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This is the true joy in life, the being used for a purpose recognized by

yourself as a mighty one, the being a force of nature, instead of a

selfish, feverish little clod of ailments and grievances complaining that

the world will not devote itself to making you happy. I am of the

opinion that my life belongs to the whole community, and it is my

privilege to do for it whatever I can.

Life is no brief candle to me, it is a sort of splendid torch which I’ve

got a hold of for the moment, and I want to make it burn as brightly

as possible before handing it on to future generations.

– George Bernard Shaw
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Abstract

The circulant graph Cn,S is the graph on n vertices (with labels 0, 1, 2, . . . , n − 1),

spread around a circle, where two vertices u and v are adjacent iff their (minimum)

distance |u−v| appears in set S. In this thesis, we provide a comprehensive analysis of

the independence polynomial I(G, x), when G = Cn,S is a circulant. The independence

polynomial is the generating function of the number of independent sets of G with k

vertices, for k ≥ 0.

While it is NP -hard to determine the independence polynomial I(G, x) of an

arbitrary graph G, we are able to determine explicit formulas for I(G, x) for several

families of circulants, using techniques from combinatorial enumeration. We then

describe a recursive construction for an infinite family of circulants, and determine

the independence number of each graph in this family. We use these results to provide

four applications, encompassing diverse areas of discrete mathematics. First, we

determine a new (infinite) family of star extremal graphs. Secondly, we obtain a

formula for the chromatic number of infinitely many integer distance graphs. Thirdly,

we prove an explicit formula for the generalized fractional Ramsey function. Finally,

we determine the optimal Nordhaus-Gaddum inequalities for the fractional chromatic

and circular chromatic numbers. These new theorems significantly extend what is

currently known.

Building on these results, we develop additional properties and applications of

circulant graphs. We determine a full characterization of all graphs G for which its

line graph L(G) is a circulant, and apply our previous theorems to calculate the list

colouring number of a specific family of circulants. We then characterize well-covered

circulant graphs, and examine the shellability of their independence complexes. We

conclude the thesis with a detailed analysis of the roots of I(Cn,S, x). Among many

other results, we solve several open problems by calculating the density of the roots

of these independence polynomials, leading to new theorems on the roots of matching

polynomials and rook polynomials.
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Abstract

Cn,S The circulant graph on n vertices with generating set S

I(G, x) The independence polynomial of graph G

Pn The path on n vertices

Cn The cycle on n vertices

Kn The complete graph on n vertices

|G| The order of a graph G, i.e., the number of vertices in G

|u − v|n The circular distance of two vertices u and v in Cn,S

deg(v) The degree of a vertex v

α(G) The independence number of G

ω(G) The clique number of a G

χ(G) The chromatic number of G

G The complement of G

L(G) The line graph of G

[xk]P (x) The coefficient of the xk term of P (x)

An The circulant Cn,{1,2,...,d}, where d ≥ 1 is fixed

Bn The circulant Cn,{d+1,d+2,...,⌊n
2
⌋}, where d ≥ 0 is fixed

G[H ] The lexicographic graph product of G with H

χf(G) The fractional chromatic number of G

χc(G) The circular chromatic number of G

ωf(G) The fractional clique number of G

χl(G) The list colouring number of G

G(Z, S) The integer distance graph generated by set S

ρ(G) The vertex arboricity number of G

r(a1, a2, . . . , ak) The Ramsey function of the k-tuple (a1, a2, . . . , ak)

rωf
(a1, a2, . . . , ak) The fractional Ramsey function of the k-tuple (a1, a2, . . . , ak)

∆(G) The independence complex of G
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Chapter 1

Introduction

1.1 Basic Terminology

In this thesis, we will use notation from Diestel’s textbook on graph theory [58]. Since

much of the standard terminology will be familiar, we just cite several definitions that

will be used repeatedly.

We will assume that all graphs are simple, i.e., no loops or multiple edges. The

graph Pn is the path on n vertices, Cn is the cycle on n vertices, and Kn is the

complete graph on n vertices. The number of vertices in a graph G = (V, E) is its

order, denoted by |G|. The degree of a vertex v, denoted by deg(v), is the cardinality

of the set {u ∈ V : uv ∈ E}.
An independent set of G is a set S with the property that u, v ∈ S → uv /∈ E.

In other words, no pair of vertices in S is adjacent in G. Trivially, any single vertex

of G is an independent set. The largest order of an independent set in G is the

independence number α(G).

A clique of G is a set S with the property that (u 6= v and u, v ∈ S) → uv ∈ E.

In other words, every pair of vertices in S is adjacent in G. The largest order of a

clique in G is the clique number ω(G). We note that ω(G) = α(G), for all G, where

G denotes the complement of G.

Let Γ be a set of colours. A colouring π : V → Γ of a graph G is proper if no two

adjacent vertices receive the same colour. The chromatic number χ(G) is the smallest

number of colours in a proper colouring of G.

Let G = (V, E) and G′ = (V ′, E ′) be two graphs. We say that G and G′ are

isomorphic if there exists a bijection ϕ : V → V ′ with xy ∈ E iff ϕ(x)ϕ(y) ∈ E ′,

for all x, y ∈ V . We write this as G ≃ G′. Such a map ϕ is an isomorphism. If

G = G′, then ϕ is an automorphism. We will not distinguish between isomorphic

1
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graphs: thus, we will always speak of the complete graph on n vertices, and so on. A

function taking graphs as arguments is a graph invariant if it assigns equal values to

isomorphic graphs. For example, α(G), ω(G), and χ(G) are all graph invariants.

We set G ∪ G′ = (V ∪ V ′, E ∪ E ′) and G ∩ G′ = (V ∩ V ′, E ∩ E ′). If V ∩ V ′ = ∅,
then graphs G and G′ are disjoint. If V ′ ⊆ V and E ′ ⊆ E, then G′ is a subgraph of

G. We write this as G′ ⊆ G. If G′ ⊆ G and G′ contains all the edges xy ∈ E with

x, y ∈ V ′, then G′ is an induced subgraph of G, and we say that V ′ induces G′. If

U is a subset of the vertices of G, the graph G − U is formed by deleting all of the

vertices in U from G, and deleting all of their incident edges as well. In the case that

U = {u} for a single vertex u, we just write G − u.

A set of edges is independent if no two edges share a common vertex, and a set

of independent edges is a matching. A perfect matching is a matching that includes

each of the vertices.

In the line graph L(G) of graph G, the vertex set is E(G), the edge set of G, and

vertices x and y are adjacent in L(G) iff x and y are adjacent as edges in G. For

example, L(K4) is isomorphic to K6 minus a perfect matching, and L(Cn) ≃ Cn for

all n ≥ 3. Note that a matching of k edges in G corresponds to a set of k independent

vertices in L(G), and conversely.

Other definitions will be introduced in the appropriate context. In the next two

sections, we define the two most important terms in the thesis, as they will form the

basis for everything that follows.

1.2 Circulant Graphs

Definition 1.1 A circulant graph of order n has vertex set V (G) = Zn and edge

set E(G) = {uv : u − v ∈ S}, for some generating set S ⊆ V (G). This set S must

not contain the identity element 0, and must be closed under additive inverses. We

say that Cn,S is the circulant graph of order n with generating set S.

We note that Cn,S is an undirected Cayley graph [81] for the group G = (Zn, +).

Thus, circulant graphs are a special case of the more general family of Cayley graphs.

Since our generating set S must be closed under additive inverses and not contain

the identity element, the following is an equivalent definition of Cn,S.
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Definition 1.2 Given a set S ⊆ {1, 2, 3, . . . , ⌊n
2
⌋}, the circulant graph Cn,S is the

graph with vertex set V (G) = Zn, and edge set E(G) = {uv : |u − v|n ∈ S}, where

|x|n = min{|x|, n − |x|} is the circular distance modulo n.

We will use this latter definition of Cn,S throughout the thesis. Thus, the gener-

ating set S will always refer to a subset of {1, 2, 3, . . . , ⌊n
2
⌋}. In the literature, S is

also referred to as the connection set [5, 59].

