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Abstract

Given an undirected graph and a positive integek, thek-vertex-connectivity augmenta-
tion problem is to find a smallest setof new edges for whicl& + F is k-vertex-connected.
Polynomial algorithms for this problem have been found onlykfgr4 and a major open ques-
tion in graph connectivity is whether this problem is solvable in polynomial time in general.

In this paper we develop an algorithm which delivers an optimal solution in polynomial
time for every fixedk. In the case when the size of an optimal solution is large compared to
k, our algorithm is polynomial for alk. We also derive a min-max formula for the size of a
smallest augmenting set in this case. A key step in our proofs is a complete solution of the
augmentation problem for a new family of graphs which we katidependence free graphs.

We also prove new splitting off theorems for vertex connectivity.

1 Introduction

An undirected grapl® = (V, E) is k-vertex-connecte@r more simplyk-connectedif |V| > k+1
and the deletion of any— 1 or fewer vertices leaves a connected graph. Given a dsapliV,E)
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and a positive integek, thek-vertex-connectivity augmentation problem is to find a smalledt set

of new edges for whicls’ = (V,EUF) is k-connected. This problem (and a number of versions
with different connectivity requirements and/or edge weights) is an important and well-studied
optimization problem in network design. The complexity of the vertex-connectivity augmentation
problem is one of the most challenging open questions of this area. It is open even if th&graph
to be augmented ik — 1)-vertex-connected. Polynomial algorithms have been developed only for
k = 2,3,4 by Eswaran and Tarjan [5], Watanabe and Nakamura [22] and Hsu [11], respectively.
Values ofk close to|V| = n are also of interest. The cake- n— 1 is easyk = n— 2 is equivalent

to finding a maximum matching, arkd= n— 3 is open. Near optimal solutions can be found in
polynomial time for ever, see [13], [12].

In this paper we give an algorithm which delivers an optimal solution in polynomial time for
any fixedk > 2. We also obtain a min-max formula which determines the size of an optimal
solution when it is large compared ko In this case the running time of the algorithmQgn®),
wheren is the size of the input graph. When the size of an optimal solution is small compared to
k, the running time is bounded (cn®), wherecy is a constant ik is fixed. A key step in our
proofs is a complete solution of the augmentation problem for a new family of graphs which we call
k-independence free graphs. We follow some of the ideas of the approach of [15], which obtained
a near optimal solution in the special case when the graph to be augme(titedlis-connected.

We also develop new ‘splitting off’ theorems fktvertex-connectivity.

We remark that the other three basic augmentation problems (where one wants t&make
k-edge-connected or wants to make a digragdge- ork-vertex-connected) have been shown
to be polynomially solvable. These results are due to Watanabe and Nakamura [21], Frank [6],
and Frank and Jogh [8], respectively. For more results on connectivity augmentation and its
algorithmic aspects, see the survey papers by Frank [7] and Nagamochi [20], respectively. In the
remainder of this section, we introduce some definitions and our new lower bounds for the size of
an augmenting set which mak@&sk-vertex-connected. We also state our main min-max results.

In what follows we deal with finite undirected graphs. We shall reserve the term ‘graph’ for
graphs without loops or multiple edges and and use ‘multigraph’ if loops and multiple edges are
allowed. LetG = (V,E) be a multigraphy € V andX CV —v. We usedg(v) to denote the
degreeof vin G anddg(v, X) for the number of edges @ from v to X. Let Ng(X) denote the
set ofneighboursof X, that is,Ng(X) = {veV — X :uve E for someu € X}, andng(X) denote
INg(X)|. (We will supress the subscrig in the above functions when it is obvious to which
graph we are referring.) We u3€ to denoteV — X — Ng(X). We say thaK is afragmentof G
if X # 0+# X*. A k-deficient fragmenis a fragmeniX for which n(X) < k, for some integek.

For two vertices(, y of G we shall us&(x,y, G) to denote the maximum number of openly disjoint
paths fronxtoyin G. We use&(G) to denote the minimum of(x,y, G) over all pairs of vertices of
G. By Menger's theorem (G) equals the minimum size of a vertex cui@nunlesss is complete.

Let G be a graph with at least+ 1 vertices. Ak-augmenting sefor G is a set of edgeb
such thaiG + F is k-connected. (When the value bis obvious we shall refer t&6 simply as an
augmenting sdor G.) Letax(G) denote the size of a smalldshugmenting set foB. It is easy to
see that everi¢-augmenting set foG must contain at least— n(X) edges fronX to X* for every
fragmentX. By summing up these ‘deficiencies’ over pairwise disjdxuteficient fragments, we
may obtain a useful lower bound @g(G), similar to the one used in the corresponding edge-



connectivity augmentation problem. Let
r
tx(G) = max{ Zlk— n(X) : Xq,...,X are pairwise disjoint fragments \h}.
i=

Then

a(G) = [(G)/2]. (1)

Another lower bound foex(G) comes from ‘shredders’. Fdf C V let bg(K), or simply
b(K) when it is clear to which graph we are referring to, denote the number of components in
G — K. We say thaK is ans-shreddei(or simply ashredde) in G if |K| =sandb(K) > 3. Let
bk(G) = max{b(K) : K is a(k— 1)-shredder irG}. Since(G+ F)— K has to be connected for
everyk-augmenting seff and every(k — 1)-shreddeiK, we have|F| > b(K) — 1. This gives the
second lower bound:

a(G) > b(G) — 1. )

These lower bounds extend the two natural lower bounds used for example in [5, 11, 15].
Although these bounds suffice to characteaggG) for k < 3, there are examples showing that
ax(G) can be strictly larger than the maximum of these lower bounds. For example, if wé take
be the complete bipartite grajz 3 with target connectivitk = 4, we haves(G) = 6, bs(G) =3
andas(G) = 4. We shall show in Section 3 that(G) = max{bx(G) — 1, [t(G)/2]} whenG is a
‘k-independence free graph’. We use this result in Section 4 to show tBas ifk — 1)-connected
anda(G) is large compared tl, then again we hava(G) = max{by(G) — 1, [tc(G)/2]}. Our
proof technique is to find a set of edgeéssuch thatay(G+ F) = a(G) — |F1| and G+ Fy is
k-independence free. The same result is not valid if we remove the hypothed&ithét — 1)-
connected. To see this consider the gr&pbbtained fromK, > by adding a new vertex and
joining x to j vertices in them set of theKm k2, wherej <k <m. Thenby(G) =m, t(G) =
2m+k—2j anday(G) = m—1+k— j. We shall see in Section 7, however, that if we modify the
definition of b (G) slightly, then we may obtain an analogous min-max theorem for augmenting
graphs of arbitrary connectivity. For(&— 1)-shreddeK of G we defined(K) = max{0, max{k —

d(x) :xe K}}andb(K) =b(K)+8(K). We lethby(G) = max{b(K) : K is a(k— 1)-shredder irG}.
It is easy to see that A
a(G) > b(G) — 1.

We shall prove in Section 7 that@ is a graph of arbitrary connectivity arag(G) is large com-
pared tok, then

a(G) = max{b(G) - 1, [t(G) /21 }.

Our proof technique is to find a set of edggsuch thaty (G+F1) = ax(G) — |F1| and eitheG+F;
is (k—1)-connected o6 + F1 is (k— 2)-connected and has a special structure. In the former case
we apply the result of Section 4 ®+ F;. In the latter case we find an optimabhugmenting set
for G+ F; using a result on ‘detachments’ of 2-connected graphs.

Our proofs are algorithmic and give rise to polynomial algorithms for finding an optmal
augmenting set in each of the cases mentioned above. In the remaining casey{()ea small
compared td, we simply check all possibleaugmenting sets (spanned by a small set of vertices)



to find an optimal solution. This is the only part where our algorithm is polynomial orityisf
fixed.

In what follows, we shall suppress the subsckiit the parameteri(G), bi(G), b (G) when
the value ok is obvious.

2 Preliminaries

In this section we first introduce some submodular inequalities for the funcaod then describe
the ‘splitting off’ method. We also prove some preliminary results on edge splittings and shredders.

2.1 Submodular inequalities

The following inequalitites are fundamental to our proof technique. Inequality (4) is well-known,
see for example [15].

Proposition 2.1 In a graph H= (V,E) every pair XY CV satisfies

NX)+n(Y) = n(XNY)+nXUY)+|(NX)NN(Y)) —=N(XNY)|
+ [(N(X)NY)) =N(XNY)|+ [ (N(Y)NnX)) —=N(XNY)]|. 3)
Proof: Readers may find it helpful to follow the proof given below if they imagif&) rep-
resented by a & 3 grid, in which the two pairs of opposite sides repregehX*) and (Y,Y*),

respectively, and the 9 subsquares represent the corresponding partM@6)ointo 9 subsets.
Then (3) follows from the following equalities:

n(X) = IN(X)NY[+[N(X) AN(Y)[+ [N(X) N Y7,
n(Y) = IXNANY)|+ INX)NNY)|+ [X* NN(Y)],
N(XUY) = [N(X)NY*| 4+ [N(X)NNY)| + [X*NN(Y)|,

and
NXNY) = IN(XNY)NX|+ IN(XNY)NY[+|N(XNY)N(N(X)ON(Y)) |

Proposition 2.2 In a graph H= (V,E) every pair XY CV satisfies

n(X)+nY) > n(XNY)+n(XUY), 4)
n(X)+n(Y) > n(XNY*)+n(YNX*). (5)

Proof: Inequality (4) follows immediately from (3). Inequality (5) can be proved in a similar way
to Proposition 2.1 °

The following inequality is new and may be applicable in other vertex-connectivity problems
as well.



Proposition 2.3 In a graph H= (V,E) every triple XY,Z CV satisfies

nX)+nY)+n(Z) > nXNYNZ)+n(XNY*"NZ*)+n(X*NY*NZ)+
NX*NYNZ*) — IN(X)NN(Y)NN(Z)|. (6)

Proof: Readers may find it helpful to follow the proof given below if they imagi(&) repre-
sented by a & 3 x 3 grid, in which the three pairs of opposite faces repre©¢n*), (Y,Y*), and
(Z,Z*), respectively, and the 27 subcubes represent the corresponding partitig@ pinto 27
subsets. We have

n(X) = INX)NYNZ|+|INX)NNY)NZ|+ IN(X)NY*NZ|+
+IN(X)NYNN(Z) |+ IN(X)NNY)NN(Z) [+ IN(X)NY*NN(Z)|+
+INOX)NY NZ* |+ IN(X)NNY)NZ* |+ IN(X)NY* N ZF,

and

NXNYNZ) < IXNYNNZ)|+ |XNANY)NZ|+ [ XNANY)NN(Z)|+
+INX)NYNZ|+|IN(X)NYNN(Z)|+ IN(X)NNY)NZ| +
+IN(X)NN(Y)NN(Z)|.

The lemma follows from the above (in)-equalities and similar (in)-equalities(®y, n(Z), n(XN
Y*NZ*),n(X*NY*NZ)andn(X*NYNZ"). o

2.2 Extensions and Splittings

In the so-called ‘splitting off method’ one extends the input gr&dby a new vertexs and a set of
appropriately chosen edges incidenstand then obtains an optimal augmenting set by splitting
off pairs of edges incident ta This approach was initiated by Cai and Sun [2] for khedge-
connectivity augmentation problem and further developed and generalized by Frank [6]. Here we
adapt the method to vertex-connectivity and prove several basic properties of the extended graph
as well as the splittable pairs.

Given the input grapl = (V,E), anextension G-s= (V +s,E+F) of G is obtained by
adding a new vertes and a sef of new edges frons to V. Note thatF may contain multiple
edges even thougB does not, and hendd + s may be a multigraph. &+ s we defineX* =
V —X —Ng(X) andd(X) = ng(X) 4 d(s, X) for everyX C V. We say thaG + sis (k, s)-connected
if V| >k+1and

d(X) > k for every fragmenX of G. (7

If, in addition, F is an inclusionwise minimal set with respect to (7), then we say@afsis a
k-critical extensiorof G. In this case, the minimality df implies that every edgsuis k-critical,
that is, deletingsgufrom G+ s destroys (7). (Thus an edgais k-critical if and only if there exists
a fragmentX of G with u € X andd(X) = k.) A fragmentX with d(s,X) > 1 andd(X) =k is
calledtight. A fragmentX with d(s,X) > 2 andd(X) < k+ 1 is calleddangerous Observe that if
G is|-connected then for everye V we haved(s,v) < k—1 in anyk-critical extension of>. The
following lemma characterises when we can hdiv) > 2.
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Lemma 2.4 Let G+ s be a k-critical extension of G. Suppogs,&) > 2 for some \e V. Let X be
a fragment of G with & X and|X| > 2. Thend(X) > k. Furthermore ¢ s(v) = k.

Proof: If d(X) = kthend(X —v) < k—d(s,v) 41 < kwhich contradicts (7). Thu(X) > k. Since
G+ sis k-critical we may choose a tight s¥tin G+ s with ve Y. The first part of the lemma
implies thatY = {v}. Hencedg_s(v) =d(v) = k. o

Since the functioni(s, X) is modular on the subsetséfin G+ s, Propositions 2.1, 2.2 and 2.3
yield the following (in)equalities.

Proposition 2.5 In a graph G+ s every pair XY CV satisfies

d(X)+d(Y) = d(XNY)+dXUY)+|(NXX)NN(Y)) = NXNY)|

+ [(N(X)NY) =NXNY)[+[(N(Y) N X) =N(XNY)], (8)
d(X)+d(Y) > d(XNY)-+d(XUY), 9)
dX)+d(Y) > dXNY")+d(YNX*)+d(s,X—Y*)+d(sY —X*). (10)

Proposition 2.6 In a graph G+ s every triple XY,Z CV satisfies

d(X)+d(Y)+d(Z) > d(XNYNZ)+d(XNY*NZ)+d(X* NY*NZ)+d(X*NYNZ*)
—INg(X)NNg(Y)NNg(Z)| +2d(s, XNYNZ). (11)

Lemma 2.7 Let G+ s be a(k,s)-connected extension of G. Then there exists a k-augmenting set
F of G with V(F) C N(s).

Proof: LetF be a set of edges such that N(s) induces a complete graphtth= G+ F. Suppose
H is notk-connected. Then there exist&-aeficient fragmenk in H. SinceA induces a clique in
H, we have eitheAN X = 0 or ANX* = 0. Assuming, without loss of generality, thatfi X = 0,
we havedg.:s(X) = ny(X) < k. This contradicts the hypothesis ti@&t-sis (k,s)-connected. e

We can use Lemma 2.7 to obtain upper and lower boundx(@) in terms ofdg.s(S). The
following result is an easy consequence of a theorem of Mader [18, Satz 1]. It was used in [15, p
16] in the special case whéhis (k— 1)-connected.

Theorem 2.8 Let F be a minimal k-augmenting set for a graph G and let B be the set of those
vertices of G which have degree at least kin G+ F. Then F induces a forest on B.

Lemma 2.9 Let G+ s be a(k,s)-connected extension of G and let A be a minimal k-augmenting
set for G in which every edge in A connects two vertices(gf.N'hen|A| < d(s) —
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Proof: Let B= {ve N(s): dg;+a(v) > k+ 1} and letC = N(s) — B. Sincedg:a(x) = k and
de+s(X) > k, we haveda(x) < d(s,x) for eachx € C. By Theorem 2.8B induces a forest iA. Let
ea(B) andea(C) denote the number of those edge#\afhich connect two vertices & and ofC,
respectively. The previous observations imply the following inequality.

|Al = ea(C)+da(B,C)+ea(B) < ZdA(X)+!B|—1§

< (d(s)—[B])+|B[-1=d(s) - 1.
This proves the lemma. °

To obtain a lower bound oax(G) in terms ofd(s), we introduce a new parameter. LGt=
(V,E) be a graph. We say that a fragmehof G separates: pair of verticest,ve V if {u,v} NX #
0 # {u,v}nX*. A family F of fragments ofG is half-disjointif every pair of vertices ofG is
separated by at most two fragmentsfin Lett'(G) = max{5 x.# k—n(X)} where the maximum
is taken over all half-disjoint familieg of k-deficient fragments 6. Note that every family of
pairwise disjoint fragments is half-disjoint and hen¢&) > t(G). Since evenk-augmenting set
for G must contain at least— n(X) edges fronX to X* for every fragmenkX of G, we obtain the
lower bound:

a(G) = [t'(G)/2]. (12)
Lemma 2.10 Let G+ s be a k-critical extension of a graph G. Then
[d(s)/2] < a(G) < d(s) L

Proof: The last inequality follows immediately from Lemma 2.9. To verify the first inequality
we choose a familyx = {Xg,...,Xm} of tight fragments ofG such thatN(s) C U™ ,X; and such
thatmis minimum andy ", |X;| is minimum. Such a family exists since the edges inciderst to
in G+ s arek-critical. We claim that for every X i < j < meitherX; N X; = 0 or at least one of
X CN(Xj) orXi € N(X;) holds. Note that in the latter case no pair of vertices can simultaneously
be separated b¥; andX;.

To verify the claim, suppose tha§ N X; # 0. Then by the minimality oin the setX; U X;
cannot be tight. Thus (9) implies tht NX{ = 0. Hence either one of" C N(X;) or Xj € N(X)
holds orX; N X;" andX; NX* are both non-empty. In the former case we are done. In the latter case
we apply (10) taX; andX; and conclude thati N Xj andX; N X" are both tight and all the edges
from sto X U Xj enter(X NX{) U (XjNX"). Thus we could replack andX;j in X by two strictly
smaller sets mxj* andX; N X*, contradicting the choice of. This proves the claim.

