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Abstract

Form vision is traditionally regarded as processing primarily achromatic information. Previous investigations into the
statistics of color and luminance in natural scenes have claimed that luminance and chromatic edges are not
independent of each other and that any chromatic edge most likely occurs together with a luminance edge of similar
strength. Here we computed the joint statistics of luminance and chromatic edges in over 700 calibrated color
images from natural scenes. We found that isoluminant edges exist in natural scenes and were not rarer than pure
luminance edges. Most edges combined luminance and chromatic information but to varying degrees such that
luminance and chromatic edges were statistically independent of each other. Independence increased along successive
stages of visual processing from cones via postreceptoral color-opponent channels to edges. The results show that
chromatic edge contrast is an independent source of information that can be linearly combined with other cues for the
proper segmentation of objects in natural and artificial vision systems. Color vision may have evolved in response to
the natural scene statistics to gain access to this independent information.
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Introduction

The detection of edges is one of the first major processing

steps in both artificial (Marr, 1982) and natural vision systems

(Hubel & Wiesel, 1968) and has typically been viewed as a

process that predominantly uses achromatic information (Living-

stone & Hubel, 1988; Ziou & Tabbone, 1998; Forsyth & Ponce,

2002).

It has been argued that purely chromatic, that is, isoluminant,

edges are rare in the natural environment, while most edges are

defined by a luminance contrast. If this would be the case, color

would be crucial only for those rare edges that are defined purely

by color; in most cases, color would be redundant (Zhou & Mel,

2008). Further support for an achromatic form system comes from

physiological studies reporting that neurons in primary visual

cortex are sensitive to oriented achromatic stimuli, while other

neurons respond best to chromatic stimuli of low spatial frequency

(Hubel & Wiesel, 1968; Conway, 2001). In some situations,

luminance differences between object and background are small,

such as for the detection of ripe fruit against a background of

green foliage. It has been suggested that the ability to process

chromatic information, in particular red–green variations, has

evolved particularly for this purpose (Allen, 1879; Polyak, 1957;

Sumner & Mollon, 2000a).

Evaluating natural scene statistics characterizes the conditions

under which the primate visual system evolved and will give insights

into the information that is principally available to shape the

organization and function of the primate visual system. Previous

studies of the joint distribution of color and luminancewere based on

synthetic stimuli (Buchsbaum&Gottschalk, 1983), used few images

(Webster & Mollon, 1997; Ruderman et al., 1998; Wachtler et al.,

2001; Fine et al., 2003), or used uncalibrated JPEG images

(Heidemann, 2006; Zhou & Mel, 2008). Only one of these studies

investigated the joint distribution of color and luminance edges, but

this study only examined a very small database of 12 images (Fine

et al., 2003); none quantified the dependence based on mutual

information. Those investigations that considered the statistics of

color and luminance edges in natural scenes have claimed that

luminance and chromatic edges are not independent of each other

(Fine et al., 2003) and that any chromatic edge most likely occurs

together with a luminance edge (Zhou & Mel, 2008).

We investigated the statistics of luminance and chromatic

edges in natural scenes to evaluate whether chromatic edge

information is redundant or not. We analyzed over 700 calibrated

color images from a variety of natural scenes and quantified the

degree of independence using a measure of mutual information.

We focused on edge detection since edge detection is one of the

first processing steps in object recognition. Our analysis of the

joint distribution of chromatic and luminance edges revealed that

the luminance edge contrast at a particular location was not

predictive for the most likely chromatic edge contrast at this

location: Chromatic and luminance edges in natural scenes were

independent of each other.
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Materials and methods

We analyzed calibrated color images. Images were first trans-

formed into LMS cone space, where each pixel contains the

relative capture ratios of the three human cone types. The LMS

cone signals were then transformed into a cone-opponent repre-

sentation of luminance (Lum), reddish-greenish (L � M), and

purplish-yellowish [S � (L + M)] signal variations. Next, local

edge contrasts were extracted, and the joint edge histograms for

each of the three possible pairs of edge responses were computed

(i.e., two achromatic–chromatic joint edge histograms Lum/L � M

and Lum/S � (L + M) and one chromatic–chromatic joint edge

histogram L � M/S � (L + M).

Database

The images were obtained from two publicly available image

databases: the McGill calibrated color image database (Olmos &

Kingdom, 2004a) and the Bristol hyperspectral images database

(Párraga et al., 1998).

We have analyzed the Bristol database of hyperspectral images

to ensure that our results are independent of the constraints and

potential limitations of the McGill database (Olmos & Kingdom,

2004b). Results for the Bristol database are presented in the

Appendix.

The McGill calibrated color image database contains 708

images (Olmos & Kingdom, 2004a). The images have a size of

768 3 576 pixels and are grouped into nine categories, namely

animals, flowers, foliage, fruits, land and water, man-made, shad-

ows, snow, and textures (Fig. 1). The images are stored as standard

RGB images in TIFF and were converted to LMS cone excitation

space using a conversion function provided by the authors of the

database.

The calibration procedure used to generate the conversion func-

tion was developed by T. Troscianko and A. Parraga (University of

Bristol, UK) and has been described elsewhere (Párraga et al.,

2002; Johnson et al., 2005). Briefly, the calibration involves a

gamma-correction and a measurement of the spectral sensitivities

of the RGB camera sensors. For the gamma correction, the

luminance response functions of the camera RGB sensors were

determined by illuminating a set of six gray Munsell papers and

taking average RGB camera values as well as measured luminance

values. A gamma function was then fitted and inverted to linearize

the mapping between RGB values signaled by the camera and

measured luminance values. The spectral sensitivities of the three

camera sensors were measured by taking photographs of a white

target through a series of optical narrow-band interference filters

spanning the range from 400 to 700 nm. The calibration process

converts an RGB camera image to a trichromatic representation,

where each pixel contains the relative capture ratios of the three

Fig. 1. (Color online) Sample images of each category of the McGill database. Each row shows sample images from the nine categories

of the image database (animals, flowers, foliage, fruits, land and water, man-made, shadows, snow, and textures).
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human cones L, M, and S based on the Smith and Pokorny (1975)

cone fundamentals.