For example, here are the circulants C9,{1,2} and C9,{3,4}.

0

1

2

3

45

6

7

8

0

1

2

3

45

6

7

8

Figure 1.1: The circulant graphs C9,{1,2} and C9,{3,4}.

Note that the circulant Cn,{1,2,3,...,⌊n
2 ⌋} is simply the complete graph Kn. Also,

Cn,{1} is just the cycle Cn. We remark that Cn,{d} ≃ Cn for any d with gcd(d, n) = 1.

Circulant graphs have been investigated in fields outside of graph theory. For

example, for geometers, circulant graphs are known as star polygons [52]. Circu-

lants have been used to solve problems in group theory, as shown in [5], as well as

number theory and analysis [55]. They are well-studied in network theory, as they

model practical data connection networks [11, 100]. Circulant graphs (and circulant

matrices) have important applications to the theory of designs and error-correcting

codes [156]. Various papers have been written on the theory of circulant graphs

[1, 5, 46, 48, 55, 56, 59, 68, 78, 82, 121, 123, 140, 141, 181], but no paper has yet

explored the properties of independence in circulant graphs.
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1.3 The Independence Polynomial

Definition 1.3 The independence polynomial I(G, x) is

n∑

k=0

ikx
k, where ik is the

number of independent sets of cardinality k in G.

In other words, I(G, x) is the generating function of the number of independent

sets of G, where the coefficients represent the number of independent sets of each car-

dinality. In this thesis, we will derive many properties of the independence polynomial

I(G, x), primarily when G belongs to the family of circulant graphs.

Since the independence polynomial was first introduced [87], it has proven to be a

fruitful area of combinatorial research [22, 23, 25, 26, 42, 74, 97, 98, 118, 119, 120, 130,

133, 165]. Also, independence polynomials are known to have important applications

to combinatorial chemistry and statistical physics [120, 159].

We will develop new formulas and properties of independence polynomials, and

apply these theorems to solve problems from other areas of discrete mathematics.

To illustrate, we calculate the independence polynomial of the 6-cycle C6. We have

i0 = 1 (the empty set) and i1 = 6, since we can select any of the six vertices. The

coefficient i2 is simply the number of non-edges of G, which equals
(

n
2

)
− |E(G)| = 9.

It is clear that ik = 0 for k ≥ 4. Finally, there are only two independent sets for

k = 3, namely {0, 2, 4} and {1, 3, 5}.

0 1

34

25

0 1

34

25

Figure 1.2: Two independent sets of size 3 in C6.

Therefore, the independence polynomial of C6 is I(C6, x) = 1+6x+9x2 +2x3. By

definition, it follows that for all graphs G, the independence number α(G) is equal to

deg(I(G, x)), the degree of the independence polynomial I(G, x).
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Definition 1.4 For any polynomial P (x), [xk]P (x) is the coefficient of the xk term

in P (x).

For example, we have [x2]I(C6, x) = 9 and [x4]I(C6, x) = 0. Note that for any G,

[x0]I(G, x) = 1 and [x1]I(G, x) = |G|.
Using various techniques in combinatorial enumeration, we will derive explicit

formulas for I(G, x) for several families of circulant graphs. In the process, we will

find out much information about the independent sets of G. Not only will we have an

immediate formula for α(G), we will also acquire other information at no cost, such

as showing that G contains more independent sets of one cardinality than another

(equivalent to verifying that ip > iq for some p and q), or determining the total

number of independent sets in G (equivalent to evaluating I(G, x) at x = 1).

We will develop several applications of independence polynomials in this thesis.

Here we describe one such application. In Chapter 4, we will examine well-covered

graphs, which are graphs for which every independent set can be extended to a max-

imum independent set. In a well-covered graph, a maximum independent set can be

found by applying the greedy algorithm. However, it is not clear how to enumerate

all maximum independent sets. By obtaining a formula for [xα(G)]I(G, x), we will

know exactly how many maximum independent sets must appear in G. Thus, once

our enumeration technique has found [xα(G)]I(G, x) independent sets of maximum

cardinality, we can immediately stop, because we know that there cannot be any

more. Once we have found all of the maximum independent sets, we can prove that

a circulant is not well covered by finding an independent set that cannot be extended

to any of these [xα(G)]I(G, x) maximum independent sets. This will enable us to de-

rive classification theorems of well-covered circulant graphs, and formally prove that

certain circulants are not well-covered.

For some graphs G, it is very easy to compute the independence polynomial

I(G, x). As an example, if G = Kn, then clearly I(Kn, x) = 1 + nx, since there

are no independent sets of cardinality 2 or more. But computing I(G, x) for an arbi-

trary graph G is NP -hard [79], even when G is restricted to the family of circulant

graphs [46]. Note that there is a simple reduction formula [87] which calculates any

independence polynomial I(G, x) in exponential time.
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Theorem 1.5 ([87]) For any vertex v,

I(G, x) = I(G − v, x) + x · I(G − N [v], x),

where the closed neighbourhood N [v] is the set {u : u = v or uv ∈ E}.

We also mention the following theorem, which deals with unions of disjoint graphs.

Theorem 1.6 ([87]) Let G and H be disjoint graphs. Then

I(G ∪ H, x) = I(G, x) · I(H, x).

Let us briefly discuss the dependence polynomial D(G, x), which is introduced in

[74]. The polynomial D(G, x) is equal to
∑

ckx
k, where ck represents the number

of cliques (i.e., dependent sets) of cardinality k in G. By this definition, it is clear

that D(G, x) = I(G, x), for all graphs G. Thus, we will not consider dependence

polynomials in this thesis, as D(G, x) is simply the independence polynomial of G.

We conclude this chapter by introducing two more graph polynomials, which we

will refer to several times in the following chapters.

Definition 1.7 For any graph G, the chromatic polynomial π(G, x) is the func-

tion that gives the number of proper colourings of the vertices of G using x colours.

As a trivial example, π(K3, x) = x(x− 1)(x− 2) = x3 − 3x2 + 2x. Much work has

been done in the study and analysis of chromatic polynomials [20, 24, 38, 61, 68, 97,

101, 112, 126, 153, 162, 166].

Definition 1.8 For any graph G, the matching polynomial M(G, x) is

M(G, x) =
∑

k≥0

(−1)kmkx
n−2k,

where mk is the number of matchings in G with exactly k edges.

For example, M(C6, x) = x6 − 6x4 + 9x2 − 2. Since a matching of k edges in G

corresponds to a set of k independent vertices in the line graph L(G), it follows that

the ik coefficient of I(L(G), x) is equal to the mk coefficient in M(G, x). In other

words, I(L(G), x) =
∑

k≥0

mkx
k. Therefore, the following result holds.
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Proposition 1.9 ([87]) For all graphs G, M(G, x) = xn · I(L(G),− 1
x2 ).

Therefore, we may regard the independence polynomial as a generalization of

the matching polynomial. Like the independence polynomial, M(G, x) is a graph

polynomial that has been studied by combinatorialists [68, 81, 87]. Matching poly-

nomials have important applications to statistical physics, and arise in the theory of

monomer-dimer systems [96].

1.4 Overview of the Thesis

In Chapter 2, we investigate the independence polynomial of a general circulant graph

G = Cn,S, and attempt to find formulas for I(G, x). Since it is NP -hard [46] to

determine I(G, x) for an arbitrary circulant graph G = Cn,S, we know that it is highly

improbable that an explicit formula for I(Cn,S, x) can be developed. Nevertheless, we

find a formula for I(Cn,S, x) for three general families of circulants: when S is of the

form {1, 2, . . . , d}, when S is of the form {d + 1, d + 2, . . . , ⌊n
2
⌋}, and when G is any

circulant of degree at most three. We then discuss graph products, and show that

the lexicographic product of any two circulants is also a circulant, which enables us

to derive additional explicit formulas for I(Cn,S, x). We discuss the computational

complexity of evaluating independence polynomials, and show that evaluating I(G, x)

at x = t is #P -hard for every non-zero value of t. We conclude the chapter by

determining all circulant graphs that are uniquely characterized by its independence

polynomial, and discuss instances when two non-isomorphic circulants have the same

independence polynomial.