To finish the proof of the lemma, observe that ; k—n(X) = 3, d(s,X) > d(s). In other
words, the sum ofK-deficiencies’ of the fragments ik is at leasd(s). We shall show tha¥ is
half disjoint. Suppose on the contrary that some pairc V is simultaneously separated by three
sets inX, sayXi, X2, X3. By the above claimXi, X, X3 are pairwise disjoint. This contradicts the
fact that they each separater and hencqu, v} N X # 0for all 1 <i < 3. HenceX is half-disjoint
andd(s) <t'(G), as required. .

Let G+ s be a(k,s)-connected extension @. Splitting offtwo edgessu svin G+ s means
deletingsu svand adding a new edgev. Note that if we perform a sequence of splittingssat
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starting with graptG + s, and denote the resulting graph 6{+ s, thenG' is the graph obtained
from G by adding the split edges. A splitksadmissibldf the graph obtained by the splitting also
satisfies (7). We will also say that the pair of edgessvis k-admissible or simply admissible
when the valué is obvious. Notice that iG + shas no edges incident ggdhen (7) is equivalent to
thek-connectivity ofG. Hence it would be desirable to know, whént sis ak-critical extension
andd(s) is even, that there is a sequence of admissible splittings suchithan isolated vertex in
the resulting grapl®’ +s. In this case we would hay&(G') —E(G)| = dg(s)/2, and, using the fact
thatay(G) > d(s)/2 by Lemma 2.10, the gragll would be aroptimal kaugmentation o6. This
approach works for thie-edge-connectivity augmentation problem [6] but does not always work in
the vertex connectivity case. The reason is that such ‘complete splittings’ do not necessarily exist.
On the other hand, we shall prove results which are ‘close enough’ to yield an optimal algorithm
for k-connectivity augmentation using the splitting off method, which is polynomisat fored.

Pairs of edgesx sy which do not givek-admissible splits can be characterized by tight and
dangerous ‘certificates’ as follows. The proof of the following simple lemma is omitted.

Lemma 2.11 Let G+ s be a(k, s)-connected extension of G andyx N(s). Splitting off the pair
sx Sy is not k-admissible in G s if and only if one of the following holds:

(i) there exists a tight set T with& T, ye N(T),

(i) there exists a tight set U withg U, xe N(U),

(iii) there exists a dangerous set W withyxc W.

2.3 Local separators and shredders

For two verticesu,v € V auv-cutis a setk CV — {u,v} for which there is naiv-path inG — K.

A setScCV is alocal separatorif there existu,v € V — Ssuch thatSis an inclusionwise minimal

uv-cut. We also saysis alocal uv-separatoand we call the components Gf— S containingu

andv essential component$ S (with respect to the paix, v). Note thatSmay be a local separator

with respect to several pairs of vertices and hence it may have more than two essential components.
Clearly,N(C) = Sfor every essential compongdif S. If Sis a localuv-separator andl is a local
xy-separator then we sdy meshes 8 T intersects the two essential componentS obntaining

u andv, respectively.

Lemma 2.12 If T meshes S then S intersects every essential component of T (and hence S meshes
T).

Proof: Supposé&is auv-separator and I€1,, C, be the two essential componentsSafontainingu
andv respectively. Le€C be an essential component®f We need to showintersectsC. Choose
w € V(C). Without loss of generalityy ¢ Sandw ¢ V(C,). Choosd € TNC,. Thent ¢ S LetP
be a path in the subgraph ©6fUT fromwtot such thaPNT = {t}. ThenP contains a vertex of
SsinceSseparates fromt. HenceCN S+ 0. °

Lemma 2.12 extends a result of Cheriyan and Thurimella [4, Lemma 4.3(1)]. The next lemma
extends a key observation from the same paper [4, Proposition 3.1] and will be used when we
discuss algorithms in Section 8.



Lemma 2.13 Let K be a local uv-separator of sizeklL and suppose that there existK. openly
disjoint paths P, ...,P«_1 fromutovin G. Let G= Ui“;llV(P.).

(a) For each component C of 6K either Cn {u,v} # 0 or C is a component of G Q;

(b) If K has at least three essential components thea M(C) for some component C of GQ.

Proof: (a) SinceK is a localuv-separator of siz& — 1, K contains exactly one vertex from
each pathPy, ..., P 1. LetCy,Cy,C be distinct components & with u € C, andv € C,. Then
Q- K CCyUC,. ThusCNnQ = 0. HenceC is a component 06 — Q.

(b) Suppos& has at least three essential components. Then we clibtmsbe an essential com-
ponent ofK distinct fromC,,C,. ThenK = N(C) holds by (a). °

LetK be a(k— 1)-shredder oz andG + s be a(k,s)-connected extension &. A component
C of G—K is called deaf component of K in G sif d(s,C) = 1 holds. Note thadl(s,C’) > 1 for
each componer@’ of G—K by (7). The next lemma is easy to verify by (7).

Lemma 2.14 Let G+ s be a(k,s)-connected extension of a graph G and K bga- 1)-shredder

in G.

(a) Let G,C;, be leaf components of K in&s. Then there existk 1 openly disjoint paths in the
subgraph of G induced by;C C, UK from every vertex of {to every vertex of £

(b) If d(s) < 2b(K) — 2 then K has at least two leaf components, K is a local separator and every
leaf component of K is an essential component of K in G.

Proof: Assertion (a) follows from (7). Assertion (b) follows from the fact tlas, C) > 1 for
every componert of G— K, and from (a). °

We shall use the following lemma to firld — 1)-shredders with many components in a graph
G when some edge incident $on G + s belongs to many non-admissible pairs.

Lemma 2.15 Let G+ s be a(k,s)-connected extension of a graph G. Suppose there exist r
dangerous sets Wb, ..., W and a tight set ¥ in G+ s such that r> 3, W NnW; = Xo, and
WENW MW # 0 for all distinct i, j,h € {1,2,...,r}. Then K= Ng(Xo) is a (k— 1)-shredder in

G with leaf componentsdXCs,...C;, where MCp) = Xp and V(Ci) =W — Xp forall 1 <i <r.

Proof: Applying (11) and using the facts thad(s,W "W, "W,) > 1, sinceW NW; NW, = Xo,
andXp is tight; andng(W) = d(W) —d(s,WM) < k—1 sinceW, is dangerous; we obtain

3k+3 > d(W)+d(Wj) +d(Wh) > d(W NWj NWh) +d(WENW NW) +
+A(W, MW W) + d(Wh W W) — [N (W) N NG (W) N NG (Wh)| +
+2d(s, W NW;j NW,)

> 4k—[Ng(W) NMNe(Wj) NN (Wh)| +2 > 3k +3. (13)

Thus equality must hold throughout. Hengés, Xo) = 1, and|Ng(W) N Ng(Wj) N Ne(Wh)| =
ng(W) =k—1. ThusNg(W) = Ng(W;) foralli, j € {1,2,...,r}. This implies thalNg(W) "W, =
Oforalli,je{1,2,...,r} and hence thaig(Xo) C Ng(W). Sinced(Xp) =k, d(s,Xp) =1 and
nc(W) = k—1; we haveNg(Xo) = Ng(W) =K, say, for alli € {1,2,...,r}.

9



The fact thatM N"Ng(W;) =0foralli, j € {1,2,...,r} also implies tha¥\{ is the disjoint union
of W NWj; nW, andW nW NW. ThusW AW NW =W —Xo for alli,j,he {1,2,....r}.
Equality in (13) implies thatl(W) = k+ 1. Sinceng(W) = k— 1, we haved(s,W) = 2. The fact
that d(s,Xp) = 1 now implies thad(s,W — Xp) = 1. SinceNg(W) = K we haveNg(W*) C K
foralli e {1,2,...,r}. ThusNg(W —Xo) = Ng(W NW;"NW) C K. Sinced(s, W —Xo) =1 and
|K| = k—1 we haveNg(W — Xp) = K. It follows thatK is the requiredk — 1)-shredder irG. e

Note that the existence of (& — 1)-shreddeK as described in Lemma 2.15 certifies that no
pair of edges frons to U]_,C; is k-admissible since each of the s¥t&;) UV (C;) is dangerous.

3 Independence Free Graphs

In this section we give a complete solution of #aeonnectivity augmentation problem for a special
family of graphs which we caklt-independence free graphs. This result is a key step in our proofs
concerning arbitrary graphs. However, we shall only need a special case of the main result of this
section: when we augment the connectivity dka- 1)-connected-independence free graph by
one. This is important from an algorithmic point of view, since, as we shall see in Subsection 8.1,
we are able to check whether(la— 1)-connected graph is-independence free. Thus the reader
may decide to focus on this special case at first reading.

Let G = (V,E) be a graph and be an integer. LeK;, X, be disjoint non-empty subsets of
V. We say(X1,Xp) is ak-deficient pairif d(X1,X2) =0 and|V — (XU Xp)| < k—1. We say
two k-deficient pairs(Xi, X)) and(Yi,Y2) areindependentf for somei € {1,2} we have either
XiCV—(Y1UY2) orY; CV — (X UXz). In this case no edge can simultaneously conXgtb X,
andY; to Y2 and hence the two pairs give ‘independent constraints’ ilkkthiegmentation problem
for G. We sayG is k-independence freié G does not have two independéatieficient pairs. The
following observations follow from these definitions.

1. If (Xg1,X2) is ak-deficient pair inG thenX; is ak-deficient fragment.
. If X is ak-deficient fragment i then (X, X*) is ak-deficient pair.

. (k—1)-connected chordal graphs &éndependence free.

2

3

4. Graphs with minimum degree at leakt-22 arek-independence free.

5. All graphs are 1-independence free and all connected graphs are 2-independence free.
6. A graph with no edges and at le&st 1 vertices is nok-independence free for aky> 2.

7

. If G is k-independence free and is obtained by adding edges @ thenH is alsok-
independence free.

8. Ak-independence free graphlindependence free for dlK k.
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In general, a main difficulty in vertex-connectivity problems is that vertex cuts (and hence tight
and dangerous sets) can cross each other in many different ways. In the case of an independence
free graphG we can overcome these difficulties and provide both a complete characterisation of
the case when there is no admissible split containing a specified edge in an exterGjandfa
min/max formula which determines the number of edges in an opkiraamentation fof.

Lemma 3.1 Let G+ s be a(k,s)-connected extension of a k-independence free graph G avid X
be fragments of G. B

(@) If X and Y are tight then either: XY is tight, XNY # 0 andd(XNY) =k; or XNY* and

Y N X* are both tight and @s,X —Y*) =0=d(s,Y — X*).

(b) If X is a minimal tight set and Y is tight then either: ¥ is tight, ds,XNY) = 0 and
ng(XNY)=k;or X CY;orXCY*

(c) If X is atight setand Y is a maximal dangerous set then either¥Xor d(s,XNY) = 0.

(d) If X is atight set, Y is a dangerous set and,df —X*)+d(s, X —Y*) > 2then XNY # 0 and
d(XnY) <k+1.

Proof: (a) Suppos&XNY*, YN X* # 0. Then (10) implies thatl( X NY*) = k = d(Y N X*) and
d(s,X—=Y*) =0=d(s,Y — X*). ThusXNY* andY N X* are both tight. Hence we may assume
that eitherX NY* or Y N X* is empty. Sinces is k-independence free, it follows thXt NY* #
0# XNY (for example itXNY* = 0= X*NY* thenY* CV — (XUX*), and(X,X*) and(Y,Y")
are independerk-deficient pairs). ThuX UY is a fragment irG. Using (9) we deduce thatuyY

is tight andd(X NY) = k.
(b) This follows from (a) using the minimality of.

(c) Suppos&X Z Y andd(s,XNY) > 1. If XNY* £ 0 #Y N X* then we can use (10) to obtain the
contradiction

2k+1>d(X)+d(Y) >d(XNY*)+d(YNX*)+2> 2k+2.

Thus eitheiXNY* orY NX* is empty and, sinc€ is k-independence fre* NY* #£ 0. ThusXUY
is a fragment inG. Using (9) we deduce that UY is dangerous contradicting the maximality of
Y.

(d) Using (10), we deduce that eith¥mY* or Y N X* is empty and, sinc& is k-independence
free, XNY # 0 # X*NY*. We can now use (9) to deduce tllgiX NY) < k+ 1. o

Using Lemma 3.1 we deduce

Corollary 3.2 If G+sis a k-critical extension of a k-independence free graph G tlign-t(G).
Furthermore there exists a unique minimal tight set in-& containing x for each g N(s).

Proof: Let ¥ be a family of tight sets which cové¥(s) such thafy x + | X| is as small as possible.
Since every edge incident &is k-critical, such a family exists. We show that the memberg of
are pairwise disjoint. Choos¢,Y € F and suppose thatNY = 0. By Lemma 3.1(a) we may
replaceX andY in F either byX UY, or by XNY* andY N X*. Both alternatives contradict the
minimality of S x. # |X|. Since the members d¢f are pairwise disjoint, tight, and covi(s), we
haved(s) = S xc 7 (k—ng(X)) <t(G). The inequalityd(s) > t(G) follows easily from (7). Thus
d(s) =t(G), as required.
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The second assertion of the corollary follows immediately from criticality and Lemma 3sL(b).

Lemma 3.3 Let G+ s be a k-critical extension of a k-independence free graph G and g N(s).
Then the pair sk sx is not k-admissible for splitting in & s if and only if there exists a dangerous
setW in G+ s with x,X, € W.

Proof: Suppose the lemma is false. Using Lemma 2.11 we may assume without loss of generality
that there exists a tight s} in G+ ssuch that; € X; andx; € Ng(X1). Let Xo be the minimal

tight set inG + s containingxz. Sincexo € N(s) N (X2 — X{), it follows from Lemma 3.1(a) that

X1 U Xz is a tight, and hence dangerous, seGi# s containingxy, Xo. °

Theorem 3.4 Let G+ s be a k-critical extension of a k-independence free graph G ard\(s).
(a) There is no k-admissible split in-&s containing sx if and only if either: ds) = b(G); or
d(s) is odd and there exist maximal dangerous setsW¥ in G + s such that Ns) C W; UWs,
Xo € W NWs, d(s Wi NWb) =1, d(s Wi NW) = (d(s) — 1)/2 =d(s, W) "Wb), and W NW, and
WoNW, are tight.

(b) If there is no admissible split containingesxnd 3 # d(s) # b(G) then there is an admissible
split containing sx for all X3 € N(S) — Xo.

Proof: Note that sinc& + sis ak-critical extensiong(s) > 2.

(@) Using Lemma 3.3, we may choose a family of dangerous®éts {Wy,Wb,... W} in G+s

such thatg € N{_;W, N(s) C U_;W andr is as small as possible. We may assume that each set
in W is a maximal dangerous set@+-s. If r = 1 thenN(s) CW; and

d(Wf) = nG(Wf> < nG(W]_) < k+ 1—d(S,W1) <k-1,
sinceW is dangerous. This contradicts the fact t@at sis (k, s)-connected. Hence> 2.
Claim 3.5 LetW,W; € W. Then WNW" # 0 #W; NW* and ds, W —W;") = 1= d(s,Wj —W").

Proof: SupposeM NW;" = 0. SinceG is k-independence free, it follows thet* NW;" # 0 and
henceW UW, is a fragment of5. The minimality ofr now implies that\f UW, is not dangerous,
and hencel(W UW;) > k+ 2. Applying (9) we obtain

2k+2 > d(W) +d(W;) > d(W NW;) +d(W UW;) > 2k+2.

Hence equality holds throughout. Tha@\ NW;) = k and, sinceg € W NWj, W NW; is tight.
Choosex; € N(s) N (W —W;j) and letX; be the minimal tight set iG + s containingx. Since
Xi € N(s) N X NW, it follows from Lemma 3.1(c) thaX; C W. SinceG is k-independence free,
Xi  N(Wj). The asumption thaw NW = 0 now implies thati "W NW; # 0. Applying Lemma
3.1(b), we deduce thag U (W NW;) is tight. NowX; U (W NW;) andW, contradict Lemma 3.1(c)
sincexp € W NW; andW; is a maximal dangerous set. Hence we must Ngv@N;" # 0 # Wj W™
The second part of the claim follows from (10) and the fact Kgat W NW;. o
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Suppose = 2. Using Claim 3.5, we havé(s) = 1+ d(s Wy NW5') +d(s;Wo NW;"). Without
loss of generality we may suppose thgs, Wi N\W,) < d(s,WonW"). Then

dW5) =d(s Wi NW;) +ng(W5) < d(s WonW) +ng(We) = d(We) —1 < k.

Thus equality must hold throughout. Hertbes, Wi "\W5') = d(s WonW;") = (d(s) —1)/2,d(s) is
odd, Wi "W andWo NWj' are tight and the second alternative in (a) holds.

Finally we suppose that> 3. ChooseM,W;,W, € W, x € (N(s) "W) — (W; UW,). Then
Claim 3.5 implies thax; € W, mV\/J-* NW, and henc®\ ﬂV\/j* NW; # 0. SinceG+sis k-critical, we
may choose a maximal tight 9§ in G+ swith Xp € Xg. Lemma 3.1(c) implies thato C W for all
1<t <r. Sincexn, € W NW;"NW, we haveM* NW;" # 0. We can use (9) to deduce thW&tNW; is
tight. SinceXo €W NW;, the maximality ofXg now implies thatM "W = Xpforall 1 <i < j <r.
Applying Lemma 2.15 we deduce thiat= Ng(Xo) is a(k— 1)-shredder irG with bg(K) = d(s).
Since the(k, s)-connectivity ofG + simplies thath(G) < d(s), we haveb(G) = d(s).

(b) Using (a) we have(s) is odd and there exist maximal dangerous ¥ét3\, in G+ ssuch that
N(s) CWLUW,, X € Wi NW5, d(s, WL NWs) = 1,d(s, Wi NWE) = d(s W) NWs) = (d(s)—1)/2 >

2, andWi NW; andW;" NWs are tight. Suppose € N(s) "\WiNW; and there is no admissible split
containingsx. Then applying (a) t; we find maximal dangerous séts, W, with x; € WsNWj
andd(sWsNW;) = 1. Using Lemma 3.1(c) we hawy NW5 C Ws andWy W, C Wy. Thus
Wi WS CWsNWj, andd(s WsNWy) > 2. This contradicts the fact thelfs, W nW,) = 1. °

We can use this splitting result to determiagG) whenG is k-independence free. We first
solve the case when(G) is large compared td(s).