Unlike hyperspectral images, this method is limited by the gamut

of the camera: highly saturated colors outside the gamut would

generate the same sensor response and cannot be distinguished.

Another problem is that wavelengths that are metameric for the

camera are not metameric for the LMS cones if the camera RGB

sensitivities are not a linear transformation of the cone sensitivities.

A subset of the images contained a pixel fault of the camera,

resulting in a small region of bright-green pixels. Those images

were identified by visual inspection and then cropped to the largest

rectangle that did not contain the faulty pixels.

Computation of color-opponent responses

The calibrated images were first transformed into LMS cone

space, modeling responses of the L, M, and S cones of a human

observer. Next, LMS responses were transformed into a color-

opponent space of a luminance signal (Lum) and two chromatic

signals [L � M and S � (L + M)], resembling the chromatic pre-

ferences of retinal ganglion cells and cells in the lateral geniculate

nucleus (LGN). Formally, the following transformations of the

LMS cone excitations were used (Párraga et al., 2002; Johnson et al.,

2005):

Lum5LþMþ " ð1Þ

LM5 ðL�MÞ=Lum ð2Þ

SmLM5 ðS� LumÞ=ðSþ LumÞ: ð3Þ

The parameter � 5 2�52 is a small constant, which is added to

avoid division by zero in the computation of LM and SmLM.

The resulting chromatic cone-opponent responses were nor-

malized to unity across channels by the global maximum of each

channel: each LM image was divided by the maximum value

across all LM images, and each SmLM image was likewise

divided by the maximum value across all SmLM images. The

luminance images were each individually normalized to unity.

This different treatment was necessary because of the large

variation in luminance (over several orders of magnitude) with

few images of extremely high luminance values. On the one

hand, globally normalizing also the luminance images would

have mapped the luminance values of most images to a small

fraction of the full range. On the other hand, locally normalizing

also the chromatic images would have artificially generated

maximum chromatic contrast in each image. The present choice

thus ensures that the chromatic edge contrast is not due to an

artificial local normalization of the responses in the chromatic

channels. As a side effect, the luminance images have a larger

contrast.

In a control evaluation, we also employed a linear conversion:

Lum5LþM ð4Þ

LM5L�M ð5Þ

SmLM5 2S� Lum: ð6Þ

These equations are similar to the orthonormal principle axes

found by Ruderman et al. (1998); they only differ in excluding S

in the computation of Lum and omitting a scalar scaling that has

been used by Ruderman et al. (1998) to normalize the axes to

unity.

Gaussian blurring, edge detection and joint histogram

computation

After the global normalization of the chromatic planes and the

local normalization of the luminance plane, the resulting maps

were convolved with a Gaussian filter with a small standard

deviation of � 5 1 pixel to reduce noise in the images. In some

cases, a larger standard deviation of � 5 16 was used to analyze

the edge responses on a larger scale.

Next, edges were detected in the three color-opponent planes

using the Sobel operator. The Sobel operator is a 3 3 3 filter that

realizes an approximation of the first derivative by central differ-

ences Dx combined with a blurring along the edges by a binomial

filter B. The Sobel filter is defined as:

Sx 5BT
3Dx 5

1

8

�1 0 1

�2 0 2

�1 0 1

2

4

3

5 and Sy 5 STx : ð7Þ

Edges were determined in horizontal and vertical directions,

and the resulting responses were averaged to obtain a polarity-

sensitive estimation of edge contrast for each location in the

image:

E5 ðSx þ SyÞ=2: ð8Þ

In a control evaluation, we also used the gradient magnitude as an

estimation of the polarity-insensitive edge energy:

~E5 ðS2x þ S2yÞ
1=2: ð9Þ

Finally, a joint histogram of edge strengths was computed to

characterize the co-occurrence of edges in the different color-

opponent planes. In a joint histogram, the value at position (i, j) is

the number of pixels with value i in one channel and value j at the

same location in the other channel. The joint histogram is an

approximation of the joint probability density of pairs of edge

pixels at same locations in different color channels. For each

image, three joint histograms of edge contrasts were computed for

each combination of the two edge images (Lum/LM, Lum/SmLM,

and LM/SmLM). Histograms were averaged across images to

obtain the final joint histograms of the three edge combinations.

Because most pixels in an image are not an edge, the joint edge

histograms peak at zero contrast. The joint histogram images

shown in the Results section are log-transformed for display

purposes.

Mutual information

The mutual information of two discrete random variables X and Y

is defined as:

IðX; YÞ5
X

y�Y

X

x�X

pðx; yÞ log2
pðx; yÞ

p1ðxÞp2ðyÞ

� �

; ð10Þ

where p(x, y) is the joint probability distribution function of X and

Y and p1(x) and p2(y) are the marginal probability distribution

functions of X and Y, respectively (Shannon, 1948; Deco &

Obradovic, 1997). Mutual information is measured in bits and
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gives the amount of information that X and Y share. Mutual

information is zero for independent random variables. Mutual

information is maximal if the random variables are dependent.

The maximum value that the mutual information can assume

depends on the number of discrete elements in the random

variables: If the random variables X and Y both have N discrete

elements, the maximum mutual information between X and Y is

log2(N). Thus, for edge histograms of N 3 N bins, the mutual

information can take a maximum value of log2(N); for example,

10 for N 5 1024 bins. Unless noted otherwise, all reported values

of mutual information are for bin size 1024.

Results

Starting with a separation of the image in a luminance plane and

two chromatic planes, we computed the joint edge histogram that

reveals the co-occurrence of chromatic and luminance edge

contrasts. Results for a sample image and the joint statistics of

luminance and L � M edges are shown in Fig. 2.