In Chapter 3, we describe a construction for an infinite family of circulants, and

determine a recursive formula for deg(I(G, x)) = α(G), for every graph in this infinite

family. We provide four applications of this result, encompassing diverse areas of

discrete mathematics. First, we determine a new (infinite) family of star extremal

graphs. Secondly, we obtain a formula for the chromatic number of infinitely many

integer distance graphs. Thirdly, we prove an explicit formula for the generalized

fractional Ramsey function, solving an open problem from [102, 117]. Finally, we

determine the optimal Nordhaus-Gaddum inequalities for the fractional chromatic
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and circular chromatic numbers. These new results significantly extend (or completely

solve) much of what is currently known.

In Chapter 4, we investigate additional properties of circulant graphs, and use our

results from the previous two chapters to develop various applications. First, we pro-

vide a full characterization of all graphs G for which its line graph L(G) is a circulant.

Then we examine list colourings, and provide a clever application of independence

polynomials to determine the list colouring number of a particular family of circulant

graphs. We then investigate well-covered circulants, and give a partial characteriza-

tion of circulant graphs that are well-covered. We show that the general problem is

intractable, by proving that it is co-NP complete to determine if an arbitrary circu-

lant is well-covered. To conclude the chapter, we examine independence complexes

of circulants, and classify circulants for which their independence complexes are pure

and shellable.

In Chapter 5, we investigate the roots of the independence polynomial I(Cn,S, x).

We prove that the roots of I(G, x) are dense in the complex plane C, even when

G is restricted to one particular family of circulants. We investigate the roots of

I(Cn,S, x), where S is an arbitrary subset of {1, 2, . . . , ⌊n
2
⌋}. We provide best bounds

for the roots of maximum and minimum moduli, and determine conditions for when

the roots of I(Cn,S, x) are rational. To conclude the chapter, we examine the closures

of the roots of independence polynomials, answering an open problem in [23, 97]. We

prove that this theorem on the roots of independence polynomials implies new results

on the closures of roots of matching polynomials and rook polynomials.



Chapter 2

Formulas for Independence Polynomials

In this chapter, we investigate the independence polynomials of circulant graphs. As

we will see, calculating formulas for I(G, x) is an extremely difficult task. Neverthe-

less, we will find an explicit formula for several families of circulants Cn,S, where S is

some particular subset of {1, 2, . . . , ⌊n
2
⌋}.

First, we will investigate the families with generating set S = {1, 2, . . . , d} and

then examine its complement set S = {d + 1, d + 2, . . . , ⌊n
2
⌋}. We will use these

results to determine explicit formulas for I(Cn,S, x) for all circulants of degree at

most 3. We discuss graph products to generate even more formulas for I(Cn,S, x),

and then apply the lexicographic product to prove that there is no polynomial-time

algorithm to evaluate the value of I(G, t) for any t 6= 0. We conclude the chapter by

determining all circulant graphs that are uniquely characterized by its independence

polynomial, and discuss instances when two non-isomorphic circulants have the same

independence polynomial.

2.1 The Family S = {1, 2, . . . , d}

Consider the generating set S = {1, 2, . . . , d}, where 1 ≤ d ≤ ⌊n
2
⌋ is a given integer.

The circulant Cn,S is then equivalent to the dth power of Cn [58], where two vertices

are adjacent iff their distance is at most d. Powers of cycles have been a rich study

of investigation [10, 18, 114, 122, 127], with important connections to the analysis of

perfect graphs [9, 41, 43, 128].

In this section, we derive a formula for I(Cn,S, x), where S = {1, 2, . . . , d} for some

fixed integer 1 ≤ d ≤ ⌊n
2
⌋. As a corollary, this gives us a formula for I(Cn, x), by

setting d = 1. First, we need a definition and a lemma.

Definition 2.1 Let d ≥ 1 be a fixed integer. For each n, set An := Cn,{1,2,...,d}.

9
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By this definition, note that An = Kn for n ≤ 2d + 1. Thus, we may assume

that 1 ≤ d ≤ ⌊n
2
⌋. For this fixed d, we now determine a recursive formula for

I(An, x) = I(Cn,{1,2,...,d}, x).

Lemma 2.2 I(An, x) = I(An−1, x) + x · I(An−d−1, x), for all n ≥ 2d + 2.

Proof: Since n ≥ 2d + 2, we have α(An) ≥ 2. We see trivially that the x0 and x1

coefficients are equal in the given identity. So fix k ≥ 2. We will show that the xk

coefficients are equal as well.

Let {v1, v2, . . . , vk} be an independent set of cardinality k ≥ 2 in An, with 0 ≤
v1 < v2 < . . . < vk ≤ n − 1. Since the circular distance satisfies the inequality

|u− v|n > d for all non-adjacent vertices u and v in An, we have vi+1 − vi > d for all

1 ≤ i ≤ k − 1, and n + (v1 − vk) > d. This can be seen by placing n points equally

around a circle, and noticing that each (adjacent) pair of chosen vertices is separated

by distance greater than d. We will expand on this idea in the following section when

we formally define difference sequences.

We classify our independent sets {v1, v2, . . . , vk} of An into two families:

(a) S1 = {{v1, v2, . . . , vk} independent in An : vk − vk−1 = d + 1}.

(b) S2 = {{v1, v2, . . . , vk} independent in An : vk − vk−1 > d + 1}.

Since S1 ∩ S2 = ∅, it follows that [xk]An = |S1| + |S2|. We will show that |S1| =

[xk−1]An−d−1 and |S2| = [xk]An−1.

Case 1: Proving |S1| = [xk−1]An−d−1.

We establish a bijection φ between S1 and the set of (k − 1)-tuples that are

independent in An−d−1. This will prove that |S1| = [xk−1]An−d−1.

For each element in S1, define

φ(v1, v2, . . . , vk) = {v1, v2, . . . , vk−1}.

Since vk = vk−1 +(d+1), φ is one-to-one. Construct the graph A′
n by contracting

all of the vertices from the set {vk−1+1, vk−1+2, . . . , vk} to vk−1. Then A′
n ≃ An−d−1.
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We claim that φ(v1, v2, . . . , vk) is an independent set of A′
n iff {v1, v2, . . . , vk} is

an element of S1. To prove this claim, we list the necessary and sufficient conditions,

and show that they are equivalent.

Note that φ(v1, v2, . . . , vk) is an independent set of A′
n iff

(a) vi+1 − vi > d for 1 ≤ i ≤ k − 2.

(b) (n − d − 1) + v1 − vk−1 > d.

Also, {v1, v2, . . . , vk} is an element of S1 iff

(a) vi+1 − vi > d for 1 ≤ i ≤ k − 2.

(b) vk − vk−1 = d + 1.

(c) n + v1 − vk > d.

We now show that these two sets of conditions are equivalent.

Note that the condition vi+1 − vi > d for 1 ≤ i ≤ k − 2 is true in both cases. If

φ(v1, v2, . . . , vk) = {v1, v2, . . . , vk−1} is an independent set of A′
n, then (n − d − 1) +

v1 − vk−1 > d. Let vk = vk−1 + (d + 1). Then, {v1, v2, . . . , vk−1, vk} is an independent

set of An, since (n − d − 1) + v1 − (vk − (d + 1)) > d, or n + v1 − vk > d. Therefore,

{v1, v2, . . . , vk} is an element of S1.

Now we prove the converse. If {v1, v2, . . . , vk} is an element of S1, then vk−vk−1 =

d+1 and n+v1−vk > d. Adding, this implies that (vk−vk−1)+(n+v1−vk) > 2d+1,

or (n − d − 1) + v1 − vk−1 > d. Hence, φ(v1, v2, . . . , vk) is an independent set of A′
n.

Therefore, we have established that φ is a bijection between the sets in S1 and

the independent sets of cardinality k − 1 in A′
n ≃ An−d−1. We conclude that |S1| =

[xk−1]An−d−1.

Case 2: Proving |S2| = [xk]An−1.

