K. Inoue and A. NodaNagoya Math. J.Vol. 85 (1982), 251-268

INDEPENDENCE OF THE INCREMENTS OF GAUSSIAN RANDOM FIELDS

KAZUYUKI INOUE AND AKIO NODA

§1. Introduction

Let $X = \{X(A); A \in \mathbb{R}^n\}$ be a mean zero Gaussian random field $(n \ge 2)$. We call X Euclidean if the probability law of the increments X(A) - X(B) is invariant under the Euclidean motions. For such an X, the variance of X(A) - X(B) can be expressed in the form r(|A - B|) with a function r(t) on $[0, \infty)$ and the Euclidean distance |A - B|.

We are interested in the dependence property of a Euclidean random field X and after P. Lévy [2] we introduce a set $\mathscr{F}_X(P_1|P_2)$ for a pair of points P_1 , $P_2 \in \mathbb{R}^n$:

$$\mathscr{F}_{X}(P_{1}|P_{2}) = \{A \in \mathbf{R}^{n}; E[(X(A) - X(P_{2}))(X(P_{1}) - X(P_{2}))] = 0\}.$$

The set $\mathscr{F}_X(P_1|P_2)$, we expect, would characterize the Euclidean random field X. This is the case for a Lévy's Brownian motion X_1 , where r(t) = t. Indeed, $\mathscr{F}_{X_1}(P_1|P_2)$ becomes the half-line emanating from P_2 , i.e.,

$$\mathscr{F}_{X_1}(P_1|P_2) = \{A \in \mathbf{R}^n; |A - P_1| = |A - P_2| + |P_1 - P_2| \},$$

and the equality

$$\mathscr{F}_{\mathbf{X}}(P_1|P_2) = \mathscr{F}_{\mathbf{X}_1}(P_1|P_2), \qquad P_1, P_2 \in \mathbf{R}^n$$

implies that X has independent increments on any line in \mathbb{R}^n and therefore that X is a Lévy's Brownian motion X_1 under the normalizing condition r(1) = 1. There are however some cases where the set $\mathscr{F}_X(P_1|P_2)$ is not rich enough to characterize X; for example we have $\mathscr{F}_X(P_1|P_2) = \{P_2\}$ when r(t) is strictly concave on $(0, \infty)$. So we introduce in this paper a partition $\{\mathscr{C}_X(P_1, P_2; q); q \in \mathbb{R}\}$ satisfying the following property: The increments X(A) - X(B) and $X(P_1) - X(P_2)$ are mutually independent if and only if A and B belong to the same set $\mathscr{C}_X(P_1, P_2; q)$ for some q. Our partition

Received July 18, 1980.

describes much finer structure of X than $\{\mathscr{F}_X(P_1|P_2)\}$ and has a relation $\mathscr{C}_X(P_1,P_2;1)=\mathscr{F}_X(P_1|P_2)$. For a Lévy's Brownian motion X_1 , the set $\mathscr{C}_{X_1}(P_1,P_2;q)$ with 0<|q|<1 coincides with a sheet of the hyperboloid of two sheets of revolution with foci P_1 and P_2 :

$$\mathscr{C}_{X_1}(P_1, P_2; q) = \{A \in \mathbf{R}^n; |A - P_1| = |A - P_2| + q |P_1 - P_2| \}.$$

We now raise the following question: From the equality

$$\mathscr{C}_{X}(P_{1}, P_{2}; q) = \mathscr{C}_{X_{1}}(P_{1}, P_{2}; q)$$
 for any $P_{1}, P_{2} \in \mathbb{R}^{n}$,

can one conclude that X with r(1) = 1 is a Lévy's Brownian motion X_1 ? Contrary to the above mentioned case q = 1, i.e., of $\mathcal{F}_{X_1}(P_1|P_2)$, this question is not easily answered. In addition, we shall be concerned with not only a Lévy's Brownian motion but also more general Euclidean random field X, and we consider the following

PROBLEM 1. For some fixed $q \in R$, does a family of the sets $\{\mathscr{C}_X(P_1, P_2; q); P_1, P_2 \in R^n\}$ characterize the Euclidean random field X?

The second problem we consider is concerned with projective invariance, which characterizes X_{α} with $r(t) = t^{\alpha}$ ($0 < \alpha \le 2$) ([3]). It is easily seen that the projective invariance of X_{α} is inherited by $\mathscr{F}_{X_{\alpha}}(P_1|P_2)$ as follows: For any P_1 , $P_2 \in \mathbb{R}^n$, the relation

$$\mathscr{F}_{X_{\sigma}}(TP_1|TP_2) = T\mathscr{F}_{X_{\sigma}}(P_1|P_2)$$

holds for each Euclidean motion, inversion with center P_2 and similar transformation T on \mathbb{R}^n . We are naturally led to the converse problem:

PROBLEM 2. Does the relation

$$\mathscr{F}_{X}(TP_{1}|TP_{2}) = T\mathscr{F}_{X}(P_{1}|P_{2})$$

imply that the Euclidean random field X is an X_a ?

The purpose of this paper is to give partial answers to these problems. In fact, we shall solve the Problem 1 for some class of Euclidean random fields X, in particular, for X_{α} with $0 < \alpha \le 2$ (Theorems 2 and 3). We shall also show that the Problem 2 can be solved under some condition on X (Theorem 4).

We now give a summary of subsequent sections. Section 2 contains definitions and discussions of a general Gaussian random field X. We define the maximal conjugate set $\mathscr{F}_X(A|\mathscr{E})$ for any non-empty subset \mathscr{E} of \mathbb{R}^n (Definition 1) and then introduce the set $\mathscr{C}_X(P_1, P_2; q)$ (Definition 2)

which plays an important role in our investigations.

In Section 3 we begin with a description of a Euclidean random field X in terms of $\mathcal{C}_X(P_1, P_2; 0)$; namely, a Gaussian random field X is Euclidean if and only if the relation

$$\mathscr{C}_X(P_1, P_2; 0) \supset \{A \in \mathbf{R}^n; |A - P_1| = |A - P_2|\}$$

holds for any P_1 , $P_2 \in \mathbb{R}^n$ (Theorem 1).