Lemma 3.6 Let G+ s be a k-critical extension of a k-independence free graph G and K be a
(k—1)-shredder in G. If ds) < 2b(K) — 2 then ds,K) = 0.

Proof: Letb(K) =b. Suppose € N(s) NK and letX be the minimal tight set iG + s containing
X. Let L = {X3,X2,..., X} be the leaf components &f. Sinced(s) < 2b— 2 we haver > 2.
ChooseX; € £ andx; € N(s) N X;. ThenX; is tight. Sincex € K = Ng(X;) we haveX Z X*. Using
Lemma 3.1(b), we deduce th¥tJ X; is tight, ng(X N X;) = kandd(s,XNX;) = 0. Hencex ¢ X
andN(X)NX; # 0. Since this holds for alk; € £ andx € XNK, we have

IN(X) N (X UXo... % )| > . (14)

Furthermore, sinc& N X, # 0 andX N Xy € XN X7 we haveX NX; # 0. Using (10) and the fact

thatd(s, X —X{) > 1 sincex e XNNg(X1), it follows thatX* N X; = 0. Using symmetry we deduce

thatX*NX; = 0forall X € L. B
SinceX; UXz is dangerous anxi, xo ¢ X*, we can use Lemma 3.1(d) to deduce tha¢ N (X, U

X2)) < k+1. Using the facts thaig (XN X1) =k=ng(XNXz2), Nag(XN(X1UX2)) = Ng(XNX1)U

N (XN Xp), andNg(X N X)) NX # 0 for eachi € {1,2}, we have|Ng(X N X)) NX| =1 for each

i € {1,2} andK = Ng(XNX1) NNg(XNXz). Thusx e Ng(XNXz), K € XUNg(X) andX*NK = 0.

SinceX*NX =0forall X; € L, X*NY # 0 for some non-leaf compone¥tof G— K. Using (14)

and the facts thalig(X*NY) C (Neg(X)NY) U (Ng(X) NK) andng(X) < k— 1, we deduce that
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ng(X*NY) <k—1-r. SinceG+sis (k,s)-connected we have(s,Y) > d(s,X*NY) >r+1.
Thus

d(is) = d(sY)+d(sXgUXo...X)+d(s,(Y2UY2...Yp—r) —Y) +d(s,K)
> (r+1)4r+2(b-r—1)+1>2h

This contradicts the hypothesis tlti) < 2b— 2. o

Lemma 3.7 Let G+ s be a k-critical extension of a k-independence free graph G such tGatb
1 < d(s) < 2b(G) — 2. Then there exists an admissible split at s such that, for the resulting graph
G +s, we have &') = b(G) — 1.

Proof: Let b(G) = b and letK be a(k — 1)-shredder inG with bg(K) = b and, subject to this
condition, with the maximum numbeof leaves inG+s. LetCy,Cy, ..., C; be the leaf components
of K and letN(s) NCj = {x} for 1 <i <r. Sinced(s) < 2b(G) — 2 we haver > 2. Sinced(s) >
b(G) +1 andr > 2, we may use Theorem 3.4 to deduce without loss of generality that there is an
admissible split inG + scontainingsx. Chooseswsuch thakx, swis an admissible split i +s.
Splitting sx, swwe obtainG’ + swheredg, (S) = dg+s(S) — 2 andG’ = G+ xyw.

Supposé(G') = b(G). ThenG has a(k — 1)-shreddeK’ with bg(K’) = b(G) such thatx;,w
belong to the same componeZitof G— K’. (Note that{x;,w} NK’ = 0 by Lemma 3.6.) We shall
prove that such &’ cannot exist irG.

Suppose, Xz, ..., % € V(C'). Sincew is also contained i€’ we haved(s,C’) > r + 1. Since
d(s) < 2b—2 it follows thatK’ has at least+ 1 leaf components, contradicting the maximality of
r. Hence we may assume without loss of generality that

x ¢ C. (15)

ThusK’ separateg; andx,. Since, by Lemma 2.14, the subgraph®fnduced byC; UC, UK
containsk — 1 openly disjointx;xo-paths, we have

K’QC1UC2UK. (16)
Claim 3.8 K and K are meshing local separators.

Proof: Arguing by contradicition we assume th@tandK’ do not mesh. Le€,, be the component
of G — K’ containingx,. Since every;w-path inG contains a vertex ok we haveC' NK ## 0.
Also sinceG has(k — 1) x1x>-paths by Lemma 2.14, bo@® andC; are essentiak’-components.
SinceK andK’ do not mesh, we hav@, 'K = 0. HenceC, is a connected subgraph 6f— K.
Sincexp € V(C,), this imples tha€), C C; andK'NC; # 0 (sinceK # K'). SinceK’ does not mesh
K, we haveC; NK’ = 0. ThusC; is a connected subgraph @f— K’. Sincex; € V(C), it follows
thatCy C C'. SinceN(C1) = K we haveK —C' C K’. LetCj be a leaf component &€’ distinct
from C5. Sincexq,w € V(C'), C' is not a leaf component &’ and henc€’ # C'. The assumption
thatK andK’ do not mesh and the fact th@t is an essentiak’ component intersecting now
givesK NC] = 0. ThusC; is a connected subgraph Gf— K.

SinceC; andC; are leaf components &', Lemma 2.14 implies that there afle— 1) openly
disjoint paths inC; UC, UK’ from each vertex o€; to xo. SinceKNC' # 0, we havelK N (CjU
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C,UK’)| <k—2. ThusC] is contained in the same component K asxp, and henc€] C C,.
But xz is the onlys-neighbour inC,. Thusd(s,C;) = 0, a contradiction. °

Clam39r =2

Proof: Suppose > 3. By Lemma 3.6x1,x2 € K. By Lemma 2.14, the subgraph @finduced
by C; UC, UK containsk — 1 openly disjointx;xo-paths. SinceK and K’ mesh by Claim 3.8,
K'NC3 #0, solK'N(CLUCUK)| < k—2. Hence at least one of the abdwe 1 openly disjoint
X1Xo-paths avoid¥’. This contradicts (15). °

We can now complete the proof of the lemma. Cgtbe the component d& — K containing
w. Sincesx, swis an admissible split an@; is a leaf component df, it follows thatC,, is not a
leaf component oK. Using (16), we deduce th&}, is a connected subgraph @f— K’ and hence
Cw C C'. Sinced(s,Cy) > 2 andx; € N(s) N (C' —Cy) we haved(s,C") > 3. Sinced(s) < 2b— 2,
it follows thatK’ has at least three leaf components. This contradicts the maximatityyo€laim
3.9. ThusK’ does not exist and we hat¢G') = b(G) — 1. .

Lemma 3.10 Let G+ s be a k-critical extension of a k-independence free graph G and p be an
integer such tha® < p < %d(s) — 1. Then there exists a sequence of p admissible splits at s if and
only if p<d(s) —b(G).

Proof: We first suppose that there exists a sequencp aflmissible splits as in G. Let the
resulting graph b&; +s. Thendg,;s(S) = dg(s) —2p andb(G1) > b(G) — p. SinceG; +sis
(k,s)-connected we must hadg, . s(s) > b(G1) and hence < d(s) —b(G).

We next suppose that < d(s) — b(G). We shall show by induction op thatG+ s has a se-
guence ofp admissible splits a. If p = 0 then there is nothing to prove. Hence we may assume
p>1. Sincep < %d(s) —1 we haveal(s) > 4. By Theorem 3.4 there is an admissible spli.dtet
the resulting graph b&;+s. If p—1 < dg,+s(S) —b(G2) then we are done by induction. Hence
we may assume that > dg,+s(S) —b(Gz) +2 > dg(s) — b(G). Hencep = dg(s) — b(G). Since
p < %dG(s) — 1, we havedg(s) < 2b(G) — 2. By Lemma 3.7 there exists an admissible spli at
such that the resulting grafs + s satisfiesd(Gz) = b(G) — 1. It now follows by induction that
G3 + shas a sequence pf— 1 admissible splits & °

Lemma 3.11 Let G+ s be a k-critical extension of a k-independence free graph G.(df d
2b(G) —2then &(G) =b(G) — 1.

Proof: Supposed(s) = b(G). Let K be a(k— 1)-shredder inG with b(K) = b(G). Then all
components ofs — K are leaf components. L& be the edge set of a trdeon the vertices of
N(s). We shall show thaG + F is k-connected. If not, then we can partitidhinto three sets
{X,Y,Z} such thatZ| = k—1 and no edge d&+ F joins X toY. Each pair of vertices dfi(s) are
joined byk openly disjoint paths i+ F, consisting of k — 1) paths inG (which exist by Lemma
2.14) and one path ih. Thus eitheiX orY is disjoint fromN(s). AssumingX NN(s) = 0, we have
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d(X) = n(X) < k-1, contradicting the fact tha& + s satisfies (7). Henc& + F is ak-connected
augmentation o6 with b(G) — 1 edges.

Henceforth we may assume tli{s) > b(G). By Lemma 3.7, there exists an admissible split
atssuch that, for the resulting graj@i + s, we haveb(G') = b(G) — 1. SinceG’ + sis ak-critical
extension ofG’, the lemma follows by induction otig_s(s) — b(G). .

Theorem 3.12 If G is k-independence free thep(&) = max{[t(G)/2],b(G) — 1}.

Proof: Let G+ s be ak-critical extension ofs. By Corollary 3.2,d(s) =t(G). If d(s) <3 hen
a(G) = [t(G)/2] by Lemma 2.10. Hence we may suppose tiha) > 4. If d(s) < 2b(G)
thenay(G) = b(G) — 1 by Lemma 3.11. Hence we may suppose tha} > 2b(G) —

By Lemma 3.10, there exists a sequencedsf) /2| — 1 admissible splits at Let the resulting
graph beG' +s. ThenG' +sis ak-critical extension of5/, dg/ ¢(S) < 3, andax(G') = [dg/15(S) /2]
by Lemma 2.10. This gives the required augmentingFsdor G with |F| = [dgs(S)/2] =

[1(G)/2]. o

4 Augmenting Connectivity by One

Throughout this section we assume tat (V,E) is a(k— 1)-connected graph on at ledst 1
vertices. We shall show thatak(G) is large compared ti, thenay (G) = max{b(G) — 1, [t(G)/2]}.

Our proof uses Theorem 3.12 and some results from [15]. With the following result we can verify
the desired min-max equality whéiG) — 1 > [t(G)/2].

Theorem 4.1 [15] Suppose G is gk — 1)-connected graph such tha{®) > k and HG) —
[t(G)/2]. Then &(G) = b(G) — 1.

We will apply Theorem 4.1 to graphs which do not satibfgs) — 1 > [t(G)/2] using the
following concept. A seF of new edges isaturatingfor G if t(G+ F) =t(G) — 2|F|. Thus an
edgee = uvis saturatingif t(G+e) =t(G) — 2.

Lemma 4. 2 If F is a saturating set of edges for(& — 1)-connected graph G with
b(G+F)—1=[t(G+F)/2] > k—1then a(G) = [t(G)/2].

Proof: By Theorem 4.1 the grapB + F can be madé&-connected by adding a skt of [t(G+
F)/2] edges. Sincé€ is saturating, we havéG) =t(G+ F) + 2|F|. Therefore the st UF' is
an augmenting set fds of size [t(G)/2]. Sinceax(G) > [t(G)/2], the lemma follows. o

We shall show that iby(G) is large, then we can find a saturating set of edgdsr G so
that G+ F is k-independence free. In order to do this we need to measure how Gloseo
beingk-independence free. We use the following concepts. Shisgk — 1)-connected, we have
ng(X) = k— 1 for everyk-deficient fragment of5. Following [15], we call the (inclusionwise)
minimal k-deficient fragments > the k-coresof G. A k-coreB is activein G if there exists
a (k—1)-cutK with B C K. OtherwiseB is said to bepassive Let a(G) and(G) denote the
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numbers of active, respectively passikeores ofG. SinceG is (k— 1)-connected, the definition
of k-independence implies th& is k-independence free if and onlydf(G) = 0. The following
characterisation of actidecores also follows easily from the above definitions.

Lemma 4.3 Let B be a k-core in G. Then B is active if and only (G — B) = k—|B| — 1.

A setSCV is ak-deficient fragment covdor G if SNT £ 0 for everyk-deficient fragment
T. Clearly,Sis ak-deficient fragment cover fdg if and only if Scovers everk-core of G. Note
thatSis a minimalk-deficient fragment cover fd& if and only if the extensioit + s obtained by
joining sto each vertex o8is k-critical. We shall need the following results from [15].

Lemma 4.4 (a) Every minimal augmenting set for G induces a forest.

(b) For every k-deficient fragment cover S for G, there exists a minimal augmenting set F for G
with V(F) C S.

(c) If F is a minimal augmenting set for G~exy € F, and H= G+ F — e, then H has precisely

two k-cores X, Y. Furthermore XY = 0; x € X, ye Y; for any edge’e= Xy withX e X,y €Y,

the graph H+ € is k-connected; and, for every k-deficient fragment Z in H, we havezXor
YCZ.

Proof: Assertion (a) is given in [15, p 16].

To prove (b), note that sincecovers allk-deficient fragments;z becomesk-connected when we
add all edges between the verticesSof

Assertion (c) follows from [15, Lemma 3.2]. °

Based on these facts we can prove the following lemma.

Lemma 4.5 Let S be a minimal k-deficient fragment cover for G and let F be a minimal augment-
ing set with (F) C S. Let ¢(v) = 1 and let e= uv be the leaf of F incident with v. Let X and Y

be the k-cores of G F — e and suppose that for a set &f edges we have(x,y,G+ F’) > k for
some vertices & X,y € Y. Then S- {v} is a k-deficient fragment cover of-GF'.

Proof: Without loss of generality we may assume that X andv € Y. By the minimality ofS
there exists &-coreZ of G such thaZ N S= {v}. SinceZ is alsok-deficient inG + F — g, it must
contain ak-core of G+ F — e, soY C Z by Lemma 4.4(c). Now, Sinc¥ is alsok-deficient inG
andZ is ak-core inG, we must haveZ =Y andY NS= {v}. For a contradiction suppose that
there is &-deficient fragmenP in G+ F’ which is not covered b$— {v}. ThenPNS= {v} and
soP is alsok-deficient inG+F’'+F —eand inG+F —e. Thus, by Lemma 4.4(c) C P and

y € P hold. Furthermore, sind8+ F’ + F —e-+xyis k-connected by Lemma 4.4(c), we must have
x¢ PUN(P)in G+F'+F —e Thusx¢ PUN(P) holds inG+ F’ as well. This contradicts the
fact thatk(x,y,G+F’) > k. .

We need some further results from [15].

Lemma 4.6 [15, Lemma 2.1, Claim I(a)] Supposé3) > k. Then the k-cores of G are pairwise
disjoint and the number of k-cores of G is equal {&}. Furthermore, if {G) > k+ 1, then for
each k-core X, there is a unique maximal k-deficient fragmgnt & with the properties that
X C S, and NY = 0 for every k-core Y of G with X Y. In addition, for two different k-cores
X,Y we have gNS, = 0.
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Lemma 4.7 [15, Lemma 2.2] Let K and L be distin¢k — 1)-cuts in G with §K) > k. Then L
intersects precisely one component D of ®&.

Lemma 4.8 Suppose(G) > k+ 1. Let K be a(k— 1)-shredder in G with BK) > k. Then

(a) if C = St for some component C of GK and for some k-core X then X is passive,

(b) if some component D of GK contains precisely two k-cores, X and no edge of G joinsxS
to S, then both X and Y are passive.

Proof: (a) Suppose tha&X is active and let be a(k— 1)-cut with X C L. Sinceb(K) >k, we have
L c KuChby Lemma4.7. Sinc& is (k— 1)-connected ant # K, G— L —C s connected. Hence
G — L has a compone@®@” with C” c C. ThereforeC contains a (minimalk-deficient seX’ with
XN X" =0, contradictingC = Sx.

(b) Suppos«X is active and let. be a(k— 1)-cut with X C L. As in the proof of (a), this implies
thatG — L has a componef@ with C C D — L. SinceD contains precisely twk-cores)Y C C and
hence, sincé&, is the uniqgue maximak-deficient fragment containing which is disjoint from
everyk-core,C C Sy must hold. On the other hand, sinCas a component oG — L, we have
X € N(C) and soXNN(Sy) # 0. This contradicts our assumption that no edg&gbins S¢ to

Sr. °

Recall that an edge= uv is saturatingif t(G+e) =t(G) — 2. We say that twd-coresX,Y
form asaturating pairif there is a saturating edge= xy with x € X,y € Y and otherwise that the
pair X,Y is non-saturating

If t(G) > k+2 andX,Y are a saturating pair, then every edgewith x € X andy €Y is
saturating. (To see this suppose that xy is not saturating. Thet(G+e) >t(G) —1>k+1
and hence th&-cores ofG + e are pairwise disjoint by Lemma 4.6. This implies thatlaiores
of G other thanX,Y arek-cores ofG+ e and that there is &coreSin G+ e which is disjoint
from all k-cores ofG other thanX,Y. SinceSis ak-core inG+ e, Sis k-deficient inG. We may
assume tha®n X # 0. By applying (4) toSandX and using the minimality oK we can deduce
thatX C S. SinceX,Y is a saturating pair, this impli€snY* #£ 0 andY N'S* # 0. By applying (5)
to SandY we obtain thalY N S is k-deficient inG. SinceSis k-deficient inG + e, we must have
y € SUNg(S) and henc& NS is a proper subset &f. This contradicts the minimality of.)