We now establish a bijection ϕ between S2 and the set of independent k-tuples in

An−1. For each element (v1, v2, . . . , vk−1, vk) of S2, define

ϕ(v1, v2, . . . , vk−1, vk) = {v1, v2, . . . , vk−1, vk − 1}.
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Observe that ϕ is one-to-one. Construct the graph A′′
n by contracting vk to vk −1.

Then, A′′
n ≃ An−1. We claim that ϕ(v1, v2, . . . , vk) is an independent set of A′′

n iff

{v1, v2, . . . , vk} is an element of S2. As we did in the previous case, we establish this

claim by listing the necessary and sufficient conditions, and showing that they are

equivalent.

Note that ϕ(v1, v2, . . . , vk) is an independent set of A′′
n iff

(a) vi+1 − vi > d for 1 ≤ i ≤ k − 2.

(b) (vk − 1) − vk−1 > d.

(c) (n − 1) + v1 − (vk − 1) > d.

Also, {v1, v2, . . . , vk} is an element of S2 iff

(a) vi+1 − vi > d for 1 ≤ i ≤ k − 2.

(b) vk − vk−1 > d + 1.

(c) n + v1 − vk > d.

Clearly, these sets of conditions are equivalent. Therefore, we have established

that ϕ is a bijection between the sets in S2 and the independent sets of cardinality k

in A′′
n ≃ An−1. We conclude that |S2| = [xk]An−1.

Therefore, we have shown that [xk]An = [xk−1]An−d−1+[xk]An−1 for all n ≥ 2d+2,

which implies that I(An, x) = I(An−1, x) + x · I(An−d−1, x).

Now we find an explicit formula for I(An, x) = I(Cn,{1,2,...,d}, x), where d ≥ 1 is a

fixed integer.

Theorem 2.3 Let n ≥ d + 1. Then deg(I(An, x)) = ⌊ n
d+1

⌋ and

I(An, x) = I(Cn,{1,2,...,d}, x) =

⌊ n
d+1

⌋
∑

k=0

n

n − dk

(
n − dk

k

)

xk.
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Proof: By Lemma 2.2, I(An, x) = I(An−1, x) + x · I(An−d−1, x), for n ≥ 2d + 2. We

will prove the theorem using generating functions.

Let fn =







I(An, x) for n ≥ d + 1

1 for 1 ≤ n ≤ d

d + 1 for n = 0

Each fn is a polynomial in x. First, we verify that fn = fn−1 + xfn−d−1, for all

n ≥ d+1. This recurrence is true for n ≥ 2d+2, by Lemma 2.2. For d+2 ≤ n ≤ 2d+1,

we have fn = 1+ nx = (1+ (n− 1)x) + x · 1 = fn−1 + xfn−d−1. Finally, for n = d+ 1,

we have fd+1 = 1+ (d+ 1)x = fd + xf0. Thus, fn = fn−1 + xfn−d−1, for all n ≥ d +1.

Let F (x, y) =
∞∑

p=0

fpy
p. For each n ≥ d + 1, we will show that

[xkyn]F (x, y) =
n

n − dk

(
n − dk

k

)

.

Since fn = fn−1 + xfn−d−1, for all n ≥ d + 1, we have

∞∑

n=d+1

fny
n =

∞∑

n=d+1

fn−1y
n +

∞∑

n=d+1

fn−d−1xyn

F (x, y) −
d∑

n=0

fny
n = y

(

F (x, y) −
d−1∑

n=0

fnyn

)

+ xyd+1F (x, y)

F (x, y)(1 − y − xyd+1) = f0 + f1y +
d∑

n=2

fny
n − f0y −

d−1∑

n=1

fny
n+1

F (x, y)(1 − y − xyd+1) = f0 + f1y +

d∑

n=2

yn − f0y −
d∑

n=2

yn

F (x, y)(1 − y − xyd+1) = (d + 1) + y − (d + 1)y

F (x, y) = (d + 1 − dy)(1 − y − xyd+1)−1
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= (d + 1 − dy)
∞∑

t=0

(y + xyd+1)t

= (d + 1 − dy)
∞∑

t=0

yt(1 + xyd)t

= (d + 1 − dy)
∞∑

t=0

∞∑

u=0

(
t

u

)

xuyt+du

= (d + 1)

∞∑

t,u=0

(
t

u

)

xuyt+du − d

∞∑

t,u=0

(
t

u

)

xuyt+du+1.

Now we extract the xkyn coefficient of F (x, y).

[xkyn]F (x, y) = [xkyn](d + 1)
∞∑

t,u=0

(
t

u

)

xuyt+du − [xkyn]d
∞∑

t,u=0

(
t

u

)

xuyt+du+1

= (d + 1)

(
n − dk

k

)

− d

(
n − dk − 1

k

)

=

(
n − dk

k

)

+ d

[(
n − dk

k

)

−
(

n − dk − 1

k

)]

=

(
n − dk

k

)

+ d

(
n − dk − 1

k − 1

)

=

(
n − dk

k

)

+
dk

n − dk

(
n − dk

k

)

=
n

n − dk

(
n − dk

k

)

.

Therefore, we have proven that [xk]I(An, x) = [xkyn]F (x, y) = n
n−dk

(
n−dk

k

)
. We

note that this coefficient is non-zero precisely when n − dk ≥ k, which is equivalent

to the inequality k ≤ n
d+1

. Hence, deg(I(An, x)) = ⌊ n
d+1

⌋.

We conclude that I(Cn,{1,2,...,d}, x) =

⌊ n
d+1

⌋
∑

k=0

n

n − dk

(
n − dk

k

)

xk.

As a corollary, we have a formula for I(Cn, x) by setting d = 1. This formula has

previously appeared in the literature, via alternate methods of proof.

Corollary 2.4 ([81, 87]) I(Cn, x) =

⌊n
2
⌋

∑

k=0

n

n − k

(
n − k

k

)

xk.
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It would be ideal if similar recurrence relations could be found for other sets S.

This would enable us to find explicit formulas for I(G, x) for many other families

of circulant graphs. However, no simple recurrence relation appears to exist for any

other set (or family) S, even for the two-element set S = {1, ⌊n
2
⌋}. Thus, we will need

to develop more sophisticated techniques to compute our independence polynomials.

We now develop a sophisticated combinatorial technique to compute the depen-

dence polynomial of the dth power of Cn, i.e., the independence polynomial of Cn,S,

where S = {d + 1, d + 2, . . . , ⌊n
2
⌋}.

2.2 The Family S = {d + 1, d + 2, . . . , ⌊n
2
⌋}

Definition 2.5 Let d ≥ 0 be a fixed integer. For each n ≥ 2d + 2, define the graph

Bn as the complement of An. Specifically,

Bn := An = Cn,{d+1,d+2,...,⌊n
2
⌋}.

Note that if n = 2d + 2, then Bn is the disjoint union of d + 1 copies of K2, so

I(Bn, x) = [I(K2, x)]d+1 = (1 + 2x)d+1, by Theorem 1.6. We will find an explicit

formula for I(Bn, x) = I(An, x) = I(Cn,{d+1,d+2,...,⌊n
2
⌋}, x), for all n ≥ 2d + 2. Our

formula will be extremely complicated, and the proof will require many technical

lemmas.

First, we introduce the following definition, which will be used frequently through-

out the thesis.

Definition 2.6 For each k-tuple {v1, v2, . . . , vk} of the vertices of a graph G on n

vertices, with 0 ≤ v1 < v2 < . . . < vk ≤ n − 1, the difference sequence is

(d1, d2, . . . , dk) = (v2 − v1, v3 − v2, . . . , vk − vk−1, n + v1 − vk).

As we did in the proof of Lemma 2.2, we can visualize difference sequences

as follows: spread n vertices around a circle, and highlight the k chosen vertices

v1, v2, . . . , vk. Now let di be the distance between vi and vi+1, for each 1 ≤ i ≤ k

(note: vk+1 := v1).
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In other words, the di’s just represent the distances between each pair of high-

lighted vertices. By this reasoning, it is clear that
k∑

i=1

di = n and that vj = v1 +

j−1∑

i=1

di

for each 1 ≤ j ≤ k.