We are mainly concerned with Euclidean random fields X, on \mathbb{R}^n , which correspond to r(t) expressed in the form

$$r(t) = ct^2 + \int_0^\infty (1 - e^{-t^2u})u^{-1}d\gamma(u)$$

with r(1)=1, where $c\geqslant 0$ and γ is a measure on $(0,\infty)$ such that $\int_0^\infty (1+u)^{-1}d\gamma(u)<\infty$ ([4]). For such an X_r we find a parametrization of $\mathscr{C}_{X_r}(P_1,P_2;q)$ by a subset $T_r(|P_1-P_2|;q)$ of $[0,\infty)$; for $\alpha=|P_1-P_2|>0$,

$$T_r(a;q) = \{t \ge 0; r(|t-a|) \le r(t) + qr(a) \le r(t+a)\}.$$

The explicit form of $T_r(a; q)$ is given for some classes of r(t) (Propositions $3A \sim 3E$). An important example of r(t) is

$$r(t)=\int_0^2 t^\alpha d\lambda(\alpha)$$

with a probability measure λ on (0, 2].

In Section 4 we consider the Problem 1 for X_r and $q \neq 0$ in a slightly general setting:

PROBLEM 1'. Suppose that, for some Euclidean random field X_{τ_1} on \mathbb{R}^n and some $q_1 \in \mathbb{R}$, the relation

$$\mathscr{C}_{\mathit{Xr}}(P_{\scriptscriptstyle 1},P_{\scriptscriptstyle 2};q) \subset \mathscr{C}_{\mathit{Xr}_{\scriptscriptstyle 1}}\!(P_{\scriptscriptstyle 1},P_{\scriptscriptstyle 2};q_{\scriptscriptstyle 1})$$

holds for any P_1 , $P_2 \in \mathbb{R}^n$. Then is it true that $r_1(t) = r(t)$?

This problem changes into the uniqueness problem of the solution f(x) = x of the modified Cauchy's functional equation ([1]) with f(1) = 1 (Lemma 1):

$$f(qx + y) = q_1 f(x) + f(y)$$

for $x \in r((0, \infty))$ and $y \in r(T_r(r^{-1}(x); q))$. Here we put $r(F) = \{r(t); t \in F\}$ for a subset F of $[0, \infty)$ and $r^{-1}(t)$ is the inverse function of r(t) strictly

increasing. We can solve this equation for the above mentioned classes of X_r by using the properties of $T_r(a;q)$ (Theorems 2 and 3). In particular, we note that the Problem 1' is completely answered for X_a ($0 < \alpha \le 2$).

The final section contains the solution of the Problem 2 for X_r under the condition that $T_r(a_0; 1) \supset [0, a_0]$ for some $a_0 > 0$ (Theorem 4).

Acknowledgement. It is our pleasure to express our sincere gratitude to Professors T. Hida and I. Kubo for their kind advice.

§ 2. The sets $\mathcal{F}_X(A \mid \mathcal{E})$ and $\mathcal{C}_X(P_1, P_2; q)$

Let $X = \{X(A); A \in \mathbb{R}^n\}$ $(n \ge 2)$ be a Gaussian random field such that X(A) - X(B) has mean zero and variance r(A, B). Then the covariance of the increments X(A) - X(P) and X(B) - X(P) is

(1)
$$E[(X(A) - X(P))(X(B) - X(P))] = \{r(A, P) + r(B, P) - r(A, B)\}/2$$

We see that r(A, B) must satisfy the following conditions:

$$(2) \qquad \begin{cases} r(A,B) = r(B,A), & r(A,A) = 0, \quad r(A,B) \geqslant 0 \quad \text{and} \\ \sum\limits_{i,j=1}^{N} a_i a_j r(A_i,A_j) \leqslant 0 \quad \text{for any } A_i \in I\!\!R^n \quad \text{and for any } a_i \in I\!\!R \\ \text{such that } \sum\limits_{i=1}^{N} a_i = 0 \qquad (1 \leqslant i \leqslant N < \infty) \; . \end{cases}$$

We assume that r(A, B) is jointly continuous and not identically zero.

We now introduce a decomposition of X(A) for any non-empty subset \mathscr{E} of \mathbb{R}^n :

$$X(A) = \mu(A \mid \mathscr{E}) + \sigma(A \mid \mathscr{E})\xi(A \mid \mathscr{E}),$$

where

$$\mu(A \mid \mathscr{E}) = E[X(A) \mid X(P); P \in \mathscr{E}],$$

$$\sigma^{2}(A \mid \mathscr{E}) = E[(X(A) - \mu(A \mid \mathscr{E}))^{2}]$$

and

$$\xi(A\,|\,\mathscr{E}) = egin{cases} (X(A) - \mu(A\,|\,\mathscr{E}))/\sigma(A\,|\,\mathscr{E}) & ext{if } \sigma(A\,|\,\mathscr{E}) > 0 \;, \ 0 & ext{if } \sigma(A\,|\,\mathscr{E}) = 0 \;. \end{cases}$$

Since X is Gaussian, we see that the random variable $\xi(A \mid \mathscr{E})$ is independent of $\{X(P); P \in \mathscr{E}\}$. The decomposition (3) is called the *canonical* form of X(A) ([2]). Explicit forms of $\mu(A \mid \mathscr{E})$ and $\sigma(A \mid \mathscr{E})$ are easily given for the case $\mathscr{E} = \{P_1, P_2\}$. First suppose that $r(P_1, P_2) > 0$. Then

(4)
$$\mu(A|P_1, P_2) = (1-q)2^{-1}X(P_1) + (1+q)2^{-1}X(P_2)^{-1},$$

and

(5)
$$\sigma^2(A \mid P_1, {}^{s}P_2) = (1-q)2^{-1}r(A, P_1) + (1+q)2^{-1}r(A, P_2) \\ - (1-q^2)4^{-1}r(P_1, P_2) ,$$

where the coefficient q is given by

(6)
$$q = (r(A, P_1) - r(A, P_2))/r(P_1, P_2).$$

When $r(P_1, P_2) = 0$, we have $\mu(A | P_1, P_2) = X(P_1) = X(P_2)$ and the equality (4) holds for any $q \in \mathbb{R}$.

The correlation function of $\xi(A \mid \mathscr{E})$ is denoted by

(7)
$$\rho_{\mathbf{X}}(A, B | \mathcal{E}) = E[\xi(A | \mathcal{E})\xi(B | \mathcal{E})],$$

and is called the conditional correlation function relative to \mathscr{E} . After P. Lévy [2] we give the following

DEFINITION 1. For any $A \in \mathbb{R}^n$ and any non-empty subset \mathscr{E} of \mathbb{R}^n ,

$$\mathscr{F}_{X}(A \mid \mathscr{E}) = \{B \in \mathbf{R}^{n}; \rho_{X}(A, B \mid \mathscr{E}) = 0\}.$$

Two points A and B such that $\rho_X(A, B | \mathscr{E}) = 0$ are said to be conjugate relative to \mathscr{E} , and $\mathscr{F}_X(A | \mathscr{E})$ is called the maximal conjugate set of A relative to \mathscr{E} ([2]). The set $\mathscr{F}_X(A | \mathscr{E})$ contains a point $B \in \mathbb{R}^n$ such that $\sigma(B | \mathscr{E}) = 0$, so that $\mathscr{F}_X(A | \mathscr{E}) \supset \overline{\mathscr{E}}$, $\overline{\mathscr{E}}$ being the closure of \mathscr{E} . If, in particular, $\sigma(A | \mathscr{E}) = 0$, we have $\mathscr{F}_X(A | \mathscr{E}) = \mathbb{R}^n$.