We shall need the following characterisation of saturating pairs.

Lemma 4.9 [15, p.13-14] Let tG) > k+ 2 and suppose that two k-cores¥X do not form a
saturating pair. Then one of the following holds: (a)XXN(Sy), (b) Y € N(Sx), (c) there exists a
k-deficient fragment M withy§S, C M, which is disjoint from every k-core other than¥X

For ak-core X let v(X) be the number ok-coresY (Y # X) for which the pairX,Y is
non-saturating. The following lemma implies that an ackveore cannot belong to many non-
saturating pairs.

Lemma 4.10 Suppose(G) > k+ 2 and let X be an active k-core in G. The(X) < 2k—3.

Proof: Let 9 be the set of core¥ (Y # X) for which X,Y is a non-saturating pair, and lgt’ =
{Y1,Y2,....Y; } be the set of those cores frap for which Lemma 4.9(c) holds (with respectXy.
For eachy;, 1 <i <r, let M; be ak-deficient fragment which is disjoint from evekycore other
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thanX,Y;. Consider two setMj,Mj, 1 <i < j <r. Sincet(G) > k+2, M N M; is ak-deficient
fragment, and henc8 = M N M; must hold. This implies that each vertex\6f- S¢ belongs to
at most one sdv;.

For a contradiction suppose thatX) > 2k — 2. LetK = N(Sx) and lety” = {Y; € 9" :
MiNK = 0}. Since|K| =k—1 andv(X) > 2k — 2, it follows from Lemmas 4.6 and 4.9, that
17" > k—1.

SinceX is active, Lemma 4.8(a) implies thiagK) < k— 1. Thus, since the vertex set of one of
the components d& — K is S, and|Y”’| > k— 1, there is a componebt of G — K which contains
at least two set¥, Y; from 9””. ConsideM;. SinceSx C M; andK N M; = 0, we haveK C N(M;).
SinceY; C D, we haveD — M; # 0, and henc® NN(M;) # 0. Hencen(M;) > |K| + 1 =k, contra-
dicting the fact thaM; is ak-deficient fragment.

For every passiv&-coreB; (1 <i < 1(G)) let /i = {X CcV : Xisk-deficientinG, B; C
X, the subgraphG[X] is connected, and contains at most lkd— 8 activek-coreg. Let M;
Uxeg X and letT (G) = UM (M UN(M))).

Lemma 4.11 Let B be a passive k-core for sonle< i < (G) and letX = {Xy,...,%} be a
minimal family of members af; for which Utj:]_Xj = M;. Then t< k and nM;) < k(k—1).
Moreover, ifa(G) > 5k — 8, then M intersects at most(kk — 8) active k-cores.

Proof: First we prove that < k. For a contradiction suppose that k+ 1. By the minimality
of the family X we have thaf(j = Xj —Ur»j X is non-empty for all I< j <t. Note that the sets
X; are pairwise disjoint. By applying (4) to a padr, X € X, and using the facts tha¢ N X; # 0
sinceB; C X NXj, thatt > k+1, and thatG is (k— 1)-connected, we deduce thétnX; is k-
deficient inG. SinceB; C X, for eachX; €X, a similar argument shows thatz,\uj'#r<xr NXj)is
alsok-deficient. Note thavlj — P = Utj:]_Xj, so|M; —P| >t > k+1. SinceX, = X U (PNX;) and
G[X] is connected, there exists a neighbouPafi X.. Since the set¥, are pairwise disjoint, these
neighbours are distinct. HenoéP) >t > k+ 1, contradicting the fact th& is k-deficient. Thus
t <k. Since each neighbour &; is a neighbour of some set iti, and.X consists ok-deficient
fragments, we have(M;) < k(k—1).

To see the second part of the statement suppose that forXomg and for some activé-
coreA we haveX, NA# 0 andX, — A# 0+# A—X,. Sincea(G) > 5k — 8, X; contains at most
4k — 8 activek-cores, and the (activé&}cores are pairwise disjoint, we haje— (X, UA)| > k— 1.
Now (4) implies thatX; N A is k-deficient, a contradiction. Thus every actk«eore A for which
ANM; # 0 satisfiesA C X, for someX; € X. Hence the definition off implies thatM; intersects
at mostk(4k — 8) activek-cores. o

We shall use the following lemmas to find a saturatingFsédr G such thatG + F has many
passive cores. Informally, the idea is to pick a properly chosen aktogre B and, by adding
a setF of at most X — 2 saturating edges between the activeores ofG other thanB, make
K(G+F —B) > k— |B| =r. By Lemma 4.3, this will mak® passive, and will not eliminate any
of the passivek-cores ofG. We shall increase the connectivity Gf— B by choosing a minimal
r-deficient fragment coves for G — B of size at mosk — 1 and then iteratively add one or two
edges so that the new graph hags ateficient fragment cover properly contained&nrhus after at
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mostk — 1 such steps (and adding at mokt22 edges) we shall mak&passive. The first lemma
tells us how to choose the actikecoreB.

Lemma 4.12 SupposetG) < 4(k—1) anda(G) > 20k(k— 1)2. Then there exists an active k-core
B with BN T(G) = 0.

Proof: Sincea(G) > 20k(k — 1)? > 5k — 8, Lemma 4.11 implies that for any passikeoreB;,
the setM; intersects at modt(4k — 8) activek-cores, andN(M;) intersects at modt(k — 1) active
k-cores. ThudT (G) intersects at most(G) (k(5k — 9)) < 4(k— 1)k(5k — 5) = 20k(k — 1)? active
k-cores. Sincei(G) > 20k(k— 1)?, the lemma follows. o

Lemma 4.13 SupposetG) < 4(k— 1) anda(G) > 8k + 6k? — 23k — 16. Let B be an active k-

core in G, H=G—B, r=k—|B|, and S be a minimal r-deficient fragment cover of H. Suppose
every r-deficient fragment Z of H contains an active k-core of G. Then there exists a saturating
set of edges F for G such thgg| < 2, F is not incident with B, and eithex(G+ F) > 1(G); or

G+ F) =1(G), B is an active k-core in G- F, and H+ F has an r-deficient fragment cover S
which is properly contained in S.

Proof: SinceBis activek(H) =k—1—|B|=r—1.

By Lemma 4.4 there exists a minimedlaugmenting seE* for H such thatF* is a forest and
V(F*) C S Letdr+(v) =1 and lete = uv be a leaf of~*. By Lemma 4.4(c), there exist precisely
twor-coresZ,WinH+F*—ewithue Z,ve W. ThenZ,W arer-deficientinH. By an hypothesis
of the lemma, there exist actikecoresX,Y of G with X C Z andY CW.

SupposeX andY form a saturating pair is. We may choose a saturating edgefor G
with x € X andy € Y. Thenxy ¢ E and, since(G) = k— 1, we havek(x,y,G + xy) > k and
K(X,y,H +xy) > r. Hence eithem(G+ xy) > 1(G); or every activek-core of G other thanX,Y
remains active irG + xy. If the second alternative holds th&remains active irG + xy and, by
Lemma 4.53 = S—vis anr-deficient fragment cover il + xy.

Hence we may assume thatY is not a saturating pair iG. By Lemma 4.9 either

() there exists &-deficient fragmenM in G with Sx US, C M which is disjoint from every
k-core other thaiX,Y, or

(i) Y € Ng(Sx) or X € Ng(Sy).

Choosex € X andy € Y arbitrarily and letP;, P, ..., FB_1 bek— 1 openly disjointxy-paths in
G. LetQ= UF;}V(P.). It is easy to see that if some edge®foins Sx to Sy, then one of the
paths, say, satisfies/ (P1) C SxUSy. On the other hand, if no edge Gfjoins S to Sy, then (i)
cannot hold. Hence (i) holds and, either one of the pathsPgapatisfies/ (P;) C M, or each of the
k— 1 paths intersectSg(M). In the latter case, sinags(M) = k— 1, we havgNg(M) N R | =1,
V(R) CMUNg(M) forall1 <i<k-—1, and henc&lg(M) € QandQ Cc MUNg(M). We shall
handle these two cases separately.

Case 1.No edge ofG joins S to Sy, (i) holds, and we havlig(M) C Q € MUNg(M).

Let Cy,Cy, ...,Cp be the components @ — Ng(M). Using the properties df1 (M intersects
exactly twok-cores M is the union of one or more component<®f Ng(M), andNg(M) =k—1)
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we can see that either, one compor@ntontainsSy andSy and is disjoint from everi-core ofG
other thanX,Y andM =V (C;), or each ofSx andS, corresponds to a component®@f- Ng(M)
andM = ScUS;.

SinceX andY are activek-cores, Lemma 4.8, witK = Ng(M), implies thatp < k— 1. Since
a(G) > (k—2)(2k+2) + k+ 3, G has at leastk — 2)(2k + 2) + 1 activek-cores disjoint fronB,
X, Y, andNg(M). Thus some componef of G— Ng(M) is disjoint fromM and contains at
least X+ 3 activek-cores distinct fronB. By Lemma 4.10, there exists a saturating exgewith
a1 € A1 for some activek-core A; C Cj, A1 # B. If m(G+xag) > 1(G) + 1 then we are done.
Otherwise all the activi-cores inG other thanX, A; remain active irG + xa;. Applying Lemma
4.10 again, we may pick a saturating egge with a, € Ay for some activk-core Ay of G + xay,
with A, C Cj, Ao # B.

We havex(x,y,G+xa; + Yap) > kK, since there is a path fromto y, using the edgesa, yap,
and vertices ofCj only, and thus this path is openly disjoint fro@ (sinceQ C M UNg(M)).
Hencek(x,y,H + xa; +yap) > r. Thus by Lemma 4.58 = S—v is anr-deficient set cover in
H + xa; + yap.

Case 2.EitherV(Py) C SxUSy or (i) holds andv (Py) C M.

Let us call a componer? of G — Q essentialf D intersects an activie-core other tharx, Y
or B. LetDy,Dy,...,Dp be the essential components®f- Q. We say that a componef); is
attached tahe pathP; if Ng(Di) "V (P}) # 0 holds. LetR=SxUSy if V(Py) C Sx USy holds and
letR= M if V(P1) C M. Then,Ris disjoint from every activ&-core other thatX,Y.

Claim 4.14 At most2k — 2 essential components are attached o P

Proof: Focus on an essential compon&ntvhich is attached t&; and letw € WN D for some
activek-coreW # X,Y, B which has a vertex ib. There exists a pathy from w to a vertex ofP;
whose inner vertices are ID. Sincew ¢ RandV(P;) C R, we haveD NNg(R) # 0. The claim
follows since the essential components are pairwise disjoinhéRO< 2k — 2. °

Suppose that one of the patRsintersects at leastkd+ 4 activek-cores inG other thanX,
Y or B. For every such activk-core A intersectingP®, choose a representative verigx ANR,.
Since thek-cores are pairwise disjoint, the representatives are pairwise distinct. Order the active
k-cores intersecting following the ordering of their representatives along the gatiiom x to
y. By Lemma 4.10, we may choose a saturating exigein G, wherea; is among the R+ 2
rightmost representatives aagdbelongs to an activiecoreA;. If i(G+xa) > 1(G) + 1 then we
are done. Otherwise all the actikecores ofG other thanX, A; remain active inG+ xa;. Again
using Lemma 4.10, we may choose a saturating gdgen G+ xa;, wherea, is among the R+ 2
leftmost representatives. By the choiceagfanday there exist two openly disjoint paths fraxo
yin G+ xa + yap using vertices of (B) only. Thusk(x,y, G+ xa; +Yya) > k. Hence, by Lemma
4.5,8 = S—vis anr-deficient set cover il + xa; + yap.

Thus we may assume that each pBtintersects at mostkd+ 3 activek-cores inG other than
X, Y or B. Hence there are at least

a(G) —3— (k—1)(4k+3) > (8k>+6k? — 23k — 19) — (k— 1)(4k+ 3) = (2k+2)(4k? — 3k —8)
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activek-cores other thaB contained inG — Q. Note that sinceék-cores are minimak-deficient
fragments, they induce connected subgraphs.itdence eaclk-core contained it — Q is con-

tained in a component & — Q. If some component d& — Q contains at leastkt+ 3 activek-cores

of G other thanB then the lemma follows as in Case 1. Hence we may assume that there are at
least 4% — 3k — 8 essential components@— Q, each containing an actikecore distinct fromX,

Y, andB.

Using Claim 4.14 we deduce that there are at lek&tBk — 8 — (2k—2) = (4k+3)(k—2) +1
essential component3; with all their attachments oR», Ps,..., B 1, each containing an active
core other thaiX,Y,B. SinceG is (k— 1)-connectedn(D;) > k— 1 and henc®; has at least two
attachments on at least one of the pahds,...,P—1. Relabelling the componenBy,...,Dy
and the pathB, ..., B_1 if necessary, we may assume tBahas at least two attachmentsin 1
for1<i<4k+4.

Let z be the leftmost attachment Bf on Bc_1. Without loss of generality we may assume that
21,22, ..,2Zx14 OCcur in this order o _1 as we pass fromtoy. By Lemma 4.10, there exists a
saturating edgga; whereg; € A; for some activek-coreA; C Dj, whereA; # B and 1<i < 2k+ 2.

If (G+ya) > 1(G) + 1 then we are done. Otherwise every ackveore inG other thary, A re-
mains active irG+ya. Using Lemma 4.10 again, there exists a saturating gdgeherea; c A;

for some activek-core Aj C Dj, whereA; # B and X+ 3 < j < 4k+4. Note thatz is either to
the left of zj or z = z;. Hence, using the fact th&ll; has at least two attachments Bp_1 and

by the choice ofz, zj, there exist two openly disjoint paths @&+ xa; + ya;, using vertices from
V(P1)UD;UDj only. Therefore(x,y, G+ xa;j +ya) > k, and we are done as above. This com-
pletes the proof of the lemma. °

Lemma 4.15 SupposatG) < 4(k—1) anda(G) > 20k(k— 1)%. Then there exists a saturating
set of edges F for G such th@| < 2k—2andm(G+F) > n(G) + 1.

Proof: Let B be an activk-core inG with BN T(G) = 0. Such a set exists by Lemma 4.12. Let
H = G—B, andr = k— |B|. SinceB is active,k(H) =r — 1. Everyr-deficient fragmenK in H

is k-deficient inG andNg(B) N X # 0. HenceNg(B) is anr-deficient fragment cover dfl. Let
SC Ng(B) be a minimalr-deficient fragment cover dfl. SinceB is k-deficient inG, we have
S/ <ng(B) =k—1.

We shall prove by induction onthat, for 0<i < k— 1, there exists a saturating set of edges
for G such thatR| < 2i, F is not incident withB, and eithem(G+F) > 1(G) + 1; or(G+F) =
1(G), B is an activek-core of G+ F, andH + F has anr-deficient fragment covef C S with
|S| < |9 —i. The lemma will follow since the second alternative cannot hold V@th= 0 (since
this would imply thatH + F is r-connected and hence tHats passive irG + F).

The statement is trivially true far= 0 takingF = 0. Hence suppose that there exists aFset
satisfying the above statement for somg 0< k—2. If m(G+F) > 1(G) + 1 then we can put
F.1=F. Hence we may suppose thdG+ F) = 1i(G), B is an activek-core of G+ F, andH + K
has arr-deficient fragment cove® C Swith |S| < |§ —i. We would like to apply Lemma 4.13 to
B andG+ F. To do this we must show th&+ F, B andS satisfy the hypotheses of this lemma.
We haver(G+F) = 1(G) < 4(k—1). Thusa(G+F) = a(G) — 2|R| > 8k®+ 6k? — 23k — 16.

The last property we need to verify is that evergleficient fragmenk in G+ F — B contains
at least one activk-core of G+ F. SinceF is a saturating set fdg, and since th&-cores ofG are
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pairwise disjoint, eack-core of G+ F is ak-core ofG. Furthermore, sinca(G+ F) = 1(G), if
Ais an activek-core of G andA is ak-core of G+ F thenA is an activek-core of G+ F. SinceZ

is r-deficient inG+ F — B, it is k-deficient iInG+ F. ThusZ contains at least one core &+ F.

If Z contains an activi-core inG + F;, then we are done, so suppose that ekecpre of G+ F

in Z is passive. LeB; be such &-core. TherB; is a passivé-core inG so G[Bj] is connected.
Let C be the component @[Z] containingB; and letZ’ =V (C). SinceZ is k-deficient inG, Z' is
k-deficient inG, andB C Ng(Z’). SinceBNT(G) = 0 andB C Ng(Z'), it follows thatZ’ ¢ ¥; and
henceZ’ contains at leastid— 7 activek-cores inG. Since|R| < 2(k—2) = 2k—4 and each edge
of F is incident to at most tw&-cores ofG, it follows that there exists an actikecoreA in G with

A c Z' which is still an (activek-core inG + F, contradicting the assumption that evérgore of
G+ Fin Zis passive. Henc& + F, B and§ satisfy the hypotheses of Lemma 4.13. Thus there
exists a saturating set of edgegor G+ F such thaiF| < 2, F is not incident withB, and either
MG+F+F)>nG+FK)=nG),orm(G+F+F) =n(G+F)=m(G) andG+F+F —Bhas an
r-deficient fragment cove$. 1 which is properly contained i§. Hence the inductive statement
holds withF 11 = FUF. o

Lemma 4.16 Suppose(G) > 20k(k— 1)+ (4k — 3)(4k — 4). Then there exists a saturating set of
edges F for G such that G F is k-independence free and3+F) > 2k — 1.

