-1$ openly disjoint $x y$-paths in G. Let $Q=\cup_{i=1}^{k-1} V\left(P_{i}\right)$. It is easy to see that if some edge of G joins S_{X} to S_{Y}, then one of the paths, say P_{1}, satisfies $V\left(P_{1}\right) \subseteq S_{X} \cup S_{Y}$. On the other hand, if no edge of G joins S_{X} to S_{Y}, then (ii) cannot hold. Hence (i) holds and, either one of the paths, say P_{1}, satisfies $V\left(P_{1}\right) \subseteq M$, or each of the $k-1$ paths intersects $N_{G}(M)$. In the latter case, since $n_{G}(M)=k-1$, we have $\left|N_{G}(M) \cap P_{i}\right|=1$, $V\left(P_{i}\right) \subseteq M \cup N_{G}(M)$ for all $1 \leq i \leq k-1$, and hence $N_{G}(M) \subset Q$ and $Q \subset M \cup N_{G}(M)$. We shall handle these two cases separately.
Case 1. No edge of G joins S_{X} to S_{Y}, (i) holds, and we have $N_{G}(M) \subset Q \subset M \cup N_{G}(M)$.
Let $C_{1}, C_{2}, \ldots, C_{p}$ be the components of $G-N_{G}(M)$. Using the properties of M (M intersects exactly two k-cores, M is the union of one or more components of $G-N_{G}(M)$, and $N_{G}(M)=k-1$)
we can see that either, one component C_{i} contains S_{X} and S_{Y} and is disjoint from every k-core of G other than X, Y and $M=V\left(C_{i}\right)$, or each of S_{X} and S_{Y} corresponds to a component of $G-N_{G}(M)$ and $M=S_{X} \cup S_{Y}$.

Since X and Y are active k-cores, Lemma 4.8, with $K=N_{G}(M)$, implies that $p \leq k-1$. Since $\alpha(G) \geq(k-2)(2 k+2)+k+3, G$ has at least $(k-2)(2 k+2)+1$ active k-cores disjoint from B, X, Y, and $N_{G}(M)$. Thus some component C_{j} of $G-N_{G}(M)$ is disjoint from M and contains at least $2 k+3$ active k-cores distinct from B. By Lemma 4.10, there exists a saturating edge $x a_{1}$ with $a_{1} \in A_{1}$ for some active k-core $A_{1} \subset C_{j}, A_{1} \neq B$. If $\pi\left(G+x a_{1}\right) \geq \pi(G)+1$ then we are done. Otherwise all the active k-cores in G other than X, A_{1} remain active in $G+x a_{1}$. Applying Lemma 4.10 again, we may pick a saturating edge $y a_{2}$ with $a_{2} \in A_{2}$ for some active k-core A_{2} of $G+x a_{1}$, with $A_{2} \subset C_{j}, A_{2} \neq B$.

We have $\kappa\left(x, y, G+x a_{1}+y a_{2}\right) \geq k$, since there is a path from x to y, using the edges $x a_{1}, y a_{2}$, and vertices of C_{j} only, and thus this path is openly disjoint from Q (since $Q \subseteq M \cup N_{G}(M)$). Hence $\kappa\left(x, y, H+x a_{1}+y a_{2}\right) \geq r$. Thus by Lemma $4.5, S^{\prime}=S-v$ is an r-deficient set cover in $H+x a_{1}+y a_{2}$.
Case 2. Either $V\left(P_{1}\right) \subseteq S_{X} \cup S_{Y}$ or (i) holds and $V\left(P_{1}\right) \subseteq M$.
Let us call a component D of $G-Q$ essential if D intersects an active k-core other than X, Y or B. Let $D_{1}, D_{2}, \ldots, D_{p}$ be the essential components of $G-Q$. We say that a component D_{i} is attached to the path P_{j} if $N_{G}\left(D_{i}\right) \cap V\left(P_{j}\right) \neq 0$ holds. Let $R=S_{X} \cup S_{Y}$ if $V\left(P_{1}\right) \subseteq S_{X} \cup S_{Y}$ holds and let $R=M$ if $V\left(P_{1}\right) \subseteq M$. Then, R is disjoint from every active k-core other than X, Y.

Claim 4.14 At most $2 k-2$ essential components are attached to P_{1}.
Proof: Focus on an essential component D which is attached to P_{1} and let $w \in W \cap D$ for some active k-core $W \neq X, Y, B$ which has a vertex in D. There exists a path P_{D} from w to a vertex of P_{1} whose inner vertices are in D. Since $w \notin R$ and $V\left(P_{1}\right) \subseteq R$, we have $D \cap N_{G}(R) \neq \emptyset$. The claim follows since the essential components are pairwise disjoint and $n(R) \leq 2 k-2$.

Suppose that one of the paths P_{i} intersects at least $4 k+4$ active k-cores in G other than X, Y or B. For every such active k-core A intersecting P_{i} choose a representative vertex $a \in A \cap P_{i}$. Since the k-cores are pairwise disjoint, the representatives are pairwise distinct. Order the active k-cores intersecting P_{i} following the ordering of their representatives along the path P_{i} from x to y. By Lemma 4.10, we may choose a saturating edge $x a_{1}$ in G, where a_{1} is among the $2 k+2$ rightmost representatives and a_{1} belongs to an active k-core A_{1}. If $\pi\left(G+x a_{1}\right) \geq \pi(G)+1$ then we are done. Otherwise all the active k-cores of G other than X, A_{1} remain active in $G+x a_{1}$. Again using Lemma 4.10, we may choose a saturating edge $y a_{2}$ in $G+x a_{1}$, where a_{2} is among the $2 k+2$ leftmost representatives. By the choice of a_{1} and a_{2} there exist two openly disjoint paths from x to y in $G+x a_{1}+y a_{2}$ using vertices of $V\left(P_{i}\right)$ only. Thus $\kappa\left(x, y, G+x a_{1}+y a_{2}\right) \geq k$. Hence, by Lemma 4.5, $S^{\prime}=S-v$ is an r-deficient set cover in $H+x a_{1}+y a_{2}$.

Thus we may assume that each path P_{i} intersects at most $4 k+3$ active k-cores in G other than X, Y or B. Hence there are at least

$$
\alpha(G)-3-(k-1)(4 k+3) \geq\left(8 k^{3}+6 k^{2}-23 k-19\right)-(k-1)(4 k+3)=(2 k+2)\left(4 k^{2}-3 k-8\right)
$$

active k-cores other than B contained in $G-Q$. Note that since k-cores are minimal k-deficient fragments, they induce connected subgraphs in G. Hence each k-core contained in $G-Q$ is contained in a component of $G-Q$. If some component of $G-Q$ contains at least $2 k+3$ active k-cores of G other than B then the lemma follows as in Case 1 . Hence we may assume that there are at least $4 k^{2}-3 k-8$ essential components in $G-Q$, each containing an active k-core distinct from X, Y, and B.

Using Claim 4.14 we deduce that there are at least $4 k^{2}-3 k-8-(2 k-2)=(4 k+3)(k-2)+1$ essential components D_{i} with all their attachments on $P_{2}, P_{3}, \ldots, P_{k-1}$, each containing an active core other than X, Y, B. Since G is $(k-1)$-connected, $n\left(D_{i}\right) \geq k-1$ and hence D_{i} has at least two attachments on at least one of the paths $P_{2}, P_{3}, \ldots, P_{k-1}$. Relabelling the components D_{1}, \ldots, D_{p} and the paths P_{2}, \ldots, P_{k-1} if necessary, we may assume that D_{i} has at least two attachments on P_{k-1} for $1 \leq i \leq 4 k+4$.

Let z_{i} be the leftmost attachment of D_{i} on P_{k-1}. Without loss of generality we may assume that $z_{1}, z_{2}, \ldots, z_{4 k+4}$ occur in this order on P_{k-1} as we pass from x to y. By Lemma 4.10, there exists a saturating edge $y a_{i}$ where $a_{i} \in A_{i}$ for some active k-core $A_{i} \subseteq D_{i}$, where $A_{i} \neq B$ and $1 \leq i \leq 2 k+2$. If $\pi\left(G+y a_{i}\right) \geq \pi(G)+1$ then we are done. Otherwise every active k-core in G other than Y, A_{i} remains active in $G+y a_{i}$. Using Lemma 4.10 again, there exists a saturating edge $x a_{j}$ where $a_{j} \in A_{j}$ for some active k-core $A_{j} \subseteq D_{j}$, where $A_{j} \neq B$ and $2 k+3 \leq j \leq 4 k+4$. Note that z_{i} is either to the left of z_{j} or $z_{i}=z_{j}$. Hence, using the fact that D_{j} has at least two attachments on P_{k-1} and by the choice of z_{i}, z_{j}, there exist two openly disjoint paths in $G+x a_{j}+y a_{i}$, using vertices from $V\left(P_{k-1}\right) \cup D_{i} \cup D_{j}$ only. Therefore $\kappa\left(x, y, G+x a_{j}+y a_{i}\right) \geq k$, and we are done as above. This completes the proof of the lemma.

Lemma 4.15 Suppose $\pi(G) \leq 4(k-1)$ and $\alpha(G) \geq 20 k(k-1)^{2}$. Then there exists a saturating set of edges F for G such that $|F| \leq 2 k-2$ and $\pi(G+F) \geq \pi(G)+1$.

Proof: Let B be an active k-core in G with $B \cap T(G)=\emptyset$. Such a set exists by Lemma 4.12. Let $H=G-B$, and $r=k-|B|$. Since B is active, $\kappa(H)=r-1$. Every r-deficient fragment X in H is k-deficient in G and $N_{G}(B) \cap X \neq \emptyset$. Hence $N_{G}(B)$ is an r-deficient fragment cover of H. Let $S \subseteq N_{G}(B)$ be a minimal r-deficient fragment cover of H. Since B is k-deficient in G, we have $|S| \leq n_{G}(B)=k-1$.

We shall prove by induction on i that, for $0 \leq i \leq k-1$, there exists a saturating set of edges F_{i} for G such that $\left|F_{i}\right| \leq 2 i, F_{i}$ is not incident with B, and either $\pi\left(G+F_{i}\right) \geq \pi(G)+1$; or $\pi\left(G+F_{i}\right)=$ $\pi(G), B$ is an active k-core of $G+F_{i}$, and $H+F_{i}$ has an r-deficient fragment cover $S_{i} \subseteq S$ with $\left|S_{i}\right| \leq|S|-i$. The lemma will follow since the second alternative cannot hold with $\left|S_{i}\right|=0$ (since this would imply that $H+F_{i}$ is r-connected and hence that B is passive in $G+F_{i}$).

The statement is trivially true for $i=0$ taking $F_{i}=\emptyset$. Hence suppose that there exists a set F_{i} satisfying the above statement for some $0 \leq i \leq k-2$. If $\pi\left(G+F_{i}\right) \geq \pi(G)+1$ then we can put $F_{i+1}=F_{i}$. Hence we may suppose that $\pi\left(G+F_{i}\right)=\pi(G), B$ is an active k-core of $G+F_{i}$, and $H+F_{i}$ has an r-deficient fragment cover $S_{i} \subseteq S$ with $\left|S_{i}\right| \leq|S|-i$. We would like to apply Lemma 4.13 to B and $G+F_{i}$. To do this we must show that $G+F_{i}, B$ and S_{i} satisfy the hypotheses of this lemma. We have $\pi\left(G+F_{i}\right)=\pi(G) \leq 4(k-1)$. Thus $\alpha\left(G+F_{i}\right)=\alpha(G)-2\left|F_{i}\right| \geq 8 k^{3}+6 k^{2}-23 k-16$.

The last property we need to verify is that every r-deficient fragment Z in $G+F_{i}-B$ contains at least one active k-core of $G+F_{i}$. Since F_{i} is a saturating set for G, and since the k-cores of G are
pairwise disjoint, each k-core of $G+F_{i}$ is a k-core of G. Furthermore, since $\pi\left(G+F_{i}\right)=\pi(G)$, if A is an active k-core of G and A is a k-core of $G+F_{i}$ then A is an active k-core of $G+F_{i}$. Since Z is r-deficient in $G+F_{i}-B$, it is k-deficient in $G+F_{i}$. Thus Z contains at least one core in $G+F_{i}$. If Z contains an active k-core in $G+F_{i}$, then we are done, so suppose that every k-core of $G+F_{i}$ in Z is passive. Let B_{j} be such a k-core. Then B_{j} is a passive k-core in G so $G\left[B_{j}\right]$ is connected. Let C be the component of $G[Z]$ containing B_{j} and let $Z^{\prime}=V(C)$. Since Z is k-deficient in G, Z^{\prime} is k-deficient in G, and $B \subseteq N_{G}\left(Z^{\prime}\right)$. Since $B \cap T(G)=\emptyset$ and $B \subseteq N_{G}\left(Z^{\prime}\right)$, it follows that $Z^{\prime} \notin \mathcal{F}_{j}$ and hence Z^{\prime} contains at least $4 k-7$ active k-cores in G. Since $\left|F_{i}\right| \leq 2(k-2)=2 k-4$ and each edge of F_{i} is incident to at most two k-cores of G, it follows that there exists an active k-core A in G with $A \subset Z^{\prime}$ which is still an (active) k-core in $G+F_{i}$, contradicting the assumption that every k-core of $G+F_{i}$ in Z is passive. Hence $G+F_{i}, B$ and S_{i} satisfy the hypotheses of Lemma 4.13. Thus there exists a saturating set of edges F for $G+F_{i}$ such that $|F| \leq 2, F$ is not incident with B, and either $\pi\left(G+F_{i}+F\right)>\pi\left(G+F_{i}\right)=\pi(G)$; or $\pi\left(G+F_{i}+F\right)=\pi\left(G+F_{i}\right)=\pi(G)$ and $G+F_{i}+F-B$ has an r-deficient fragment cover S_{i+1} which is properly contained in S_{i}. Hence the inductive statement holds with $F_{i+1}=F_{i} \cup F$.

Lemma 4.16 Suppose $t(G) \geq 20 k(k-1)^{2}+(4 k-3)(4 k-4)$. Then there exists a saturating set of edges F for G such that $G+F$ is k-independence free and $t(G+F) \geq 2 k-1$.

Proof: Since every graph is 1-independence free and every connected graph is 2-independence free, we may suppose that $k \geq 3$. If $\pi(G) \leq 4(k-1)$ then we may apply Lemma 4.15 recursively $4 k-3-\pi(G)$ times to G to find a saturating set of edges F_{1} for G such that $\pi\left(G+F_{1}\right) \geq 4 k-3$. If $\pi(G) \geq 4 k-3$ we set $F_{1}=\emptyset$. Applying Lemma 4.10 to $G+F_{1}$, we can add saturating edges joining pairs of active k-cores until the number of active k-cores is at most $2 k-2$. Thus there exists a saturating set of edges F_{2} for $G+F_{1}$ such that $\alpha\left(G+F_{1}+F_{2}\right) \leq 2 k-2$ and $\pi\left(G+F_{1}+F_{2}\right) \geq 4 k-3$. Applying Lemma 4.10 to $G+F_{1}+F_{2}$, we can add saturating edges joining pairs consisting of one active and one passive k-core until the number of active k-cores decreases to zero. Thus there exists a saturating set of edges F_{3} for $G+F_{1}+F_{2}$ such that $\alpha\left(G+F_{1}+F_{2}+F_{3}\right)=0$ and $\pi\left(G+F_{1}+F_{2}+F_{3}\right) \geq 2 k-1$.