PROPOSITION 1. The set $\mathscr{F}_X(A \mid \mathscr{E})$ is a maximal closed set \mathscr{V} such that $u(A \mid \mathscr{V}) = \mu(A \mid \mathscr{E})$ and $\mathscr{V} \cap \mathscr{E} \neq \phi$. We also have

$$(9) \mathscr{F}_{X}(A \mid \mathscr{E}) = \{ B \in \mathbf{R}^{n}; \ \mu(B \mid \mathscr{E} \cup \{A\}) = \mu(B \mid \mathscr{E}) \}.$$

Proof. Set $V = \{ \mathscr{V} \subset \mathbb{R}^n ; \mu(A | \mathscr{V}) = \mu(A | \mathscr{E}) \text{ and } \mathscr{V} \cap \mathscr{E} \neq \emptyset \}$. Then the first assertion is proved by the following facts:

The equality (9) is easily proved by taking the following formula into account:

$$\mu(B|\mathscr{E} \cup \{A\}) = \mu(B|\mathscr{E}) + \rho_{X}(A, B|\mathscr{E})\sigma(B|\mathscr{E})\xi(A|\mathscr{E}).$$

The proof is thus completed.

For the case $\mathscr{E} = \{P_2\}$, we see by (9) that

$$\mathscr{F}_{\mathbf{x}}(P_1|P_2) = \{A \in \mathbf{R}^n : \mu(A|P_1, P_2) = X(P_2)\},$$

hence the equalities (4) and (6) give the following:

(10)
$$\mathscr{F}_X(P_1|P_2) = \{A \in \mathbb{R}^n; r(A, P_1) = r(A, P_2) + r(P_1, P_2)\}.$$

As will be shown in Theorem 2, there are some cases where $\mathscr{F}_X(P_1|P_2)$ is rich enough to characterize X. But it may happen that $\mathscr{F}_X(P_1|P_2) = \{P_2\}$ (see Proposition 3C). Hence in order to characterize X even in such a case, it is necessary to introduce other kinds of subsets of the parameter space \mathbb{R}^n . Inspired by (4), we give the following

DEFINITION 2. For any P_1 , $P_2 \in \mathbb{R}^n$ and any $q \in \mathbb{R}$,

(11)
$$\mathscr{C}_{X}(P_{1}, P_{2}; q) = \{ A \in \mathbf{R}^{n}; \ \mu(A \mid P_{1}, P_{2}) = (1 - q)2^{-1}X(P_{1}) + (1 + q)2^{-1}X(P_{2}) \}.$$

This set can be expressed as follows:

(12)
$$\mathscr{C}_{X}(P_{1}, P_{2}; q) = \{A \in \mathbf{R}^{n}; r(A, P_{1}) = r(A, P_{2}) + qr(P_{1}, P_{2})\}.$$

We note the following simple facts:

- (i) $\bigcup_{q\in R} \mathscr{C}_{X}(P_{1}, P_{2}; q) = \mathbb{R}^{n};$
- (ii) $\mathscr{C}_X(P_1, P_2; 1) = \mathscr{F}_X(P_1|P_2);$
- (iii) $\mathscr{C}_{X}(P_{1}, P_{2}; q) = \mathscr{C}_{X}(P_{2}, P_{1}; -q).$

An interesting property of the set $\mathscr{C}_X(P_1, P_2; q)$ is illustrated by the following

PROPOSITION 2. The increments X(A) - X(B) and $X(P_1) - X(P_2)$ are mutually independent if and only if A and B belong to the same set $\mathscr{C}_X(P_1, P_2; q)$ for some $q \in R$.

Proof. Since X is Gaussian, the increments X(A) - X(B) and $X(P_1) - X(P_2)$ are mutually independent if and only if

$$E[(X(A) - X(B))(X(P_1) - X(P_2))] = 0.$$

This is rephrased by the equation

$$r(A, P_1) - r(A, P_2) = r(B, P_1) - r(B, P_2)$$

which is equivalent, by (12), to the assertion that A and B belong to $\mathscr{C}_{X}(P_{1}, P_{2}; q)$ for some $q \in \mathbf{R}$. The proof is thus completed.

§ 3. The set $\mathscr{C}_{X_r}(P_1, P_2; q)$ for a Euclidean random field X_r

In this section we first give a description of a Euclidean random field

X in terms of $\mathscr{C}_X(P_1, P_2; 0)$, and then introduce a class S_{∞} of functions r(t) by using Schoenberg's theorem ([4]), and further investigate the set $\mathscr{C}_{X_r}(P_1, P_2; q)$ for such an $r(t) \in S_{\infty}$.

Suppose that the probability law of a Gaussian random field X is invariant under each Euclidean motion T on \mathbb{R}^n , that is,

(13)
$$\rho_{X}(TA, TB | T\mathscr{E}) = \rho_{X}(A, B | \mathscr{E})$$

for any A, $B \in \mathbb{R}^n$ and any $\mathscr{E} \subset \mathbb{R}^n$. Then the variance r(A, B) of X(A) - X(B) can be expressed in the form r(A, B) = r(|A - B|) with a continuous function r(t) on $[0, \infty)$. Such a Gaussian random field is called *Euclidean*. The Euclidean random field corresponding to r(t) is denoted by X_r .

Theorem 1. A Gaussian random field X is Euclidean if and only if the relation

(14)
$$\mathscr{C}_{X}(P_{1}, P_{2}; 0) \supset \{A \in \mathbf{R}^{n}; |A - P_{1}| = |A - P_{2}|\}$$

holds for any $P_1, P_2 \in \mathbb{R}^n$.

Proof. Since "only if" part is clear by (12), we shall prove "if" part. If $|A-P_1|=|A-P_2|$, then we have $r(A,P_1)=r(A,P_2)$. With this we must show that r(A,B)=r(A',B') for any $A,B,A',B'\in \mathbb{R}^n$ such that |A-B|=|A'-B'|. Putting |A-B|=d, we can find a finite number of points P_1,P_2,\cdots,P_N such that $|A-P_1|=|P_1-P_2|=\cdots=|P_N-A'|=d$. Then we have

$$r(A, B) = r(A, P_1) = r(P_1, P_2) = \cdots = r(P_N, A') = r(A', B')$$

which completes the proof.