In a joint edge histogram, the value at the position (i, j) denotes

the number of pixels with edge contrast i in one channel and edge

contrast j at the same location in the other channel. The darker the

gray, the more frequent is the particular combination of edges. The

joint edge histogram in Fig. 2 peaked at zero contrast, because

edges are rare events and most pixels in an image are not an

edge. This was a general pattern that occurred in all images.

More interesting are the points in the joint histogram that

correspond to nonzero contrast in one or two channels. For this

image, we have strong responses along the achromatic luminance

axis (sample points 3 and 4 in Fig. 2) and also along the L � M

axis (sample points 1 and 2). Points in the joint histogram along

the chromatic L � M correspond to isoluminant edges, which

were obviously present in this image, and also in the joint

histogram of all images of the database, as will be shown below.

There were also edges that combined chromatic and luminance

contrasts (e.g., sample points 5, 6, and 7). These points fell along

the second diagonal, where a red–green contrast co-occurs with

a dark–light contrast. The reverse combination of contrasts (bright

red next to dark green) was less frequent, resulting in few gray

values of high joint contrast along the main diagonal in the joint

histogram.

To investigate the global pattern of the co-occurrence of

chromatic and luminance edges, we computed the joint edge

histograms for all 708 images of the McGill database (Olmos &

Kingdom, 2004a). For each image, three joint edge histograms

were computed for the possible combinations of edges detected in

the three channels, a luminance channel (Lum) and two chromatic

channels [L � M and S � (L + M)]. The two chromatic channels

were derived by combining input from the three types of cones

(L, M, and S) in an opponent way. The joint edge histograms

averaged across images are depicted in Fig. 3. We found that

isoluminant edges exist in natural scenes and were not rarer than

Fig. 2. (Color online) Overview of the joint histogram computation. A color image (a) is separated into a luminance image (b) and an

L � M image (c) (signaling reddish-greenish variations), and edges are detected in each image (e, f). From the edge images, a joint

edge histogram (d) is computed. The different shades of gray in the joint histogram code the different frequencies of co-occurrence of

the edge contrasts: The darker, the more frequent. The joint edge histogram peaks at zero contrast, because most pixels in an image are

not an edge. More interestingly, the edge strengths in the two planes are largely independent: purely chromatic edges (1, 2, 8) occur as

well as purely luminance edges (3, 4) or edges that combine chromatic and luminance contrasts (5, 6, 7). A contrast in one dimension is

not predictive for the most likely contrast in the other dimension.
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pure luminance edges. Most edges combined luminance and

chromatic information, but to varying degrees such that a contrast

in one dimension was not predictive for the most likely contrast in

the other dimension.

We found that edges in the three dimensions were statistically

independent. We quantified the statistical independence by a mea-

sure of mutual information between the edges signaled in the two

channels. The mutual information between any two channels was

small [Lum/L � M: 0.071 bits, Lum/S � (L + M): 0.078 bits, and

L � M/S � (L + M): 0.21 bits, for bin size 1024]. Examining the

conditional probabilities confirmed the independence (Fig. 4): for

example, all luminance edge contrasts were approximately equally

probable given a L � M edge contrast (Fig. 4a), and all L � M

edge contrasts were approximately equally probable given a lumi-

nance contrast (Fig. 4b). A contrast in one dimension was not

predictive for the most likely contrast in the other dimension.

Based on these data, we conclude that there is a substantial degree

of independence between chromatic and luminance edges in nat-

ural scenes.

The maximum mutual information depends on the bin size: For

histograms of N bins, the maximum mutual information is log2(N),

for example, 10 for 1024 bins. The choice of bin size may be

critical, as using too many bins leads to a noisy estimate and too

few bins to an oversmoothed estimate. To investigate how

sensitive the mutual information is to the choice of bin size, we

computed mutual information for bin sizes from 4 to 2048 in 10

logarithmic steps (Fig. 5). A closer inspection of the mutual

information for the joint edge histograms revealed that the mutual

information saturates for bin sizes above about 512; values of the

mutual information for bin sizes of 512 and above are thus stable

estimates. To provide an intuition about how big or small the mu-

tual information of the joint edge histograms is, we also computed

mutual information between cone responses that are known to be

highly correlated (Buchsbaum & Gottschalk, 1983; Ruderman et

al., 1998). The mutual information between the L and M cones

was 4.30 bits, between the L and S cones 2.97 bits, and between

the M and S cones 2.05 bits (for bin size 1024). These values were

an order of magnitude above the values obtained for the joint edge

histograms.

The efficient coding hypothesis states that the visual system

strives for independence; various anatomical or physiological

constraints of the neural processing may prevent that indepen-

dence is achieved. Instead, it has been proposed that successive

stages of processing along the ascending sensory pathway should

reduce statistical dependence (Simoncelli, 2003). Confirming this
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Fig. 3. (Color online) Joint edge histograms for the McGill color calibrated image database. Joint histogram of the edges in the

luminance channel and the L � M channel (left), the luminance channel and the S � (L + M) channel (middle), and edges in the two

chromatic channels [L + M and S � (L � M), right].
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Fig. 4. Conditional probabilities of joint edge contrasts in natural scenes.

(a) Conditional probability of observing a certain luminance edge contrast

given a specified L � M edge contrast. The conditional probability is

obtained by normalizing vertical slices of the L � M/Lum edge histogram

shown in Fig. 3. The darker the gray level, the higher the conditional

probability. (b) Conditional probability of observing a certain L � M edge

contrast given a specified luminance edge contrast. The conditional

probability is obtained by normalizing horizontal slices of the L � M/

Lum edge histogram shown in Fig. 3. (c, d) Conditional probabilities of

for the S � (L + M)/Lum edge histogram, format as in a, b. (e, f) Condi-

tional probabilities of for the L � M/S � (L + M) edge histogram, format

as in a, b. e. con., edge contrast.
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hypothesis, Chechik et al. (2002) demonstrated experimentally

that mutual information is reduced along the cat auditory pathway.