Difference sequences will be of tremendous help in counting the number of inde-

pendent sets. We will carefully study the structure of these difference sequences, and

determine a direct correlation to independent sets.

To illustrate with an example, suppose we have n = 14 and d = 4. Then

{0, 1, 11, 12} is an independent set of cardinality 4 in B14 = C14,{5,6,7}. The corre-

sponding difference sequence is (1, 10, 1, 2). For each 0 ≤ j ≤ 13, consider the set

Ij = {j, j + 1, j + 11, j + 12}, where the elements are reduced modulo 14 and sorted

in increasing order. For example, I7 = {4, 5, 7, 8}, which has a difference sequence of

(1, 2, 1, 10). Note that each Ij is an independent set, and that its difference sequence

must be a cyclic permutation of D = (1, 10, 1, 2). Furthermore it is apparent that

the Ij’s are the only (independent) sets with a difference sequence that is a cyclic

permutation of D.

Instead of directly enumerating the independent sets I of Bn, it will be easier

to determine all possible difference sequences D that correspond to an independent

set of Bn, and then enumerate the number of independent sets corresponding to

these difference sequences. For notational convenience, we introduce the following

definition.

Definition 2.7 A difference sequence D = (d1, d2, . . . , dk) of the circulant Cn,S is

(n, S)−valid if no cyclic subsequence of consecutive di’s sum to an element in S.

By a cyclic subsequence of consecutive terms, we refer to subsequences such as

(dk−2, dk−1, dk, d1, d2, d3, d4). From now on, when we refer to subsequences of D, this

will automatically include all cyclic subsequences.

For further notational convenience, we will just say that D is valid, since the pair

(n, S) will be clear in all situations.

We note that each independent set I of Bn maps to a valid difference sequence D.

The following lemma is immediate from the definitions, and so we omit the proof.
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Lemma 2.8 Let I = {v1, v2, . . . , vk} have difference sequence D = (d1, d2, . . . , dk).

Then, I is independent in Cn,S iff D is valid.

We will now describe an explicit construction of all valid difference sequences with

k elements, and this will yield the total number of independent sets with cardinality

k. We will find a formula for I(Bn, x) = I(Cn,{d+1,d+2,...,⌊n
2
⌋}, x), for all n ≥ 2d + 2.

As a preliminary result, we cite the following result by Michael and Traves, which is

straightforward to prove.

Proposition 2.9 ([133]) Let n ≥ 3d + 1. Then, I(Bn, x) = 1 + nx(1 + x)d.

However, it is a difficult matter to compute I(Bn, x) for 2d + 2 < n ≤ 3d. In

this case, there is no known combinatorial technique to determine the number of

independent sets of cardinality k. Much more sophisticated methods are required

to develop an explicit formula for I(Bn, x), as evidenced by the statement of the

following theorem, which is the main result in this section.

Theorem 2.10 Let r = n − 2d − 2 ≥ 0. Then,

I(Bn, x) = I(Cn,{d+1,d+2,...,⌊n
2
⌋}, x) = 1 +

⌊ d
r+2

⌋
∑

l=0

n

2l + 1

(
d − lr

2l

)

x2l+1(1 + x)d−l(r+2).

From this theorem, we can deduce corollaries such as the following. The first

identity is simply Proposition 2.9.

Corollary 2.11 Let (n, d) be an ordered pair of positive integers satisfying n ≥ 2d+2.

(a) If
n

d
> 3, then I(Bn, x) = 1 + nx(1 + x)d.

(b) If
5

2
<

n

d
≤ 3, then I(Bn, x) = 1 + nx(1 + x)d +

n

3

(
3d − n + 2

2

)

x3(1 + x)3d−n.

(c) If
7

3
<

n

d
≤ 5

2
, then I(Bn, x) equals

1+nx(1+x)d +
n

3

(
3d − n + 2

2

)

x3(1+x)3d−n +
n

5

(
5d − 2n + 4

4

)

x5(1+x)5d−2n.
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Proof: Let n and d be fixed. For each l ≥ 0, define the polynomial

gl(x) =
n

2l + 1

(
d − lr

2l

)

x2l+1(1 + x)d−l(r+2).

In Theorem 2.10, the expression gl(x) is summed from l = 0 to l = ⌊ d
r+2

⌋ = ⌊ d
n−2d

⌋.
If n > 3d, then d

n−2d
< d

d
= 1, and so ⌊ d

n−2d
⌋ = 0. It follows that I(Bn, x) =

1 + g0(x) = 1 + nx(1 + x)d.

If 5
2

< n
d
≤ 3, then 1 = d

d
≤ d

n−2d
< d

d
2

= 2, and so ⌊ d
n−2d

⌋ = 1. It follows that

I(Bn, x) = 1 + g0(x) + g1(x). We now compute g0(x) and g1(x) to get the desired

identity.

If 7
3

< n
d
≤ 5

2
, then 2 = d

d
2

≤ d
n−2d

< d
d
3

= 3, and so ⌊ d
n−2d

⌋ = 2. It follows that

I(Bn, x) = 1 + g0(x) + g1(x) + g2(x). We now compute g0(x), g1(x), and g2(x) to get

the desired identity.

It appears that these identities cannot be simplified any further, and that Theo-

rem 2.10 is the closed-form identity that we seek. To prove Theorem 2.10, we require

several technical combinatorial lemmas. However, the first one is straightforward.

Lemma 2.12 Let n and k be positive integers, with n ≥ k. Let τ(n, k) be the number

of ordered k-tuples (a1, a2, . . . , ak) of positive integers such that

k∑

i=1

ai ≤ n. Then,

τ(n, k) =
(

n
k

)
.

Proof: By a simple and well-known combinatorial argument, there are
(

j−1
k−1

)
ordered

k-tuples (a1, a2, . . . , ak) of positive integers with sum exactly j. Therefore, τ(n, k) =
(

k−1
k−1

)
+
(

k
k−1

)
+
(

k+1
k−1

)
+ . . . +

(
n−1
k−1

)
=
(

n
k

)
, which follows from repeated applications of

Pascal’s Identity.

We now introduce l-constructible difference sequences. While the definition may

appear contrived, it is precisely the insight we need to count the number of valid dif-

ference sequences of Bn. We will show that every valid difference sequence is uniquely

l-constructible, for exactly one integer l ≥ 0. Then in our proof of Theorem 2.10, we

will enumerate the number of l-constructible difference sequences to determine the

number of independent sets of each cardinality.
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Definition 2.13 Let D be a difference sequence of Bn = Cn,{d+1,d+2,...,⌊n
2
⌋}, where

n ≥ 2d+2. Then, for each integer l ≥ 0, D is l-constructible if D can be expressed

in the form

D = Q1, p1, Q2, p2, . . . , Q2l+1, p2l+1

such that the following properties hold.

1. Each pi is an integer satisfying pi ≥ n − 2d.

2. Each Qi is a sequence of integers, possibly empty.

3. Let S be any (cyclic) subsequence of consecutive terms in D with sum
∑

S. If

S contains at most l of the pi’s, then
∑

S ≤ d. Otherwise,
∑

S ≥ n − d.

We will prove that every valid difference sequence can be expressed uniquely as an

l-constructible sequence, for exactly one l ≥ 0. We will then enumerate the number

of l-constructible sequences for each l, which will give us the total number of valid

difference sequences.

A difference sequence D of Bn = Cn,{d+1,d+2,...,⌊n
2
⌋} is valid iff no subsequence of

consecutive terms adds up to an element in S = {d + 1, d + 2, . . . , ⌊n
2
⌋}. Since the

complement of any consecutive subsequence of D is also a consecutive subsequence

of D, there exists a consecutive subsequence with sum t iff there exists a consecu-

tive subsequence with sum n − t. In other words, D is valid iff no subsequence of

consecutive terms sums to an element in [d + 1, n − d − 1].