Two Euclidean random fields X_{r_1} and X_{r_2} on \mathbb{R}^n linked by $r_1(t) = (\text{const.})r_2(t)$ have the same probabilistic structure:

$$ho_{X_{r_1}}\!(A,B\!\mid\!\mathscr{E}) =
ho_{X_{r_2}}\!(A,B\!\mid\!\mathscr{E}), \; \mathscr{F}_{X_{r_1}}\!(A\!\mid\!\mathscr{E}) \!=\! \mathscr{F}_{X_{r_2}}\!(A\!\mid\!\mathscr{E}) \quad ext{and}$$

$$\mathscr{C}_{X_{r_1}}\!(P_1,P_2;q) \!=\! \mathscr{C}_{X_{r_2}}\!(P_1,P_2;q)$$

for any A, B, P_1 , $P_2 \in \mathbb{R}^n$, any $\mathscr{E} \subset \mathbb{R}^n$ and any $q \in \mathbb{R}$.

As is easily seen, r(t) never vanishes for t > 0, so we shall impose the normalizing condition r(1) = 1 in what follows.

We denote by S_n the class of functions r(t) associated with Euclidean random fields X_r on \mathbb{R}^n . It is a well-known result (see, for example, [6]) that $r(t) \in S_n$ has the following representation:

(15)
$$r(t) = c_n t^2 + \int_0^\infty \{1 - Y_n(tu)\} dL_n(u) ,$$

where $c_n \geq 0$, $Y_n(t) = \Gamma(n/2)(2/t)^{(n-2)/2}J_{(n-2)/2}(t)$ with the Bessel function $J_{(n-2)/2}(t)$ of order (n-2)/2 and where L_n is a measure on $(0, \infty)$ such that $\int_0^\infty u^2(1+u^2)^{-1}dL_n(u) < \infty$. Noting that $S_n \supset S_{n+1}$, I. J. Schoenberg [4] investigated the class $S_\infty = \bigcap_{n>2} S_n$; namely, he proved that $r(t) \in S_\infty$ is uniquely expressed in the following form:

(16)
$$r(t) = ct^2 + \int_0^\infty \{1 - e^{-t^2u}\} u^{-1} d\gamma(u),$$

where $c \geqslant 0$ and γ is a measure on $(0, \infty)$ such that $\int_0^\infty (1 + u)^{-1} d\gamma(u) < \infty$. The important subclass L_∞ of S_∞ is defined as the set of functions $r(t) = \int_0^2 t^\alpha d\lambda(\alpha)$ with probability measures λ on (0, 2]. We note that $r(t) \in S_\infty$ is strictly increasing since

$$r'(t) = 2t\Big\{c + \int_0^\infty e^{-t^2u}d\gamma(u)\Big\} > 0 \quad \text{for } t > 0$$
 ,

and hence the inclusion relation (14) becomes the equality

(17)
$$\mathscr{C}_{X_r}(P_1, P_2; 0) = \{ A \in \mathbb{R}^n; |A - P_1| = |A - P_2| \}.$$

We also note that $r(t) \in S_{\infty}$ can be extended analytically to the function r(z) on the complex domain $\{z \in C; |\arg z| < \pi/4\}$ ([5]). In the sequel we shall consider the set $\mathscr{C}_{X_r}(P_1, P_2; q)$ only for q > 0 and $r(t) \in S_{\infty}$, because $\mathscr{C}_{X_r}(P_1, P_2; -q)$ is the mirror image of $\mathscr{C}_{X_r}(P_1, P_2; q)$ with respect to the hyperplane (17).

Now we shall illustrate the relation between the sets $\mathscr{C}_{X_r}(P_1, P_2; q)$ and $T_r(|P_1 - P_2|; q)$ which will be defined below by (18). Let H be an arbitrary two-dimensional half-plane in \mathbb{R}^n such that P_1 and P_2 belong to the boundary-line of H. We can give a natural parametrization to the set $\mathscr{C}_{X_r}(P_1, P_2; q) \cap H$ in the following way. For any $A \in \mathscr{C}_{X_r}(P_1, P_2; q) \cap H$, put $|P_1 - P_2| = a$ and $|A - P_2| = t$. Since r(t) is strictly increasing, we have

$$r(|t-a|) \leqslant r(|A-P_1|) \leqslant r(t+a).$$

Hence by (12),

$$r(|t-a|) \leqslant r(t) + qr(a) \leqslant r(t+a)$$
.

Define the following subset of $[0, \infty)$ for each a > 0:

(18)
$$T_r(a;q) = \{t \geqslant 0; r(|t-a|) \le r(t) + qr(a) \le r(t+a)\}.$$

Then we see that for each $t \in T_r(|P_1 - P_2|; q)$ there exists uniquely a point $A(t) \in \mathscr{C}_{X_r}(P_1, P_2; q) \cap H$ such that $|A(t) - P_2| = t$.

In the rest of this section we devote ourselves to the investigation of $T_r(a; q)$. First we see that

$$\{t\geqslant 0; r(|t-a|)\leqslant r(t)+qr(a)\}=egin{cases} [D(a;q),\infty) & ext{if } 0< q<1\ ,\ [0,\infty) & ext{if } q\geqslant 1\ , \end{cases}$$

where D(a; q) is the unique solution on (0, a/2) of the equation r(a - t) = r(t) + qr(a). Thus, putting

$$F_r(t; a, q) = r(t + a) - r(t) - qr(a)$$
,

we have

(19)
$$T_r(a;q) = \begin{cases} \{t \geqslant D(a;q); F_r(t;a,q) \geqslant 0\} & \text{if } 0 < q < 1, \\ \{t \geqslant 0; F_r(t;a,q) \geqslant 0\} & \text{if } q \geqslant 1. \end{cases}$$

We shall give further consideration on the following classes of $r(t) \in S_{\infty}$:

- A. r(t) = t, which corresponds to a Lévy's Brownian motion X_1 ;
- **B.** r(t) is strictly convex on $(0, \infty)$;
- C. r(t) is strictly concave on $(0, \infty)$;
- **D.** r(t) is strictly convex on $(0, t_0)$ and strictly concave on (t_0, ∞) for some t_0 $(0 < t_0 < \infty)$.
- **E.** r(t) is strictly concave on $(0, t_0)$ and strictly convex on (t_0, ∞) for some t_0 $(0 < t_0 < \infty)$.