The main theorem of this section is the following.
Theorem 4.17 If $a_{k}(G) \geq 20 k^{3}$ then

$$
a_{k}(G)=\max \{\lceil t(G) / 2\rceil, b(G)-1\} .
$$

Proof: Since every graph is 1-independence free and every connected graph is 2-independence free, the result follows from Theorem 3.12 if $k \leq 2$. Hence we may suppose that $k \geq 3$. Let $G+s$ be a k-critical extension of G. By Lemma 2.10 we have $d(s) \geq a_{k}(G)+1 \geq 20 k^{3}>k+1$. Hence, by [15, Lemmas 3.4, 3.5] we have $t(G)=d(s) \geq 20 k^{3}$. (This equality will also follow from Lemma 5.2 in Subsection 5.) If $b(G)-1 \geq\lceil t(G) / 2\rceil$ then $a_{k}(G)=b(G)-1$ by Theorem 4.1 and we are done. Thus we may assume that $\lceil t(G) / 2\rceil>b(G)-1$ holds. We shall show that $a_{k}(G)=\lceil t(G) / 2\rceil$. By Lemma 4.16, there exists a saturating set of edges F for G such that $G+F$ is k-independence free and $t(G+F) \geq 2 k-1$. Note that adding a saturating edge to a graph H reduces $\lceil t(H) / 2\rceil$ by exactly one and $b(H)$ by at most one. Thus, if $\lceil t(G+F) / 2\rceil \leq b(G+F)-1$, then there exists
$F^{\prime} \subseteq F$ such that $\left\lceil t\left(G+F^{\prime}\right) / 2\right\rceil=b\left(G+F^{\prime}\right)-1$ and the theorem follows by applying Lemma 4.2. Hence we may assume that $\lceil t(G+F) / 2\rceil>b(G+F)-1$. Since $G+F$ is k-independence free, we can apply Theorem 3.12 to deduce that $a_{k}(G+F)=\lceil t(G+F) / 2\rceil$. Using (1) and the fact that $t(G)=t(G+F)+2|F|$ we have $a_{k}(G)=\lceil t(G) / 2\rceil$, as required.

Theorem 4.17 gives an affirmative answer to a conjecture of the second author, [16, p 300].

5 Unsplittable Extensions

In this section we consider a k-critical extension $G+s$ of an l-connected graph G on at least $k+1$ vertices in which $d(s)$ is large. We show that $d(s)=t(G)$ and characterise when there is no admissible split containing a given edge at s.

Lemma 5.1 Let $X, Y \subset V$ be two sets with $X \cap Y \neq \emptyset$. Suppose $d(s) \geq(k-l)(k-1)+4$.
(a) If X and Y are tight then $X \cup Y$ is tight and $\bar{d}(X \cap Y)=k$.
(b) If X is tight and Y is dangerous then $X \cup Y$ is dangerous.
(c) If $d(s) \geq(k-l+1)(k-1)+4$ and X and Y are dangerous then $X^{*} \cap Y^{*} \neq 0$.

Proof: We prove (a). Let X, Y be tight sets with $X \cap Y \neq \emptyset$. By (9) we have

$$
\begin{equation*}
2 k=\bar{d}(X)+\bar{d}(Y) \geq \bar{d}(X \cap Y)+\bar{d}(X \cup Y) \tag{17}
\end{equation*}
$$

Clearly, $X \cap Y$ is a fragment and hence $\bar{d}(X \cap Y) \geq k$ by (7). Using (17) we have $\bar{d}(X \cup Y) \leq k$. Thus if $X^{*} \cap Y^{*} \neq \emptyset$ then $X \cup Y$ is also a fragment and hence is tight and $\bar{d}(X \cap Y)=k$.

Suppose $X^{*} \cap Y^{*}=\emptyset$. Since $\bar{d}(X \cup Y) \leq k$, we have $n(X \cup Y) \leq k-d(s, X \cup Y)$. Since G is l-connected and $G+s$ is k-critical, $d(s, v) \leq k-l$ for all $v \in V$. Thus

$$
\begin{aligned}
d(s) & \leq d(s, X \cup Y)+d(s, N(X \cup Y)) \leq d(s, X \cup Y)+(k-l) n(X \cup Y) \leq \\
& \leq d(s, X \cup Y)+(k-l)(k-d(s, X \cup Y))=(k-l) k-(k-l-1) d(s, X \cup Y) .
\end{aligned}
$$

Since $k-l-1 \geq 0$ and $d(s, X \cup Y) \geq 1$, this gives $d(s) \leq(k-l)(k-1)+1$, contradicting the hypothesis on $d(s)$.

The proofs of (b) and (c) are similar, using the fact that $d(s, X \cup Y) \geq 2$ in (b) and (c).
The following lemma shows that $d(s)=t(G)$ when $d(s)$ is large.
Lemma 5.2 If $d(s) \geq(k-l)(k-1)+4$ then $d(s)=t(G)$.
Proof: Let \mathcal{F} be a family of tight sets which cover $N(s)$ such that $|\mathcal{F}|$ is as small as possible. Since every edge incident to s is critical, such a family exists. We show that the members of \mathcal{F} are pairwise disjoint. Choose $X, Y \in \mathcal{F}$ and suppose that $X \cap Y \neq \emptyset$. By Lemma 5.1(a), $X \cup Y$ is also tight. So replacing X and Y in \mathcal{F} by $X \cup Y$ we contradict the minimality of $|\mathcal{F}|$.

Since the members of \mathcal{F} are pairwise disjoint, tight, and cover $N(s)$, we have $d(s)=\sum_{X \in \mathcal{F}}(k-$ $n(X)) \leq t(G)$. The inequality $d(s) \geq t(G)$ follows easily from (7). Thus $d(s)=t(G)$, as required.

Lemma 5.3 Let sx x_{0} be a designated edge of a k-critical extension $G+s$ of G and suppose that there are $q \geq(k-l+1)(k-1)+4$ edges sy $\left(y \neq x_{0}\right)$ incident to s for which the pair sx 0 , sy is not admissible. Then there exists a $(k-1)$-shredder K in G such that K has $q+1$ leaf components $C_{0}, C_{1}, \ldots, C_{q}$ in $G+s$, where $X_{0}=V\left(C_{0}\right)$ is the maximal tight set containing x_{0} and $K=N_{G}\left(X_{0}\right)$.

Proof: Let X_{0} be the maximal tight set in $G+s$ containing x_{0}. Note that the set X_{0} is uniquely determined by Lemma 5.1(a). Let $\mathcal{T}=\left\{X_{1}, \ldots, X_{m}\right\}$ be the set of all maximal tight sets which intersect $N\left(X_{0}\right)$. Note that $X_{i} \cap X_{j}=\emptyset$ for $0 \leq i<j \leq m$ by Lemma 5.1(a). Thus we have $d\left(s, \cup_{i=0}^{m} X_{i}\right)=d\left(s, X_{0}\right)+d\left(s, \cup_{i=1}^{m} X_{i}\right)$.

Since each $X_{i} \in \mathcal{T}$ contains a neighbour of X_{0} and X_{0} is tight, we have $m \leq n\left(X_{0}\right)=k-d\left(s, X_{0}\right)$. Since each $X_{i} \in \mathcal{T}$ is tight and G is l-connected, we have $d\left(s, X_{i}\right) \leq k-l$. So

$$
\begin{equation*}
d\left(s, \cup_{i=0}^{m} X_{i}\right) \leq d\left(s, X_{0}\right)+(k-l)\left(k-d\left(s, X_{0}\right)\right)=k(k-l)-d\left(s, X_{0}\right)(k-l-1) . \tag{18}
\end{equation*}
$$

Let $M=\left\{y \in N(s)-x_{0}: s x_{0}, s y\right.$ is not admissible $\}$. Since there exist $q \geq(k-l+1)(k-1)+4$ edges incident to s which are not admissible with $s x_{0}$, we can use (18) to deduce that $R:=M-$ $\cup_{i=0}^{m} X_{i} \neq \emptyset$. By Lemma 2.11 and by the choice of \mathcal{T} there exists a family of maximal dangerous sets $\mathcal{W}=\left\{W_{1}, \ldots, W_{r}\right\}$ such that $x_{0} \in W_{i}$ for all $1 \leq i \leq r$ and $R \subseteq \cup_{j=1}^{r} W_{i}$. Let us assume that \mathcal{W} is chosen so that r is as small as possible. By Lemma 5.1(b), $X_{0} \subseteq W_{i}$ for all $1 \leq i \leq r$. Since $d\left(s, W_{i}-X_{0}\right) \leq k+1-l-d\left(s, X_{0}\right)$, we can use (18) and the fact that $q \geq(k-l+1)(k-1)+4$ to deduce that $r \geq 2$. For $W_{i}, W_{j} \in \mathcal{W}$ we have $W_{i}^{*} \cap W_{j}^{*} \neq \emptyset$ by Lemma 5.1(c). Since $W_{i} \cup W_{j}$ is not dangerous by the maximality of W_{i}, we may apply (9) to obtain

$$
\begin{equation*}
k+1+k+1 \geq \bar{d}\left(W_{i}\right)+\bar{d}\left(W_{j}\right) \geq \bar{d}\left(W_{i} \cap W_{j}\right)+\bar{d}\left(W_{i} \cup W_{j}\right) \geq k+k+2 \tag{19}
\end{equation*}
$$

Thus equality holds throughout and $W_{i} \cap W_{j}$ is tight. Since X_{0} is a maximal tight set and $X_{0} \subseteq$ $W_{i} \cap W_{j}$ we have $X_{0}=W_{i} \cap W_{j}$. Furthermore, since we have equality in (19), we can use (8) to deduce that $W_{j} \cap N\left(W_{i}\right) \subseteq N\left(W_{i} \cap W_{j}\right)$. So $W_{j} \cap N\left(W_{i}\right) \subseteq N\left(X_{0}\right)$ and, similarly, $W_{i} \cap N\left(W_{j}\right) \subseteq N\left(X_{0}\right)$. Hence $N(s) \cap W_{i} \cap N\left(W_{j}\right) \subseteq \cup_{i=0}^{m} X_{i}$. (Note that every $z \in N(s) \cap N\left(X_{0}\right)$ is contained in one of the X_{i} 's by the criticality of $G+s$.) So by the choice of $\mathcal{W}, R \cap W_{i} \cap W_{j}^{*} \neq \emptyset$ and $R \cap W_{j} \cap W_{i}^{*} \neq \emptyset$ follows.

By (10),

$$
2 k+2=\bar{d}\left(W_{i}\right)+\bar{d}\left(W_{j}\right) \geq \bar{d}\left(W_{i} \cap W_{j}^{*}\right)+\bar{d}\left(W_{i}^{*} \cap W_{j}\right)+d\left(s, W_{i}-W_{j}^{*}\right)+d\left(s, W_{j}-W_{i}^{*}\right) \geq 2 k+2
$$

and so we have equality throughout. Thus all edges from s to W_{i}, other than the single edge $s x_{0}$, end in $W_{i} \cap W_{j}^{*}$ and $d\left(s, X_{0}\right)=1$. Hence $R \cap W_{j} \cap W_{i}^{*}=\left(R \cap W_{j}\right)-x_{0}$. Since $d\left(s, W_{i} \cup W_{j}\right)=$ $\bar{d}\left(W_{i} \cup W_{j}\right)-n_{G}\left(W_{i} \cup W_{j}\right) \leq k+2-l$, we have $d\left(s,\left(W_{i} \cup W_{j}\right)-X_{0}\right) \leq k+2-l-d\left(s, X_{0}\right)$. We can now use (18) and the fact that $q \geq(k-l+1)(k-1)+4$ to deduce that $r \geq 3$. Thus $\emptyset \neq$ $\left(R \cap W_{j}\right)-x_{0} \subseteq W_{j} \cap W_{i}^{*} \cap W_{h}^{*}$ holds for all distinct $i, j, h \in\{1, \ldots, r\}$. Applying Lemma 2.15 we deduce that $K=N_{G}\left(X_{0}\right)$ is a $(k-1)$-shredder with $r+1$ leaf components $C_{0}, C_{1}, \ldots, C_{r}$ in $G+s$, where $V\left(C_{0}\right)=X_{0}$ and $V\left(C_{i}\right)=W_{i}-X_{0}$ for $1 \leq i \leq r$.

We complete the proof of the lemma by showing that $M=R$ and hence that $r=q$. Suppose that $M \neq R$. Then $\mathcal{T} \neq \emptyset$ and we may choose $X_{1} \in \mathcal{T}$. Since $X_{1} \cap N\left(X_{0}\right) \neq \emptyset$, we have $X_{1} \cap K \neq \emptyset$. Since $X_{1} \cap R=\emptyset, N\left(X_{1}\right) \cap C_{i} \neq \emptyset$ for $0 \leq i \leq r$. Using $r=|R| \geq q-d\left(s, \cup_{i=0}^{m} X_{i}\right)$, and the facts that $d\left(s, X_{0}\right)=1$, and $q \geq(k-l+1)(k-1)+4$, we may use (18) to deduce that $r \geq k+2$. This contradicts the fact that X_{1} is tight since $\bar{d}\left(X_{1}\right) \geq n_{G}\left(X_{1}\right) \geq r+1$.

6 Graphs Containing Shredders with many Components

We show in this section that if $\hat{b}(G)$ and $t(G)$ are large compared to k and $\hat{b}(G)-1 \geq\lceil t(G) / 2\rceil$ then $a_{k}(G)=\hat{b}(G)-1$. We need several new observations on $(k-1)$-shredders. We assume throughout this section that $G+s$ is a k-critical extension of an l-connected graph G, and that K is a $(k-1)$-shredder of G satisfying $d(s) \leq 2 \hat{b}(K)-2$.

Lemma 6.1 Suppose $\hat{b}(K) \geq 4 k+3(k-l)-1$. Then
(a) the number of components C of $G-K$ with $d(s, C) \geq 3$ is at most $b(K)-2 k-1$,
(b) $|N(s) \cap K| \leq 1$, and
(c) if $d(s, x)=j \geq 1$ for some $x \in K$ then $k-d_{G}(x)=j$.

Proof: Let w be the number of components C of $G-K$ with $d(s, C) \geq 3$. Then $d(s) \geq 3 w+$ $(b(K)-w)$. Thus
$2 w \leq d(s)-b(K) \leq 2 \hat{b}(K)-2-b(K)=2 b(K)+2 \delta(K)-2-b(K)=2 b(K)+3 \delta(K)-2-\hat{b}(K)$.
Since $\delta(K) \leq k-l$ and $\hat{b}(K) \geq 4 k+3(k-l)-1$, we have $w \leq b(K)-2 k-1$. This proves (a).
Since $G+s$ is a critical extension of G, each vertex in $N(s)$ is contained in a tight set of $G+s$. Thus (b) will follow from the next claim.