By the third property in the definition of l-constructibility (see above), every l-

constructible sequence is necessarily valid because every subsequence of consecutive

terms has sum at most d or at least n−d, and hence falls outside of the forbidden range

[d + 1, n − d − 1]. So every l-constructible sequence is a valid difference sequence.

In the next two lemmas, we prove that every valid difference sequence is uniquely

l-constructible, for exactly one l ≥ 0. First, we construct an l that satisfies the

conditions, and then prove that no other l suffices.

To supplement the technical details of the following proof, let us describe our

method by illustrating an example.
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Consider the case n = 89 and d = 40. It is straightforward to show that the

difference sequence D = {9, 1, 9, 1, 9, 20, 10, 19, 2, 9} is valid, i.e., no subsequence of

consecutive elements sums to any S ∈ [41, 48]. We prove that this difference sequence

D is uniquely 2-constructible, up to cyclic permutation.

Lemma 2.14 Let D be a valid difference sequence of Bn. Then there exists an integer

l ≥ 0 such that D is l-constructible. For this integer l, D is l-constructible in a unique

way up to cyclic permutation, i.e., there is only one way to select the Qi’s and pi’s so

that D is l-constructible.

Proof: Let D = R1t1R2t2 . . . Rmtm, where each ti ≥ n − 2d and each Ri is a

(possibly empty) sequence of terms, all of which are less than n − 2d. Thus, each D

has a unique representation in this form, up to cyclic permutation. In our example,

n − 2d = 9. Without loss of generality, assume t1 = 20. In this case, we must have

R2 = ∅, t2 = 10, R3 = ∅, t3 = 19, R4 = {2}, t4 = 9, R5 = ∅, t5 = 9, R6 = {1}, t6 = 9,

R7 = {1}, t7 = 9, and R1 = ∅. In other words, we have

D = 20
︸︷︷︸

t1

, 10
︸︷︷︸

t2

, 19
︸︷︷︸

t3

, 2
︸︷︷︸

R4

, 9
︸︷︷︸

t4

, 9
︸︷︷︸

t5

, 1
︸︷︷︸

R6

, 9
︸︷︷︸

t6

, 1
︸︷︷︸

R7

, 9
︸︷︷︸

t7

.

Let l ≥ 0 be the largest integer such that for any subsequence X of consecutive

terms of D,
∑

X ≤ d if X includes at most l of the ti’s. (In our example, l < 3

since X = {20, 10, 19} includes three of the ti’s, and
∑

X = 49 > d. By inspection,

it can be checked that l = 2). For this l ≥ 0, we prove that D is l-constructible,

and that the assignment of Qi’s and pi’s is unique, up to cyclic permutation. It is

important to note that the pi’s and ti’s represent individual terms, while the Qi’s and

Ri’s represent a sequence of terms.

First suppose that m ≤ 2l. Note that R1 + t1 + R2 + t2 + . . . + Rl + tl ≤ d since

this series contains exactly l of the ti’s. Similarly, Rl+1 + tl+1 + . . . + R2l + t2l ≤ d. If

m ≤ 2l, then n =
∑

D ≤ 2d < n, a contradiction. Thus, m ≥ 2l + 1. If m = 2l + 1,

then we can set Qi = Ri and pi = ti for each i. Then each D is l-constructible, since
∑

D ≤ d if D contains at most l of the pi’s, and
∑

D ≥ n − d otherwise. Note

that this is the only assignment that enables D to be l-constructible, up to cyclic

permutation.



21

So suppose that m > 2l +1. In this case, we will assign the pi’s and Qi’s from the

set of ti’s and Ri’s. All of the pi’s will be chosen from the set of ti’s, while all of the

Qi’s will be determined from the Ri’s, as well as any leftover ti’s not included among

the pi’s. Thus, each pi will be a single term, and each Qi will be a (possibly empty)

sequence of terms. Note that the pi’s must be chosen from the ti’s, since we require

pi ≥ n − 2d for each i. In our proof that the construction is unique, we will formally

justify that each pi must be at least n − 2d.

By the definition of the index l ≥ 0, there must be a subsequence X containing

l + 1 of the ti’s such that its sum exceeds d. Since D is valid, no subsequence of

consecutive terms can sum to any number in [d + 1, n − d − 1]. Therefore,
∑

X > d

implies that
∑

X ≥ n − d.

Cyclically permute the elements of D so that this subsequence X appears at the

front of D, i.e., redefine the Ri’s and ti’s so that we have

t1 +
∑

R2 + t2 + . . . +
∑

Rl+1 + tl+1 ≥ n − d.

Then set pi = ti for 1 ≤ i ≤ l + 1 and Qi = Ri for 2 ≤ i ≤ l + 1. In our example,

we have X = {20, 10, 19}, p1 = 20, Q2 = ∅, p2 = 10, Q3 = ∅, and p3 = 19. Note

that this assignment of pi’s and Qi’s is necessary for D to be l-constructible: if any of

these Qi’s contains a tj term, then we will obtain a contradiction because the above

subsequence X will have at most l of the pi’s, but its sum will exceed d.

If D is l-constructible, we require the chosen pi’s and Qi’s to satisfy

∑

Q2 + p2 + . . . +
∑

Ql+1 + pl+1 +
∑

Ql+2 ≤ d,

since this subsequence contains l of the pi’s. Also, we require

∑

Q2 + p2 + . . . +
∑

Ql+1 + pl+1 +
∑

Ql+2 + pl+2 ≥ n − d,

since this subsequence contains l + 1 of the pi’s.

Let T =
∑

Q2+p2+. . .+
∑

Ql+1+pl+1. Then
∑

Ql+2 ≤ d−T and
∑

Ql+2+pl+2 ≥
n − d − T . Since each pi and Qi has already been assigned for 2 ≤ i ≤ l + 1,

T is a fixed integer. From these two inequalities, we claim that Ql+2 is uniquely

determined. Note that for some k ≥ 0, Ql+2 must be the first k elements of the
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sequence X ′ = Rl+2, tl+2, Rl+3, tl+3, . . . Rm, tm, R1. Furthermore, pl+2 would have to

be the next term, i.e., the (k + 1)th term of X ′.

We claim that k must be the largest integer such that the first k terms of X ′ sum

to at most d−T . This choice is unique because if k were not the largest integer, then
∑

Ql+2 +pl+2 ≤ d−T , and that contradicts the inequality
∑

Ql+2 +pl+2 ≥ n−d−T .

Since k is uniquely determined, Ql+2 must represent the first k elements of X ′, in

order for D to be l-constructible. Furthermore, pl+2 must be the next term in this

subsequence. In our example, T = 29, X ′ = {2, 9, 9, 1, 9, 1, 9}, Q4 = {2, 9}, and

p4 = 9.

Consider this sum T +
∑

Ql+2 + pl+2 > d. By our choice of k, this sum exceeds d.

Since D is valid, this sum must be at least n−d, since this total represents the sum of

a subsequence of consecutive terms in D. Therefore, the fact that D is valid implies

that
∑

Ql+2 +pl+2 ≥ n−d−T . Hence, by our construction, once we fix pi and Qi for

2 ≤ i ≤ l + 1, then Ql+2 and pl+2 are uniquely determined, and satisfy the properties

of l-constructibility. Note that pl+2 must satisfy the inequality pl+2 ≥ n − 2d since

T +
∑

Ql+2 ≤ d and T +
∑

Ql+2 + pl+2 ≥ n − d. By the same argument, each

pi ≥ n − 2d. This proves that each pi is chosen from the set of ti’s.

Similarly, Qi and pi are uniquely determined for i = l+2, i = l+3, and all the way

up to i = 2l+1. Once Q2l+1 and p2l+1 are chosen, we are left with k unselected terms

for some k ≥ 0. Then our only choice is to assign these k terms to Q1. Thus, this

assignment of pi’s and Qi’s must be unique, up to cyclic permutation. This completes

the proof.