We see that $r(t) = \int_0^2 t^a d\lambda(\alpha) \in L_{\infty}$ lies in **A**, **B** and **C** when the probability measure λ is concentrated on $\{1\}$, [1, 2] and [0, 1] respectively; otherwise $r(t) \in L_{\infty}$ is always in **E**. Examples of [1, 2] in **D**:

- (i) $r(t) = (1 e^{-ut^2})/(1 e^{-u})$ (u > 0);
- (ii) $r(t) = \{2t/(t+1)\}^{\alpha} \ (1 < \alpha \le 2);$
- (iii) $r(t) = \log(1 + t^2)/\log 2$.

Note that $r(t) = \{2t/(t+1)\}^{\alpha}$ with $0 < \alpha \le 1$ belongs to the class C.

Proposition 3A. For r(t) = t, we have

(20)
$$T_r(a;q) = \begin{cases} [(1-q)a/2, \infty) & \text{if } 0 < q \leq 1, \\ \phi & \text{if } q > 1. \end{cases}$$

Proof is elementary, so is omitted.

For r(t) in $\mathbf{B} \sim \mathbf{E}$, we shall introduce some notations. The limits $\lim_{t\to 0} r'(t)$ and $\lim_{t\to \infty} r'(t)$ exist in $[0,\infty]$, and are denoted by r'(0+) and $r'(\infty)$, respectively. We denote by C(a;q) the unique solution on $(0,\infty)$ of the equation $F_r(t;a,q)=0$ when a solution exists. We set

$$egin{align} h(a;q) &\equiv \lim_{t o\infty} F_r(t;a,q) = \lim_{t o\infty} \int_0^a \left\{ r'(t+s) - q r'(s)
ight\} ds \ &= r'(\infty) a - q r(a) \; . \end{split}$$

Of course $h(a; q) \equiv \infty$ when $r'(\infty) = \infty$.

Proposition 3B. Suppose that $r(t) \in S_{\infty}$ is strictly convex on $(0, \infty)$. Then we have

(21)
$$T_{r}(a;q) = \begin{cases} [D(a;q), \infty) & \text{if } 0 < q < 1 \text{ ,} \\ [0,\infty) & \text{if } q = 1 \text{ ,} \\ [C(a;q),\infty) & \text{if } q > 1 \text{ and } 0 < a < a^{*}(q) \text{ ,} \\ \phi & \text{if } q > 1 \text{ and } a \geqslant a^{*}(q) \text{ ,} \end{cases}$$

where $a^*(q) = \sup \{a \ge 0; h(a;q) \ge 0\}$. Moreover, for q > 1, we have $a^*(q) = \infty$ if and only if $r'(\infty) = \infty$. In this case there exists an increasing continuous function $\phi_q(a)$ on $(0,\infty)$ such that $C(a;q) < \phi_q(a)$ for any a > 0.

Proposition 3C. Suppose that $r(t) \in S_{\infty}$ is strictly concave on $(0, \infty)$. Then we have

$$(22) \qquad T_{r}(a;q) = \begin{cases} [D(a;q),\,C(a;q)] & \text{if } 0 < q < 1 \,\,\text{and}\,\,0 < a < a_{*}(q)\,\,, \\ [D(a;q),\,\infty) & \text{if } 0 < q < 1 \,\,\text{and}\,\,a \geqslant a_{*}(q)\,\,, \\ \{0\} & \text{if } q = 1\,\,, \\ \phi & \text{if } q > 1\,\,, \end{cases}$$

where $a_*(q) = \sup \{a \ge 0; h(a;q) \le 0\}$. Moreover, for 0 < q < 1, there exists an increasing continuous function $\psi_q(a)$ on $(0, \infty)$ such that $D(a;q) < \psi_q(a) < C(a;q)$ for $0 < a < a_*(q)$ and $D(a;q) < \psi_q(a)$ for $a \ge a_*(q)$.

These two propositions can be proved in a similar manner, so we give only the proof of Proposition 3B.

The proof of Proposition 3B. Since r'(t) is strictly increasing, we have $(d/dt)F_r(t; a, q) > 0$. Noting that $F_r(0; a, q) = (1 - q)r(a)$, we easily obtain (21) for $0 < q \le 1$.

Now consider the case q > 1. We devide the proof into two parts: (i) $r'(\infty) < \infty$ and (ii) $r'(\infty) = \infty$. First consider (i). We see that (d/da)h(a;q) is positive on (0,b) while negative on (b,∞) , where $b = \inf\{a > 0; qr'(a) > r'(\infty)\}$. Noting that the limit

$$\lim_{a\to\infty}h(a;q)/a=r'(\infty)-\lim_{a\to\infty}\frac{q}{a}\int_0^ar'(s)ds=(1-q)r'(\infty)$$

is negative, we see that $a^*(q)$ is finite and have

$$h(a;q)iggl\{ >0 \qquad ext{if } 0 < a < a^*(q) \;, \ \leqslant 0 \qquad ext{if } a \geqslant a^*(q) \;.$$

If h(a;q) > 0, the solution C(a;q) of the equation $F_r(t;a,q) = 0$ exists and $T_r(a;q) = [C(a;q),\infty)$ holds. While, if $h(a;q) \leq 0$, then $T_r(a;q) = \phi$. Thus (21) has been proved in the case (i).

Next consider (ii). It follows from $h(a;q) = \infty$ that $a^*(q) = \infty$ and $T_r(a;q) = [C(a;q),\infty)$ for any a>0. The function $\phi_q(a) = r'^{-1}(qr'(a))$ satisfies the inequality $C(a;q) < \phi_q(a)$ for any a>0, because

$$F_r(\phi_q(a); a, q) > a\{r'(\phi_q(a)) - qr'(a)\} = 0$$
.

We note that $\phi_q(a)$ is increasing and continuous, and that $\phi_q(0+)=0$ if and only if r'(0+)=0. Thus all the assertions have been proved.

As for r(t) in **D** or **E**, we are interested only in the case q=1.

PROPOSITION 3D. Suppose that $r(t) \in S_{\infty}$ is strictly convex on $(0, t_0)$ and strictly concave on (t_0, ∞) for some t_0 $(0 < t_0 < \infty)$. Then we have

(23)
$$T_{r}(a; 1) = \begin{cases} [0, \infty) & \text{if } 0 < a \leqslant a_{*}, \\ [0, C(a; 1)] & \text{if } a_{*} < a < a_{1}, \\ \{0\} & \text{if } a \geqslant a_{1}. \end{cases}$$

where $a_* = \inf\{a > 0; h(a; 1) \leq 0\}$ and $a_1 = \sup\{a > t_0; r'(a) > r'(0+)\}$. Moreover, if $r'(0+) \leq r'(\infty)$, then there exists a decreasing continuous function $\tau(a)$ on $(0, \infty)$ such that $0 < \tau(a) < C(a; 1)$ for $a > a_*$.