Claim 6.2 At most one vertex of K belongs to a tight set in $G+s$.
Proof: Suppose that there exist two distinct vertices $x_{1}, x_{2} \in K$ and tight sets Y_{1}, Y_{2} in $G+s$ such that $x_{1} \in Y_{1}, x_{2} \in Y_{2}$. Let $Y=Y_{1} \cup Y_{2}$ and let $\mathcal{D}=\{C: C$ is a component of $G-K, C \cap(Y \cup N(Y)) \neq \emptyset)$. We have $|\mathcal{D}| \leq 2 k$, since $\bar{d}(Y) \leq \bar{d}\left(Y_{1}\right)+\bar{d}\left(Y_{2}\right) \leq 2 k$ and for every $C \in \mathcal{D}$ either $C-Y \neq \mathfrak{0}$, in which case $N(Y) \cap C \neq \emptyset$ holds, or $C \subset Y$, in which case $d(s, C \cap Y) \geq 1$ holds by (7).

Since $\hat{b}(K) \geq 4 k+3(k-l)-1$ we have $b(K) \geq 4 k+2(k-l)-1$. Thus we may choose a component C^{\prime} of $G-K$ such that $C^{\prime} \notin \mathcal{D}$. Then $C^{\prime} \cap N(Y)=\emptyset$ and hence $x_{1}, x_{2} \notin N\left(C^{\prime}\right)$. Hence $n\left(C^{\prime}\right) \leq k-3$ and $d\left(s, C^{\prime}\right) \geq 3$. Since we have at least $b(K)-2 k$ choices for C^{\prime}, this contradicts (a).

To prove (c), we choose a tight set X containing x. By Claim 6.2, $X \cap K=\{x\}$. If $X=\{x\}$ then, since X is tight, we have $d(s, x)=k-d_{G}(x)$, as required. Thus we may suppose that $X-K \neq \emptyset$. By Lemma 2.4, $d(s, x)=1$.

We first consider the case when X intersects two distinct components C_{1}, C_{2} of $G-K$. Since $N_{G}\left(C_{1} \cap X\right) \subseteq C_{1} \cup K$ and $N_{G}\left(C_{1} \cap X\right) \subseteq N_{G}(X) \cup\{x\}$, we have

$$
\bar{d}(X) \geq \bar{d}\left(C_{1} \cap X\right)-1+d(s, x)+d\left(s, C_{2} \cap X\right)+\left|N_{G}\left(C_{2} \cap X\right) \cap C_{2}\right| .
$$

If $C_{2} \subseteq X$ then $d\left(s, C_{2} \cap X\right) \geq 1$, and if $C_{2} \nsubseteq X$ then $\left|N_{G}\left(C_{2} \cap X\right) \cap C_{2}\right| \geq 1$. Since $d(s, x)=1$ and $\bar{d}\left(C_{1} \cap X\right) \geq k$, we deduce that $\bar{d}(X) \geq k+1$. This contradicts the fact that X is tight.

Thus X intersects a unique component C of $G-K$. Let $M=C \cap X$. Then $N_{G}(M) \subseteq C \cup K$. Since $\left(N_{G}(M)-\{x\}\right) \cup N_{G}(x) \subseteq N_{G}(X)$, we may use (7) to obtain

$$
\begin{aligned}
k=\bar{d}(X) & \geq \bar{d}(M)-1+d(s, x)+\left|N_{G}(x)-\left(M \cup N_{G}(M)\right)\right| \\
& \geq k-1+d(s, x)+|N(x)-M-N(M)|
\end{aligned}
$$

This implies that $N_{G}(x) \subseteq M \cup N_{G}(M)$. Therefore $\hat{b}(K) \leq b(K)+1$, and $x \notin N_{G}\left(C^{\prime}\right)$ for every component $C^{\prime} \neq C$ of $G-K$. Hence $d\left(s, C^{\prime}\right) \geq k-n_{G}\left(C^{\prime}\right) \geq 2$. For C we have $d(s, C) \geq 1$ by (7). This gives $d(s) \geq 2(b(K)-1)+1+d(s, x)=2 b(K) \geq 2 \hat{b}(K)-2$. Thus equality must hold throughout $\hat{b}(K)=b(K)+1$ and $\delta(K)=1$. Since $N(s) \cap K=\{x\}$ by (b), we have $k-d_{G}(x)=\delta(K)=1=$ $d(s, x)$.

We shall use the following construction to augment G with $\hat{b}(G)-1$ edges in the case when $d(s, K)=0$ and $b(K)=\hat{b}(G)=b$. Let C_{1}, \ldots, C_{b} be the components of $G-K$ and let $w_{i}=$ $d_{G+s}\left(s, C_{i}\right), 1 \leq i \leq b$. Note that $w_{i} \geq 1$ by (7). Since $d(s) \leq 2 b-2$, there exists a tree T on b vertices $C_{1}, C_{2}, \ldots, C_{b}$ with degree sequence d_{1}, \ldots, d_{b} such that $d_{i} \geq w_{i}$, for $1 \leq i \leq b$. (It will be clear from the context whether the label C_{i} refers to a component of $G-K$ or a vertex of T.) Let F be a set of edges joining vertices of $N_{G+s}(s)$ with $d_{F}(v) \geq d_{G+s}(s, v)$ for every $v \in V(G)$ and such that the graph obtained from $(V-K, F)$ by contracting $C_{1}, C_{2}, \ldots, C_{b}$ to single vertices is T. Thus $|F|=|E(T)|=b-1$. We shall say that $G+F$ is a forest augmentation of G with respect to K and $G+s$, and prove that $G+F$ is k-connected. Note that since $d_{G+s}(s, K)=0$, there are no k-deficient fragments of G contained in K by (7).

Lemma 6.3 Suppose $d(s, K)=0$ and let $G+F$ be a forest augmentation of G with respect to K and $G+s$. If X is a k-deficient fragment in $G+F$ then $|X \cap K| \geq 2$.

Proof: We proceed by contradiction. Suppose X is a k-deficient fragment in $G+F$ with $|X \cap K| \leq$ 1. Let $X^{*}=V-X-N_{G+F}(X)$. Replacing X by X^{*} if necessary, we may assume that

$$
\begin{equation*}
\left|X^{*} \cap K\right| \geq|X \cap K| \tag{20}
\end{equation*}
$$

We first suppose that $L \subseteq X$ for some leaf L of T. Since $d(s, L) \leq d_{T}(L), L$ is a leaf component of K in $G+s$. Hence $K \subseteq X \cup N_{G}(X)$ by Lemma 2.14. It follows that $X^{*} \cap K=\emptyset$. Hence $X \cap K=\emptyset$ by (20) and $K \subseteq N_{G}(X)$. If X properly intersects some component $C_{i} \neq L$ of $G-K$ then $n_{G}(X) \geq k$ follows, contradicting the fact that X is k-deficient in $G+F$. Since $X^{*} \neq \emptyset$, there exists a component C of $G-K$ for which $C \cap X=\emptyset$. Choose a path P from L to C in T. Let C^{\prime} be the first component for which the edge on P which enters C^{\prime} corresponds to an edge in F which connects X to $V-X$. For this component we have $\left|N_{G+F}(X) \cap C^{\prime}\right| \geq 1$, so $n_{G+F}(X) \geq|K|+1=k$, as required. Thus we may assume that

$$
\begin{equation*}
L \cap X \neq L \text { for each leaf } L \text { of } T . \tag{21}
\end{equation*}
$$

Choose a component D of $G-K$ such that $D \cap X \neq \emptyset$ and let R be the set of edges of F which are incident with $X \cap D$. Let e_{1}, \ldots, e_{r} be the edges incident to D in T, which correspond to the edges in R. Choose r longest paths P_{1}, \ldots, P_{r} in T starting at D and containing the edges e_{1}, \ldots, e_{r}. Let A be the set of all paths $P_{j}, 1 \leq j \leq r$, which contain an edge $C_{s} C_{t}$ corresponding to an edge $u_{j} v_{j}$ in F with $u_{j} \in C_{s} \cap X$ and $v_{j} \in C_{t}-X$. For every such path we have $v_{j} \in N_{G+F}(X)$. Let
$A^{\prime}=\left\{v_{j}: P_{j} \in A\right\}$. Let B be the set of paths $P_{j}, 1 \leq j \leq r$, which do not belong to A and choose $P_{j} \in B$. Since the first edge of P_{j} corresponds to an edge in F which is incident to $D \cap X$, every edge of P_{j} corresponds to an edge of F joining two vertices of X. In particular, the last edge of P_{j} is incident to a leaf L_{j} of T which is distinct from D and for which $X \cap L_{j} \neq \emptyset$. Since $X \cap L_{j} \neq L_{j}$ by (21), we may choose a vertex $w_{j} \in N_{G}(X) \cap L_{j}$. Let $B^{\prime}=\left\{w_{j}: P_{j} \in B\right\}$. Clearly, $|A|=\left|A^{\prime}\right|$, $|B|=\left|B^{\prime}\right|$ and $|A|+|B|=r$. The above observations imply that

$$
\begin{equation*}
A^{\prime} \cup B^{\prime} \cup\left(N_{G}(D \cap X)-(X \cap K)\right) \cup\left(N_{G}(X \cap K)-X\right) \subseteq N_{G+F}(X) . \tag{22}
\end{equation*}
$$

Since $G+s$ is (k, s)-connected, $r \geq k-n_{G}(D \cap X)$. Since $A^{\prime}, B^{\prime}, N_{G}(D \cap X)$ are pairwise disjoint, we may deduce that, if $X \cap K=\emptyset$, then X is not k-deficient in $G+F$. Hence $X \cap K=\{x\}$ for some $x \in K$.

Let L be a leaf of T distinct from D. Then L is a leaf component of K in $G+s$ so $N_{G}(x) \cap L \neq \emptyset$. Hence either $\left(N_{G}(x) \cap L\right)-X \neq \emptyset$, or $X \cap L \neq \emptyset$ and, by (21), $N_{G}(X) \cap L \neq \emptyset$. It follows that, in both cases, we may choose $y \in N_{G}(X) \cap L$. Thus

$$
A^{\prime} \cup B^{\prime} \cup\left(N_{G}(D \cap X)\right) \cup\{y\} \subseteq N_{G+F}(X) .
$$

Clearly $y \notin N_{G}(D \cap X)$. Since X is k-deficient in $G+F$, we must have $y \in A^{\prime} \cup B^{\prime}$. Thus

$$
\begin{equation*}
L \cap\left(A^{\prime} \cup B^{\prime}\right) \neq \emptyset \text { for each leaf } L \text { of } T \text { distinct from } D . \tag{23}
\end{equation*}
$$

The definitions of A^{\prime}, B^{\prime} now imply that the paths $P_{j}, 1 \leq j \leq r$, cover T, and hence that each edge of F which is incident with D, is incident with $D \cap X$. Since $V(F)=N_{G+s}(s)$, we have $N_{G+s}(s) \cap D \subseteq X$. Since D can be any component of $G-K$ which intersects X we may deduce that

$$
\begin{equation*}
\text { If } D \cap X \neq \emptyset \text { for some component } D \text { of } G-K \text { then } N_{G+s}(s) \cap D \subseteq X \text {. } \tag{24}
\end{equation*}
$$

Suppose C is a component of $G-K$ with $C \cap X=\emptyset$. Then (23) implies that C is a leaf of T and $A^{\prime} \cap C \neq \emptyset$. Furthermore, the argument used in the derivation of (23) gives $A^{\prime} \cap C=\{y\}=N_{G}(x) \cap L$. Since $y \in A^{\prime} \subseteq N_{G+s}(s), y$ is the unique neighbour of s in C. Thus

$$
\begin{equation*}
\text { If } C \cap X=\emptyset \text { for some component } C \text { of } G-K \text { then } N_{G+s}(s) \cap C \subseteq N_{G}(x) \text {. } \tag{25}
\end{equation*}
$$

Properties (24) and (25) imply that $N_{G+s}(s) \subseteq X \cup N_{G}(X)$. Thus $N_{G+s}(s) \cap X^{*}=\emptyset$ and $\bar{d}\left(X^{*}\right) \leq$ $n_{G}(X)<k$. This contradicts the (k, s)-connectivity of $G+s$ and completes the proof of Lemma 6.3.

Lemma 6.4 Suppose $d(s, K)=0$ and $\hat{b}(K)=b(K) \geq 4 k+3(k-l)-1$. Let $G+F$ be a forest augmentation of G with respect to K and $G+s$. Then $G+F$ is k-connected.

Proof: We proceed by contradiction. Let X be a k-deficient fragment in $G+F$. Then X^{*} is also k-deficient so by Lemma 6.3, $|X \cap K| \geq 2$ and $\left|X^{*} \cap K\right| \geq 2$. Since $\left|V-\left(K \cup X \cup X^{*}\right)\right| \leq$ $V-\left(X \cup X^{*}\right) \mid \leq k-1$, there are at least $b_{G}(K)-(k-1)$ components C of $G-K$ which are contained in $X \cup X^{*}$. There is no edge from X to X^{*} in $G+F$, so for each such component either $C \subseteq X$ or $C \subseteq X^{*}$ holds. Thus we have $N_{G}(C) \subseteq K-X^{*}$ or $N_{G}(C) \subseteq K-X$, and so $n_{G}(C) \leq k-3$. Hence
$d_{G}(s, C) \geq 3$ by (7). This contradicts Lemma 6.1(a).
Our final step is to show how to augment G with $\hat{b}(K)-1$ edges when $d(s, K) \neq 0$. In this case, Lemma 6.1(b) implies that there is exactly one vertex $x \in K$ which is adjacent to s. We use the next lemma to split off all edges from s to x and hence reduce to the case when $d(s, K)=0$.

Lemma 6.5 Suppose $d(s, x) \geq 1$ for some $x \in K$ and $d(s) \geq(k+1)(k-l+1)$. Then there exists a sequence of $d(s, x)$ admissible splits at s which split off all edges from s to x.

Proof: We have $d(s, x) \leq k-l$. Suppose we get stuck after splitting off some copies of $s x$, i.e. we obtain a graph $H+s$ where some edge $s x$ cannot be split off. Since $d_{H+s}(s) \geq d_{G+s}(s)-2(k-$ $l-1) \geq(k-l+1)(k-1)+4$, we can use Lemma 5.3 to deduce that there is a $(k-1)$-shredder K^{\prime} in H with $b_{H}\left(K^{\prime}\right)=d_{H+s}(s)$ and with x in one of the components of $H-K^{\prime}$. Let u, v be two neighbours of s in H distinct from x and let C_{u} and C_{v} be the components of $H-K^{\prime}$ containing u and v respectively. By Lemma 2.14, there exist $k-1$ openly disjoint paths between u and v in H containing only verticies of C_{u}, C_{v} and K^{\prime}, and hence avoiding x. Since all edges of $E(H)-E(G)$ are incident with x, these paths exist in G as well.

Since $b_{G}(K) \geq \hat{b}_{G}(K)-(k-l) \geq\left(d_{G+s}(s)+2\right) / 2-(k-l) \geq k+1 \geq d_{G+s}(s, V-x)-d_{H+s}(s, V-$ $x)+2$, and each component of $G-K$ contains a neighbour of s in G, we can choose the two neighbours u, v of s in $H+s$ to belong to different components in $G-K$. But for such a choice of u, v there do not exist $k-1$ disjoint paths from u to v in $G-x$, contradicting the above claim.

We can now prove our augmentation result for graphs G for which $\hat{b}(G)$ is large.
Theorem 6.6 Suppose that G is l-connected, $\hat{b}(G) \geq 4 k+4(k-l)-1, t(G) \geq(k+1)(k-l+1)$ and $\hat{b}(G)-1 \geq\lceil t(G) / 2\rceil$. Then $a_{k}(G)=\hat{b}(G)-1$.