Here we investigated whether a reduction in mutual information

also occurs along the visual pathway, from cones via precortical

postreceptoral channels (eqns. 4–6) to cortical edge-sensitive

neurons modeled by a standard edge detector (eqn. 7). We found

that mutual information was reduced along the model visual

pathway (Fig. 6). The largest reduction in redundancy occurs

at the second stage, where the highly correlated cone responses

are decorrelated and become largely independent in the color-

opponent channels. Mutual information was then further reduced

at the cortical stage of edge-sensitive neurons. At the cortical stage,

also the differences in mutual information between the different

channels were equalized, resulting in a smaller standard error.

The mutual information between the edge responses also

depends on the equation used to transform the cone responses

into color-opponent channels. So far, we have used equations

that incorporate a normalization of the chromatic channels by

the combined L and M cone responses (eqns. 1–3). If a linear

combination of cone responses was used instead (eqns. 4–6),

mutual information between channels was slightly larger, namely

Lum/L �M: 0.306 bits, Lum/S � (L + M): 0.596 bits, and L �M/

S � (L + M): 0.24 bits (open circles in Fig. 5).1 If minimizing

mutual information between channels is one goal of early visual

processing, then these results suggest that the chromatic channels

should undergo a nonlinear divisive normalization by the com-

bined responses of L and M cones.

To address the influence of the edge computation on the esti-

mation of mutual information, we also used a polarity-insensitive

edge energy operator (eqn. 9) rather than the polarity-sensitive

estimation of edge contrast and applied it to a linear combination

of cone inputs. The mutual information between edges in the three

channels was small [Lum/L � M: 0.419 bits, Lum/S � (L + M):

0.56 bits, and L � M/S � (L + M): 0.39, crosses in Fig. 5] and of

the same magnitude as obtained above for the linear combination

of cone inputs and the polarity-sensitive estimation of edge

contrast.

It has been shown that luminance and chromatic contrast are

independent in natural scenes (Mante et al., 2005). Here we found

that edge contrasts in the luminance channel and in the chromatic

channels are also independent of each other and provide in-

dependent sources of information. The independence of edge

contrasts has an important implication: for independent cues,

a linear model is optimal (Jacobs, 1995). Linear models allow the

integration of new cues that can be simply added to the existing

system when they become available (Zhou & Mel, 2008).

The independence was not perfect, in particular between the

edges detected in the two chromatic channels, as indicated by the

small but nonzero mutual information. The mutual information

between edges in the two chromatic channels was about twice as

large as that between luminance and chromatic edges. This was

reflected by a larger negative correlation between the edges in the

two chromatic channels (�0.36 6 0.01), in accordance with

previous findings (Webster & Mollon, 1997), and also visible as

a slightly larger elongation along the second diagonal in the joint

histogram for the chromatic L � M and S � (L + M) edges

(Fig. 3). This direction corresponds to edges between yellow and

blue objects, such as rock or dry leaves against blue sky. The

within-image correlation between luminance and L � M edges

was small (�0.12 6 0.01), as well as between luminance and

S � (L + M) edges (0.17 6 0.01).

The shapes of the joint histograms that combine luminance and

chromatic edges are also not perfectly symmetric and ellipsoidal

but slightly slanted and diamond-shaped. The Lum/L � M and
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Mutual information for the joint edge histograms saturates for bin sizes

above 512 and is an order of magnitude smaller than the mutual infor-

mation between cone responses. Mutual information remains small if

cone-opponent channels were not normalized by the responses of L and M

cones (open circles at bin size 1024), also if a polarity-insensitive com-

putation of edge strength was used (crosses at bin size 1024; crosses and

open circles have been slightly displaced to increase visibility).

1If the S cones were not scaled up by 2 in eqn. 6, S � Lum would be
essentially �Lum because a response by one cone type S is opposed by the
sum of two cone types L + M. Mutual information between the Lum and
SmLM channels was then considerably larger (2.494 bits).
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Lum/S � (L + M) edge histograms have higher excursions for

bright-green contrasts that could be attributed to the luminous

efficiency function that peaks in the greenish part of the spectrum.

The Lum/L � M joint edge histogram tapered along the L � M

axis, due to higher contrast in this direction. This pattern occurred

for images of another database, was not an artifact of the analysis

along cardinal directions, and did not occur for contrast measured

between random locations (Appendix). The data suggest that

chromatic contrast is particularly high in the direction sensed by

the third chromatic system in the evolution, the L � M system.

The joint histograms were elongated along the luminance axis.

The edge contrast along the luminance axis was about twice the

contrast along the chromatic axes, mainly due to the different

methods of scaling the channels. More importantly, a considerable

fraction of all edges, namely all edges in the horizontal segment

between the main and the second diagonal in the joint edge

histograms, had a higher contrast along the chromatic axis than

along the luminance axis and could thus be detected better by the

chromatic system. Furthermore, the widths of the different shades

of gray areas in the joint histograms were approximately equal

along the luminance and the chromatic axes: there were as many

pure luminance edges as there were pure chromatic edges in

natural scenes. If purely chromatic, that is, isoluminant, edges

would be rarer than chromatic edges, the joint histograms would

contract along the chromatic axes. This was not the case: in

natural scenes, isoluminant edges are as frequent as pure lumi-

nance edges.

Analysis of categories

In the analysis done so far, we pooled images from all categories

in the database (animals, flowers, foliage, fruits, land and water,

man-made, shadows, snow, and textures). One might expect that

the joint histograms differ for the different categories: High-

contrast chromatic edges are more likely to occur in colorful

images (such as flowers and fruit) and less likely in basically

achromatic images such as those depicting snow. We tested this

hypothesis by computing the joint histograms separately for each

category. Examples for four representative categories are shown

in Fig. 7. The joint histograms showed the expected pattern. Joint

histograms for categories such as flowers and fruit with colorful

images had larger excursions along the chromatic axes. Likewise,

joint histograms for categories such as snow and landscape had

only small excursions along the chromatic axes. Interestingly,

man-made scenes also had many high-contrast chromatic edges,

leading to larger excursions along the chromatic axes. It has been

shown that color facilitates object recognition and allows one to

memorize objects better (Wichmann et al., 2002) and to re-

cognize them faster (Gegenfurtner & Rieger, 2000). The high-

contrast chromatic edges in man-made scenes may then reflect

that humans colorize their world to take advantages of these benefits.