In our example with (n, d) = (89, 40), we have already determined pi and Qi for

each 1 ≤ i ≤ 4. By applying the above method, we see that Q5 = {1}, p5 = 9,

and Q1 = {1, 9}. We can readily verify that this representation of D into pi’s and

Qi’s satisfies the properties of an l-constructible sequence. Thus, we have shown that

every 2-constructible representation of D must be a cyclic permutation of

1, 9
︸︷︷︸

Q1

, 20
︸︷︷︸

p1

, 10
︸︷︷︸

p2

, 19
︸︷︷︸

p3

, 2, 9
︸︷︷︸

Q4

, 9
︸︷︷︸

p4

, 1
︸︷︷︸

Q5

, 9
︸︷︷︸

p5

.

The next lemma shows that D is l-constructible for only one l ≥ 0.
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Lemma 2.15 If D is l-constructible, then D is not l′-constructible, for any l′ 6= l.

Proof: Suppose that D is both l-constructible and l′-constructible. Without loss,

suppose l′ < l. Since D is l-constructible, we know that D can be expressed as

D = Q1, p1, Q2, p2, . . . , Q2l+1, p2l+1,

such that
∑

S ≤ d if S contains at most l of the pi’s, and
∑

S ≥ n − d otherwise.

If D is l′-constructible, then D can also be expressed as

D = Q′
1, p

′
1, Q

′
2, p

′
2, . . . , Q

′
2l′+1, p

′
2l′+1,

such that
∑

S ≤ d if S contains at most l′ of the p′i’s, and
∑

S ≥ n − d otherwise.

For each 1 ≤ j ≤ 2l′ + 1, define Xj to be the subsequence

Xj = p′j, Q
′
j+1, p

′
j+1, . . . , Q

′
j+l′, p

′
j+l′,

where the indices are reduced mod (2l′ + 1).

Since Xj contains exactly l′+1 of the p′i’s,
∑

Xj ≥ n−d. This sequence Xj appears

exactly as a subsequence of consecutive terms in D = Q1, p1, Q2, p2, . . . , Q2l+1, p2l+1.

Since
∑

Xj ≥ n− d, it follows that Xj must contain at least (l + 1) of the pi’s, since

D is l-constructible.

For each 1 ≤ j ≤ 2l′ +1, define Γ(Q′
j) to be the number of pi’s that appear in Q′

j ,

and define Γ(p′j) = 1 if p′j = pi for some i, and Γ(p′j) = 0 otherwise.

Since Xj contains at least l + 1 of the pi’s, we must have

Γ(p′j) + Γ(Q′
j+1) + Γ(p′j+1) + . . . + Γ(Q′

j+l′) + Γ(p′j+l′) ≥ l + 1.

Summing over all 1 ≤ j ≤ 2l′ + 1, we have

l′
2l′+1∑

j=1

Γ(Q′
j) + (l′ + 1)

2l′+1∑

j=1

Γ(p′j) ≥ (l + 1)(2l′ + 1).

This identity follows because each Γ(Q′
j) is counted l′ times and each Γ(p′j) is

counted l′ + 1 times. This inequality can be rewritten as:
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2l′+1∑

j=1

Γ(Q′
j) ≥

(l + 1)(2l′ + 1) − (l′ + 1)
∑2l′+1

j=1 Γ(p′j)

l′
.

For each 1 ≤ j ≤ 2l′ + 1, define Yj to be the subsequence

Yj = Q′
j , p

′
j, Q

′
j+1, p

′
j+1, . . . , Q

′
j+l′−1, p

′
j+l′−1, Q

′
j+l′,

where the indices are reduced mod (2l′ + 1).

Since Yj contains exactly l′ of the p′i’s,
∑

Yj ≤ d. This sequence Yj appears exactly

as a subsequence of consecutive terms in D = Q1, p1, Q2, p2, . . . , Q2l+1, p2l+1. Since
∑

Yj ≤ d, it follows that Yj contains at most l of the pi’s, since D is l-constructible.

Therefore, we have

Γ(Q′
j) + Γ(p′j) + Γ(Q′

j+1) + Γ(p′j+1) + . . . + Γ(p′j+l′−1) + Γ(Q′
j+l′) ≤ l.

Summing over all 1 ≤ j ≤ 2l′ + 1, we have

(l′ + 1)

2l′+1∑

j=1

Γ(Q′
j) + l′

2l′+1∑

j=1

Γ(p′j) ≤ l(2l′ + 1).

This inequality can be rewritten as

2l′+1∑

j=1

Γ(Q′
j) ≤

l(2l′ + 1) − l′
∑2l′+1

j=1 Γ(p′j)

l′ + 1
.

So now we have two inequalities in terms of

2l′+1∑

j=1

Γ(Q′
j) and

2l′+1∑

j=1

Γ(p′j). From these

two inequalities, we have
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(l + 1)(2l′ + 1) − (l′ + 1)
∑2l′+1

j=1 Γ(p′j)

l′
≤

l(2l′ + 1) − l′
∑2l′+1

j=1 Γ(p′j)

l′ + 1

(l + 1)(l′ + 1)(2l′ + 1) − (l′ + 1)2

2l′+1∑

j=1

Γ(p′j) ≤ ll′(2l′ + 1) − l′2
2l′+1∑

j=1

Γ(p′j)

(2l′ + 1)

2l′+1∑

j=1

Γ(p′j) ≥ (2l′ + 1)(l + 1)(l′ + 1) − (2l′ + 1)ll′

2l′+1∑

j=1

Γ(p′j) ≥ ll′ + l + l′ + 1 − ll′

2l′+1∑

j=1

Γ(p′j) = l + l′ + 1

2l′+1∑

j=1

Γ(p′j) > 2l′ + 1 (since l > l′).

By the Pigeonhole Principle, we must have Γ(p′
j) > 1 for some index j. However,

each Γ(p′j) ≤ 1 and this gives us our desired contradiction.

Therefore, we have shown that for any l′ 6= l, D is not l′-constructible if D is

l-constructible.

We require one final result. In the following lemma, we will count the number

of m-tuples (Q1, Q2, . . . , Qm) with a fixed sum that contain a total of t non-zero

elements among the Qi’s. In this case, each Qi is a (possibly empty) sequence of

positive integers. We require this lemma when enumerating the number of valid

difference sequences.

Lemma 2.16 Let a1, a2, . . . , am be non-negative integers with sum k. Then there

are exactly
(

k
t

)
m-tuples (Q1, Q2, . . . , Qm) that contain a total of t non-zero elements

among the Qi’s, where each Qi is a (possibly empty) sequence of positive integers

whose sum is at most ai.

Proof: Write down a string of k ones, and place m− 1 bars in between the ones to

create the partition corresponding to the m-tuple (a1, a2, . . . , am). Now select any t

of the k ones.
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As an example, we demonstrate this for the case (a1, a2, a3) = (5, 6, 4), m = 3,

k = 15, and t = 6.

1, 1, 1, 1, 1|1, 1, 1, 1, 1, 1|1, 1, 1, 1.

Clearly, there are
(

k
t

)
ways to select exactly t ones from this string. We map each

selection to a unique m-tuple (Q1, Q2, . . . , Qm) which contains a total of t non-zero

elements among the Qi’s, so that the sum of the elements in each Qi is at most ai.

Consider the substring of ai ones in the ith partition. If no elements are selected

from this substring, set Qi = ∅. Otherwise, let the selected elements in the ith

partition be in positions r1, r2, . . . , rp, where 1 ≤ r1 < r2 < . . . < rp ≤ ai. Now define

Qi = (r2 − r1, r3 − r2, . . . , rp − rp−1, ai + 1 − rp).

In the above example, our selection of the t’s corresponds to the sequences Q1 =

(2, 2), Q2 = (1, 4, 1), Q3 = (3), which contain a total of t = 6 non-zero elements.

Note that for each i,
∑

Qi = ai + 1 − r1 ≤ ai. This construction guarantees that

each of the
(

k
t

)
selections maps to a unique m-tuple (Q1, Q2, . . . , Qm) with a total

of t non-zero elements, so that
∑

Qi ≤ ai. Given such an m-tuple, we now justify

that we can determine the unique way the t ones were selected from the string. For

each substring of ones in the ith partition, we are given Qi. From the above definition

for Qi, we can determine the values (or positions) of the rj’s by starting at rp and

calculating backwards. From rp, we can uniquely compute rp−1, rp−2, and so on, until

we have determined all of the rj ’s, where 1 ≤ j ≤ p. Since we can repeat this process

for each i, each selection of the m-tuple (Q1, Q2, . . . , Qm) corresponds to a unique

selection of t elements from a string of k ones. Hence, this construction is bijective,

and our proof is complete.