Proof: Let $G+s$ be a k-critical extension of G. Then $d(s)=t(G)$ by Lemma 5.2. Let K be a $(k-1)$-shredder in G with $\hat{b}(K)=\hat{b}(G)$. Then $2 \hat{b}(K)-2 \geq t(G)=d(s)$. Suppose $d(s, K)=0$. Then $\hat{b}(G)=b(K)$. Let $G+F$ be a forest augmentation of G with respect to K and $G+s$. Then $|F|=b(G)-1$ and by Lemma 6.4, $G+F$ is the required k-augmentation of G. Hence we may assume that $d(s, K) \geq 1$.

Applying Lemma 6.1(c), we deduce that $\delta_{G}(K)=d_{G+s}(s, K)=d_{G+s}(s, x)$ for some $x \in K$. By Lemma 6.5, we can construct a graph $H+s$ by performing a sequence of $d_{G}(s, x)$ admissible splits at s which split off all edges from s to x in $G+s$. Since we only split edges incident to $x \in K$ to form $H+s$, we have $G-K=H-K$ and so $b_{G}(K)=b_{H}(K)$. Hence

$$
\begin{aligned}
d_{H+s}(s) & =d_{G+s}(s)-2 d_{G+s}(s, x)=d_{G+s}(s)-2 \delta_{G}(K) \leq 2 \hat{b}_{G}(K)-2-2 \delta_{G}(K)= \\
& =2 b_{G}(K)+2 \delta_{G}(K)-2-2 \delta_{G}(K)=2 b_{G}(K)-2=2 b_{H}(K)-2 .
\end{aligned}
$$

Thus we have $d_{H+s}(s) \leq 2 b_{H}(K)-2$, and $d_{H+s}(s, K)=0$. Also note that the splittings add a set F_{0} of $\delta_{G}(K)$ new edges to G to form H, and that $b_{H}(K)=b_{G}(K) \geq \hat{b}_{G}(K)-(k-l) \geq 4 k+3(k-l)-1$. Let $H+F_{1}$ be a forest augmentation of H with respect to K and $H+s$. Then $\left|F_{1}\right|=b_{H}(K)-1=$ $b_{G}(K)-1$, and $H+F_{1}$ is k-connected by Lemma 6.4. Thus $G+F_{0}+F_{1}=H+F_{1}$ is the required k-augmentation of G with $\delta_{G}(K)+b_{G}(K)-1=\hat{b}_{G}(K)-1$ edges.

We will apply Theorem 6.6 to graphs which do not satisfy $\hat{b}(G)-1 \geq\lceil t(G) / 2\rceil$ using saturating edges. Recall that a set F of new edges is saturating for G if $t(G+F)=t(G)-2|F|$.

Lemma 6.7 If F is a saturating set of edges for an l-connected graph G with $\hat{b}(G+F) \geq 4 k+$ $4(k-l)-1, t(G+F) \geq(k+1)(k-l+1)$, and $\hat{b}(G+F)-1=\lceil t(G+F) / 2\rceil$, then $a_{k}(G)=$ $\lceil t(G) / 2\rceil$.

Proof: By Theorem 6.6 the graph $G+F$ can be made k-connected by adding a set F^{\prime} of $\lceil t(G+$ $F) / 2\rceil$ edges. Since F is saturating, we have $t(G)=t(G+F)+2|F|$. Therefore the set $F \cup F^{\prime}$ is an augmenting set for G of size $\lceil t(G) / 2\rceil$. Since $a_{k}(G) \geq\lceil t(G) / 2\rceil$, the lemma follows.

7 Augmenting Connectivity by at least Two

Throughout this section we assume that $G=(V, E)$ is an l-connected graph on at least $k+1$ vertices and that $l \leq k-2$. We shall show that if $a_{k}(G)$ is large compared to k, then $a_{k}(G)=\max \{\hat{b}(G)-$ $1,\lceil t(G) / 2\rceil\}$. Our proof uses Theorems 4.17 and 6.6. We shall show that if $a_{k}(G)$ is large then either we can add a saturating set of edges F so that $G+F$ is $(k-1)$-connected, or else G has a ($k-2$)-shredder with many components. If the latter occurs then we show directly that we can make $G k$-connected by adding $\lceil t(G) / 2\rceil$ edges. We will occasionally consider two different extensions of the same graph H. To distinguish between them we shall label one of them as $H+s$ and the other as $H \oplus s$.

Let $G+s$ be a k-critical extension of G. Construct a $(k-1)$-critical extension $G \oplus s$ of G from $G+s$ by deleting a set of edges incident to s. Let $f=(k-l+1)(k-1)+4$ be the bound on the number of non-admissible pairs containing a fixed edge given by Lemma 5.3.

Lemma 7.1 If $d_{G+s}(s) \geq f(k-l+1) /(k-l)$ then $d_{G+s}(s)-d_{G \oplus s}(s) \geq d_{G+s}(s) /(k-l+1)$.
Proof: If $d_{G \oplus s}(s) \leq f$ then the lemma is trivial. Otherwise by Lemma 5.2(a) there exists a family \mathcal{F} of pairwise disjoint $(k-1)$-deficient fragments in G such that $d_{G \oplus s}(s)=\sum_{\mathcal{F}}(k-1-n(X))$. Since $G+s$ is (k, s)-connected we have $d_{G+s}(s) \geq \sum_{\mathcal{F}}(k-n(X))$. Hence $d_{G+s}(s) \geq d_{G \oplus s}(s)+|\mathcal{F}|$. Since $d_{G \oplus s}(s, X) \leq k-l$ for each $X \in \mathcal{F}$, we have $|\mathcal{F}| \geq d_{G \oplus s}(s) /(k-l)$. Thus $d_{G+s}(s) \geq d_{G \oplus s}(s)+$ $d_{G \oplus s}(s) /(k-l)=(k-l+1) d_{G \oplus s}(s) /(k-l)$. Hence $d_{G+s}(s)-d_{G \oplus s}(s) \geq d_{G+s}(s) /(k-l+1)$.

We next perform a sequence of $(k-1)$-admissible splits at s in $G \oplus s$ and obtain $G_{1} \oplus s$. We do this according to the following rules. If $d_{G \oplus s}(s) \leq 2 f$ then we put $G_{1} \oplus s=G \oplus s$. If $d_{G \oplus s}(s) \geq$ $2 f+1$ then we perform $(k-1)$-admissible splits until either $d_{G_{1} \oplus s}(s) \leq 2 f$, or $d_{G_{1} \oplus s}(s) \geq 2 f+1$ and there is no $(k-1)$-admissible split at s in $G_{1} \oplus s$. We then add all the edges of $(G+s)-(G \oplus s)$ to $G_{1} \oplus s$ and obtain $G_{1}+s$. We shall refer to the edges of $(G+s)-(G \oplus s)$ as new edges of $G_{1}+s$.

Lemma 7.2 If $d_{G+s}(s) \geq f(k+l-1)$ then $G_{1}+s$ is a k-critical extension of G_{1}.
Proof: Suppose $G_{1}+s$ is not (k, s)-connected. If $d_{G_{1} \oplus s}(s) \leq f$ then $G_{1} \oplus s=G \oplus s$ and $G_{1}+$ $s=G+s$, contradicting the assumption that $G+s$ is (k, s)-connected. Hence $d_{G_{1} \oplus s}(s) \geq f+1$. Choose a minimal fragment X of G_{1} such that $\bar{d}_{G_{1}+s}(X)<k$. Since $\bar{d}_{G_{1} \oplus s}(X) \geq k-1$ we have
$\bar{d}_{G_{1}+s}(X)=k-1=\bar{d}_{G_{1} \oplus s}(X)$ and no new edge of $G_{1}+s$ is incident with X. Since $\bar{d}_{G+s}(X) \geq k$, there exists an edge $s x$ in $G+s$ with $x \in X$. Then $s x \in E(G \oplus s)$, since no new edge is incident with X. Hence $s x$ is $(k-1)$-critical in $G \oplus s$ so there exists a minimal tight set Y with $x \in Y$ and $\bar{d}_{G \oplus s}(Y)=k-1$. Hence $\bar{d}_{G_{1} \oplus s}(Y)=k-1$. Working in $G_{1} \oplus s$ we may use Lemma 5.1(a) to deduce that $\bar{d}_{G_{1} \oplus s}(X \cap Y)=k-1$. Since there are no new edges incident to X, this gives $\bar{d}_{G_{1}+s}(X \cap Y)=k-1$. Now the minimality of X implies that $X \subseteq Y$. Since $\bar{d}_{G \oplus s}(Y)=\bar{d}_{G_{1} \oplus s}(Y)$, we now deduce that $\bar{d}_{G \oplus s}(X)=\bar{d}_{G_{1} \oplus s}(X)$. Thus $\bar{d}_{G \oplus s}(X)=k-1$ and the minimality of Y gives $X=Y$. Since no new edge is incident with X this gives $\bar{d}_{G+s}(Y)=\bar{d}_{G \oplus s}(Y)=k-1$. Thus Y is k-deficient in $G+s$, contradicting the fact that $G+s$ is (k, s)-connected.

Criticality of $G_{1}+s$ follows from the criticality of $G+s$, since splitting off pairs of edges from s cannot increase $\bar{d}(X)$ for any $X \subseteq V$.

Using Lemma 5.3, we can deduce that either $d_{G_{1} \oplus s}(s)$ is small or else there exists a $(k-2)$ shredder K in G_{1} such that $G_{1}-K$ has $d_{G_{1} \oplus s}(s)$ components. In the first case, we show that there exists a sequence of k-admissible splits in $G_{1}+s$ such that, in the resulting graph $G_{1}^{\prime}+s, G_{1}^{\prime}$ is ($k-1$)-connected and then apply Theorems 6.6 and 4.17. We accomplish this by ensuring that $\kappa\left(x, y, G_{1}^{\prime}\right) \geq k-1$ for every $x, y \in N_{G_{1} \oplus s}(s)$. This is possible since there are many new edges and hence $d_{G_{1}+s}(s)$ is large compared to $d_{G_{1} \oplus s}(s)$. We proceed incrementally using the lemmas below. In the second case, we show directly that we can make $G k$-connected by adding $\lceil t(G) / 2\rceil$ edges.

Henceforth we shall assume that $G_{1}^{\prime}+s$ is obtained from $G_{1}+s$ by performing a sequence of k-admissible splits and that $T \subseteq V$ is a cover of all $(k-1)$-deficient fragments of G_{1}^{\prime}. (In proving the theorem we will take $T=N_{G_{1} \oplus s}(s)$.) Let $|T|=\tau$.

Lemma 7.3 If $\kappa\left(u, v, G_{1}^{\prime}\right) \geq k-1$ for all $u, v \in T$ then G_{1}^{\prime} is $(k-1)$-connected.
Proof: Suppose G_{1}^{\prime} has a fragment X with $n(X) \leq k-2$. Then we may choose $u \in X \cap T$ and $v \in X^{*} \cap T$, contradicting the fact that $\kappa(u, v) \geq k-1$.

Lemma 7.4 Let $s z, s w \in E\left(G_{1}^{\prime}+s\right)$ and suppose that the pair $s z$, sw is not k-admissible. If $\kappa\left(z, w, G_{1}^{\prime}\right) \leq$ $k-2$ then there are at most f pairs of edges $s z, s x$ which are not k-admissible in $G_{1}^{\prime}+s$.

Proof: Let $R=\left\{s x: s z, s x\right.$ is not k-admissible in $\left.G_{1}^{\prime}+s\right\}$. Suppose that $r=|R|>f$. Then by Lemma 5.3, there is a $(k-1)$-shredder K in G_{1}^{\prime} with $r+1$ leaf components in $G_{1}^{\prime}+s$ such that z as well as each vertex $x, s x \in R$, is in one of these components. By Lemma 2.14, $\kappa(z, x) \geq k-1$ for every such x. Taking $x=w$ gives a contradiction.

Lemma 7.5 Suppose that $d_{G_{1}^{\prime}+s}(s) \geq(f+1)(2(k-2)(f+2)+\tau)+(k-2)(k-l-2)$. Choose $u, v \in T$ and suppose that $\kappa\left(u, v, G_{1}^{\prime}\right)=m \leq k-2$. Then there exists a sequence of at most two k-admissible splits such that, for the resulting graph $G_{1}^{\prime \prime}+s$, we have $\kappa\left(u, v, G_{1}^{\prime \prime}\right)=m+1$.

Proof: Let X_{u} and X_{v} be the smallest sets which contain u and v, respectively, separate u and v, and have precisely m neighbours. It is well-known that these unique smallest separators exist. Since $n_{G_{1}^{\prime}}\left(X_{u}\right)=n_{G_{1}^{\prime}}\left(X_{v}\right)=m \leq k-2$, there exist vertices $x \in X_{u} \cap N_{G_{1}^{\prime}+s}(s)$ and $y \in X_{v} \cap N_{G_{1}^{\prime}+s}(s)$. It is also known that there exist m paths P_{1}, \ldots, P_{m} from u to v, and two paths P_{0} and P_{m+1}, one from
u to x and the other from v to y such that all these $m+2$ paths are vertex-disjoint apart from at u and v. (Note that $u=x$ or $v=y$ is possible.) We may assume, without loss of generality, that $N_{G_{1}^{\prime}+s}(s) \cap\left(V\left(P_{0}\right)-x\right)=\emptyset$ and $N_{G_{1}^{\prime}+s}(s) \cap\left(V\left(P_{m+1}\right)-y\right)=\emptyset$. Let $Q=\cup_{i=1}^{m} V\left(P_{i}\right)-\{u, v\}$. If the pair $s x, s y$ is k-admissible, we have $\kappa\left(u, v, G_{1}^{\prime}+x y\right) \geq m+1$, as required. If not, we need to choose k-admissible pairs in a more complicated way, as in the proof of Lemma 4.13.

Suppose there exists a path $P_{i}(1 \leq i \leq m)$ with $d_{G_{1}^{\prime}+s}\left(s, V\left(P_{i}\right)\right) \geq 2 f+(k-l)+1$. By Lemma 7.4 we may choose an admissible pair $s x, s a$ in $G_{1}^{\prime}+s$ such that a is a neighbour of s on P_{i} as close to v as possible. Lemma 7.4 implies that there are at most f edges from s to $P_{i}(a, v]$. If $\kappa\left(u, v, G_{1}^{\prime}+x a\right) \geq m+1$ then we are done. Otherwise we may split $s y, s b$ in $G_{1}^{\prime}+s+x a$, where b a neighbour of s on P_{i} as close to u as possible. Lemma 7.4 implies that there are at most f edges from s to $P_{i}[u, b)$. Since $d(s, w) \leq k-l$ for each $w \in V\left(P_{i}\right)$, the vertices x, b, a, y appear on P_{i} in this order. Hence there exist two vertex-disjoint $u v$-paths on vertex set $V\left(P_{i}\right) \cup V\left(P_{0}\right) \cup V\left(P_{m+1}\right)$, showing $\kappa\left(u, v, G_{1}^{\prime}+x a+y b\right) \geq m+1$, as required. Thus we may assume that no such path exists and hence $d_{G_{1}^{\prime}+s}(s, V-Q)>d_{G_{1}^{\prime}+s}(s)-m(2 f+k-l) \geq(f+1)(2(k-2)(f+1)+\tau)$.