PROPOSITION 3E. Suppose that $r(t) \in S_{\infty}$ is strictly concave on $(0, t_0)$ and strictly convex on (t_0, ∞) for some t_0 $(0 < t_0 < \infty)$. Then we have

(24)
$$T_r(a;1) = \begin{cases} \{0\} & \text{if } 0 < a \leqslant a^* \text{ ,} \\ \{0\} \cup [C(a;1), \infty) & \text{if } a^* < a < a_2 \text{ ,} \\ [0, \infty) & \text{if } a \geqslant a_2 \text{ ,} \end{cases}$$

where $a^* = \inf\{a > 0; h(a; 1) \geqslant 0\}$ and $a_2 = \sup\{a > t_0; r'(a) < r'(0+)\}$. Moreover, $a^* = 0$ if and only if $r'(0+) \leqslant r'(\infty)$. In case $r'(0+) = r'(\infty)$, there exists $a_0 \in (t_0, \infty)$ such that $C(a; 1) \leqslant a_0$ for $a \geqslant a_0$.

The above two propositions can be proved in a similar manner, so we give only the proof of Proposition 3E.

The Proof of Proposition 3E. When $a \geqslant a_2$ $(a_2 < \infty)$, we easily see that $(d/dt)F_r(t;a,1) > 0$ for any t > 0. From this we have $T_r(a;1) = [0,\infty)$, which implies that $a^* < a_2$. On the other hand, when $a < a_2$, $(d/dt)F_r(t;a,1)$ is negative for $0 < t < t_a$ while positive for $t > t_a$, where $t_a \in (0,t_0)$ is the unique solution of the equation r'(t+a) = r'(t). Therefore, if h(a;1) > 0, the solution C(a;1) of the equation $F_r(t;a,1) = 0$ exists and $T_r(a;1) = \{0\}$ $\cup [C(a;1),\infty)$ holds. While, if $h(a;1) \leqslant 0$, then $T_r(a;1) = \{0\}$. We are now in a position to see that

$$h(a; 1)$$
 $\leqslant 0$ if $0 < a \leqslant a^*$, > 0 if $a > a^*$.

For (d/da)h(a; 1) is negative on (0, b) while positive on (b, ∞) , where $b = \inf\{a \in (0, t_0); r'(a) < r'(\infty)\} < a^*$. Thus we have proved (24).

We now proceed to the proof of the second part. We first note that $a^*=0$ if and only if b=0, which is equivalent to the condition $r'(0+1) \le r'(\infty)$. In case $r'(0+1) = r'(\infty)$ (i.e., $a^*=0$ and $a_2=\infty$), we can choose $a_0 \in (t_0, \infty)$ such that $r(2a_0) \ge 2r(a_0)$, because g(a) = r(2a) - 2r(a) is strictly increasing on (t_0, ∞) and the limit

$$\lim_{a \to \infty} g(a) = \lim_{a \to \infty} \int_0^a \{ r'(s+a) - r'(s) \} ds = \int_0^\infty \{ r'(\infty) - r'(s) \} ds$$

is positive. It is easily verified that $F_r(a_0; a, 1) \ge 0$ for $a \ge a_0$, which implies that $C(a; 1) \le a_0$ for $a \ge a_0$. Thus the proof is completed.

§ 4. Characterization of X_r by means of $\mathscr{C}_{X_r}(P_1, P_2; q)$

In this section we consider the Problem 1 concerning the characterization of a Euclidean random field X_r on \mathbb{R}^n by means of $\mathscr{C}_{X_r}(P_1, P_2; q)$. First we note that the family $\{\mathscr{C}_{X_r}(P_1, P_2; q); P_1, P_2 \in \mathbb{R}^n, q \in \mathbb{R}\}$ uniquely determines the probability law of X_r . That is, if functions r(t), $r_1(t) \in S_n$ satisfy the equality

$$\mathscr{C}_{X_r}(P_1, P_2; q) = \mathscr{C}_{X_r}(P_1, P_2; q)$$

for any P_1 , $P_2 \in \mathbb{R}^n$ and any $q \in \mathbb{R}$, then we have $r(t) = r_1(t)$. This is easily

verified by noting that (25) is equivalent to the following:

for any A, P_1 , $P_2 \in \mathbb{R}^n$.

Our conjecture is that the family $\{\mathscr{C}_{X_r}(P_1, P_2; q); P_1, P_2 \in \mathbb{R}^n\}$ with some fixed q > 0 would suffice for the characterization of X_r .

PROBLEM 1'. Let $r(t) \in S_{\infty}$, q > 0 and $n \ge 2$ be fixed. Suppose that $r_1(t) \in S_n$ and $q_1 \in R$ satisfy the relation

$$\mathscr{C}_{X_r}(P_1, P_2; q) \subset \mathscr{C}_{X_r}(P_1, P_2; q_1)$$

for any P_1 , $P_2 \in \mathbb{R}^n$. Then is it true that $r_i(t) = r(t)$ and $q_1 = q$?

Proposition 2 tells us the following: For any $A, B \in \mathscr{C}_{X_r}(P_1, P_2; q)$ the increments X(A) - X(B) and $X(P_1) - X(P_2)$, viewed as the differences of members of X_r , are mutually independent. By the relation (27), this property is still true even if those increments are viewed as the differences of members of X_{r_1} . Therefore, if the Problem 1' is affirmative, the parameter set of the form $\mathscr{C}_{X_r}(P_1, P_2; q)$ is thought of as a characteristic of a Gaussian random field, so far as the independence property of the increments is concerned. We shall solve this problem for the classes $A \sim E$ of $r(t) \in S_x$ by using the properties of $T_r(a; q)$.

We deduce a functional equation for $f(x) = r_1(r^{-1}(x))$ from the relation (27). For each $t \in T_r(|P_1 - P_2|; q)$, there exists a point $A(t) \in \mathscr{C}_{X_r}(P_1, P_2; q)$ such that $|A(t) - P_2| = t$. By (12), we see that

$$r(|A(t) - P_1|) = r(t) + qr(|P_1 - P_2|)$$
.

Since the point A(t) belongs also to $\mathcal{C}_{X_{r_1}}(P_1, P_2; q_1)$, the equality

$$r_1(|A(t)-P_1|) = r_1(t) + q_1r_1(|P_1-P_2|)$$

holds. From these equations, putting $x = r(|P_1 - P_2|)$ and y = r(t), we obtain

(28)
$$f(qx + y) = q_1 f(x) + f(y),$$

where

(29)
$$x \in r((0, \infty)), y \in r(T_r(r^{-1}(x); q)).$$

What has been discussed can be summarized as

LEMMA 1. Suppose that the relation (27) holds for any P_1 , $P_2 \in \mathbb{R}^n$. Then the continuous function $f(x) = r_1(r^{-1}(x))$ satisfies the functional equation (28).