Proof: Since every graph is 1-independence free and every connected graph is 2-independence
free, we may suppose thiat> 3. If T(G) < 4(k— 1) then we may apply Lemma 4.15 recursively

4k — 3—11(G) times toG to find a saturating set of edgEsfor G such thatt(G+ F;) > 4k — 3. If

T(G) > 4k — 3 we sef; = 0. Applying Lemma 4.10 t& + F;, we can add saturating edges joining

pairs of activek-cores until the number of actidecores is at mostlR— 2. Thus there exists a sat-
urating set of edgels, for G+ F; such that (G+F1+ F) < 2k—2 andi(G+ F, + F) > 4k— 3.
Applying Lemma 4.10 tdG + F; + F», we can add saturating edges joining pairs consisting of
one active and one passikecore until the number of activk-cores decreases to zero. Thus
there exists a saturating set of eddedor G+ F; + F» such thato (G+ F, + R+ F3) = 0 and

MG+F +F+F) >2k—1. °

The main theorem of this section is the following.
Theorem 4.17 If ai(G) > 20k3 then
a(G) = max{[t(G)/2],b(G) — 1}.

Proof: Since every graph is 1-independence free and every connected graph is 2-independence
free, the result follows from Theorem 3.12kikK 2. Hence we may suppose that 3. LetG+s

be ak-critical extension ofs. By Lemma 2.10 we have(s) > ax(G) + 1 > 20k® > k+ 1. Hence,

by [15, Lemmas 3.4, 3.5] we hatgG) = d(s) > 20k>. (This equality will also follow from Lemma

5.2 in Subsection 5.) IB(G) — 1 > [t(G)/2] thenax(G) = b(G) — 1 by Theorem 4.1 and we are

done. Thus we may assume theiG) /2] > b(G) — 1 holds. We shall show thak(G) = [t(G)/2].

By Lemma 4.16, there exists a saturating set of edfgés G such thalG+ F is k-independence

free andt(G+ F) > 2k— 1. Note that adding a saturating edge to a greipreduces|t(H)/2]

by exactly one ant(H) by at most one. Thus, fit(G+F)/2| < b(G+F) — 1, then there exists
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F’ C F such thaft(G+F’)/2] =b(G+F’) — 1 and the theorem follows by applying Lemma 4.2,
Hence we may assume thatG+F)/2] > b(G+F) — 1. SinceG+F is k-independence free,
we can apply Theorem 3.12 to deduce thdG+ F) = [t(G+F)/2]. Using (1) and the fact that
t(G) =t(G+F)+2|F| we havesy(G) = [t(G)/2], as required. .

Theorem 4.17 gives an affirmative answer to a conjecture of the second author, [16, p 300].

5 Unsplittable Extensions

In this section we consider lacritical extensionG + s of an I-connected grapls on at least
k+ 1 vertices in whichd(s) is large. We show that(s) = t(G) and characterise when there is no
admissible split containing a given edgesat

Lemma5.1 Let XY C V be two sets with XY # 0. Suppose 5) > (k—1)(k—1) + 4.
(@) If X and Y are tight then XY is tight andd(X NY) = k.

(b) If X is tight and Y is dangerous then )X is dangerous.

(c)Ifd(s) > (k—1+1)(k—1)+4and X and Y are dangerous theri XY* # 0.

Proof: We prove (a). LeK,Y be tight sets wittK NY # 0. By (9) we have

2k=d(X)+d(Y) >d(XNY)+d(XUY). (17)

Clearly, XNY is a fragment and henccEX NY) >k by (7). Using (17) we havd_(X uY) <k
Thus ifX*NY* # 0thenX UY is also a fragment and hence is tight a{X NY) = k.

SupposeX*NY* = 0. Sinced(XUY) <k, we haven(XUY) < k—d(s,XUY). SinceG is
[-connected an@ + sis k-critical, d(s,v) < k—1 forall ve V. Thus

d(s) < d(s,XUY)+d(s,N(XUY)) <d(s,XUY)+ (k—=hHn(XUY) <

< d(sXUY)+ (k—1)(k—d(s,XUY)) = (k—k— (k—1 —1)d(s,XUY).
Sincek—1—1> 0 andd(s,XUY) > 1, this givesd(s) < (k—1)(k—1) + 1, contradicting the
hypothesis or(s).

The proofs of (b) and (c) are similar, using the fact tthgg X UY) > 2 in (b) and (c). °

The following lemma shows thail(s) = t(G) whend(s) is large.
Lemmab5.2 Ifd(s) > (k—1)(k—1)+4thends) =t(G).

Proof: Let ¥ be a family of tight sets which cove(s) such that/ 7| is as small as possible.
Since every edge incident §s critical, such a family exists. We show that the member$ @ire
pairwise disjoint. Choos¥,Y € F and suppose tha¢NY £ 0. By Lemma 5.1(a)XUY is also
tight. So replacing( andY in F by X UY we contradict the minimality ofF |.

Since the members ¢f are pairwise disjoint, tight, and covili(s), we haved(s) = 3 xc ¢ (k—
n(X)) <t(G). The inequalityd(s) > t(G) follows easily from (7). Thusl(s) =t(G), as requireds
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Lemma 5.3 Let sy be a designated edge of a k-critical extension-& of G and suppose that
there are > (k—1+1)(k— 1) + 4 edges sy (¥ Xo) incident to s for which the pair gxsy is not
admissible. Then there exists(la— 1)-shredder K in G such that K hasHg1 leaf components
Co,Cy,...,Cqin G+, where X=V (Cp) is the maximal tight set containing &and K= Ng(Xo).

Proof: Let Xp be the maximal tight set i6 + s containingxp. Note that the seXp is uniquely
determined by Lemma 5.1(a). L&t = {Xy,...,Xm} be the set of all maximal tight sets which
intersectN(Xp). Note thatXiNX; =0 for 0 <i < j < mby Lemma 5.1(a). Thus we have
d(s, UM o%) = d(s,Xo0) +d(s,UN,X).
Slnce eaclx; € 7 contains a neighbour &f; andXg is tight, we haven < n(Xg) = k—d(s, Xo).
Since eaclX; € 7 is tight andG is |-connected, we haw#(s, X)) <k—1. So

d(s UZoXi) < d(s,Xo) + (k—1)(k—d(s, X)) = k(k—1) —d(s Xo)(k—1-1).  (18)

Let M = {y € N(S) — Xo : SX,SY is not admissiblg. Since there exist) > (k— 1 +1)(k—1) +4
edges incident t@ which are not admissible witkx, we can use (18) to deduce tHat= M —
UM X # 0. By Lemma 2.11 and by the choice @f there exists a family of maximal dangerous
setsW = {W,...,W } such thatxo e W forall 1 <i <r andRC nglvv.. Let us assume that/

is chosen so thatis as small as possible. By Lemma 5.1(Ky,C W for all 1 <i <r. Since
d(s, WM — Xp) <k+1—1—d(s,Xp), we can use (18) and the fact tlgpt (k— I +1)(k—1)+4to
deduce that > 2. Forw,W; € W we havew* N"W;" # 0 by Lemma 5.1(c). SincéfUW; is not
dangerous by the maximality &, we may apply (9) to obtain

K+1+k+1>dW)+d(W) > dWNW,) +dWUW,) > k+k+2. (19)

Thus equality holds throughout at "W, is tight. SinceXg is a maximal tight set an¥p C
W NW; we haveXo = W NW,. Furthermore, since we have equality in (19), we can use (8) to
deduce thatV; "\N(W) € N(WNW;). SoW; NN(W) € N(Xp) and, similarlyW nN(W;j) € N(Xo).
HenceN(s) "W NN(Wj) € U™, X. (Note that every € N(s) NN(Xo) is contained in one of the
Xi's by the criticality ofG+s) So by the choice of), ROW MW" # 0 andRNW; NW* 5 0
follows.

By (10),

2k+2 = d(W )+d(vv,)>d(WmW*)+d(W*mW,)+d(sW W) +d(sWj —W") > 2k+2,

and so we have equality throughout. Thus all edges saoW, other than the single edgeo,
end inWNW;" andd(s,Xo) = 1. HenceRNWj NW" = (RNWj) —Xo. Sinced(s, W UW;) =
d(W UW,) — nG(W UW,) < k+2—1, we haved(s,(W UW;) —Xo) < k+2—1—-d(sX). We
can now use (18) and the fact thgt> (k—1 +1)(k— 1) + 4 to deduce that > 3. Thus0 #
(RNWj) — X% € W; NW*NW; holds for all distincti, j,h e {1,....r}. Applying Lemma 2.15 we
deduce thaK = Ng(Xo) is a(k— 1)-shredder withr + 1 leaf component€y,Cy,...,C; in G+,
whereV (Cp) = Xp andV (G)) =W — Xpfor 1 <i <r.

We complete the proof of the lemma by showing that= R and hence that = q. Suppose
thatM # R. Then7 # 0 and we may choos¥; € 7. SinceX; NN(Xp) # 0, we haveX; NK # 0.
SinceX;NR=10, N(X;) NG #0for 0 <i <r. Usingr = |R| > q—d(s,uX), and the facts
thatd(s, Xp) = 1, andq > (k— | +1)(k—1) + 4, we may use (18) to deduce that k+ 2. This
contradicts the fact thag; is tight sinced(X;) > ng(X1) >r + 1. °

25



6 Graphs Containing Shredders with many Components

We show in this section that B(G) andt(G) are large compared toandb(G) — 1 > [t(G)/2]
thenax(G) = b(G) — 1. We need several new observations (&n- 1)-shredders. We assume
throughout this section th&+ sis ak-critical extension of ah-connected grap®, and thaK is
a(k— 1)-shredder of5 satisfyingd(s) < 2b(K) — 2.

Lemma 6.1 Supposd@(K) > 4k+3(k—1)— 1. Then
(a) the number of components C of-& with d(s,C) > 3is at most fK) — 2k — 1,
(b) IN(s)nK| <1, and
(c) ifd(s,x) = j > 1for some x K then k—dg(Xx) = j.

Proof: Let w be the number of componenof G — K with d(s,C) > 3. Thend(s) > 3w+

(b(K) —w). Thus

2w < d(s) —b(K) < 2b(K) —2—b(K) = 2b(K) 4+ 25(K) — 2— b(K) = 2b(K) + 35(K) — 2— b(K).

Sinced(K) < k—1 andb(K) > 4k+3(k—1) — 1, we havew < b(K) — 2k— 1. This proves (a).
SinceG + sis a critical extension o6, each vertex ifN(s) is contained in a tight set @& +s.

Thus (b) will follow from the next claim.

Claim 6.2 At most one vertex of K belongs to a tight set in-&.

Proof: Suppose that there exist two distinct vertiggso € K and tight set¥1,Y> in G+ssuch that
X1 €Y1, X2 € Yo. LetY =Y;UYz and letD = {C:Cis a component o6 — K,CN(YUN(Y)) # 0}.
We have|D| < 2k, sinced(Y) < d(Y1) +d(Y2) < 2k and for everyC € D eitherC—Y # 0, in
which caseN(Y) NC # 0 holds, orC C Y, in which caseal(s,CNY) > 1 holds by (7).

Sinceb(K) > 4k + 3(k—1) — 1 we haveb(K) > 4k +2(k—1) — 1. Thus we may choose a
component’ of G—K such thatC’' ¢ D. ThenC'NN(Y) = 0 and henceq, x2 ¢ N(C'). Hence
n(C') <k—3 andd(s,C’) > 3. Since we have at leabtK) — 2k choices forC/, this contradicts

(a). °

To prove (c), we choose a tight sétontainingx. By Claim 6.2 XNK = {x}. If X = {x} then,
sinceX is tight, we haveld(s,x) = k— dg(X), as required. Thus we may suppose that K # 0.
By Lemma 2.4d(s,x) = 1.

We first consider the case whehintersects two distinct componer@ig,C, of G — K. Since
Ng(C1NX) C CiUK andNg(C1NX) € Ng(X) U{x}, we have

d(X) > d(CLNX) —1+d(s,X) +d(s,C2NX) + |Ng(C2NX) NCy.

If Co C X thend(s,CoNX) > 1, and ifCy; € X then|Ng(C2NX) NCy| > 1. Sinced(s,x) =1 and
d(C1NX) >k, we deduce thad(X) > k+ 1. This contradicts the fact thtis tight.
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ThusX intersects a unique componddiof G— K. LetM =CnX. ThenNg(M) C CUK.
Since(Ng(M) — {x}) UNg(X) C Ng(X), we may use (7) to obtain

k=d(X) > d(M)—1+d(s,X)+|Ng(x) — (MUNg(M))|

>
> k—=14d(s,X) +[N(X) =M —N(M)|.

This implies thatNg(x) € MUNg(M). Thereforeb(K) < b(K)+ 1, andx ¢ Ng(C') for every com-
ponentC’ # C of G—K. Henced(s,C’) > k—ng(C’) > 2. ForC we haved(s,C) > 1 by (7). This
givesd(s) > 2(b(K) — 1) +1+d(s,x) = 2b(K) > 2b(K) — 2. Thus equality must hold throughout
b(K) = b(K) +1 andd(K) = 1. SinceN(s)NK = {x} by (b), we hav&k — dg(x) = d(K) = 1=
d(S,X). °

We shall use the following construction to augmenwith b(G) — 1 edges in the case when
d(s,K) = 0 andb(K) = b(G) = b. LetCy,...,C, be the components d& — K and letw; =
dc+s(s,Ci), 1 <i <b. Note thatw; > 1 by (7). Sinced(s) < 2b— 2, there exists a tre€ on
b verticesCy,C,, . ..,Cy with degree sequendah, ..., dp such thatd; > w;, for 1 <i <b. (It will be
clear from the context whether the lal@@lrefers to a component @ — K or a vertex ofT .) LetF
be a set of edges joining verticesh ; s(s) with dg (v) > dg+s(S, V) for everyv € V(G) and such
that the graph obtained frov — K, F) by contractingC,,Cy, . ..,Cp to single vertices iF. Thus
|[F| =|E(T)| =b—1. We shall say thab + F is aforest augmentationf G with respect td& and
G+s, and prove thaG + F is k-connected. Note that sinde_s(s,K) = 0, there are n&-deficient
fragments ofG contained irkK by (7).

Lemma 6.3 Suppose (5,K) = 0 and let G+ F be a forest augmentation of G with respect to K
and G+s. If X is a k-deficient fragment in GF then|XNK]| > 2.

Proof: We proceed by contradiction. Supposés ak-deficient fragment its + F with [X NK| <
1. LetX* =V — X — Ng+r (X). ReplacingX by X* if necessary, we may assume that

IX*NK| > X NK|. (20)

We first suppose that C X for some leak of T. Sinced(s,L) < dr (L), L is a leaf component
of Kin G+s. HenceK C XUNg(X) by Lemma 2.14. It follows thaX* NK = 0. HenceXNK =0
by (20) andK C Ng(X). If X properly intersects some componént~ L of G— K thenng(X) >k
follows, contradicting the fact that is k-deficient inG+F. SinceX* £ 0, there exists a component
C of G—K for whichCNX = 0. Choose a patR fromL toCin T. LetC’ be the first component
for which the edge o which enter<C’ corresponds to an edge fwhich connectX toV — X.
For this component we hayBg. (X)) NC/| > 1, song. ¢ (X) > |K|+ 1=k, as required. Thus we
may assume that

LNX # L for each leat of T. (22)

Choose a componet of G— K such thaD N X # 0 and letR be the set of edges &f which
are incident withX ND. Letey,...,e be the edges incident © in T, which correspond to the
edges inR. Chooser longest path$’,...,P in T starting atD and containing the edges, ..., €.
Let A be the set of all pathBj, 1 < j <r, which contain an edgésC; corresponding to an edge
ujvj in F with uj € GsN X andvj € G — X. For every such path we hawg € Ng,r(X). Let
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A ={vj : P; € A}. LetB be the set of pathg;, 1 < j <r, which do not belong té\ and choose
Pj € B. Since the first edge d?; corresponds to an edge fwhich is incident toD N X, every
edge ofP; corresponds to an edge Bfjoining two vertices ofX. In particular, the last edge &
is incident to a leat j of T which is distinct fromD and for whichX NLj # 0. SinceXNL; # L
by (21), we may choose a vertex € Ng(X)NL;. LetB' = {w; : Pj € B}. Clearly,|A| = |A],
|B| = |B’| and|A| + |B| = r. The above observations imply that

A'UB'U(Ng(DNX) — (XNK))U(Ng(XNK)—X) C Nt (X). (22)

SinceG +sis (k,s)-connectedr > k—ng(DNX). SinceA’,B',Ng(DNX) are pairwise disjoint,
we may deduce that, X NK = 0, thenX is notk-deficient inG+ F. HenceX NK = {x} for some
xe K.

LetL be aleaf ofT distinct fromD. ThenL is a leaf component df in G+ ssoNg(x) NL # 0.
Hence eithe(Ng(x) NL) — X # 0, or XNL # 0 and, by (21)Ng(X) NL # 0. It follows that, in
both cases, we may chooge Ng(X)NL. Thus

A UB'U(Na(DNX)) U{y} € No(X).
Clearlyy ¢ Ng(D N X). SinceX is k-deficient inG+ F, we must havg € A UB'. Thus
LN (A'UB') # 0 for each leal of T distinct fromD. (23)

The definitions ofA’, B’ now imply that the path®;, 1< j <r, coverT, and hence that each
edge ofF which is incident withD, is incident withD N X. SinceV (F) = Ng;s(S), we have
Ng+s(S) D C X. SinceD can be any component & — K which intersectX we may deduce that

If DN X # 0 for some componerd of G — K thenNgs(s)ND C X. (24)

Suppose&€ is a component o6 — K with CN X = 0. Then (23) implies that is a leaf of T and
A'NC # 0. Furthermore, the argument used in the derivation of (23) gi¥e€ = {y} = Ng(x)NL.
Sincey € A’ C Ngs(S), Y is the unique neighbour afin C. Thus

If CN X = 0 for some componert of G — K thenNg,s(s) N"C C Ng(X). (25)

Properties (24) and (25) imply thiig s(S) € XUNg(X). ThusNgs(s)NX* =0andd(X*) <
ne(X) < k. This contradicts the¢k, s)-connectivity of G+ s and completes the proof of Lemma
6.3. °

Lemma 6.4 Suppose (5,K) = 0 and b(K) = b(K) > 4k+3(k—1) — 1. Let G+F be a forest
augmentation of G with respect to K andi&. Then G+ F is k-connected.