Let H be the graph obtained from $G_{1}^{\prime}-Q$ by deleting any edges joining u and v. Let $C_{0}, C_{1}, \ldots, C_{p+1}$ be the components of H which each contain at least one neighbour of s, where $u, x \in V\left(C_{0}\right)$ and $v, y \in V\left(C_{p+1}\right)$. Suppose $d\left(s, C_{j}\right) \geq f+2$ for some $1 \leq j \leq p$. We may perform a k-admissible split $s x$, sa for some $a \in C_{j}$, and then a k-admissible split $s y, s b$ in $G_{1}^{\prime}+s+s a$ for some $b \in C_{j}$. These admissible pairs exist by Lemma 7.4. It is easy to see that $\kappa\left(u, v, G_{1}^{\prime}+x a+y b\right) \geq m+1$, as required. Thus we may assume that no such component exists. Similarly, if $d\left(s, C_{0}\right) \geq f+1$, then we may split $s y, s c$ for some $c \in C_{0}$ which is admissible with $s y$ in $G_{1}^{\prime}+s$, and we again have $\kappa\left(u, v, G_{1}^{\prime}+y c\right) \geq m+1$, as required. A similar construction holds if $d\left(s, C_{p+1}\right) \geq f+1$. Hence we have at least $d(s, V-Q) /(f+1) \geq 2(k-2)(f+1)+\tau$ components in H, each containing at least one neighbour of s.

Since each component C_{i} with $n_{G_{1}^{\prime}}(C) \leq k-2$ must contain a vertex from T, and $u, v \in T$, there are at least $2(k-2)(f+1)$ components $C_{i}, 1 \leq i \leq p$, with at least $k-1$ attachments on Q. Since $m \leq k-2$, we have at least $2 f+2$ components D_{1}, \ldots, D_{r} which have two attachments on the same path, P_{1} say. We now proceed as in the final part of the proof of Lemma 4.13. Let a_{j} be the attachment of D_{j} on P_{1} closest to u for $1 \leq j \leq r$. We first pick a D_{i} where a_{i} is among the $f+1$ attachment vertices a_{j} closest to u on P_{1} and we choose a k-admissible pair $s y, s b$ with $b \in D_{i}$. This pair exists by Lemma 7.4. Then we pick a D_{h} where a_{h} is among the $f+1$ attachment vertices a_{j} closest to v on P_{1} and we choose a k-admissible pair $s x, s a$ with $a \in D_{h}$. This pair exists by Lemma 7.4. Note that a_{i} either occurs before a_{h} on P_{1} or $a_{i}=a_{h}$. Hence, using the fact that the components D_{j} have at least two attachments on P_{1} and by the choice of a_{i}, a_{h}, there exist two openly disjoint $u v$-paths in $G_{1}^{\prime}+x a+y b$, using vertices from $V\left(P_{1}\right) \cup V\left(P_{0}\right) \cup V\left(P_{m+1}\right) \cup D_{i} \cup D_{h}$ only. Therefore $\kappa\left(u, \nu, G_{1}^{\prime}+x a+y b\right) \geq m+1$, as required.

Applying this lemma iteratively to all pairs of vertices in T, starting with $G_{1}^{\prime}+s=G_{1}+s$ and using the fact that f is a decreasing function of l, we obtain:

Corollary 7.6 Suppose that

$$
d_{G_{1}+s}(s) \geq(f+1)(2(k-2)(f+2)+\tau)+(k-2)(k-l-2)+2 \tau^{2}(k-l-1) .
$$

Then there exists a sequence of at most $\tau^{2}(k-l-1) k$-admissible splits such that, for the resulting graph $G_{1}^{\prime}+s$, we have $\kappa\left(G_{1}^{\prime}\right) \geq k-1$.

Theorem 7.7 If G is l-connected and $a_{k}(G) \geq 10(k-l+2)^{3}(k+1)^{3}$ then $a_{k}(G)=\max \{\hat{b}(G)-$ $1,\lceil t(G) / 2\rceil\}$.
Proof: We have $d_{G+s}(s)=t(G) \geq a_{k}(G)+1 \geq 10(k-l+2)^{3}(k+1)^{3}$ by Lemmas 2.10 and 5.2. If $\hat{b}(G)-1 \geq\lceil t(G) / 2\rceil$ then $a_{k}(G)=\hat{b}(G)-1$ by Theorem 6.6 and we are done. Thus we may assume that $\lceil t(G) / 2\rceil \geq \hat{b}(G)$ holds. We shall show that $a_{k}(G)=\lceil t(G) / 2\rceil$. We construct $G \oplus s$, $G_{1} \oplus s$, and $G_{1}+s$ as above. By Lemma 7.2, G_{1} is obtained from G by adding a saturating set F of edges. Note that adding a saturating edge to a graph G_{0} reduces $\left\lceil t\left(G_{0}\right) / 2\right\rceil$ by exactly one and $\hat{b}\left(G_{0}\right)$ by at most one. Thus, if $\lceil t(G+F) / 2\rceil \leq \hat{b}(G+F)-1$, then there exists $F^{\prime} \subseteq F$ such that $\left\lceil t\left(G+F^{\prime}\right) / 2\right\rceil=\hat{b}\left(G+F^{\prime}\right)-1$ and the theorem follows by applying Lemma 6.7. Hence we may assume that $\left\lceil t\left(G_{1}\right) / 2\right\rceil \geq \hat{b}\left(G_{1}\right)-1$. We have

$$
\begin{equation*}
t\left(G_{1}\right)=d_{G_{1}+s}(s) \geq d_{G+s}(s)-d_{G \oplus s}(s) \geq 10(k-l+2)^{2}(k+1)^{3} \tag{26}
\end{equation*}
$$

by Lemma 7.1. Using Lemma 5.3, we either have $d_{G_{1} \oplus s}(s) \leq 2 f$ or else $d_{G_{1} \oplus s}(s) \geq 2 f+1$ and there exists a $(k-2)$-shredder K in G_{1} such that $b_{G_{1}}(K)=d_{G_{1} \oplus s}(s)$.

Case 1: $d_{G_{1} \oplus s}(s) \leq 2 f$.
Let $T=N_{G_{1} \oplus s}(s)$. Then $|T|=\tau \leq 2 f$. Corollary 7.6 and the fact that $f \leq(k-l+1)(k+1)-2$ imply that there exists a sequence of at most $4(k-l+1)^{3}(k+1)^{2} k$-admissible splits in $G_{1}+s$ such that, for the resulting graph $G_{1}^{\prime}+s$, we have $\kappa\left(G_{1}^{\prime}\right) \geq k-1$. Note that $d_{G_{1}^{\prime}+s}(s) \geq 2(k-l+2)^{2}(k+$ $1)^{3}$, by (26). Thus there exists a saturating set of edges F for G such that $G_{1}^{\prime}=G+F$ is $(k-1)$ connected and $t(G+F) \geq 2(k-l+2)^{2}(k+1)^{3}$. As above, we may assume that $\lceil t(G+F) / 2\rceil \geq$ $\hat{b}(G+F)-1 \geq b(G+F)-1$ (otherwise we are done by Lemma 6.7). Since $G+F$ is $(k-1)$ connected, we can apply Theorem 4.17 to deduce that $a_{k}(G+F)=\lceil t(G+F) / 2\rceil$. Using (1) and the fact that $t(G)=t(G+F)+2|F|$ we have $a_{k}(G)=\lceil t(G) / 2\rceil$, as required.

Case 2: $d_{G_{1} \oplus s}(s) \geq 2 f+1$ and there is no $(k-1)$-admissible split at s in $G_{1} \oplus s$.
By Lemma 5.3, there exists a $(k-2)$-shredder K in G_{1} such that $b_{G_{1}}(K)=d_{G_{1} \oplus s}(s)$ and hence each component of $G_{1}-K$ is a leaf component. Using Lemma 2.14, and the fact that $N_{G_{1} \oplus s}(s)$ covers all ($k-1$)-deficient fragments X in G_{1}, we deduce:

Claim 7.8 G_{1} is $(k-2)$-connected.
Since $G_{1}+s$ is k-critical, Claim 7.8 and Lemma 2.4 imply:
Claim 7.9 For all $v \in V$ we have $d_{G_{1}+s}(s, v) \leq 2$. Furthermore $d_{G_{1}+s}(s, v)=2$ if and only if $d_{G_{1}}(v)=k-2$.

Let $G_{2}+s$ be the graph obtained from $G_{1}+s$ by splitting off as many k-admissible pairs of edges $s x, s y$ as possible in $G_{1}+s$ such that x and y belong to the same component of $G_{1}-K$. Then $G_{2}+s$ is a k-critical extension of G_{2}. Let $C_{1}, C_{2}, \ldots, C_{r}$ be the components of $G_{2}-K$. Note that these components have the same vertex sets as the components of $G_{1}-K$ and hence

$$
\begin{equation*}
r=d_{G_{1} \oplus s}(s) \geq 2 f+1 \tag{27}
\end{equation*}
$$

Let $d_{G_{2}+s}\left(s, C_{i}\right)=d_{i}$. Relabelling if necessary, we have $d_{1} \geq d_{2} \geq \ldots \geq d_{r}$.

Claim 7.10 $d_{G_{2}+s}(s, K)=0$.
Proof: Suppose $G_{2}+s$ has an edge $s x$ with $x \in K$. By criticality there exists a fragment X of G_{2} such that $x \in X$ and $\bar{d}_{G_{2}+s}(X)=k$. Since, by Caim 7.8, $x \in N_{G_{1}}\left(C_{i}\right)$ for all $1 \leq i \leq r$, we have $x \in N_{G_{2}}\left(C_{i}\right)$. Hence either $N_{G_{2}}(X) \cap C_{i} \neq \emptyset$, or $C_{i} \subseteq X$ and $d_{G_{2}+s}\left(s, X \cap C_{i}\right) \geq 1$, for all $1 \leq i \leq r$. Thus $\bar{d}_{G_{2}+s}(X) \geq r>k$, a contradiction.

Using Lemma 6.7 we may suppose that

$$
\begin{equation*}
\hat{b}\left(G_{2}\right) \leq\left\lceil t\left(G_{2}\right) / 2\right\rceil=\left\lceil d_{G_{2}+s}(s) / 2\right\rceil . \tag{28}
\end{equation*}
$$

Claim $7.11 d_{1} \leq\left(\sum_{i=2}^{r} d_{i}\right)-1$.
Proof: Suppose $d_{1} \geq\left(\sum_{i=2}^{r} d_{i}\right)$. Since $d_{1}+\left(\sum_{i=2}^{r} d_{i}\right)=d_{G_{2}+s}(s) \geq r \geq 2 f+1$ by Claim 7.10 and (27), we have $d_{1} \geq f+1$. Since there is no k-admissible pair of edges joining s to C_{1} in $G_{2}+s$, it follows from Lemma 5.3 that there is a $(k-1)$-shredder \hat{K} in G_{2} with each of the d_{1} neighbours of s in C_{1} in distinct components of $G_{2}-\hat{K}$ and at least one other component containing the remaining neighbours of s in $G_{2}+s$. Thus $b\left(G_{2}\right) \geq d_{1}+1$, and $\hat{b}\left(G_{2}\right) \geq b\left(G_{2}\right) \geq d_{1}+1 \geq\left(d_{G_{2}+s}(s) / 2\right)+1$. This contradicts (28).

Claim 7.12 Suppose X is a fragment in G_{2} with $|X \cap K| \leq\left|X^{*} \cap K\right|$.
(a) If $n_{G_{2}}(X)=k-2$, then either $X=C_{i_{1}} \cup C_{i_{2}} \cup \ldots \cup C_{i_{p}}$ for some $\left\{i_{1}, i_{2}, \ldots, i_{p}\right\} \subset\{1,2, \ldots, r\}$; or $X=Z_{i} \subset C_{i}$ for some $1 \leq i \leq r$;
(b) If $n_{G_{2}}(X)=k-1$, then either $X=Z_{i_{1}} \cup C_{i_{2}} \cup \ldots \cup C_{i_{p}}$ for some $\left\{i_{1}, i_{2}, \ldots, i_{p}\right\} \subseteq\{1,2, \ldots, r\}$ and $Z_{i_{1}} \subseteq C_{i_{1}}$; or $X=Z_{i_{1}} \cup Z_{i_{2}}$ for some $1 \leq i_{1}<i_{2} \leq r, Z_{i_{1}} \subseteq C_{i_{1}}, Z_{i_{2}} \subseteq C_{i_{2}}$, and $n_{G_{2}}\left(Z_{i_{1}}\right)=k-2=$ $n_{G_{2}}\left(Z_{i_{2}}\right)$.

Proof: Suppose $X \cap K \neq \emptyset$. Then $X^{*} \cap K \neq \emptyset$. Since $N_{G_{2}}\left(C_{i}\right)=K$ by Claim 7.8, it follows that $C_{i} \nsubseteq X$ and $C_{i} \nsubseteq X^{*}$ for all $1 \leq i \leq r$, and hence that $n_{G_{2}}(X)=\left|V-\left(X \cup X^{*}\right)\right| \geq r>k$. Thus we may suppose that $X \cap K=\emptyset$. Let

$$
S=\left\{i: X \cap C_{i} \text { is a proper subset of } C_{i}, 1 \leq i \leq r\right\}
$$

Since the claim holds when $S=\emptyset$ we may suppose that $|S| \geq 1$. Let $Z_{i}=X \cap C_{i}$ for $i \in S$. By Claim $7.8, n_{G_{2}}\left(Z_{i}\right) \geq k-2$. Hence $\left|N_{G_{2}}(X) \cap\left(K \cup C_{i}\right)\right| \geq k-2$ and $\left|N_{G_{2}}(X) \cap C_{i}\right| \geq 1$ for all $i \in S$. The claim now follows using the hypothesis of (a) and (b) that $n_{G_{2}}(X)=k-2$ and $n_{G_{2}}(X)=k-1$, respectively.

Claim 7.13 For each $i, 1 \leq i \leq r$, there exists a unique minimal subset $Y_{i} \subseteq V\left(C_{i}\right)$ such that $n_{G_{2}}\left(Y_{i}\right)=k-2$.

Proof: The existence of such a set follows from the fact that $n_{G_{2}}\left(C_{i}\right)=k-2$. To prove uniqueness we suppose to the contrary that X_{1} and X_{2} are two minimal subsets of C_{i} satisfying $n_{G_{2}}\left(X_{1}\right)=$ $k-2=n_{G_{2}}\left(X_{2}\right)$. Then $n_{G_{1}}\left(X_{1}\right)=k-2=n_{G_{1}}\left(X_{2}\right)$, since G_{1} is $(k-2)$-connected by Claim 7.8,
and the operation used in going from G_{1} to G_{2} (splitting off pairs of edges from s) cannot decrease $n\left(X_{i}\right)$. Let $s w$ be the unique edge of $G_{1} \oplus s$ from s to C_{i}. Since $G_{1} \oplus s$ is $(k-1, s)$-connected, we must have $w \in X_{1} \cap X_{2}$. Since $X_{1} \cup X_{2} \subseteq C_{i}, X_{1} \cup X_{2}$ is a fragment of G_{2}, and hence we have $n_{G_{2}}\left(X_{1} \cup X_{2}\right) \geq k-2$, by Claim 7.8. Submodularity of $n_{G_{2}}$, now implies that $n_{G_{2}}\left(X_{1} \cap X_{2}\right) \leq k-2$, contradicting the minimality of X_{1} and X_{2}.