Since the equality $q_1 = q$ easily follows from $r_1(t) = r(t)$, our goal is to prove that f(x) = x is the unique solution of (28) with f(1) = 1.

(a) The case q=1. In this case the Problem 1' becomes somewhat simple; the relation (27) implies that $q_1=1$. We thus have Cauchy's functional equation:

$$(28)_1 f(x+y) = f(x) + f(y),$$

(29),
$$x \in r((0, \infty)), y \in r(T_r(r^{-1}(x); 1))$$
.

When r(t) is strictly concave (i.e., in the class C), $\mathscr{F}_{x_r}(P_1|P_2) = \{P_2\}$ holds, so that we cannot obtain $r_1(t) = r(t)$. On the other hand, when r(t) is strictly convex (in **B**) or r(t) = t (in **A**), Cauchy's functional equation (28), holds for any $x, y \ge 0$. Then it is a classical result that f(x) = x is the unique solution with f(1) = 1 ([1]). Furthermore we shall show that this is true also for r(t) in **D** or **E** under the condition $r'(0+) \le r'(\infty)$, by using the theorem of J. Aczél (p. 46 in [1]).

First, let $r(t) \in S_{\infty}$ be in **D** with the condition $r'(0+) \leq r'(\infty)$. Then we see by Proposition 3D that the domain (29)₁ includes the following set:

(30)
$$D_{\phi} = \{(x, y); 0 < x < \beta, 0 < y \leqslant \Phi(x), x + y < \beta\}$$

with the decreasing continuous function $\Phi(x) = r(\tau(r^{-1}(x)))$ on $(0, \beta)$, where $\beta = r(\infty) \in (1, \infty]$ and where $\tau(a)$ is the function on $(0, \infty)$ in Proposition 3D. When $\beta < \infty$, we may assume that $\Phi(x) < \beta - x$ without loss of generality.

LEMMA 2. Suppose that a continuous function f(x) with f(1) = 1 satisfies Cauchy's functional equation (28), for any $(x, y) \in D_{\phi}$ with a decreasing continuous function $\Phi(x)$ on $(0, \beta)$ such that $0 < \Phi(x) < \beta - x$ $(1 < \beta \le \infty)$. Then we have f(x) = x.

Proof. Take x_0 such that $\Phi(x_0) = x_0$. Then, $(0, x_0] \times (0, x_0] \subset D_{\phi}$, which means that $(28)_1$ holds for any $x, y \in [0, x_0]$. Hence by Aczél's theorem, we have f(x) = cx on $[0, x_0]$ with some constant c. When $x > x_0$, it follows from $(28)_1$ that

$${f(x + y) - f(x)}/{y} = f(y)/{y} = c$$
 for $0 < y < \Phi(x)$,

so that the right derivative of f at $x \in (x_0, \beta)$ exists and is equal to the constant c. From this we obtain f(x) = cx on $[0, \beta)$, and c = 1 since f(1) = 1. The proof is thus completed.

Next, let $r(t) \in S_{\infty}$ be in **E** with the condition $r'(0+) \leq r'(\infty)$. Then we see by Proposition 3E that the domain (29)₁ includes the following set:

(31)
$$D^{\Psi} = \{(x, y); 0 < x < \infty, \Psi(x) \le y < \infty\},$$

where $\Psi(x)$ is the nonnegative continuous function defined by

$$arPsi (x) = egin{cases} r(C(r^{-1}(x);1)) & ext{ for } 0 < x < r(a_2) \ , \ 0 & ext{ for } x \geqslant r(a_2) \ , \end{cases}$$

and satisfies the property that there exists $x_0 \in (0, \infty)$ such that $\Psi(x) \leq x_0$ for $x \geq x_0$.

Lemma 3. Suppose that a continuous function f(x) with f(1) = 1 satisfies Cauchy's functional equation $(28)_1$ for any $(x, y) \in D^{\mathbb{F}}$ with a nonnegative continuous function $\Psi(x)$ on $(0, \infty)$ satisfying the property that there exists $x_0 \in (0, \infty)$ such that $[x_0, \infty) \times [x_0, \infty) \subset D^{\mathbb{F}}$. Then we have f(x) = x.

This is a simple consequence of Aczél's theorem, so we omit the proof. Thus we have proved the following

Theorem 2. Suppose that $r(t) \in S_{\infty}$ satisfies one of the following four conditions:

- (i) r(t) = t;
- (ii) r(t) is strictly convex on $(0, \infty)$;
- (iii) r(t) is strictly convex on $(0, t_0)$, strictly concave on (t_0, ∞) for some t_0 $(0 < t_0 < \infty)$ and $r'(0 +) \le r'(\infty)$;
- (iv) r(t) is strictly concave on $(0, t_0)$, strictly convex on (t_0, ∞) for some t_0 $(0 < t_0 < \infty)$ and $r'(0 +) \leq r'(\infty)$.

Then, $r_1(t) \in S_n$ satisfies the relation

$$\mathscr{F}_{X_r}(P_1|P_2) \subset \mathscr{F}_{X_{r_1}}(P_1|P_2)$$
 for any $P_1, P_2 \in R^n$

if and only if $r_i(t) = r(t)$.

In the above cases (iii) and (iv), we have assumed, for convenience, that $r'(0+) \leq r'(\infty)$. Without this assumption, difficulties arise, for one thing the equality $\mathscr{F}_{X_r}(P_1|P_2) = \{P_2\}$ holds for $|P_1 - P_2| \geq a_1$ in the case (iii) (see Proposition 3D) and for $|P_1 - P_2| \leq a^*$ in the case (iv) (Proposition 3E).