Influence of scale

The spatial sensitivity for color and luminance differs. The

luminance channel (L + M) responds better to fine spatial detail

than the postreceptoral color channels L � M and S � (L + M)

(Kelly, 1983; Mullen, 1985; Poirson & Wandell, 1993, 1996). Here

we investigated whether the differences in sensitivity of the human

visual system are reflected somehow in the distribution of

chromatic edges in natural scenes. If the low-pass sensitivity of

the human chromatic system would be reflected in the spatio-

chromatic characteristics of natural scenes, blurring should in-

crease the relative strengths of chromatic versus luminance edges.

Blurring removes the high-frequency components in the image. If

color in natural scenes would be of a coarser scale, blurring

should affect the luminance channel more than the chromatic

channels. As a consequence, the shape of the joint histogram for

the blurred images should be different from the shape of the joint

histogram of the unblurred images: Instead of being elongated

along the luminance axis, the joint edge histograms on a coarser

scale should be elongated along the chromatic axes. To in-

vestigate the edge responses on a coarser scale, we blurred the

images considerably with a Gaussian (� 5 16 pixels) and com-

puted the joint edge histograms (Fig. 8). Gaussian blurring is the

standard operation in image processing to derive images at

different spatial scales (Lindeberg, 1994). Because blurring

reduces the overall contrast, the magnitude of the edge responses

for all dimensions was reduced by a factor of about 1/10 (compare

scale in Figs. 7 and 8). However, the overall pattern did not change.

Luminance edges remained of stronger contrast, and we did not

find that chromatic edges in natural scenes were stronger at lower

spatial frequencies.

The mutual information between the luminance channel and

the chromatic channels was small and of similar magnitude as

for the unblurred versions [Lum/L � M: 0.030 bits and Lum/S �
(L + M): 0.043 bits]; the mutual information between the two

chromatic channels was about twice the value obtained for the

unblurred images [L � M/S � (L + M): 0.178 bits].

Overall, the low sensitivity of the human visual system to

chromatic variations of high spatial frequency seemed not to be

matched to the statistics of natural scenes. This finding is in

accordance with other studies showing that the preference of the

chromatic system for low spatial frequency is not reflected in any

differences between luminance or chromatic amplitude spectra in

general natural scenes (Webster & Mollon, 1997; Párraga et al.,

1998). A slightly steeper slope in the amplitude spectra of the L�M

channel has only been reported for special scenes such as red

fruit among green leaves (Párraga et al., 2002). It has been

hypothesized that the computations in the brain aim at a reduction

of the redundancy present in the visual input and that the

properties of the visual system can be inferred from the statistics

of natural scenes (Barlow, 1961); the low spatial resolution of the

chromatic system should be paralleled by a lower resolution of

chromatic information in natural scenes. Here we find no differ-

ences in the joint histograms computed on different scales.

Instead, we find that the observed independence of luminance

and chromatic edges is stable across scale variations.

Discussion

Summary of findings

We analyzed the co-occurrence of color and luminance edges in

natural scenes. We found that edges in the luminance channel and

in the two chromatic channels L � M and S � (L + M) were

independent. Independence increased along successive stages of

visual processing, from cones via color-opponent channels to

edges. The largest increase occurred at the first step, where cone

responses are transformed into color-opponent channels. We also

analyzed the joint statistics on a coarser scale where we found

basically the same independence of luminance and chromatic

edges.
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Comparison to previous studies

Previous studies of the joint distribution of color and luminance

were based on synthetic stimuli (Buchsbaum & Gottschalk, 1983),

few (12–29) natural images (Ruderman et al., 1998; Wachtler

et al., 2001; Fine et al., 2003), or used uncalibrated JPEG images

(Heidemann, 2006; Zhou & Mel, 2008). Only a single study

investigated the joint statistics of differences between the achro-

matic and chromatic signals (Fine et al., 2003).

Early investigations into the distribution of colors in natural

scenes have focused on the efficient coding of the highly correlated

cone responses in the subsequent processing. Buchsbaum and

Gottschalk (1983) investigated how the highly correlated cone

responses could be efficiently coded for optimal color information

transmission in the retina. They found that the cone signals can be

decorrelated by an orthogonal linear transformation resembling

a luminance-like channel and two chromatic opponent channels.

The derivation of this transformation was dependent solely on

criteria from information theory and was confirmed for natural

images (Ruderman et al., 1998).

The study by Buchsbaum and Gottschalk (1983) gave insight

into the decorrelation of cone responses in the color-opponent

Fig. 7. (Color online) Joint edge histograms for different categories of the McGill color image database.
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channels without considering the spatial structure of the signals.

A principal components analysis (PCA) of the spatiochromatic

structure revealed that the luminance and chromatic dimensions of

the second-stage channels were entirely decorrelated, that is, based

on activity in one channel, one cannot linearly predict the activity in

another channel (van Hateren, 1993; Webster & Mollon, 1997;

Ruderman et al., 1998). Ruderman et al. (1998) further noted that

the activities are uncorrelated but not independent. For example,

large changes in all three dimensions occur at object boundaries.

These studies computed PCAs for small patch sizes (3 3 3 or

7 3 7 pixels). Wachtler et al. (2001) also employed an independent

component analysis (ICA) and found basis functions with pro-

nounced opponency that did not always coincide with the color

space axes. In particular, red–green basis functions were tilted with

respect to the L � M cone axis, signaling orange-bluish variations,

which may reflect the negative correlation of L � M and S cone–

opponent signals in natural images (Webster & Mollon, 1997). We

also find an elongation along the second diagonal in the L � M/S �
(L + M) joint edge histogram (Fig. 3).