For each $i, 1 \leq i \leq r$, choose two distinct edges $s y_{i}, s y_{i}^{\prime}$ in $G_{2}+s$ with $y_{i}, y_{i}^{\prime} \in Y_{i}$. Note that these edges exist by the (k, s)-connectivity of G_{2}. Furthermore, by Claim 7.9, $y_{i}=y_{i}^{\prime}$, if and only if $Y_{i}=\left\{y_{i}\right\}$ and $d_{G_{2}}\left(y_{i}\right)=k-2$.

We are now ready to construct the required augmentation of G. Let $G_{2} \oplus s$ be the graph obtained from $G_{2}+s$ by adding an extra edge from s to C_{2} if $d_{G_{2}+s}(s)$ is odd. Thus $d_{G_{2} \oplus s}(s)=2\left\lceil t\left(G_{2}\right) / 2\right\rceil$ is even. First we try to define a good augmenting set by a method similar to forest augmentation. Since we need to increase the connectivity of G_{2} by two, we now look for a loopless 2-connected multigraph H on r vertices whose degree sequence is $d_{1}, d_{2}^{\prime}, \ldots, d_{r}$, where $d_{2}^{\prime}=d_{G_{2} \oplus s}\left(s, C_{2}\right)$ (so d_{2}^{\prime} is either d_{2} or $d_{2}+1$, depending on whether $d_{G_{2}+s}(s)$ is even or odd). If such a multigraph exists, it leads to a good augmenting set in a natural way, as we shall see in Subcase 2.1. However, such a graph may not exist, as the following example shows. Let G be obtained from $K_{r, k-2}$ by replacing some vertex v in the r-set by a copy of $K_{k-1,4}$ and then connecting each vertex of the $(k-2)$-set to each vertex of the $(k-1)$-set. It can be seen that the degree sequence defined by the corresponding extension $G_{2} \oplus s$ of G is $4,2,2, \ldots, 2$. There is no loopless 2-connected multigraph with this degree sequence. When such a multigraph does not exist, we need a somewhat more involved method to define the augmenting set. This will be described in Subcase 2.2.
Subcase 2.1 There exists a loopless 2-connected multigraph H on r vertices with degree sequence $d_{1}, d_{2}^{\prime}, \ldots, d_{r}$.

Let F be a set of edges joining the components of $G_{2}-K$ such that $d_{F}(v)=d_{G_{2} \oplus s}(s, v)$ for all $v \in V$ and such that the graph obtained from $(V-K, F)$ by contracting each component C_{i} to a single vertex c_{i}, is H. Since H is 2-connected, each vertex $c_{i} \in V(H)$ has at least two distinct neighbours in H, and thus each component C_{i} is joined to at least two other components by edges of F. Furthermore, since H is loopless, each edge of F is incident with two distinct components of $G_{2}-K$. Let y_{i}, y_{i}^{\prime} be the neighbours of s in C_{i} as defined after Claim 7.13. Since we are free to interchange the end vertices of the edges of F within each component, we may choose F to have the additional property that, for each $1 \leq i \leq r$, the two edges of F incident to y_{i} and y_{i}^{\prime} join C_{i} to different components of $G_{2}-K$. We can now use Claim 7.12 to deduce that $G_{2}+F$ is k-connected. Suppose to the contrary that $G_{2}+F$ has a fragment X with $n_{G_{2}+F}(X) \leq k-1$. Replacing X by X^{*} if necesssary we may assume that $|X \cap K| \leq\left|X^{*} \cap K\right|$. By Claim 7.8, $n_{G_{2}}(X) \geq k-2$ and by Claim 7.12, we have one of the following four alternatives.
(a1) $n_{G_{2}}(X)=k-2$ and $X=C_{i_{1}} \cup C_{i_{2}} \cup \ldots \cup C_{i_{p}}$ for some $p \leq r-1$. Suppose $p \leq r-2$. Then the 2-connectivity of H implies that there are two edges of F from X to distinct components $C_{j_{1}}, C_{j_{2}}$ disjoint from X. Hence $n_{G_{2}+F}(X) \geq k$. Suppose $p=r-1$. There are at least two edges from X to $C_{i_{r}}$, where $C_{i_{r}}$ is the unique component of $G_{2}-K$ disjoint from X. If $C_{i_{r}}$ has only one vertex then $N_{G_{2}+F}(X)=V-X$ and X is not a fragment. If all edges of F join X to the same vertex $v \in C_{i_{r}}$, then we have $n_{G_{2}}\left(C_{i_{r}}-v\right) \leq k-1$ and $d_{G_{2}+s}\left(s, C_{i_{r}}-v\right)=0$, contradicting the (k, s)-connectivity of $G_{2}+s$. Thus at least two edges of F join X to distinct vertices of $C_{i_{r}}$ and we again have $n_{G_{2}+F}(X) \geq k$.
(a2) $n_{G_{2}}(X)=k-2$ and $X=Z_{i} \subset C_{i}$ for some $1 \leq i \leq r$. By Claim 7.13, $y_{i}, y_{i}^{\prime} \in X$. Since y_{i}, y_{i}^{\prime} are joined by F to distinct components $C_{j_{1}}, C_{j_{2}}$ disjoint from C_{i}, we again have $n_{G_{2}+F}(X) \geq k$.
(b1) $n_{G_{2}}(X)=k-1$, and $X=Z_{i_{1}} \cup C_{i_{2}} \cup \ldots \cup C_{i_{p}}$ for some $p \leq r$ and $Z_{i_{1}} \subseteq C_{i_{1}}$. Suppose $2 \leq p \leq$ $r-1$. Then the 2-connectivity of H implies that there is at least one edge of F from $X-C_{i_{1}}$ to a component $C_{j_{1}}$ disjoint from X. Hence $n_{G_{2}+F}(X) \geq k$. Suppose $p=r$. Since $G_{2}+s$ is $(k, s)-$ connected, it has an edge from s to a vertex $v \in X^{*} \subseteq C_{i_{1}}-Z_{i_{1}}$. Since all edges of F are incident to distinct components v is joined by an edge of F to some vertex of $X-C_{i_{1}}$, and again we have $n_{G_{2}+F}(X) \geq k$. Suppose $p=1$. Since $G_{2}+s$ is (k, s)-connected, it has an edge from s to at least one vertex $v \in Z_{i_{1}}$. Since all edges of F are incident to distinct components, v is joined by an edge of F to some component distinct from $C_{i_{1}}$, and again we have $n_{G_{2}+F}(X) \geq k$.
(b2) $n_{G_{2}}(X)=k-1$ and $X=Z_{i_{1}} \cup Z_{i_{2}}$ for some $Z_{i_{1}} \subseteq C_{i_{1}}, Z_{i_{2}} \subseteq C_{i_{2}}$, and $n_{G_{2}}\left(Z_{i_{1}}\right)=k-2=n_{G_{2}}\left(Z_{i_{2}}\right)$. By Claim 7.13, $y_{i_{1}}, y_{i_{1}}^{\prime} \in Z_{i_{1}}$. Since $y_{i_{1}}, y_{i_{1}}^{\prime}$ are joined by F to two distinct components $C_{j_{1}}, C_{j_{2}}$ disjoint from $C_{i_{1}}$, at least one of these components is also disjoint from $C_{i_{2}}$ and we again have $n_{G_{2}+F}(X) \geq k$.

Thus $G_{2}+F$ is k-connected. Putting $F_{0}=E\left(G_{2}\right)-E(G)$, we deduce that $F_{0} \cup F$ is the required augmenting set of edges for G of size $\left\lceil d_{G+s}(s) / 2\right\rceil=\lceil t(G) / 2\rceil$.
Subcase 2.2 There is no loopless 2-connected multigraph on r vertices with degree sequence $d_{1}, d_{2}^{\prime}, \ldots, d_{r}$.
Hakimi [10] characterised the degree sequences of loopless 2-connected multigraphs, see also [14, Corollary 3.2].

Theorem 7.14 There exists a 2 -connected loopless multigraph with degree sequence $d_{1} \geq d_{2} \geq$ $\ldots \geq d_{r} \geq 2$ if and only if $d_{1}+d_{2}+\ldots+d_{r}$ is even and $d_{1} \leq d_{2}+d_{3}+\ldots+d_{r}-2 r+4$.

This characterisation implies that in Subcase 2.2 we have either: $d_{1} \geq d_{2}^{\prime}$ and $d_{1} \geq d_{2}^{\prime}+d_{3}+$ $\ldots+d_{r}-2 r+5$; or $d_{1}=d_{2}^{\prime}-1$ and $d_{2}^{\prime} \geq d_{1}+d_{3}+\ldots+d_{r}-2 r+5$. Since $d_{G_{2} \oplus s}(s)=d_{1}+d_{2}^{\prime}+$ $d_{3}+\ldots+d_{r}$ and $d_{G_{2} \oplus s}(s)$ is even, both alternatives imply that

$$
\begin{equation*}
d_{G_{2} \oplus s}(s) \leq 2 d_{1}+2 r-4 . \tag{29}
\end{equation*}
$$

We shall use the following concept to find a good augmenting set in this subcase. Let $H_{0}=$ (V, E) be a multigraph, $s \in V$, and $m_{1}, m_{2}, \ldots, m_{q}$ be a partition of $d_{H_{0}}(s)$. Then an $\left(m_{1}, m_{2}, \ldots, m_{q}\right)$ detachment of H_{0} at s is a multigraph H_{1} obtained from H_{0} by 'splitting' s into q vertices $s_{1}, s_{2}, \ldots, s_{q}$ with degrees $m_{1}, m_{2}, \ldots, m_{q}$, respectively. We refer to $s_{1}, s_{2}, \ldots, s_{q}$ as the pieces of s in H_{1}. Note that the graph H used in Subcase 2.1 can be viewed as a loopless 2-connected $\left(d_{1}, d_{2}^{\prime}, d_{3} \ldots, d_{r}\right)$ detachment at s of the graph H_{0} consisting of exactly one vertex s incident with $d_{G_{2} \oplus s}(s) / 2$ loops. Inequality (29) tells us that if this detachment H does not exist, then d_{1} is 'large' compared to $d_{G_{2} \oplus s}(s)$. We modify our approach in this case by finding a loopless 2 -connected $\left(d_{2}^{\prime}, d_{3}, \ldots, d_{r}\right)$ detachment of the multigraph obtained from $\left(G_{2} \oplus s\right)-K-\cup_{i=2}^{r} C_{i}$ by adding a suitable number of loops to s. The pieces of s in the detachment will represent the components $C_{2}, C_{3}, \ldots, C_{r}$. We use the following lemma from [14] to construct the required detachment.

Given a multigraph H and $v_{1}, v_{2}, \ldots, v_{m} \in V(H)$, let $b\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ be the number of components of $H-\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.

Lemma 7.15 [14, Corollary 3.3] Let $H_{0}=(V, E)$ be a multigraph, $s \in V$ and $m_{1}, m_{2}, \ldots, m_{q}$ be a partition of $d(s)$ into at least two positive integers, such that $m_{1} \geq m_{2} \geq \ldots \geq m_{q} \geq 2$. Let $e(u)$
denote the number of loops incident to each vertex u in H_{0}. Then H_{0} has a loopless 2-connected ($m_{1}, m_{2}, \ldots, m_{q}$)-detachment at s if and only if
(a) H_{0} is 2-edge-connected,
(b) $b(v)+e(v)=1$ for all $v \in V-s$,
(c) $m_{2}+m_{3}+\ldots+m_{q} \geq b(s)+e(s)+q-2$, and
(d) $d(s, V-v)+e(s) \geq q+b(s, v)-1$ for all $v \in V-s$.

Let $G_{3}+s$ be the multigraph obtained from $\left(G_{2} \oplus s\right)-K-\cup_{i=2}^{r} C_{i}$ by adding $p=\left(d_{G_{2} \oplus s}(s)-\right.$ $\left.2 d_{1}\right) / 2-1$ loops at s. Note that p is a non-negative integer by Claim 7.11 and the fact that $d_{G_{2} \oplus s}(s)$ is even. Applying Lemma 7.15 to $G_{3}+s$ we deduce:

Claim 7.16 $G_{3}+s$ has a loopless 2-connected $\left(d_{2}^{*}, d_{3}, \ldots, d_{r-1}\right)$-detachment H_{1} at s, where $d_{2}^{*}=$ $d_{2}^{\prime}+d_{r}-2$.

Proof: We have $d_{2}^{*}+d_{3}+\ldots+d_{r-1}=d_{G_{2} \oplus s}(s)-d_{1}-2=2 p+d_{1}=d_{G_{3}+s}(s)$ so $\left(d_{2}^{*}, d_{3}, \ldots, d_{r-1}\right)$ partitions $d_{G_{3}+s}(s)$. Since $G_{2} \oplus s$ is (k, s)-connected and G_{3} is connected and loopless, it follows that $G_{3}+s$ satisfies Lemma 7.15(a) and Lemma 7.15(b). Using $d_{i} \geq 2$ for all $3 \leq i \leq r-1$ and (29), we have $d_{2}^{\prime}+d_{r} \leq d_{G_{2} \oplus s}(s)-d_{1}-2(r-3) \leq d_{G_{2} \oplus s}(s)-d_{G_{2} \oplus s}(s) / 2+r-2-2(r-3)=$ $d_{G_{2} \oplus s}(s) / 2-r+4$. Thus $d_{3}+\ldots+d_{r-1}=d_{G_{2} \oplus s}(s)-d_{1}-d_{2}^{\prime}-d_{r} \geq d_{G_{2} \oplus s}(s)-d_{1}-d_{G_{2} \oplus s}(s) / 2+$ $r-4=1+e(s)+r-4$, proving that Lemma $7.15(\mathrm{c})$ holds for $G_{3}+s$. To show that Lemma 7.15(d) holds focus on a vertex v of C_{1}. Considering the graph $G_{2}-(K+v)$ and using Claim 7.9, we have $\hat{b}\left(G_{2}\right) \geq b_{G_{3}}(v)+r-1+\beta$, where $\beta=2$ if $d_{G_{2} \oplus s}(s, v)=2$ and $\beta=0$, otherwise, since if $d_{G_{2} \oplus s}(v)=2$ then $d_{G_{2}}(v)=k-2$. By (28), $\hat{b}\left(G_{2}\right) \leq\left\lceil t\left(G_{2}\right) / 2\right\rceil=d_{G_{2} \oplus s}(s) / 2$. Hence $d_{G_{2} \oplus s}(s) / 2 \geq b_{G_{3}}(v)+r-1+\beta$. Thus

$$
\begin{aligned}
d_{G_{3}+s}\left(s, V\left(C_{1}\right)-v\right)+e(s) & =d_{1}-d_{G_{2} \oplus s}(s, v)+e(s) \\
& =d_{G_{2} \oplus s}(s) / 2-1-d_{G_{2} \oplus s}(s, v) \\
& \geq b_{G_{3}}(v)+r-1+\beta-1-d_{G_{2} \oplus s}(s, v) \\
& \geq(r-2)+b_{G_{3}+s}(s, v)-1,
\end{aligned}
$$

as required.
Label the detached vertices of H_{1} as $c_{2}, c_{3}, c_{4} \ldots, c_{r-1}$ where $d_{H_{1}}\left(c_{i}\right)=d_{i}$ for $3 \leq i \leq r-1$ and $d_{H_{1}}\left(c_{2}\right)=d_{2}^{*}$. The edge $e=c_{j} y_{1}$ is in $E\left(H_{1}\right)$ for some $2 \leq j \leq r-1$. We next subdivide the edge e with a new vertex c_{r} to form the multigraph H_{2}, and then 'flip' some edges from c_{2} to c_{r} in H_{2} preserving 2 -connectivity and increasing the degree of c_{r} up to d_{r} while maintaining the property that y_{1} and y_{1}^{\prime} are joined to different pieces of s. We use the following result to accomplish this.