Proof: We proceed by contradiction. Let be ak-deficient fragment ilG+ F. ThenX* is
alsok-deficient so by Lemma 6.3X NK| > 2 and|X* NK| > 2. SincelV — (KUXUX*)| <
V — (XUX*)| < k—1, there are at leasis(K) — (k— 1) component€ of G — K which are con-
tained inXUX*. There is no edge fromd to X* in G+ F, so for each such component eit:t X
orC C X* holds. Thus we havig(C) C K—X* orNg(C) C K — X, and saing(C) < k— 3. Hence
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dg(s,C) > 3 by (7). This contradicts Lemma 6.1(a). o

Our final step is to show how to augmedivith b(K) — 1 edges whed(s,K) £ 0. In this case,
Lemma 6.1(b) implies that there is exactly one verexK which is adjacent te. We use the next
lemma to split off all edges frorato x and hence reduce to the case whiés K) = 0.

Lemma 6.5 Suppose (b5, x) > 1 for some x K and d's) > (k+1)(k—1+1). Then there exists a
sequence of @, x) admissible splits at s which split off all edges from s to x.

Proof: We haved(s,x) < k—1. Suppose we get stuck after splitting off some copiesxpi.e. we
obtain a grapiH + s where some edgsx cannot be split off. Sincéys(S) > de1s(S) —2(k—
| —1) > (k—1+1)(k—1)+4, we can use Lemma 5.3 to deduce that there(ls-al)-shredder
K’ in H with by (K’) = dys(s) and withx in one of the components &f — K’. Letu,v be two
neighbours ofin H distinct fromx and letC, andC, be the components ¢f — K’ containingu
andv respectively. By Lemma 2.14, there exist 1 openly disjoint paths betweenandv in H
containing only verticies of,, C, andK’, and hence avoiding Since all edges dE(H) — E(G)
are incident withx, these paths exist iG as well.

Sincebg(K) > bg(K) — (k—1) > (de1s(s)+2)/2— (k—1) > k+1>dg+s(S,V —X) —dH+s(S,V —
X) + 2, and each component @f— K contains a neighbour afin G, we can choose the two neigh-
boursu,v of sin H 4 sto belong to different components @— K. But for such a choice afi,v
there do not exist — 1 disjoint paths fromu to vin G — x, contradicting the above claim. .

We can now prove our augmentation result for gra@tier which B(G) is large.

Theorem 6. 6 Suppose that G is |- connectehr{G) >4k+4(k—1)—1,t(G) > (k+1)(k—1+1)
andb(G) — 1> [t(G)/2]. Then &(G) = b(G) — 1.

Proof: Let G+ s be ak-critical extension ofG. Thend(s) = t(G) by Lemma 5.2. LeK be a
(k—1)-shredder inG with b(K) = b(G). Then D(K) —2>t(G) = d(s). Supposel(s,K) = 0.
Thenb( ) = b(K). Let G+ F be a forest augmentation & with respect t&K andG+s. Then
|F| = b(G) — 1 and by Lemma 6.4G + F is the requireck-augmentation o5. Hence we may

assume thad(s,K) > 1.

Applying Lemma 6.1(c), we deduce thid(K) = dg+s(S,K) = dg+s(S,X) for somex € K. By
Lemma 6.5, we can construct a graph- s by performing a sequence dg(s,x) admissible splits
at s which split off all edges fronsto x in G+s. Since we only split edges incident xa= K to
formH + s, we haveG — K = H — K and sabg(K) = by (K). Hence

dhis(S) = dors(S) — 2des(SX) = dos(S) — 206(K) < 2bg(K) —2— 28(K) =
= 2bg(K)+20c(K)—2—-25c(K) = ZbG( )—2=2by(K)—

Thus we havely 1 s(s) < 2by (K) — 2, anddy 4s(S,K) = 0. Also note that the splittings add a $et
of 3¢(K) new edges t6 to formH, and thaby (K) = bg(K) > bg(K) — (k—1) > 4k+3(k—1) — 1.
Let H + F; be a forest augmentation bff with respect t&k andH +s. Then|F;| = by (K) — 1=
bg(K) — 1, andH + F; is k-connected by Lemma 6.4. Th@+ Fy+ F1 = H + Fy is the required
k-augmentation o6 with &g(K) +bg(K) — 1= bg(K) — 1 edges. o
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(G)/2] using saturating

We will apply Theorem 6.6 to graphs which do not satisf) — 1 > [t
=t(G) — 2|F|.

edges. Recall that a setof new edges is saturating f&if t(G+F)

Lemma 6.7 If F is a saturating set of edges for an |-connected graph G \Ev(tBJr F)>4k+
4k—-1)—1,t(G+F) > (k+1)(k—1+4+1), andb(G+F)—-1= [t(G+F)/2], then &(G) =
t(G)/2].

Proof: By Theorem 6.6 the grapB + F can be madé&-connected by adding a set of [t(G+
F)/2] edges. Sincé€ is saturating, we havéG) = t(G+F) + 2|F|. Therefore the st UF' is
an augmenting set fdB of size [t(G)/2]. Sinceax(G) > [t(G)/2], the lemma follows. o

7 Augmenting Connectivity by at least Two

Throughout this section we assume t@at (V, E) is anl-connected graph on at ledst 1 vertices
and that < k—2. We shall show that iy (G) is large compared th, thenay(G) = max{b(G) —
1,[t(G)/2]}. Our proof uses Theorems 4.17 and 6.6. We shall show tlet@) is large then
either we can add a saturating set of edgeso thatG+ F is (k— 1)-connected, or els& has
a (k— 2)-shredder with many components. If the latter occurs then we show directly that we
can makeG k-connected by adding(G)/2] edges. We will occasionally consider two different
extensions of the same graph To distinguish between them we shall label one of therd ass
and the other al & s.

Let G + s be ak-critical extension ofs. Construct gk — 1)-critical extensiorG @ s of G from
G+ s by deleting a set of edges incidentgoLet f = (k—1+1)(k— 1) + 4 be the bound on the
number of non-admissible pairs containing a fixed edge given by Lemma 5.3.

Lemma 7.1 If dg4s(S) > f(k—1+1)/(k—1) then &+s(S) — deas(S) > de1s(S)/(K—1+1).

Proof: If dggs(s) < f then the lemma is trivial. Otherwise by Lemma 5.2(a) there exists a family
F of pairwise disjoint(k — 1)-deficient fragments s such thatdggs(s) = 3 #(k—1—n(X)).
SinceG +sis (k,s)-connected we haviks s(s) > 5 7 (K—n(X)). Hencedg.s(S) > deas(s) +| F|.
Sincedges(s,X) < k—1foreachX € F, we have F| > dgas(S)/(K—1). Thusdgs(S) > deas(S) +
deas(s)/(k—1) = (k—1+1)das(s)/(k—1). Henceds s(s) — deas(s) > de+s(s)/(kK—1+1). e

We next perform a sequence (f— 1)-admissible splits atin G® sand obtainG; &s. We do
this according to the following rules. Hgqs(s) < 2f then we putG; @s=Gds. If degs(s) >
2f + 1 then we perforntk — 1)-admissible splits until eithedg,«s(s) < 2f, ordg,as(s) > 2f +1
and there is ngk— 1)-admissible split asin G; &s. We then add all the edges@+s) — (G®S)
to G; @ sand obtairG; +s. We shall refer to the edges @&+ s) — (G®'s) asnew edgesf G; +s.

Lemma 7.2 If dgts(S) > f(k+1—1) then G + s is a k-critical extension of {5
Proof: SupposeG; + sis not (k,s)-connected. Ifdg,qs(s) < f thenGi@s=GesandGy +

s= G +s, contradicting the assumption th@t+ s is (k, s)-connected. Hencég,qs(s) > f + 1.
Choose a minimal fragmen¢ of G; such thatdg,s(X) < k. Sincedg,ss(X) > k— 1 we have
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dg,+s(X) = k—1=dg,ss(X) and no new edge db; + sis incident withX. Sincedg;s(X) >k,
there exists an edgexin G+ s with x € X. Thensxe E(G@® s), since no new edge is incident
with X. Hencesxis (k — 1)-critical in G@ s so there exists a minimal tight s&twith x € Y
anddges(Y) = k—1. Hencedg,qs(Y) = k—1. Working inG; & s we may use Lemma 5.1(a)
to deduce thatg,ss(XNY) = k— 1. Since there are no new edges incidenXtothis gives
dg,+s(XNY) =k—1. Now the minimality ofX implies thatX C Y. Sincedgas(Y) = dg,es(Y),
we now deduce thalggs(X) = dg,es(X). Thusdgss(X) = k—1 and the minimality ofY gives
X =Y. Since no new edge is incident wikthis givesdss(Y) = degs(Y) = k—1. ThusY is
k-deficient inG + s, contradicting the fact tha + sis (k, s)-connected.

Criticality of G; + sfollows from the criticality ofG + s, since splitting off pairs of edges from
scannot increase(X) for anyX C V. o

Using Lemma 5.3, we can deduce that eittig.s(s) is small or else there exists(&— 2)-
shreddeK in Gy such thaiG; — K hasdg,«s(S) components. In the first case, we show that there
exists a sequence &fadmissible splits irG; + s such that, in the resulting graghf, +s, Gj is
(k— 1)-connected and then apply Theorems 6.6 and 4.17. We accomplish this by ensuring that
K(X,y,G7) > k— 1 for everyx,y € Ng,s(S). This is possible since there are many new edges and
hencedg, +s(S) is large compared tdg, «s(S). We proceed incrementally using the lemmas below.

In the second case, we show directly that we can niakeconnected by adding (G)/2] edges.

Henceforth we shall assume th@} + s is obtained fromG, + s by performing a sequence of
k-admissible splits and that C V is a cover of all(k — 1)-deficient fragments oB). (In proving
the theorem we will tak& = Ng,as(S).) Let|T|=T.

Lemma 7.3 If k(u,v,G}) > k—1forallu,ve T then G is (k— 1)-connected.

Proof: SupposeG] has a fragmenK with n(X) < k—2. Then we may choosee XN T and
ve X*NT, contradicting the fact tha¢(u,v) > k— 1. o

Lemma 7.4 Let szswe E(G} +s) and suppose that the pair,sav is not k-admissible. K(z,w, G}) <
k— 2 then there are at most f pairs of edgesssawhich are not k-admissible im;G-s.

Proof: Let R= {sx: szsxis notk-admissible inG; +s}. Suppose that = |R| > f. Then by
Lemma 5.3, there is gk— 1)-shreddeK in G} with r 41 leaf components i) + s such thatz as
well as each vertex, sxe R, is in one of these components. By Lemma 24, x) > k— 1 for
every suctx. Takingx = w gives a contradiction. °

Lemma 7.5 Suppose that@l s(s) = (f +1)(2(k—2)(f +2) + 1) + (k—2)(k—1 —2). Choose
u,v e T and suppose that(u,v,G]) = m< k— 2. Then there exists a sequence of at most two
k-admissible splits such that, for the resulting graph-Gs, we have(u,v,G]) = m+ 1.

Proof: Let X, andX, be the smallest sets which contaiandv, respectively, separateandv, and
have preciselyn neighbours. It is well-known that these unique smallest separators exist. Since
Ng; (Xu) = Ng; (Xv) = M < k—2, there exist vertices € Xy M Ng, (s) andy € Xy N Ng; ;5(s). It
is also known that there exist pathsP4, ..., Py, from u to v, and two path$y andPy,1, one from

31



u to x and the other fronv to y such that all thesen+ 2 paths are vertex-disjoint apart from at
u andv. (Note thatu = x or v=y is possible.) We may assume, without loss of generality, that
N, 1s(S) N (V(Po) —x) = 0andNg; ,5(S) N (V(Pmt1) —y) = 0. LetQ= U,V (R) — {u,v}. If the
pair sx syis k-admissible, we have(u,v, G} 4-xy) > m+-1, as required. If not, we need to choose
k-admissible pairs in a more complicated way, as in the proof of Lemma 4.13.

Suppose there exists a p&h(1 <i < m) with dg; ,5(s,V(R)) = 2f + (k—1) + 1. By Lemma
7.4 we may choose an admissible psirsain G| + s such thata is a neighbour ot on B, as
close tov as possible. Lemma 7.4 implies that there are at niastiges froms to R(a,v]. If
K(u,v,G] +xa) > m+ 1 then we are done. Otherwise we may spjisbin G + s+ xa, whereb
a neighbour o6on R, as close tai as possible. Lemma 7.4 implies that there are at mastges
from sto R[u,b). Sinced(s,w) < k—1I for eachw € V(R), the vertice,b,a,y appear orR in
this order. Hence there exist two vertex-disjaintpaths on vertex sat(R) UV (Py) UV (Pmy1),
showingk(u,v,G} +xa+yb) > m+ 1, as required. Thus we may assume that no such path exists
and hencelg,  5(s,V — Q) > dg; 4s(S) —m(2f +k—1) > (f+1)(2(k—2)(f + 1) +1).

LetH be the graph obtained fro@®; — Q by deleting any edges joiningandv. LetCo,Cq, ...,Cpt1
be the components &1 which each contain at least one neighbous,ofvhereu,x € V (Cp) and
v,y € V(Cps1). Supposel(s,Cj) > f +2 for some 1< j < p. We may perform &-admissible
split sx safor somea € Cj, and then &-admissible splisy sbin G} + s+ safor someb € C;.
These admissible pairs exist by Lemma 7.4. It is easy to seethat, G} +xa+yb) > m+1,
as required. Thus we may assume that no such component exists. Simild(yJf) > f + 1,
then we may splisy, scfor somec € Cp which is admissible witlsyin G| + s, and we again have
K(u,v,G] +yc) > m+1, as required. A similar construction holdslifs,Cp1) > f +1. Hence we
have at leasti(s,V —Q)/(f +1) > 2(k—2)(f +1) +1 components iH, each containing at least
one neighbour o$.

Since each compone@ with ng; (C) < k—2 must contain a vertex fron, andu,ve T,
there are at least(R— 2)(f + 1) componentE;, 1 <i < p, with at leask — 1 attachments oQ.
Sincem < k— 2, we have at leastf2+ 2 component®s, ..., D; which have two attachments on the
same pathP; say. We now proceed as in the final part of the proof of Lemma 4.13ajLie¢ the
attachment oD on Py closest tau for 1 < j <r. We first pick aD; wherea; is among thef +1
attachment vertices; closest tau on P, and we choose lradmissible paisy, sbwith b € D;j. This
pair exists by Lemma 7.4. Then we piclog whereay, is among thef 4- 1 attachment vertices;
closest tor on P; and we choose kradmissible paisx sawith a € Dy. This pair exists by Lemma
7.4. Note thag; either occurs befora, onP; or g = a,. Hence, using the fact that the components
D; have at least two attachments Bnand by the choice odj, a,, there exist two openly disjoint
uv-paths inG] + xa+ yb, using vertices fronV (Py) UV (Py) UV (Pm1) U D; U Dy, only. Therefore
K(u,v,G] +xa+yb) > m+1, as required. .

Applying this lemma iteratively to all pairs of verticesTn starting withG} +s= G; +sand
using the fact that is a decreasing function of we obtain:
Corollary 7.6 Suppose that
do,1s(8) > (f+1)(2(k—2)(f +2) + 1)+ (k—2)(k— | —2) + 2t3(k— 1 — 1).
Then there exists a sequence of at mégt— | — 1) k-admissible splits such that, for the resulting

graph G +s, we have(G}) > k— 1.
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Theorem 7.7 If G is I-connected and,@G) > 10(k— | +2)3(k+ 1)3 then &(G) = max{b(G) —
1,[t(G)/2]}.

Proof: We havedgs(s) =t(G) > ax(G) +1 > 10(k— I + 2)3(k+ 1)3 by Lemmas 2.10 and 5.2.

If b(G) —1> [t(G)/2] thenak(G) = b(G) — 1 by Theorem 6.6 and we are done. Thus we may
assume thaft(G)/2] > b(G) holds. We shall show tha(G) = [t(G)/2]. We construcG @ s,
G14s, andGy +sas above. By Lemma 7.831 is obtained fronG by adding a saturating skt

of edges. Note that adding a saturating edge to a g@pteducegt(Gp)/2]| by exactly one and
b(Go) by at most one. Thus, ift(G+F)/2] < b(G+F) — 1, then there exist§’ C F such that
[t(G+F')/2] = b(G+F') — 1 and the theorem follows by applying Lemma 6.7. Hence we may
assume thaft(G1)/2] > b(Gz) — 1. We have

t(G1) = dg, +s(S) > do1s(S) — das(S) > 10(k— 1 +2)?(k+1)° (26)

by Lemma 7.1. Using Lemma 5.3, we either hakg.s(s) < 2f or elsedg,ss(s) > 2f +1 and
there exists @&k — 2)-shreddeK in G such thabg, (K) = dg,as(S).

Case 1:dg,es(S) < 2f.