Heidemann (2006) determined the principal components of

natural images for larger patch sizes (1283 128 pixels) and found

basis functions that were all spatially structured, showing that the

physical structure of a scene is expressed both in color and in

luminance. In other words, the same spatiochromatic structure of

edge, bar, and grating patterns emerged both in color and in

luminance.

The work reviewed so far has analyzed the spatiochromatic

structure of natural scenes but not the joint statistics of differences in

these dimensions. As noted above, the activities in the postreceptoral

channels have been found to be uncorrelated but not independent:2

differences in luminance between two pixels may very well be

associated with differences in chromaticities. One may have the

intuition that two pixels that fall on different surfaces are likely to

differ both in luminance and in color. Based on an analysis of the

12 hyperspectral images recorded by Ruderman et al. (1998), this

seems to be confirmed: for pixels of a given separation, the sign

and magnitude of the changes are uncorrelated, but differences in

luminance and color were found to be not fully independent (Fine

et al., 2003).

Here we computed joint probability density functions similar

to Fine et al. (2003) for a large number of calibrated color images

(708 images from the McGill database). Contour plots of the joint

edge histograms (i.e., the joint probability density functions

multiplied by a constant scalar) did not show higher values along

the diagonals compared to the main axes, as would be the case if

the channels were not independent. We found no such structure in

any of the averaged joint histograms. A difference in luminance

may coincide with a difference in chromaticity, or may not, with

equal probability. These results parallel the finding that luminance

and contrast are independent in natural scenes (Mante et al.,

2005). We have shown that isoluminant edges are as likely as

purely achromatic edges or any other edge combining chromatic

and achromatic differences at a fixed ratio.

The (wrong) intuition that chromatic and luminance edges are

dependent may have its origin in simplistic scenes of homoge-

neous objects viewed against homogeneous backgrounds, where

a luminance contrast occurs together with a chromatic contrast. In

natural scenes, however, objects are rarely of homogeneous color,

backgrounds are variegated, and shadows cast luminance bound-

aries all over the scene.

Relation to physiological findings and imaging studies

In physiology, it was long thought that luminance information was

used only for the processing of edge information, whereas cells

responsive to color would exhibit no orientation tuning at all

(Livingstone & Hubel, 1984). However, work by Thorell et al.

Fig. 8. (Color online) Joint edge histograms for large-scale edges of the McGill color image database. The blurring reduces the contrast, but

the overall shape of the joint edge histograms is the same as for the unblurred images (Fig. 7). Results are shown for two categories with lots

of colors (Flowers and ManMade). Histograms obtained for the other categories were also similar to those obtained for the unblurred images.

2Two random variables X and Y are uncorrelated if their covariance is
zero; they are independent if the probability that the two events occur
together P(X, Y) equals the product of the individual events: P(X, Y) 5
P(X)P(Y). Intuitively, independence means that the occurrence of one event
makes it neither more nor less probable that the other event occurs.
Independent events are uncorrelated, but the reverse is not true.
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(1984) that was later confirmed and extended by Johnson et al.

(2001, 2008) found a large number of neurons in primary visual

cortex that do respond to color and luminance stimuli with

a similar spatial tuning. Other investigators have shown that

tuning to color and orientation is independent in both primary

and secondary visual cortex (Gegenfurtner et al., 1996; Friedman

et al., 2003). When color and orientation selectivity are deter-

mined by indices corresponding to the degree of selectivity of the

tuning for each neuron, the two indices are uncorrelated. This

independence of the tuning properties of the population of neurons

corresponds quite well with the independence of these properties

in the natural environment.

Chromatic contrast is also signaled by double-opponent cells

that lack circular symmetry and have an orientation bias. Double-

opponent cells have spatially opponent and cone-opponent re-

ceptive fields that are wired-up to encode spatial aspects of the

world and have been shown to respond to color edges (Conway,

2001; Conway & Livingstone, 2006).

Recently, it has been shown using high-field BOLD functional

magnetic resonance imaging in combination with a multivariate data

analysis that signals recorded in V1, V2, and V3 could directly

discriminate between orientations based on chromatic information

(Sumner et al., 2008). These results are in accordance with the

properties of neurons in the early visual areas that are selective for

a combination of orientation and chromatic information. Interestingly,

and in accordance with our findings, a combined processing was

found not only for luminance and L � M but also for the S cone

signals, which are conveyed to the cortex via a separate konio-

cellular channel (Dacey, 2000; Chatterjee & Callaway, 2003).

Combination of chromatic and luminance information

One basic task in vision is to detect objects. Objects differ from

their background in any or all dimensions of color, brightness,

texture, disparity, movement, and so on. The reliability of these

cues varies, and the visual system can often rely on many of them.

One circumstance in which color can segment objects from their

background is when there are accidental variations in brightness

caused by cast shadows (Lennie, 1999; Kingdom, 2003; Kingdom

et al., 2004). One important question is, when is information from

different cues combined?

Unoriented luminance contrast and chromatic information is

combined already in the retina by parvocellular ganglion cells

(De Valois & De Valois, 1988). Oriented chromatic and luminance

contrast is processed at the next cortical stage, at the level of V1

orientation-selective color–luminance cells (Johnson et al., 2001,

2004, 2008). These cells can integrate information of the different

independent channels to signal object boundaries. However, our

finding of the independence of color and luminance edges in

natural scenes is also compatible with the alternative view that this

independence drove the evolution of independent cortical processing

streams for color form and luminance form because the two cues

provide different pieces of information about the natural world.

The independence may also explain why the visual system evolved

two independent precortical pathways for processing chromatic

information, the parvocellular and koniocellular pathways.