Lemma 7.17 [14, Corollary 2.17] Let $t \geq 3$ be an integer. Let H be a loopless 2-connected multigraph, $x, y \in V(H)$ and $x z_{i} \in E(H-y)$ for $1 \leq i \leq t$. If $t \geq d(y)-d(y, x)+1$, then $H-x z_{i}+y z_{i}$ is loopless and 2 -connected for some $i, 1 \leq i \leq t$.

We construct the new multigraph H_{3} from H_{2} as follows. If $d_{r}=2$ then we put $H_{3}=H_{2}$. If $d_{r} \geq 3$ then we use Lemma 7.17 to find a set of edges $S=\left\{c_{2} z_{i} \in E\left(H_{2}\right): 1 \leq i \leq d_{r}-2\right\}$ such that $c_{2} y_{1}^{\prime} \notin S$ and $H_{3}=H_{2}-S+\left\{c_{r} z_{i}: 1 \leq i \leq d_{r}-2\right\}$ is 2-connected and loopless. This is
possible since $d_{H_{2}}\left(c_{r}\right)=2, d_{H_{2}}\left(c_{r}, c_{2}\right) \leq 1$, and $d_{H_{2}}\left(c_{2}\right)=d_{2}^{\prime}+d_{r}-2 \geq d_{r}+d_{r}-2$. In H_{3} we have $y_{1} c_{r} \in E\left(H_{3}\right), y_{1}^{\prime} c_{r} \notin E\left(H_{3}\right), d_{H_{3}}\left(c_{i}\right)=d_{i}$ for $3 \leq i \leq r$, and $d_{H_{3}}\left(c_{2}\right)=d_{2}^{\prime}$. (Note that we could have used Lemma 7.15 directly to construct a 2 -connected loopless detachment with the same degree sequence as H_{3} from $G_{3}+s$ plus one extra loop at s. The reason we go via H_{1} and H_{2} is to ensure that y_{1} and y_{1}^{\prime} are adjacent to distinct pieces of s in H_{3}.)

Let F be a set of edges joining the components of $G_{2}-K$ such that $d_{F}(v)=d_{G_{2} \oplus s}(s, v)$ for all $v \in V-K$ and such that the graph obtained from $(V-K, F)$ by contracting C_{2}, \ldots, C_{r} to $c_{2}, c_{3}, \ldots, c_{r}$, respectively, is H_{3}. Since H_{3} is 2-connected, each vertex c_{i} in H_{3} has at least two distinct neighbours. Since H_{3} is loopless, every edge of F which is incident to a component C_{i}, $2 \leq i \leq r$, is incident to distinct components of $G_{2}-K$. Let y_{i}, y_{i}^{\prime} be the neighbours of s in C_{i} as defined after Claim 7.13. Since we are free to interchange the end vertices of the edges of F within each component, C_{i}, for $2 \leq i \leq r$ we may choose F to have the additional property that, for $2 \leq i \leq r$, the two edges of F incident to y_{i} and y_{i}^{\prime} join C_{i} to different vertices of $G-K-C_{i}$, which either belong to different components of $G-K-C_{i}$, or both belong to C_{1}. Furthermore, since y_{1} and y_{1}^{\prime} are joined to different detached vertices in H_{3}, the two edges of F incident to y_{1} and y_{1}^{\prime} join C_{1} to different components of $G_{2}-K-C_{1}$.

We can now use Claim 7.12 to deduce that $G_{2}+F$ is k-connected as in Subcase 2.1. Putting $F_{0}=E\left(G_{2}\right)-E(G)$ we deduce that $F_{0} \cup F$ is the required augmenting set of edges for G of size $\left\lceil d_{G+s}(s) / 2\right\rceil=\lceil t(G) / 2\rceil$.

8 Algorithmic aspects and corollaries

In this section we discuss the algorithmic aspects of our results and also show that our main theorems imply (partial) solutions to a number of conjectures in this area.

8.1 Algorithms

The proofs of our min-max theorems (Theorems 4.17 and 7.7) are algorithmic and lead to a polynomial algorithm which finds an optimal augmenting set with respect to k for any l-connected input graph G and target $k \geq l+1$, provided $a_{k}(G) \geq 10(k-l+2)^{3}(k+1)^{3}\left(\right.$ or $a_{k}(G) \geq 20 k^{3}$, if $k=l+1)$. As we shall see, the running time in this case can be bounded by $O\left(n^{6}\right)$, even if k is part of the input. Our algorithm for the general case first decides whether $a_{k}(G)$ is large, compared to k, or not. Since, by Lemma 2.10, $a_{k}(G)$ is large if and only if $d(s)$ is large in a k-critical extension $G+s$ of G, the first step is to create such an extension. If $a_{k}(G)$ is small then our algorithm performs an exhaustive search on all possible augmenting sets F with $V(F) \subseteq N(s)$ and outputs the smallest augmenting set which makes $G k$-connected. The number of possibilities depends only on k, since $|N(s)|$ is also small. We shall present the algorithm as a sequence of sub-algorithms. Most of the steps of these algorithms are easy to implement in polynomial time by network flow techniques.

8.1.1 CRITICAL EXTENSION

Input: A graph G and an integer $k \geq 1$.
Output: A k-critical extension $G+s$ of G.
Step 1. Add a new vertex s to G and $\max \{1, k-d(v)\}$ edges from s to each vertex v of G. (This gives a (k, s)-connected extension $G \oplus s$ of G by Lemma 2.4.)
Step 2. Delete edges incident to s greedily until the the remaining graph $G+s$ is a k-critical extension. (We check whether each edge deletion preserves (k, s)-connectivity using a max-flow computation.)

8.1.2 EXHAUSTIVE SEARCH

Input: A k-critical extension $G+s$ of a graph G.
Output: An optimal k-augmenting set for G.
For each set of edges F with $V(F) \subseteq N(s)$, check whether $G+F$ is k-connected. Choose the smallest such k-augmenting set.

The following lemma implies that the output of EXHAUSTIVE SEARCH is indeed an optimal k-augmentation for G.

Lemma 8.1 Let $G+s$ be a (k, s)-connected extension of a graph G. Then there exists an optimal k-augmenting set F for G with $V(F) \subseteq N(s)$.

Proof: Let $S=N(s)$ and let F be an optimal augmenting set with respect to k for which $c(F)=$ $\sum_{u v \in F}|\{u, v\}-S|$ is as small as possible. Suppose $c(F)$ is positive and let $u v \in F$ be an edge with $\{u, v\}-S \neq 0$. Since F is optimal, we have $\kappa(G+F-u v)=k-1$ and, by Lemma 4.4(c), it follows that $G+F-u v$ has precisely two k-cores (i.e. minimal k-deficient fragments) X, Y. Clearly, X and Y are k-deficient fragments in G. Thus, since $G+s$ is (k, s)-connected, we must have $S \cap X \neq \emptyset \neq S \cap Y$. Lemma 4.4(c) also implies that by taking $F^{\prime}=F-u v+x y$ for a pair x, y of vertices with $x \in S \cap X$ and $y \in S \cap Y$ we have that $G+F^{\prime}$ is k-connected. Now $\left|F^{\prime}\right|=|F|$ and $c\left(F^{\prime}\right)<c(F)$, contradicting the choice of F. This proves that $c(F)=0$ must hold, and hence the required augmentning set exists.

It follows that, if $a_{k}(G)$ is small, then we only need to perform $c_{k} k$-connectivity tests, where $c_{k}=O\left(2\left({ }_{2}^{a_{k}(G)}\right)\right.$ depends only on k, to find an optimal k-augmentation for G using CRITICAL EXTENSION and EXHAUSTIVE SEARCH. If $a_{k}(G)$ is large then our augmentation algorithm has several sub-algorithms, according to the different subcases in our proofs. In what follows we give a sketch of these algorithms to verify that they can be run in polynomial time. We do not attempt to work out the details of an efficient implementation.

8.1.3 CORES

Input: $\mathrm{A}(k-1)$-connected graph $G=(V, E)$.
Output: The set \mathcal{C} of all k-cores and the set \mathcal{A} of all active k-cores in G.
For each non-adjacent pair $u, v \in V$ such that $\kappa(u, v)=k-1$, find the minimal (with respect to inclusion) sets X_{u}, X_{v} such that $u \in X_{u}, v \in X_{v}$ and $n\left(X_{u}\right)=k-1=n\left(X_{v}\right)$. Let \mathcal{C}^{\prime} be the union of
the sets $\left\{X_{u}, X_{v}\right\}$ over all pairs u, v, and let \mathcal{C} consist of the minimal members of \mathcal{C}^{\prime}. Let $\mathcal{A}=\{X \in$ $C: \kappa(G-X)=k-1-|X|\}$.

Note that CORES can be used to test if a $(k-1)$-connected graph G is k-independence free by checking whether G has any active k-cores. We do not know if there is a polynomial algorithm to determine whether an arbitrary graph is k-independence free.

Cheriyan and Thurimella [4] give a polynomial algorithm for determining $b_{k}(G)$ for a $(k-1)$ connected graph G and finding all $(k-1)$-shredders K in G with $b_{G}(K)=b(G)$. We can use this to give a polynomial algorithm for finding an optimal k-augmentation of a $(k-1)$-connected k independence free graph. Note, however, that it is unlikely that there exists an efficient algorithm to determine $b_{k}(G)$ for an arbitrary graph G. This follows since the problem of determining whether $b_{k}(G) \geq k$ for some $1 \leq k \leq|V|$ is NP-complete by [1].

8.1.4 INDEPENDENCE FREE AUGMENTATION

Input: $\mathrm{A}(k-1)$-connected k-independence free graph G.
Output: An optimal k-augmenting set F for G with $|F|=\max \{b(G)-1,\lceil t(G) / 2\rceil\}$.
We first construct a k-critical extension $G+s$ of G using CRITICAL EXTENSION. We have $d(s)=t(G)$ by Corollary 3.2. We construct the required set F by finding a sequence of admissible splits at s (as in the proofs of Lemmas 3.7, 3.10 and 3.11 and Theorem 3.12) to give $G_{1}+s$ with $d_{G_{1}+s}(s) \in\left\{3, b\left(G_{1}\right)\right\}$. We then put $F=F_{1} \cup F_{2}$ where $F_{1}=E\left(G_{1}\right)-E(G)$ and F_{2} is the edge set of a tree with $V\left(F_{2}\right)=N_{G_{1}+s}(s)$.

We next give algorithms for finding optimal k-augmentations for a graph G when $a_{k}(G)$ is large. The first two algorithms determine whether G has a dominating shredder, that is to say a $(k-1)$-shredder K with $\hat{b}_{G}(K)=\hat{b}(G)$ and $2 \hat{b}(K)-2 \geq t(G)$, and find an optimal k-augmenting set when G does have such a shredder.

8.1.5 DOMINATING SHREDDER

Input: A k-critical extension $G+s$ of an l-connected graph G for which $d_{G+s}(s) \geq k(k-l+1)+2$. Output: We find a dominating shredder K in G or deduce that no such shredder exists.
We construct a family \mathcal{K} of $(k-1)$-shredders in such a way that $|\mathcal{K}|$ is polynomial in $|V|$ and, if there is a dominating shredder K in G, then $K \in \mathcal{K}$. Once we have \mathcal{K}, we complete the algorithm by computing $\hat{b}\left(K^{\prime}\right)$ for all $K^{\prime} \in \mathcal{K}$.
For each triple x, u, v, where $x \in V$ and $u, v \in N_{G+s}(s)-x$, first we try to split off all copies of the edges $s x$ (if there are any). Suppose that all copies can be split off, and let the resulting graph be $G_{x}+s$. Then we try to find a set $\left\{P_{1}, P_{2}, \ldots, P_{k-1}\right\}$ of openly disjoint $u v$-paths in G_{x}. If we succeed, then we let $Q(x, u, v)=\cup_{i=1}^{k-1} P_{i}, \mathcal{C}(x, u, v)=\{C: C$ is a component of $G-Q(x, u, v)\}$,

$$
\begin{gathered}
\mathcal{K}_{1}(x, u, v)=\left\{N_{G}(C): C \in \mathcal{C}(x, u, v) \text { and } n_{G}(C)=k-1\right\}, \\
\mathcal{K}_{2}(x, u, v)=\left\{N_{G}(C) \cup\{q\}: C \in \mathcal{C}(x, u, v), n_{G}(C)=k-2, q \in Q-\{u, v\}\right\} .
\end{gathered}
$$

Let \mathcal{K} be the union of the sets $\mathcal{K}_{1}(x, u, v) \cup \mathcal{K}_{2}(x, u, v)$ over all choices of x, u, v. Clearly, $|\mathcal{K}| \leq$ $\binom{n}{3} n^{2}$.

Lemma 8.2 If G has a dominating shredder K then $K \in \mathcal{K}$.

Proof: Suppose there is a $(k-1)$-shredder K with $d(s) \leq 2 \hat{b}(G)-2=2 \hat{b}(K)-2$. Then Lemma 6.1 implies that $|N(s) \cap K| \leq 1$, and if $x \in N(s) \cap K$ then $d_{G}(x)=k-d(s, x), \hat{b}(K)=b(K)+d(s, x)$, and we can split off all copies of $s x$ (in any order) by admissible splittings. By splitting off these copies $d(s)$ is reduced by $2 d(s, x)$ and $\hat{b}(K)$ is reduced by $d(s, x)$. Hence $d(s) \leq 2 b(K)-2$ holds in the resulting graph G_{x}. This implies that K has at least two leaf components C, C^{\prime} in G_{x}. By Lemma 2.14 there exist $k-1$ openly disjoint paths from $u \in N(s) \cap C$ to $v \in N(s) \cap C^{\prime}$. Clearly, $Q \subseteq K \cup C \cup C^{\prime}$ and $K \subset Q$ hold, where Q is the union of the vertex sets of these paths. Moreover, since $x \in K$, the components of $G-K$ and $G_{x}-K$ are the same. Lemma 6.1 also implies that $G-K$ has at least $2 k+1 \geq 3$ components D with $d_{G+s}(s, D) \leq 2$, and hence $n_{G}(D) \geq k-2$. Thus there is a component D^{\prime} of $G-K$, which is a component of $G-Q$, and satisfies that either $K=N_{G}\left(D^{\prime}\right)$ or $K=N_{G}\left(D^{\prime}\right)+q$ for some $q \in Q-\{u, v\}$.

It follows that for some triple x, u, v we have $K \in \mathcal{K}_{1}(x, u, v) \cup \mathcal{K}_{2}(x, u, v)$, as required.
Note that if DOMINATING SHREDDER finds a dominating shredder K when $l=k-1$, then we have $d(s, K)=0$ and $b_{G}(K)=\hat{b}(K)$ by Theorem 4.1.