Let T = Ng,as(S). Then|T| =1 < 2f. Corollary 7.6 and the fact thdt< (k—1 +1)(k+1) — 2
imply that there exists a sequence of at md@&t-4l + 1)3(k+ 1)? k-admissible splits i1, + ssuch
that, for the resulting grapB; +s, we havex(G}) > k— 1. Note thatlg, , 5(s) > 2(k—I +2)?(k+
1)3, by (26). Thus there exists a saturating set of edgésr G such thatG; = G+F is (k— 1)-
connected ant{G + F) > 2(k— 1 +2)%(k+1). As above, we may assume tHatG + F)/2] >
b(G+F)—1>Db(G+F)—1 (otherwise we are done by Lemma 6.7). Sitke F is (k—1)-
connected, we can apply Theorem 4.17 to deducesiti&+ F) = [t(G+F)/2]. Using (1) and
the fact that(G) =t(G+F) + 2|F| we haveay(G) = [t(G)/2], as required.

Case 2 dg,as(S) > 2f + 1 and there is ngk — 1)-admissible split asin G1 & s.

By Lemma 5.3, there exists (& — 2)-shreddelK in G; such thatbg, (K) = dg,ss(S) and hence
each component db; — K is a leaf component. Using Lemma 2.14, and the fact Naat:s(S)
covers all(k— 1)-deficient fragmentX in G1, we deduce:

Claim 7.8 Gy is (k— 2)-connected.
SinceG; + sis k-critical, Claim 7.8 and Lemma 2.4 imply:

Claim 7.9 For all v e V we have d,s(s,v) < 2. Furthermore &,s(s,v) = 2 if and only if
dGl(V) =k-2.

Let G, + s be the graph obtained fro@; + s by splitting off as manyk-admissible pairs of
edgessx syas possible i, + ssuch thak andy belong to the same component®f — K. Then
G2 + sis ak-critical extension ofc,. LetCq,Cy,...,C; be the components @, — K. Note that
these components have the same vertex sets as the compon@its léfand hence

r =dg,es(s) > 2f + 1. (27)

Letdg,+s(S,Ci) = di. Relabelling if necessary, we hasle>d, > ... > d;.
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Claim 7.10 dg,+s(s,K) = 0.

Proof: Supposé&s; + s has an edgexwith x € K. By criticality there exists a fragmedt of Gy
such thatx € X anddg,+s(X) = k. Since, by Caim 7.8x € Ng,(C;) for all 1 <i <r, we have
X € Ng,(GCj). Hence eitheNg,(X) NCj # 0, orC; C X anddg,+s(s,XNCj) > 1, forall 1<i <r.
Thusdg,+s(X) >r >k, a contradiction. °

Using Lemma 6.7 we may suppose that

A

b(G2) < [t(G2)/2] = [dg,+5(5)/2]- (28)
Claim 7.11 dy < (3[_,di) — 1.

Proof: Supposed; > (3{_,d;). Sinceds + (3{_,di) = dg,+s(S) >r > 2f +1 by Claim 7.10 and
(27), we havel; > f + 1. Since there is nk-admissible pair of edges joinirgto C; in G2 + s, it
follows from Lemma 5.3 that there isa— 1)-shreddeR in G, with each of thed; neighbours o

in Cy in distinct components db, — K and at least one other component containing the remaining
neighbours o6in G, +s. Thush(Gy) > dy + 1, andb(G,) > b(Gp) > di +1 > (dg,1s(5)/2) + 1.

This contradicts (28). °

Claim 7.12 Suppose X is a fragment inp®ith [X N K| < [X* N K].

() If ng,(X) = k-2, then either X=Cj, UCj,U... UG, for some{iy,iz,...,ip} C{1,2,...,r};
orX=7 cCiforsomel<i<r;

(b) If ng,(X) = k— 1, then either X= 7, UG, U...UG;, for some{iy,ip,...,ip} €{1,2,...,r}
andZ, CC;orX =2,UZ,forsomel <ii; <i><r, 7z, CC,,Z,CC,,and s, (Z,) =k—2=
nGz(Ziz)'

Proof: SupposeX NK # 0. ThenX*NK # 0. SinceNg,(Ci) = K by Claim 7.8, it follows that
C ¢ X andC; ¢ X* for all 1 <i <r, and hence thaig,(X) = [V — (XUX*)| > r > k. Thus we
may suppose tha NK = 0. Let

S={i : XNGCisapropersubset @, 1<i<r}.

Since the claim holds wheB= 0 we may suppose thgs > 1. LetZ; = XNC; fori € S By Claim
7.8,ng,(Z) > k—2. HencelNg,(X) N (KUGi)| > k—2 and|Ng,(X)NCi| > 1 foralli € S. The
claim now follows using the hypothesis of (a) and (b) thgj(X) = k—2 andng,(X) = k—1,
respectively. °

Claim 7.13 For each i,1 <i <, there exists a unique minimal subsetXYV(C;) such that
nGZ(Yi) =k-2.
Proof: The existence of such a set follows from the fact tha{C;) = k— 2. To prove uniqueness

we suppose to the contrary théf and X, are two minimal subsets @; satisfyingng,(X1) =
K—2=ng,(X2). Thenng,(X1) =k—2=ng,(Xz), sinceGy is (k— 2)-connected by Claim 7.8,
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and the operation used in going frd& to G, (splitting off pairs of edges frorg) cannot decrease
n(X;). Letswbe the unique edge @; ¢ s from sto C. SinceG; @ sis (k— 1,s)-connected,
we must havav € X3 N Xz, SinceX; U Xp C G, X1 U Xz is a fragment ofG,, and hence we have
NG, (XgUXz2) > k—2, by Claim 7.8. Submodularity @ig,, now implies thatg, (X1 N X)) < k-2,
contradicting the minimality oK; andXo. .

For eachi, 1 <i <r, choose two distinct edges, sy in G2 + s with v,y € Yi. Note that these
edges exist by thék, s)-connectivity of Gp. Furthermore, by Claim 7.9j =i, if and only if
Yi = {yi} anddg,(yi) =k—2.

We are now ready to construct the required augmentati@ bkt G, ¢ sbe the graph obtained
from Gy + s by adding an extra edge frogto C; if dg,-+s(S) is odd. Thudg,as(s) = 2[t(G2)/2]
is even. First we try to define a good augmenting set by a method similar to forest augmentation.
Since we need to increase the connectivitysgfby two, we now look for a loopless 2-connected
multigraphH onr vertices whose degree sequencéigls, ..., d;, whered), = dg,qs(s,C2) (s0d5
is eitherd; or d> + 1, depending on whethels,s(S) is even or odd). If such a multigraph exists,
it leads to a good augmenting set in a natural way, as we shall see in Subcase 2.1. However, such a
graph may not exist, as the following example shows.&&e obtained fronk; x_» by replacing
some vertew in ther-set by a copy oK_1 4 and then connecting each vertex of the- 2)-set to
each vertex of thék — 1)-set. It can be seen that the degree sequence defined by the corresponding
extensiorGopsof Gis 4,2,2,...,2. There is no loopless 2-connected multigraph with this degree
sequence. When such a multigraph does not exist, we need a somewhat more involved method to
define the augmenting set. This will be described in Subcase 2.2.

Subcase 2.There exists a loopless 2-connected multigreipbn r vertices with degree sequence
di,d5, ..., dr.

Let F be a set of edges joining the componentGef— K such thatdr (v) = dg,qs(S,Vv) for all

v € V and such that the graph obtained fr¢vh— K,F) by contracting each compone@tto a
single vertexc;, is H. SinceH is 2-connected, each vertexc V(H) has at least two distinct
neighbours irH, and thus each compone@itis joined to at least two other components by edges
of F. Furthermore, sincél is loopless, each edge Bfis incident with two distinct components
of G2 — K. Lety;,yi be the neighbours &fin C; as defined after Claim 7.13. Since we are free to
interchange the end vertices of the edgeF afithin each component, we may chodsd¢o have
the additional property that, for each<li <r, the two edges of incident toy; andy; join C; to
different components db; — K. We can now use Claim 7.12 to deduce Bat-F is k-connected.
Suppose to the contrary th@ + F has a fragmenX with ng,r (X) < k— 1. ReplacingX by X*

if necesssary we may assume tpan K| < |X*NK]|. By Claim 7.8,ng,(X) > k—2 and by Claim
7.12, we have one of the following four alternatives.

(@l)ng,(X) =k—2andX =Cj, UG, U...UCj, for somep <r —1. Suppose <r —2. Then the
2-connectivity ofH implies that there are two edgesfeffrom X to distinct component§;,,Cj,
disjoint fromX. Henceng,r (X) > k. Suppose =r — 1. There are at least two edges frofto

Ci,, whereC;, is the unique component @, — K disjoint fromX. If G, has only one vertex then
Ng,+r(X) =V —X andX is not a fragment. If all edges &f join X to the same vertex € G,
then we haveng, (G, —v) < k—1 anddg,+s(s,Ci, — V) = 0, contradicting the€k, s)-connectivity

of G, +s. Thus at least two edges &f join X to distinct vertices ofC;, and we again have
nGz+F(X) > k.
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(@2)ng,(X) =k—2andX = Z; C C; for some 1<i <r. By Claim 7.13y;,y, € X. Sincey;,y, are
joined byF to distinct componentS;,,Cj, disjoint fromC;, we again haveg,.r (X) > k.
(b1) ng,(X) =k—1, andX =7, UG, U... UG, for somep <r andz;, C Cj,. Suppose Z p <
r —1. Then the 2-connectivity dfi implies that there is at least one edgeFofrom X —Cj; to
a componen€;j, disjoint from X. Henceng,,r(X) > k. Supposep =r. SinceG, +sis (k,s)-
connected, it has an edge framo a vertexv € X* C G, — Z;,. Since all edges df are incident
to distinct components is joined by an edge df to some vertex oK —C;j;, and again we have
NG,+F (X) > k. Supposep = 1. SinceG, +sis (k,s)-connected, it has an edge frao at least
one vertexw € Zj,. Since all edges df are incident to distinct componentsis joined by an edge
of F to some component distinct fro8,, and again we haveg,r (X) > k.
(b2) ng,(X) =k—1andX =z, Uz, for somez;, CC,, Zj, CC,, andng,(Z,) =k—2=ng,(Z,).
By Claim 7.13,yi1,y{l IS4 Sinceyil,)/il are joined byF to two distinct component€§;;,C;j,
disjoint fromC;j,, at least one of these components is also disjoint f@mand we again have
NG,+F (X) = k.

ThusG, + F is k-connected. Puttingp = E(Gy) — E(G), we deduce thdk UF is the required
augmenting set of edges fGrof size [dg.s(S)/2] = [t(G)/2].

Subcase 2.ZThere is no loopless 2-connected multigraphrovertices with degree sequence
d]_,dlz,...,dr.

Hakimi [10] characterised the degree sequences of loopless 2-connected multigraphs, see also [14,
Corollary 3.2].

Theorem 7.14 There exists a 2-connected loopless multigraph with degree sequenced™>
..>0d>2ifandonlyifd+do+...+disevenand d<do+dz+...+d — 2r + 4.

This characterisation implies that in Subcase 2.2 we have either:d;, andd; > d5+ d3 +
w.td —2r+5;0rdy =d,—1andd; > d; +d3+ ...+ dr — 2r + 5. Sincedg,qs(S) = di +d5 +
dz+ ... +dr anddg,qs:s(S) is even, both alternatives imply that

dayes(S) < 201 +2r — 4, (29)

We shall use the following concept to find a good augmenting set in this subcaskg ket
(V,E) be amultigraphs € V, andmy, mp, ..., mq be a partition ol (s). Then an(my, mp, ..., my)-
detachment of plat sis a multigraprH; obtained fronHop by ‘splitting’ sinto q verticess;, S, . . . ,
with degreesn,m, ..., my, respectively. We refer te,, s, ..., 5q as thepiecesof sin H;. Note
that the graptH used in Subcase 2.1 can be viewed as a loopless 2-conriegtdél ds. .., dr)-
detachment & of the graphHg consisting of exactly one vertesincident withdg,«s(S)/2 loops.
Inequality (29) tells us that if this detachmdrtdoes not exist, thed; is ‘large’ compared to
de,as(S). We modify our approach in this case by finding a loopless 2-connédfeds, ..., d;)-
detachment of the multigraph obtained fr¢@p ¢ s) — K — U[_,C; by adding a suitable number of
loops tos. The pieces o in the detachment will represent the compon&<s, . ..,C;. We use
the following lemma from [14] to construct the required detachment.

Given a multigraptH andvy,vo,...,vm € V(H), letb(vy,Vva,...,Vm) be the number of compo-
nents ofH — {vy,vo,...,vim}.

Lemma 7.15 [14, Corollary 3.3] Let i = (V,E) be a multigraph, £V and m,mp, ...,mg be a
partition of d(s) into at least two positive integers, such that fimp > ... > my > 2. Let gu)
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denote the number of loops incident to each vertex ugnHen H has a looplesg-connected
(M, My, ..., mg)-detachment at s if and only if

(a) Hp is 2-edge-connected,

(b) b(v) +e(v)=1forallveV —s,

()m+mg+...+mg > b(s)+e(s)+g—2, and

(d)d(s,V —v)+e(s) >q+b(s,v)—1forallveV —s.

Let Gz + s be the multigraph obtained frofG; ¢ s) — K — U{_,C; by addingp = (dg,as(S) —
2d;)/2—1 loops as. Note thatp is a non-negative integer by Claim 7.11 and the factdagats(s)
is even. Applying Lemma 7.15 Gz + swe deduce:

Claim 7.16 Gz +s has a loopless 2-connectédh, ds, ..., dr_1)-detachment Hat s, where ¢ =
dy+dr —2.

Proof: We haved; +dz+...+d_1 = dg,as(S) —d1—2=2p+d; = dG3+s(s) SO(d;, dz,...,dr—1)
partitionsdg,+s(S). SinceGz @ sis (k,s)-connected ans is connected and loopless, it follows
that G3 + s satisfies Lemma 7.15(a) and Lemma 7.15(b). Using 2 forall 3<i<r -1 and
(29), we haved, +d; < dg,as(S) —d1 — 2(r — 3) < dg,as(S) — do,es(s)/2+1 —2—2(r —3) =
dg,as(S)/2—r +4. Thusdz+ ...+ dr—_1 = dg,as(S) —d1 — dé —dr > dg,as(S) — d1 —dg,as(S)/2+
r—4=1+¢(s)+r —4, proving that Lemma 7.15(c) holds f@3+s. To show that Lemma
7.15(d) holds focus on a vertexof C;. Considering the grap®; — (K 4 v) and using Claim
7.9, we haveb(G,) > bg, (V) + 1 — 14 B, wherep = 2 if dg,es(s,v) = 2 andB = 0, otherwise,
since if dg,ps(V) = 2 thendg,(v) = k—2. By (28),b(G;) < [t(G2)/2] = ds,:s(S)/2. Hence
dGzEBS(S)/Z > bGs(V) +r—1+ B Thus

des+s(S,V(C1) — V) +€(9)

d1 — do,es(S, V) +€(S)

dc,es(5)/2 — 1 —dg,as(S,V)

b;(V) +1r—14+B—1—dg,es(S,V)
(F —2) +boys(sV) — 1,

(AVARVS

as required. °

Label the detached verticesldf ascp,c3,Cs...,Cr—1 Wheredy, (¢i) =di for 3<i <r—1and
dn, (c2) = d;. The edgee = cjy; is in E(H1) for some 2< j <r — 1. We next subdivide the edge
e with a new vertexc, to form the multigraplH,, and then ‘flip’ some edges frony to ¢, in Ha
preserving 2-connectivity and increasing the degreg of tod, while maintaining the property
thaty, andy; are joined to different pieces sf We use the following result to accomplish this.

Lemma 7.17 [14, Corollary 2.17] Lett> 3 be an integer. Let H be a loople&sconnected multi-
graph,xyeV(H)and xze E(H —y) for 1 <i <t. Ift > d(y) —d(y,x) + 1, then H—xz +yz is
loopless an®-connected for some1,<i <t.

We construct the new multigrapghts from H, as follows. Ifd, = 2 then we putHs = Hy. If

dr > 3 then we use Lemma 7.17 to find a set of ed§es{c,z € E(Hy) : 1 <i <d —2} such
thatcoy; ¢ SandHz = Hy — S+ {¢z : 1<i <d —2} is 2-connected and loopless. This is
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possible sinc@l,(c;) =2, dn, (¢r,¢2) < 1, anddy,(c2) = d5+dr — 2 > d; +d; — 2. InH3z we have
y1¢r € E(H3), yi¢r € E(H3), dn,(ci) =di for 3<i <r, anddn,(c2) = d5. (Note that we could have
used Lemma 7.15 directly to construct a 2-connected loopless detachment with the same degree
sequence ald3 from G3 + s plus one extra loop & The reason we go vid; andH; is to ensure
thaty, andy) are adjacent to distinct piecesih Hz.)

Let F be a set of edges joining the componentssgi— K such thatdgs (v) = dg,es(S, V) for
all ve V —K and such that the graph obtained frdwi — K,F) by contractingC,...,C; to
C2,C3,...,Cr, respectively, iHs. SinceHs is 2-connected, each vertexin Hsz has at least two
distinct neighbours. SincHs is loopless, every edge &f which is incident to a componef,
2 <i<r, isincident to distinct components & — K. Lety;,y be the neighbours & in C;
as defined after Claim 7.13. Since we are free to interchange the end vertices of the eéges of
within each componeng;, for 2 <i <r we may choosé€ to have the additional property that, for
2 <i<r, the two edges df incident toy; andy; join C; to different vertices oG — K — C;, which
either belong to different components@f K — C;, or both belong t&€;. Furthermore, sincg;
andy, are joined to different detached verticedHg, the two edges df incident toy; andy; join
C; to different components db, — K —C;.

We can now use Claim 7.12 to deduce tat+ F is k-connected as in Subcase 2.1. Putting
Fo = E(G2) — E(G) we deduce thaffp UF is the required augmenting set of edges®oof size

[de+s(5)/2] = [t(G)/2]. .

8 Algorithmic aspects and corollaries

In this section we discuss the algorithmic aspects of our results and also show that our main theo-
rems imply (partial) solutions to a number of conjectures in this area.