(b) The cases 0 < q < 1 or q > 1. When r(t) is strictly concave (in C) or r(t) = t (in A), we have $\mathscr{C}_{X_r}(P_1, P_2; q) = \phi$ for q > 1, so the answer to the Problem 1' is obviously "No". But we have an affirmative answer in the following four cases:

(32)
$$\begin{cases} \text{(i)} & 0 < q < 1 \text{ and } r(t) = t \text{;} \\ \text{(ii)} & 0 < q < 1 \text{ and } r(t) \text{ is strictly convex on } (0, \infty) \text{;} \\ \text{(iii)} & 0 < q < 1 \text{ and } r(t) \text{ is strictly concave on } (0, \infty) \\ \text{with } r(\infty) = \infty \text{;} \\ \text{(iv)} & q > 1 \text{ and } r(t) \text{ is strictly convex on } (0, \infty) \text{ with } r'(0 +) = 0 \\ & \text{and } r'(\infty) = \infty \text{.} \end{cases}$$

In these cases, we see by Propositions 3A, 3B and 3C that in the interior of the domain (29) there exists an increasing continuous curve Γ : $y = \phi(x)$, $0 < x < \infty$, with $\phi(0+) = 0$. Therefore, under the restriction that $r_i(t) \in S_n$ is twice differentiable, we can easily verify that f(x) = x is the unique solution of (28) with f(1) = 1. Thus we have obtained the following

THEOREM 3. Suppose that $r(t) \in S_{\infty}$ and q > 0 satisfy one of the four conditions in (32). Then, a twice differentiable function $r_1(t) \in S_n$ and $q_1 \in R$ satisfy the relation

$$\mathscr{C}_{X_r}(P_1,P_2;q) \subset \mathscr{C}_{X_{r_1}}\!(P_1,P_2;q_1) \quad \text{for any } P_1,\ P_2 \in I\!\!R^n$$

if and only if $r_1(t) = r(t)$ and $q_1 = q$.

Remark 1. We see by Theorems 2 and 3 that the answer to the Problem 1' for $r(t) = t^{\alpha}$ ($0 < \alpha \le 2$) is "Yes" in the following cases: (i) 0 < q < 1 and $0 < \alpha \le 2$; (ii) q = 1 and $1 \le \alpha \le 2$; (iii) q > 1 and $1 < \alpha \le 2$. In the other cases, the answer is "No".

Remark 2. Theorem 3 holds even in the case where a parameter $q_1 \in \mathbf{R}$ depends on $P_1, P_2 \in \mathbf{R}^n$.

§5. The projective invariance of $\mathcal{F}_{X_o}(P_1|P_2)$

In this section we consider the Problem 2 mentioned in § 1. The probability law of X_{α} is invariant under each Euclidean motion, similar transformation and inversion T on \mathbb{R}^n , that is, the equality

(33)
$$\rho_{X_a}(TA, TB | T\mathscr{E}) = \rho_{X_a}(A, B | \mathscr{E})$$

holds for any A, $B \in \mathbb{R}^n$ and any $\mathscr{E} \subset \mathbb{R}^n$. Here we take an inversion T with center in \mathscr{E} , that is, for some a > 0 and some $P \in \mathscr{E}$,

$$\left\{ egin{aligned} TA &= a^2(A-P)\,|A-P|^{-2} + P & ext{if } A
eq P \,, \ TP &= P \,. \end{aligned}
ight.$$

The property (33) is the characteristic property of X_{α} called projective invariance ([3]). It easily follows from (33) that

$$(34) \qquad \mathscr{F}_{X_a}(TA \mid T\mathscr{E}) = T\mathscr{F}_{X_a}(A \mid \mathscr{E}) \qquad \text{for any } A \in \mathbf{R}^n \text{ and any } \mathscr{E} \subset \mathbf{R}^n.$$

Now we wish to show that there is no other X_r with the above property (34). Namely, we are ready to discuss

PROBLEM 2. Suppose that $r(t) \in S_{\infty}$ satisfies the equality

(35)
$$\mathscr{F}_{X_r}(TP_1|TP_2) = T\mathscr{F}_{X_r}(P_1|P_2) \quad \text{for any } P_1, P_2 \in \mathbb{R}^n,$$

where a transformation T on \mathbb{R}^n runs over all similar transformations and inversions with center P_2 . Then is it true that $r(t) = t^a$?

We can solve this problem under the following condition:

(36) There exists
$$a_0 > 0$$
 such that $r(t) + r(a_0) \leqslant r(t + a_0)$ for $0 \leqslant t \leqslant a_0$,

which means that $T_r(a_0; 1) \supset [0, a_0]$. It follows from (35) that $T_r(a; 1) = \{at/a_0; t \in T_r(a_0; 1)\}, a > 0$, and that the set $T_r(a; 1) \setminus \{0\}, a > 0$, is invariant under the inversion $t^* = a^2/t$ on $(0, \infty)$. By using the condition (36), we have $T_r(a; 1) = [0, \infty)$ for any a > 0.

Theorem 4. Suppose that $r(t) \in S_{\infty}$ satisfies the condition (36). Then the equality (35) holds for any similar transformation and inversion with center P_2 if and only if $r(t) = t^{\alpha}$ $(1 \le \alpha \le 2)$.

Proof. It suffices to prove "only if" part. From the equality (35) for any similar transformation T on \mathbb{R}^n , we obtain the equation

(37)
$$r(kr^{-1}(r(t)+1)) = r(kt) + r(k)$$

for any k > 0 and any $t \in T_r(1; 1) = [0, \infty)$. With this we show the following equation for any natural number m:

(38)
$$r(kr^{-1}(m)) = mr(k)$$
 for any $k > 0$.

This equation clearly holds for m = 1. Suppose the equation (38) holds for m. Then, putting $t = r^{-1}(m)$ in (37), we see that

$$r(kr^{-1}(m+1)) = r(kr^{-1}(m)) + r(k) = (m+1)r(k)$$
.

By induction on m, the equation (38) holds for all m.

If we set r(k) = a in (38), then we have $r^{-1}(ma) = r^{-1}(m)r^{-1}(a)$. It easily follows that $r^{-1}(pa) = r^{-1}(p)r^{-1}(a)$ for any rational number p and any a > 0. Since $r^{-1}(t)$ is continuous, we obtain

$$r^{-1}(ab) = r^{-1}(a)r^{-1}(b)$$
 for any $a, b \ge 0$,

which implies that $r^{-1}(t) = t^{1/\alpha}$ for some $\alpha > 0$. Thus, excluding the case $0 < \alpha < 1$ because of (36), we have $r(t) = t^{\alpha}$ with $1 \le \alpha \le 2$. The proof is completed.

REFERENCES

- [1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York and London, 1966.
- [2] P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1965.
- [3] A. Noda, Gaussian random fields with projective invariance, Nagoya Math. J., 59 (1975), 65-76.
- [4] I. J. Schoenberg, Metric spaces and completely monotone functions, Annals of Math., 39 (1938), 811-841.
- [5] D. Widder, The Laplace Transform, Princeton, New Jersey, 1946.
- [6] A. M. Yaglom, Some classes of random fields in n-dimensional space related to stationary random processes, Theory Prob. Appl., 2 (1957), 273-320 (English translation).

Department of Mathematics Shinshu University

Department of Mathematics Aichi University of Education