8.1.6 DOMINATING SHREDDER AUGMENTATION

Input: A k-critical extension $G+s$ of an l-connected graph G for which $d_{G+s}(s) \geq k(k-l+1)+2$, and a dominating shredder K for G.
Output: An optimal augmenting set F for G with $|F|=\hat{b}(G)-1$.
We construct F by splitting off all edges from s to K and then adding a forest augmentation, as described in Lemma 6.5 and after Lemma 6.1.

8.1.7 LARGE AUGMENT BY ONE

Input: A k-critical extension $G+s$ of a $(k-1)$-connected graph $G=(V, E)$ for which $d_{G+s}(s) \geq$ $20 k^{3}+1$.
Output: An optimal augmenting set F for G with $|F|=\max \{b(G)-1,\lceil t(G) / 2\rceil\}$.
We use DOMINATING SHREDDER, DOMINATING SHREDDER AUGMENTATION, CORE, and the proof techniques of Lemmas 4.2, 4.15 and 4.16 to find a saturating set of edges F_{1} such that either F_{1} is an optimal k-augmenting set for G with $|F|=\max \{b(G)-1,\lceil t(G) / 2\rceil\}$, or $G+F_{1}$ is k-independence free and has no dominating shredder. In the former case we put $F=F_{1}$. In the latter case we use INDEPENDENCE FREE AUGMENTATION to find a k-augmenting set F_{2} for $G+F_{1}$ and put $F=F_{1} \cup F_{2}$.

Note that when we increase the number of passive k-cores by making an active k-core passive in LARGE AUGMENT BY ONE, we do not need to compute $T(G)$. We choose an arbitrary active k-core B and, if we fail to make B passive (which means $B \cap T(G) \neq 0$), then we choose a different active k-core.

8.1.8 LARGE AUGMENT

Input: A k-critical extension $G+s$ of a graph $G=(V, E)$ for which $d_{G+s}(s) \geq 10(k-l+2)^{3}(k+$ $1)^{3}+1$.
Output: An optimal augmenting set F for G with $|F|=\max \{\hat{b}(G)-1,\lceil t(G) / 2\rceil\}$.

We use DOMINATING SHREDDER, DOMINATING SHREDDER AUGMENTATION, and the proof techniques of Lemmas 6.7 and 7.5 to find a saturating set of edges F_{1} such that either F_{1} is an optimal k-augmenting set for G with $\left|F_{1}\right|=\max \{\hat{b}(G)-1,\lceil t(G) / 2\rceil\}$, or $G+F_{1}$ is $(k-$ 1)-connected, has no dominating shredder, and $d_{G+s}(s)-2\left|F_{1}\right| \geq 20 k^{3}+1$, or $G+F_{1}$ has a k augmenting set F_{2} of size $\left\lceil t\left(G+F_{1}\right) / 2\right\rceil$ (which can be constructed using detachments as in the proof of Case 2 of Theorem 7.7). In the first case we put $F=F_{1}$. In the second case we use LARGE AUGMENT BY ONE to find a k-augmenting set F_{3} for $G+F_{1}$ of size $\left\lceil t\left(G+F_{1}\right) / 2\right\rceil$ and put $F=F_{1} \cup F_{3}$. In the third case we put $F=F_{1} \cup F_{2}$.

8.1.9 AUGMENT

Input: An l-connected graph G and an integer $k>l$.
Output: An optimal k-augmenting set F for G.
Construct a k-critical extension $G+s$ for G using CRITICAL EXTENSION. If $k=l+1$ and $d_{G+s}(s) \geq 20 k^{3}+1$ then apply LARGE AUGMENT BY ONE. If $l \leq k-2$ and $d_{G+s}(s) \geq 10(k-$ $l+2)^{3}(k+1)^{3}+1$ then apply LARGE AUGMENT. Otherwise apply EXHAUSTIVE SEARCH.

As noted above, most of the steps of the above algorithms are easy to implement in polynomial time by network flow techniques. The only exception is finding the required loopless 2-connected detachments as in the proof of Case 2 of Theorem 7.7. We shall not discuss this in this paper but remark that there is a simple algorithm which finds H, if it exists, and we also have a similarly simple and efficient algorithm which finds H_{3}, when H does not exist.

Before stating our bound on the running time of our algorithm AUGMENT, we note that by inserting a preprocessing step, which works in linear time, we can make the input graph sparse, and hence reduce the running time, as follows. Let $G=(V, E)$ and k be the input of our problem. Let $n=|V|$ and $m=|E|$. It was shown in [3] and [19] that $G=(V, E)$ has a spanning subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ with $\left|E^{\prime}\right| \leq k(n-1)$ satisfying $\kappa\left(u, v, G^{\prime}\right) \geq \min \{k, \kappa(u, v, G)\}$ for each pair $u, v \in V$. It can be seen that by replacing G by G^{\prime} we do not change the k-deficient fragments (or their deficiencies) and that for any augmenting set F the graph $G+F$ is k-connected if and only if $G^{\prime}+F$ is k-connected. Thus we can work with G^{\prime} and assume that $m=O(k n)$. Note also that $d(s)=O(k n)$ in any k-critical extension $G+s$ of G. By using these facts and efficient network flow algorithms for the basic operations (such as finding admissible splittings, checking whether an edge is k-critical, etc) we can conclude with the following theorem.

Theorem 8.3 Given an l-connected graph G and a positive integer k, our algorithm AUGMENT finds an optimal k-augmenting set. If $a_{k}(G) \geq 10(k-l+2)^{3}(k+1)^{3}$ then the running time is $O\left(k n^{5}\right)$. Otherwise the running time is $O\left(c_{k} n^{3}\right)$.

We close this subsection by noting that we can also use the theory developed in this paper to derive a near optimal algorithm for the vertex connectivity augmentation problem which is similar to the one given in [13].

8.1.10 NEAR OPTIMAL AUGMENT

Input: An l-connected graph G and an integer $k>l$.
Output: A k-augmenting set F for G with $|F| \leq a_{k}(G)+\frac{1}{2} k(k-l+1)+1$.

Construct a k-critical extension $G+s$ for G using CRITICAL EXTENSION. We first suppose that $d_{G+s}(s) \geq k(k-l+1)+2$. We use DOMINATING SHREDDER to determine if G has a dominating shredder. If it does then we use DOMINATING SHREDDER AUGMENTATION, to find an optimal k-augmenting set for G. If G does not have a dominating shredder then, by Lemma 5.3, we can split off edges from s such that, in the resulting graph $G_{1}+s$, we have either $d_{G_{1}+s}(s)>$ $k(k-l+1)+2$ and G_{1} has a dominating shredder, or $k(k-l+1)+1 \leq d_{G_{1}+s}(s) \leq k(k-l+1)+2$. In the former case we can use DOMINATING SHREDDER and DOMINATING SHREDDER AUGMENTATION, to find an optimal k-augmenting set for G. In the latter case, Lemma 2.7 implies that we may construct a minimal augmenting set F_{1} for G_{1} with $V\left(F_{1}\right) \subseteq N_{G_{1}+s}(s)$. Let $F=F_{1} \cup F_{2}$, where $F_{2}=E\left(G_{1}\right)-E(G)$. Lemma 2.9 implies that $\left|F_{2}\right| \leq d_{G_{1}+s}(s)-1$. Since $t(G)=d_{G+s}(s)$ and $t\left(G_{1}\right)=d_{G_{1}+s}(s)$ we have $|F| \leq \frac{1}{2} t(G)+\frac{1}{2} d_{G_{1}+s}(s) \leq a_{k}(G)+\frac{1}{2} k(k-l+1)+1$. Finally, if $d_{G+s}(s)<k(k-l+1)+2$, then we construct a minimal augmenting set F for G with $V(F) \subseteq N_{G+s}(s)$. Lemma 2.10 implies that $|F| \leq a_{k}(G)+\frac{1}{2} d_{G+s}(s) \leq a_{k}(G)+\frac{1}{2} k(k-l+1)+1$.

The running time of NEAR OPTIMAL AUGMENT is $O\left(n^{6}\right)$.

8.2 Corollaries

Our main results (Theorems 4.17 and 7.7) imply (partial) solutions to several related conjectures. The extremal version of the connectivity augmentation problem is to find, for given parameters n, k, t, the smallest integer m for which every k-connected graph on n vertices can be made $(k+t)$ connected by adding m new edges. Several special cases of this problem were solved in [17] and it was conjectured that (at least if n is large enough compared to k) the extremal value of m for $t \geq 2$, $k \geq 2$ is $\lceil n t / 2\rceil$ (or $\lfloor n t / 2\rfloor$, depending on the parities of n, k, t). Since $\hat{b}(G)-1 \leq n$, the min-max equality of Theorem 7.7 shows that if n is large enough and $t \geq 2$ then $a_{k}(G)$ is maximised if and only if G is (almost) k-regular. This proves the conjecture (when n is large compared to k), by noting that such (almost) regular graphs exist for $k \geq 2$.

A different version of this problem, when the graphs to be augmented are k-regular, was studied in [9]. It was conjectured there that if G is a k-regular k-connected graph on n vertices, and n is even and large compared to k, then G can be made $(k+1)$-connected by adding $n / 2$ edges. If G is k-regular, $b(K) \leq k$ for any cut of size k. Thus if n is large enough, we have $\max \{b(G)-$ $1,\lceil t(G) / 2\rceil\}=n / 2$. Now the conjecture follows from Theorem 4.17.

A similar question is whether $a_{k}(T)=\left\lceil\left(\sum_{v \in V(T)}(k-d(v))^{+}\right) / 2\right\rceil$ holds when graph T is a tree, where $x^{+}=\max \{0, x\}$ for all integers x. It is known that the minimum number of edges needed to make a tree k-edge-connected (or an arborescence k-edge- or k-vertex-connected) is determined by the sum of the (out)degree-deficiencies of its vertices. As above, using the fact that $\hat{b}(G)-1 \leq n$, Theorem 7.7 implies (when n, and hence also $a_{k}(T)$, is large compared to k) that if $k \geq 3$ then $a_{k}(T)=\lceil t(T) / 2\rceil$. That is, $a_{k}(T)$ is determined by the total deficiency of a family of pairwise disjoint subsets of $V(T)$. Since T is a tree, each member X of this family induces a forest. This implies that there exists a vertex $v \in X$ with $k-d(v) \geq k-n(X)$. Therefore we can find a family consisting of singletons with the same total deficiency. This yields an affirmative answer to our question provided $k \geq 3$ and n is large compared to k. Note that the answer is negative for $k=2$.

Frank and Jordán [8, Corollary 4.8] prove that every $(k-1)$-connected graph $G=(V, E)$ can be made k-connected by adding a set F of new edges such that (V, F) consists of vertex-disjoint paths. They conjectured that such an F can be found among the optimal augmenting sets as well.

We can verify this, provided $a_{k}(G)$ is large enough. In this case we may use the min-max formula of Theorem 4.17. If $a_{k}(G)=\lceil t(G) / 2\rceil$ then an optimal augmenting set is a collection of vertexdisjoint paths of length one or two. If $a_{k}(G)=b(G)-1$, then a careful analysis of the forest augmentation method shows that we can find an optimal augmenting set F satisfying $d_{F}(v) \leq 2$ for all $v \in V$. Since F is a forest, it induces vertex-disjoint paths, as claimed.

Acknowledgement

We thank the anonymous referees for reading our paper carefully and for several useful comments which improved the presentation.

References

[1] D. Bauer, A. Morgana and E. Schmeichel, On the complexity of recognising tough graphs, Discrete Math. 124 (1994) 13-17.
[2] G.R. Cai and Y.G. Sun, The minimum augmentation of any graph to a k-edge-connected graph, Networks 19 (1989) 151-172.
[3] J. Cheriyan, M.Y. Kao, and R. Thurimella, Scan-first search and sparse certificates: An improved parallel algorithm for k-vertex connectivity, SIAM J. Comput. 22 (1993) 157-174.
[4] J.Cheriyan and R.Thurimella, Fast algorithms for k-shredders and k-node connectivity augmentation, Journal of Algorithms 33 (1999) 15-50.
[5] K.P. Eswaran and R.E. Tarjan, Augmentation problems, SIAM J. Computing, Vol. 5, No. 4, (1976) 653-665.
[6] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete Mathematics, Vol.5, No 1., (1992) 22-53.
[7] A. Frank, Connectivity augmentation problems in network design, Mathematical Programming: State of the Art (J.R. Birge, K.G. Murty eds.), (1994) 34-63.
[8] A. Frank and T. Jordán, Minimal edge-coverings of pairs of sets, J. Combinatorial Theory, Ser. B. 65 (1995) 73-110.
[9] E. Győri, T. Jordán, How to make a graph four-connected, Mathematical Programming 84 (1999) 3, 555-563.
[10] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. I, J. Soc. Indust. Appl. Math. 10, (1962) 496-506.
[11] T.-s. Hsu, On four-connecting a triconnected graph, Journal of Algorithms 35, (2000) 202234.
[12] T. Ishii and H. Nagamochi, On the minimum augmentation of an l-connected graph to a k-connected graph, Proc. SWAT 2000 (M.M. Halldórsson ed.) Springer LNCS 1851, (2000) 286-299.
[13] B. Jackson, T. Jordán, A near optimal algorithm for vertex-connectivity augmentation, Proc. ISAAC 2000, (D.T. Lee and S.-H. Teng, eds) Springer Lecture Notes in Computer Science 1969, (2000) 313-325.
[14] B. Jackson, T. Jordán, Non-separable detachments of graphs, J. Combinatorial Theory, Ser. B. 87 (2003) 17-37.
[15] T. Jordán, On the optimal vertex-connectivity augmentation, J. Combinatorial Theory, Ser. B. 63 (1995) 8-20.
[16] T. Jordán, A note on the vertex-connectivity augmentation problem, J. Combinatorial Theory, Ser. B. 71 (1997) 294-301.
[17] T. Jordán, Extremal graphs in connectivity augmentation, J. Graph Theory 31 (1999) 179193.
[18] W.Mader, Ecken vom Grad n in minimalen n-fach zusammenhängenden Graphen, Archive der Mathematik 23 (1972) 219-224.
[19] H. Nagamochi and T. Ibaraki, A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph, Algorithmica 7 (1992) 538-596.
[20] H. Nagamochi, Recent development of graph connectivity augmentation algorithms, IEICE Trans. Inf. and Syst., vol E83-D, no.3, March 2000.
[21] T. Watanabe and A. Nakamura, Edge-connectivity augmentation problems, Computer and System Siences, Vol 35, No. 1, (1987) 96-144.
[22] T. Watanabe and A. Nakamura, A minimum 3-connectivity augmentation of a graph, J. Computer and System Sciences, Vol. 46, No.1, (1993) 91-128.

[^0]: *A preliminary version of this paper appeared in Proc. 8th IPCO Conference, (K. Aardal and B. Gerards, eds) Springer Lecture Notes in Computer Science 2081, pp. 264-279, 2001.
 ${ }^{\dagger}$ Supported by the Royal Society/Hungarian Academy of Sciences Exchange Programme.
 ${ }^{\ddagger}$ Supported by the Hungarian Scientific Research Fund grant no. T029772, T037547, F034930, and FKFP grant no. 0143/2001.