The critical question that would get at the heart of this issue is

whether the cues associated with color edges are qualitatively

different from those associated with luminance edges; that is,

is there a special value of color edges in distinguishing and

recognizing objects? Studies showing that color allows one to

memorize objects better (Wichmann et al., 2002) and to recognize

them faster (Gegenfurtner & Rieger, 2000) could be interpreted as

showing that color provides access to a different kind of in-

formation about the world than is provided by luminance form.

These ideas may be reconciled by multiple cortical streams,

one were color and luminance are combined early to signal object

boundaries, and another were cone-opponent neurons signal chro-

matic surface properties (Conway, 2001; Conway et al., 2002).

Both streams could be involved in the computation of perceived

surface color. Filling-in processes are potential candidates for this

integration (Grossberg, 1987, 2000; Neumann et al., 2001).

Relation to psychophysical findings

The spatial resolution of chromatic information is poor compared to

the luminance system. Contrast sensitivity for gratings above 0.5

cycles/deg is higher for luminance than for chromatic gratings (Kelly,

1983; Mullen, 1985; Sekiguchi et al., 1993). The spatial contrast

sensitivity has a low-pass tuning curve for chromatic contrast and

a band-pass tuning curve for achromatic contrast. It has been hy-

pothesized in a seminal article by Barlow (1961) that the computa-

tions in the brain aim at a reduction of the redundancy present in the

visual input and that the properties of the visual system can be

inferred from the statistics of natural scenes (for reviews, see

Simoncelli & Olshausen, 2001; Geisler, 2008). Taken together, the

low spatial resolution of the chromatic system should be paralleled by

a lower resolution of chromatic information in natural scenes. Such

a link has been found by investigating the slope of the spatial

frequency spectrum (Párraga et al., 2002) but only for special—and

likewise ecologically relevant—scenes of fruits among leaves. Pre-

vious studies have found no such link for general natural scenes by

investigating the slope of the spatial frequency spectrum, that is based

on the computation of spatial content globally across the whole image

(Webster & Mollon, 1997; Párraga et al., 1998). Here we investigated

the local contrast and found that the joint statistic between chromatic

and luminance edges did not differ between coarse and fine scales.

This finding is in accordance with previous global statistics but shows

that the visual system seems not always to be able to adapted to the

statistics of natural scenes. One possible explanation is that the

adaptation of the visual system is constrained by several other factors,

such as the two-dimensional layout of the retina, that prevents each

type of cone photoreceptor being present at each location.

Besides the differences in the tuning characteristic of the

spatial contrast sensitivities, the processing of achromatic and

chromatic forms is highly similar (Shevell & Kingdom, 2008).

Contrast sensitivity in luminance and color vision is based on the

processing in different spatial frequency channels, with similar

tuning widths for chromatic and achromatic processing (Bradley

et al., 1988; Switkes et al., 1988; Webster et al., 1990; Losada &

Mullen, 1995; Reisbeck & Gegenfurtner, 1998). Chromatic and

achromatic processing is also highly similar at subsequent pro-

cessing where local orientations are grouped into coherent con-

tours (McIlhagga & Mullen, 1996; Mullen et al., 2000) and

contour shapes are extracted (Mullen & Beaudot, 2002; Gheorghiu

& Kingdom, 2007). Furthermore, the tilt illusion that depends on

the interaction between orientation-specific channels also exists

for isoluminant stimuli (Clifford et al., 2003), and the strengths of

various geometric–optical illusions are the same for achromatic

and isoluminant stimuli (Hamburger et al., 2007).

Edge detection algorithms

In computer vision, edge detection algorithms were mostly desi-

gned for the processing of achromatic images. However, despite
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tremendous effort, the multipurpose edge detector that faithfully

detects the relevant edges in an image has not been found yet. This

failure may point to the importance of other visual modalities

apart from luminance that play an important role in edge detection.

Only comparably few attempts have been made to implement

a chromatic edge detection algorithm (e.g., Nevatia, 1977; Delcroix

& Abidi, 1988; Lee, 1990).

Based on the notion that color can be used to separate re-

flection components, a dichromatic reflection model has been

proposed (Shafer, 1985). The dichromatic reflection model is a

method for analyzing a standard color image to determine intrinsic

images of the specular and diffuse reflection at each pixel. This

model provided the basis for algorithms for color-based object

recognition that are invariant against shadows and specularities

(Klinker & Shafer, 1990; Gevers & Smeulders, 2000). van de

Weijer et al. (2006) combined the dichromatic model with a

structure tensor approach to compute robust photometric invariant

features.

Other studies have investigated the optimal combination of

achromatic and chromatic cues to maximize the reliability of

object boundary detection (Martin et al., 2004; Zhou & Mel,

2008). It has been found that a linear model suffices for optimal

cue combination (Martin et al., 2004). A linear model allows

the easy incorporation of additional cues when they become

available (Zhou & Mel, 2008) but is optimal only if the cues

are independent (Jacobs, 1995). Edge responses at neighboring

locations can show strong statistical dependencies (Schwartz &

Simoncelli, 2001; Zetzsche & Röhrbein, 2001), and differences in

chromatic and luminance channels have been found to be not

entirely decorrelated (Fine et al., 2003). However, the study by

Fine et al. (2003) was based on the analysis of only 12 images.

Zhou and Mel (2008) have argued that the edge responses cannot

be independent because the appearance or disappearance of

physical edges within overlapping receptive fields will induce

a dependency and boost responses in all channels simultaneously;

the counter example of an isoluminant edge was believed to be

rare in natural scenes (Zhou & Mel, 2008). Here we have shown

based on an analysis of over 700 calibrated images that isolu-

minant edges are not rarer than purely luminance edges and that

the edge responses in any of the three postreceptoral channels are

independent. The important implication of the independence is

that a simple linear cue combination scheme is sufficient.

Summary

We have analyzed the distribution of chromatic and luminance

edges in natural scenes. Isoluminance edges exist in natural scenes

and were not rarer than pure luminance edges. Most edges

combined luminance and chromatic information, but to varying

degrees. We found that chromatic and achromatic edges were

statistically independent: the strength of a chromatic edge could

not be inferred from the strength of the luminance edge at the

same position. Chromatic edges thus provide an independent

source of information. Because the edge information is indepen-

dent, a linear model is optimal for the combination of cues.