8.1 Algorithms

The proofs of our min-max theorems (Theorems 4.17 and 7.7) are algorithmic and lead to a poly-
nomial algorithm which finds an optimal augmenting set with respe&t far any I-connected

input graphG and targek > | 4 1, provideday(G) > 10(k — | +2)3(k+ 1) (or a(G) > 20k3, if
k=1+1). As we shall see, the running time in this case can be boundedr’y, even ifk is part

of the input. Our algorithm for the general case first decides whei(i@) is large, compared to

k, or not. Since, by Lemma 2.18(G) is large if and only ifd(s) is large in ak-critical extension

G+ sof G, the first step is to create such an extensiora () is small then our algorithm per-
forms an exhaustive search on all possible augmenting=seiith V (F) C N(s) and outputs the
smallest augmenting set which makas-connected. The number of possibilities depends only
onk, since|N(s)| is also small. We shall present the algorithm as a sequence of sub-algorithms.
Most of the steps of these algorithms are easy to implement in polynomial time by network flow
techniques.
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8.1.1 CRITICAL EXTENSION

Input: A graphG and an integek > 1.

Output: Ak-critical extensiorG+ s of G.

Step 1. Add a new vertexto G and max1,k—d(v)} edges fromsto each vertex of G. (This
gives a(k,s)-connected extensidd & s of G by Lemma 2.4.)

Step 2. Delete edges incident $ayreedily until the the remaining graph + s is a k-critical
extension. (We check whether each edge deletion presgty@sconnectivity using a max-flow
computation.)

8.1.2 EXHAUSTIVE SEARCH

Input: A k-critical extensiorG+ s of a graphG.

Output: An optimak-augmenting set fo®G.

For each set of edgds with V(F) C N(s), check whetheG + F is k-connected. Choose the
smallest suclk-augmenting set.

The following lemma implies that the output of EXHAUSTIVE SEARCH is indeed an optimal
k-augmentation foG.

Lemma 8.1 Let G+ s be a(k,s)-connected extension of a graph G. Then there exists an optimal
k-augmenting set F for G with(F) C N(s).

Proof: Let S= N(s) and letF be an optimal augmenting set with respecktr which c(F) =
Swer {u,v} — 8 is as small as possible. Suppas# ) is positive and leuv € F be an edge
with {u,v} — S+ 0. SinceF is optimal, we hav&(G+F —uv) = k— 1 and, by Lemma 4.4(c),
it follows that G+ F — uv has precisely twd-cores (i.e. minimak-deficient fragmentsX,Y.
Clearly, X andY arek-deficient fragments its. Thus, sincez+ sis (k,s)-connected, we must
haveSN X # 0 # SNY. Lemma 4.4(c) also implies that by takifg = F — uv+ xy for a pairx,y
of vertices withx € SN X andy € SNY we have thaG + F’ is k-connected. NowF'| = |F| and
c(F’") < c(F), contradicting the choice df. This proves that(F) = 0 must hold, and hence the
required augmentning set exists. o

It follows that, if ax(G) is small, then we only need to perfortp k-connectivity tests, where

Ck = O(Z(akéG))) depends only ork, to find an optimak-augmentation folG using CRITICAL
EXTENSION and EXHAUSTIVE SEARCH. If(G) is large then our augmentation algorithm

has several sub-algorithms, according to the different subcases in our proofs. In what follows we
give a sketch of these algorithms to verify that they can be run in polynomial time. We do not
attempt to work out the details of an efficient implementation.

8.1.3 CORES

Input: A (k—1)-connected grap® = (V,E).

Output: The set of all k-cores and the set of all activek-cores inG.

For each non-adjacent pairv € V such that(u,v) = k— 1, find the minimal (with respect to
inclusion) setsX,, Xy such thau € X, v e X, andn(X,) = k— 1 =n(X,). Let C’ be the union of
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the setg Xy, Xy} over all pairsu,v, and letC consist of the minimal members ¢f. Let 2 = {X
C:kK(G—X)=k—-1—|X|}.

Note that CORES can be used to test {ka- 1)-connected grap is k-independence free by
checking whethe6 has any activé-cores. We do not know if there is a polynomial algorithm to
determine whether an arbitrary graplkigidependence free.

Cheriyan and Thurimella [4] give a polynomial algorithm for determinip@s) for a (k—1)-
connected grapl and finding all(k — 1)-shredders in G with bg(K) = b(G). We can use this
to give a polynomial algorithm for finding an optimilaugmentation of &k — 1)-connecteck-
independence free graph. Note, however, that it is unlikely that there exists an efficient algorithm to
determineb(G) for an arbitrary grapl®. This follows since the problem of determining whether
bk(G) > k for some 1< k < |V| is NP-complete by [1].

8.1.4 INDEPENDENCE FREE AUGMENTATION

Input: A (k— 1)-connectedk-independence free grah

Output: An optimak-augmenting seff for G with |F| = max{b(G) — 1, [t(G)/2]}.

We first construct &-critical extensionG + s of G using CRITICAL EXTENSION. We have
d(s) =t(G) by Corollary 3.2. We construct the required Beby finding a sequence of admissible
splits ats (as in the proofs of Lemmas 3.7, 3.10 and 3.11 and Theorem 3.12) t@&gives with
dg,+s(S) € {3,b(G1)}. We then puF = F, UF, whereF; = E(G1) — E(G) andF; is the edge set
of a tree withV (F2) = Ng,+s(9).

We next give algorithms for finding optim&augmentations for a grap® whenax(G) is
large. The first two algorithms determine whetl@&has adominating shredderthat is to say a
(k—1)-shreddeK with bg(K) = b(G) and D(K) —2 > t(G), and find an optimak-augmenting
set whenG does have such a shredder.

8.1.5 DOMINATING SHREDDER

Input: A k-critical extensiorG + s of anl-connected grap& for whichdgs(s) > k(k—1+1) 4 2.
Output: We find a dominating shredderin G or deduce that no such shredder exists.

We construct a familyx’ of (k— 1)-shredders in such a way tha| is polynomial in|V| and, if

there is a dominating shreddérin G, thenK € K. Once we haveX, we complete the algorithm

by computingo(K’) for all K’ € K.

For each triplex,u,v, wherex € V andu,Vv € Ng,s(S) — X, first we try to split off all copies of the
edgessx (if there are any). Suppose that all copies can be split off, and let the resulting graph be
Gx+s. Thenwe try to find a s€tPy, P, . .., P«_1} of openly disjointuv-paths inGy. If we succeed,

then we leQ(x,u,v) = U2R;, C(x,u,v) = {C: Cis a component o6 — Q(x,u,v)},

K1(x,u,v) = {Ng(C) : C € C(x,u,v) andng(C) = k— 1},

%o(x,u,v) = {Ng(C)U{q} : Ce C(x,u,v),ns(C) =k—2,9€ Q—{u,v}}.

Let K be the union of the set&i(x, u,Vv) U %X2(x,u,Vv) over all choices ok, u,v. Clearly, | K| <
N 2
(3)n*.

Lemma 8.2 If G has a dominating shredder K then&K X .
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Proof: Suppose there is ¢k — 1)-shreddeK with d(s) < 2b(G) — 2 = 2b(K) — 2. Then Lemma
6.1 implies thatN(s) NK| < 1, and ifx € N(s)NK thendg(x) = k—d(s,x), b(K) = b(K) +d(s,X),
and we can split off all copies @ (in any order) by admissible splittings. By splitting off these
copiesd(s) is reduced by @(s,x) andb(K) is reduced byd(s,x). Henced(s) < 2b(K) — 2 holds
in the resulting grapl®y. This implies thaK has at least two leaf componei@sC’ in Gy. By
Lemma 2.14 there exi&t— 1 openly disjoint paths fromm € N(s)NC to v e N(s)NC'. Clearly,
Q CKuCuUC'andK c Q hold, whereQ is the union of the vertex sets of these paths. Moreover,
sincex € K, the components @& — K andGy — K are the same. Lemma 6.1 also implies tBatK
has at leasti+ 1 > 3 component® with dg+s(s,D) < 2, and henceg(D) > k— 2. Thus there
is a componend’ of G — K, which is a component d& — Q, and satisfies that eith& = Ng(D’)
or K =Ng(D’) +qfor someg € Q— {u,v}.

It follows that for some triplex, u,v we haveK € i (X, u,v) U K2(X, u,V), as required. °

Note that if DOMINATING SHREDDER finds a dominating shredd#ewhenl = k— 1, then

~

we haved(s,K) = 0 andbg(K) = b(K) by Theorem 4.1.

8.1.6 DOMINATING SHREDDER AUGMENTATION

Input: Ak-critical extensiorG + s of anl-connected grap& for whichdgs(s) > k(k—1+1)+2,

and a dominating shreddgrfor G. A

Output: An optimal augmenting sEtfor G with |F| = b(G) — 1.

We construct by splitting off all edges frons to K and then adding a forest augmentation, as
described in Lemma 6.5 and after Lemma 6.1.

8.1.7 LARGE AUGMENT BY ONE

Input: A k-critical extensiorG + s of a (k— 1)-connected grapls = (V,E) for which dgs(s) >
20k3 + 1,

Output: An optimal augmenting sEtfor G with |F| = max{b(G) — 1, [t(G)/2] }.

We use DOMINATING SHREDDER, DOMINATING SHREDDER AUGMENTATION, CORE,
and the proof techniques of Lemmas 4.2, 4.15 and 4.16 to find a saturating set ofFedgeh
that either is an optimak-augmenting set foB with |F| = max{b(G) — 1, [t(G)/2]}, orG+F;

is k-independence free and has no dominating shredder. In the former case Wve-fhtjt In the
latter case we use INDEPENDENCE FREE AUGMENTATION to finkkaugmenting sef, for
G+ Fand putF =F UR.

Note that when we increase the number of padsigeres by making an actidecore passive
in LARGE AUGMENT BY ONE, we do not need to computéG). We choose an arbitrary active
k-coreB and, if we fail to makeB passive (which mearBNT(G) # 0), then we choose a different
activek-core.

8.1.8 LARGE AUGMENT

Input: A k-critical extensiorG + s of a graphG = (V, E) for which dg, s(s) > 10(k — 1 4 2)3(k +
1)3+1.
Output: An optimal augmenting sEtfor G with |F| = max{b(G) — 1, [t(G)/2]}.
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We use DOMINATING SHREDDER, DOMINATING SHREDDER AUGMENTATION, and the
proof techniques of Lemmas 6.7 and 7.5 to find a saturating set of édgesgh that eitheF;

is an optimalk-augmenting set fo6s with |Fy| = max{b(G) — 1,[t(G)/2]}, or G+ Fy is (k —
1)-connected, has no dominating shredder, dggs(s) — 2|F1| > 20k® 4 1, or G+ F; has ak-
augmenting sef, of size [t(G+ F1)/2] (which can be constructed using detachments as in the
proof of Case 2 of Theorem 7.7). In the first case we Pput F;. In the second case we use
LARGE AUGMENT BY ONE to find ak-augmenting sef; for G+ F; of size[t(G+ F1)/2] and
putF = F1 URs. In the third case we plt = FLUR.

8.1.9 AUGMENT

Input: Anl-connected grap® and an integek > |.

Output: An optimak-augmenting sdt for G.

Construct ak-critical extensionG + s for G using CRITICAL EXTENSION. Ifk =1+ 1 and
do.s(S) > 20k3 + 1 then apply LARGE AUGMENT BY ONE. If < k—2 anddg,s(s) > 10(k —

| +2)3(k+1)% + 1 then apply LARGE AUGMENT. Otherwise apply EXHAUSTIVE SEARCH.

As noted above, most of the steps of the above algorithms are easy to implement in polynomial
time by network flow techniques. The only exception is finding the required loopless 2-connected
detachments as in the proof of Case 2 of Theorem 7.7. We shall not discuss this in this paper but
remark that there is a simple algorithm which findsif it exists, and we also have a similarly
simple and efficient algorithm which find4s, whenH does not exist.

Before stating our bound on the running time of our algorithm AUGMENT, we note that by
inserting a preprocessing step, which works in linear time, we can make the input graph sparse,
and hence reduce the running time, as follows. Get (V,E) andk be the input of our problem.
Letn= |V| andm= |E|. It was shown in [3] and [19] tha® = (V,E) has a spanning subgraph
G = (V,E) with |[E'| < k(n—1) satisfyingk(u,v,G") > min{k,k(u,v,G)} for each paiu,v e V.

It can be seen that by replaci® by G’ we do not change thk-deficient fragments (or their
deficiencies) and that for any augmenting Bethe graphG + F is k-connected if and only if

G' +F is k-connected. Thus we can work wi and assume thah = O(kn). Note also that

d(s) = O(kn) in any k-critical extensionG+ s of G. By using these facts and efficient network
flow algorithms for the basic operations (such as finding admissible splittings, checking whether
an edge ik-critical, etc) we can conclude with the following theorem.

Theorem 8.3 Given an |-connected graph G and a positive integer k, our algorithm AUGMENT
finds an optimal k-augmenting set. If(&) > 10(k — | + 2)3(k + 1)3 then the running time is
O(krr). Otherwise the running time is(@n®).

We close this subsection by noting that we can also use the theory developed in this paper to
derive a near optimal algorithm for the vertex connectivity augmentation problem which is similar
to the one given in [13].

8.1.10 NEAR OPTIMAL AUGMENT
Input: Anl-connected grap® and an integek > |.
Output: Ak-augmenting sef for G with |F| < a(G) + sk(k—1 +1) + 1.
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Construct ak-critical extensionG + s for G using CRITICAL EXTENSION. We first suppose
that dg+s(s) > k(k—141) +2. We use DOMINATING SHREDDER to determine @ has a
dominating shredder. If it does then we use DOMINATING SHREDDER AUGMENTATION, to
find an optimak-augmenting set foG. If G does not have a dominating shredder then, by Lemma
5.3, we can split off edges frossuch that, in the resulting gragh + s, we have eithedg, ;s(S) >
k(k—141)+2 andG; has a dominating shredder,kdk —1 +1) + 1 < dg,+s(S) < k(k—1+1)+2.

In the former case we can use DOMINATING SHREDDER and DOMINATING SHREDDER
AUGMENTATION, to find an optimalk-augmenting set foG. In the latter case, Lemma 2.7
implies that we may construct a minimal augmentingfetor G; with V(F1) C Ng,+s(S). Let

F =F UFR, wherek, = E(G1) — E(G). Lemma 2.9 implies thal>| < dg,+s(S) — 1. Since
t(G) = dgs(s) andt(Gy) = dg, +s(S) we haveF | < 3t(G) + 3dg,1s(S) < a(G) + 3k(k—1+1) +1.
Finally, if dg1s(s) < k(k—1+ 1)+ 2, then we construct a minimal augmenting Befor G with
V(F) C Ngs(s). Lemma 2.10 implies thdF | < a(G) + 3d+s(S) < a(G) + 3k(k—1 +1) + 1.

The running time of NEAR OPTIMAL AUGMENT i€©(n®).

8.2 Corollaries

Our main results (Theorems 4.17 and 7.7) imply (partial) solutions to several related conjectures.
The extremal version of the connectivity augmentation problem is to find, for given parameters
n,k,t, the smallest integen for which everyk-connected graph omvertices can be madé&—+t)-
connected by addingn new edges. Several special cases of this problem were solved in [17] and it
was conjectured that (at leastifs large enough compared kpthe extremal value ahfort > 2,

k> 2is [nt/2] (or |nt/2], depending on the parities ofk,t). Sinceb(G) — 1 < n, the min-max
equality of Theorem 7.7 shows thatnifis large enough and> 2 thenay(G) is maximised if and

only if G is (almost)k-regular. This proves the conjecture (wheis large compared t&), by

noting that such (almost) regular graphs existifor 2.

A different version of this problem, when the graphs to be augmentddragular, was studied
in [9]. It was conjectured there that@ is ak-regulark-connected graph on vertices, and is
even and large compared ko thenG can be madék + 1)-connected by adding/2 edges. If
G is k-regular,b(K) < k for any cut of sizek. Thus ifn is large enough, we have mgxG) —
1,[t(G)/2]} = n/2. Now the conjecture follows from Theorem 4.17.

A similar question is whethea(T) = [(Tvev(T)(k—d(v))")/2] holds when grapfi is a tree,
wherex™ = max{0,x} for all integersx. It is known that the minimum number of edges needed to
make a tred&-edge-connected (or an arborescekeglge- ok-vertex-connected) is determined by
the sum of the (out)degree-deficiencies of its vertices. As above, using the faot@at 1 < n,
Theorem 7.7 implies (when, and hence alsex(T), is large compared t&) that if k > 3 then
a(T) = [t(T)/2]. Thatis,ak(T) is determined by the total deficiency of a family of pairwise
disjoint subsets 0¥ (T). SinceT is a tree, each memb&t of this family induces a forest. This
implies that there exists a vertexc X with k—d(v) > k—n(X). Therefore we can find a family
consisting of singletons with the same total deficiency. This yields an affirmative answer to our
guestion provide# > 3 andn is large compared th. Note that the answer is negative for 2.

Frank and Joran [8, Corollary 4.8] prove that evefk — 1)-connected grapls = (V,E) can
be madek-connected by adding a sEtof new edges such th&V, F) consists of vertex-disjoint
paths. They conjectured that suchFaran be found among the optimal augmenting sets as well.
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We can verify this, providedy(G) is large enough. In this case we may use the min-max formula
of Theorem 4.17. I (G) = [t(G)/2] then an optimal augmenting set is a collection of vertex-
disjoint paths of length one or two. H(G) = b(G) — 1, then a careful analysis of the forest
augmentation method shows that we can find an optimal augmentirkg s#tsfyingdr (v) < 2

for all ve V. SinceF is a forest, it induces vertex-disjoint paths, as claimed.
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