It has been shown that color is useful in many different tasks:

Color is important in detecting ripe fruit and edible reddish leaves

among greenish foliage (Sumner & Mollon, 2000a,b), and color

helps to detect objects faster (Gegenfurtner & Rieger, 2000) and to

memorize them better (Wichmann et al., 2002). Here we have

shown that chromatic information is an independent source of

information in natural scenes; color vision allows to access this

independent information that then can be used in many different

ways.
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Appendix

We analyzed data from the Bristol hyperspectral images database

in addition to the RGB images from the McGill database to ensure

that the results are independent of the database and the particular

Fig. 9. (Color online) Rendering of all 29 images of the Bristol hyperspectral images database. The images contain a neutral gray reference card.
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method to estimate cone responses (from either RGB or hyper-

spectral data). For the Bristol database, we also investigated the

origin of the higher contrast along the cardinal axes that appeared

in the joint histograms.

Bristol hyperspectral images database

The Bristol hyperspectral images database (Párraga et al., 1998)

consists of 29 images, each comprised 31 spectrally filtered

images with a spatial resolution of 256 3 256 pixels. The images

show laboratory scenes of plants with different shapes, textures,

and colors and images of the British country side and gardens

(Fig. 9). The selection of images was aimed at creating a repre-

sentation of the environment in which primate vision has evolved

(Párraga, 1995). The raw images were converted to measured

radiance images by a C program. The program has a conversion

function for each interference filter that depends on the pixel

value, pixel position, filter transmission, lens f-stop, and tube

integration time (Párraga et al., 1998).

LMS cone excitations were obtained from the radiance images

by weighting the image spectra with the Stockman and Sharpe

(2000) human cone fundamentals and summing over all wave-

lengths, that is, by taking the inner product of the image spectra

and the cone sensitivities. All subsequent computations were the

same as for the McGill image database.

Joint histograms for the Bristol hyperspectral images database

To check whether the results may be biased by the particular

choice of the image database, we conducted the analysis on

another image database, namely the Bristol hyperspectral images

database (Párraga et al., 1998). The resulting joint histograms are

plotted in Fig. 10. The joint histograms were computed for

a smaller bin size of 64 because the Bristol database contains

fewer images.

The resulting joint histograms were similar to those obtained

for the McGill database, and mutual information between the edges

in the different color-opponent channels was small [Lum/L � M:

0.007 bits, Lum/S � (L + M): 0.04 bits, and L � M/S � (L + M):

0.03 bits, for bin size 64]. In particular, the same diamond-shaped

structure emerged with particular high activity along the cardinal

axes. To further rule out that the increased contrast along the

cardinal axes and the resulting deviation from a Gaussian-shaped

distribution in the L �M/Lum joint histogram was an artifact of the

analysis, we conducted the analysis with the L and M values

artificially rotated by 45 deg prior to the subsequent analysis. The

resulting joint histogram is depicted in Fig. 11. Any artifact in the

analysis would now lead to increasing contrast along the cardinal

axes, which would result in a distorted histogram of the rotated

L and M values. However, the resulting histogram was basically

a rotated copy of the original histogram, ruling out any cardinal bias

in the analysis.

We also computed the joint histograms of the distributions in

the three postreceptoral channels Lum, L �M, and S � (L + M) to

test whether the joint edge histograms could be already inferred

from these more basic channel histograms. The joint histograms of

the activity in the postreceptoral channels are plotted in Fig. 12.

These joint histograms showed no particular high activity along

the cardinal axes. Consequently, the diamond-shaped structure of

the edge histograms (Fig. 10) was not already present in the joint

distribution of activity within the postreceptoral channels but

occurred at the next level, where edge contrast is computed, that

is, spatial differences between neighboring activities.

To further investigate the origin of the higher contrast along the

cardinal axes, we computed histograms on the basis of differences

between random locations. This allows us to investigate the effect
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Fig. 10. Joint edge histograms for the images of the Bristol database.
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Fig. 11. Rotated version of the L � M/Lum joint edge histograms for the

Bristol database. The high excursions along the diagonals correspond to

the high excursions found along the cardinal axes in the unrotated version,

showing that these excursions are not an artifact of the analysis rather than

a property of the data set.
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of the spatial arrangement of chromatic and luminance values in

natural scenes.

If the higher preferences for the cardinal axes were indepen-

dent of the spatial arrangement of colors and solely determined by

the histogram of the differences between colors at arbitrary

locations in the scene, the same diamond-shaped structure as

obtained for the edges should also emerge for the random dif-

ferences. However, we found that this was not the case (Fig. 13).

In particular, the Lum/L � M and Lum/S � (L + M) joint

histograms obtained from random differences were more rounded

and Gaussian-shaped. To quantify the structural dissimilarity, we

computed the width:height ratio (averaged across the eight

contour levels depicted in Figs. 13 and 10). The joint achro-

matic–chromatic histograms for the random differences are more

elongated [4.2 6 1.7 s.e.m., vs. 3.4 6 0.6 for Lum/L � M and

3.5 6 0.6 vs. 2.6 6 0.3 for Lum/S � (L + M)], while the joint

histograms between the two chromatic channels have almost the

same ratio (1.2 6 0.4 vs. 1.3 6 0.2). This indicates that in

particular the luminance dimension is affected by the random

manipulation, resulting in increased luminance contrast. The

pattern is also visible from horizontal and vertical cross-sections

of the joint histograms (Fig. 14).
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Fig. 12. Joint histograms of the postreceptoral channels (before computing the edge responses) for the images of the Bristol database.
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Fig. 13. Joint histograms of random differences. A joint histogram of random differences is averaged across 1000 different histograms

of the database, each obtained with a different realization of the random process for each of the 29 images.
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