We are finally ready to prove Theorem 2.10.

Proof: By definition, in an l-constructible sequence, every subsequence of consecutive

terms has a sum outside the range [d + 1, n − d − 1]. Therefore, each l-constructible

sequence is valid in Bn, for every l ≥ 0. By Lemma 2.14 and Lemma 2.15, we have

shown that there is a bijection between the set of valid difference sequences of Bn and

the union of all l-constructible sequences for l ≥ 0. Every valid difference sequence D
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corresponds to a unique l-constructible sequence, for exactly one l ≥ 0. To determine

the number of valid difference sequences of Bn, it suffices to determine the number of

l-constructible sequences for each l ≥ 0, and then enumerate its union.

Let D be an l-constructible sequence, for some fixed l ≥ 0. Thus, D is valid in

Bn. By definition, any subsequence of consecutive terms containing l of the pi’s must

sum to at most d.

Consider an l-constructible sequence D = Q1, p1, Q2, p2, . . . , Q2l+1, p2l+1. We enu-

merate the number of all possible l-constructible sequences, for this fixed l ≥ 0. We

will show that each l-constructible sequence D must be generated in the following

way:

(a) Choose (a1, a2, . . . , a2l+1) to be an ordered (2l+1)-tuple of non-negative integers

with sum k = (2l + 1)d − ln.

(b) Select Q1, Q2, . . . , Q2l+1 so that
∑

Qj ≤ aj+l+1 for each 1 ≤ j ≤ 2l + 1. Note

that for j ≥ l + 1, the index j + l + 1 is reduced mod (2l + 1).

(c) From this, each pj is uniquely determined, and satisfies pj ≥ n − 2d.

(d) The sequence D = Q1, p1, Q2, p2, . . . , Q2l+1, p2l+1 is l-constructible.

Each of these steps is simple to enumerate, and this will enable us to count the

total number of l-constructible difference sequences.

Define Xj = Qj , pj, . . . , Qj+l−1, pj+l−1 for each 1 ≤ j ≤ 2l + 1, where the indices

are reduced mod (2l + 1). Since Xj contains l of the pi’s,
∑

Xj ≤ d. Let aj be the

integer for which
∑

Xj = d − aj. Then each aj ≥ 0.

Let X ′
j = Xj , Ql+j. Then

∑
X ′

j ≤ d because X ′
j contains only l of the pi’s. Hence,

∑
X ′

j =
∑

Xj +
∑

Ql+j ≤ d, which implies that
∑

Ql+j ≤ aj. This is true for each

j, so adding l +1 to both indices and reducing mod (2l + 1), we have
∑

Qj ≤ aj+l+1.
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Note that

∑

Qj + pj = n −
∑

Xj+1 −
∑

Xj+l+1

= n − (d − aj+1) − (d − aj+l+1)

= n − 2d + aj+1 + aj+l+1.

Since
∑

Qj ≤ aj+l+1, it follows that pj ≥ n − 2d + aj+1 ≥ n − 2d, which is

consistent with the definition of l-constructibility.

Let k =
∑

aj. We have
∑

Xj = d − aj for each j. Adding these 2l + 1 sums, we

have ln = (2l + 1)d − k, or k = (2l + 1)d − ln ≥ 0. So k is fixed.

A simple combinatorial argument shows that there are
(

k+2l
2l

)
ways to select the

(2l + 1)-tuple (a1, a2, . . . , a2l+1) so that each aj is a non-negative integer with total

sum k. For each of these (2l +1)-tuples, we select our Qj ’s so that
∑

Qj ≤ aj+l+1 for

each 1 ≤ j ≤ 2l + 1. By Lemma 2.16, if our Qj ’s have a total of t non-zero elements

among them, then our selection of the Qj’s can be made in exactly
(

k
t

)
ways.

This l-constructible sequence D will contain a total of 2l + t + 1 terms, with t

of them coming from the union of the Qj’s, and one for each of the 2l + 1 pi’s. So

there are
(

k+2l
2l

)(
k
t

)
possible l-constructible sequences with 2l+ t+1 terms. Therefore,

there are this many valid difference sequences of Bn with 2l + t + 1 terms. Note that

some of these sequences are cyclic permutations of others, and we will take this into

account when we determine the number of independent sets with 2l + t + 1 vertices.

Let Ψ be the set of pairs (v, D), where v is a vertex of Bn and D is any of the
(

k+2l
2l

)(
k
t

)
l-constructible sequences with 2l + t + 1 elements. Each of the n

(
k+2l
2l

)(
k
t

)

pairs in Ψ will correspond to an independent set I with 2l + t + 1 vertices:

I = {v, v + d1, v + d1 + d2, . . . , v + d1 + d2 + . . . + d2l+t},

where the elements are reduced modulo n and arranged in increasing order.

We now justify that each independent set I appears exactly (2l +1) times by this

construction. The key insight is that when I is turned into a difference sequence D,

this D must be an l-constructible sequence, and hence has the following form:

D = Q1, p1, Q2, p2, . . . , Q2l+1, p2l+1.
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Therefore, there are exactly (2l+1) cyclic permutations of D so that it retains the

form of an l-constructible sequence: for each cyclic permutation, the sequence begins

with the set Qi, for some 1 ≤ i ≤ 2l + 1. Thus, we must divide the total number of

independent sets by (2l+1), as each one is repeated this many times. In other words,

there are n
2l+1

(
k+2l
2l

)(
k
t

)
independent sets with 2l + t + 1 vertices.

Since this is true for each l ≥ 0 and 0 ≤ t ≤ k = (2l + 1)d − ln, it follows that

I(Bn, x) = 1 +
∑

l≥0

k∑

t=0

n

2l + 1

(
k + 2l

2l

)(
k

t

)

x2l+1+t

= 1 +
∑

l≥0

n

2l + 1

(
k + 2l

2l

)

x2l+1
k∑

t=0

(
k

t

)

xt

= 1 +
∑

l≥0

n

2l + 1

(
k + 2l

2l

)

x2l+1(1 + x)k

= 1 +
∑

l≥0

n

2l + 1

(
(2l + 1)d − l(n − 2)

2l

)

x2l+1(1 + x)(2l+1)d−ln.

Note that we require k = (2l + 1)d− ln ≥ 0 for there to be any independent sets.

Thus, l ≤ d
n−2d

. Letting r = n − 2d − 2, we conclude that

I(Cn,{d+1,d+2,...,⌊n
2
⌋}, x) = 1 +

⌊ d
r+2

⌋
∑

l=0

n

2l + 1

(
d − lr

2l

)

x2l+1(1 + x)d−l(r+2).

This concludes the proof of Theorem 2.10.

Since Bn = Cn,{d+1,d+2,...,⌊n
2
⌋}, we have B2d+2 = C2d+2,{d+1}, which is isomorphic to

d+1 disjoint copies of K2. In other words, I(B2d+2, x) = (1+2x)d+1. In the following

corollary, we verify that our complicated formula for I(Bn, x) is consistent with the

observation that I(B2d+2, x) = (1 + 2x)d+1.

Corollary 2.17 For any fixed d, I(B2d+2, x) = (1 + 2x)d+1.

Proof: By Theorem 2.10,

I(B2d+2, x) − 1 =

⌊ d
2
⌋

∑

l=0

n

2l + 1

(
d

2l

)

x2l+1(1 + x)d−2l.
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We prove that the right side of the identity equals (1 + 2x)d+1 − 1. We have

(1 + 2x)d+1 − 1 = ((1 + x) + x)d+1 − ((1 + x) − x)d+1

=
d+1∑

i=0

(
d + 1

i

)

(1 + x)ixd+1−i −
d+1∑

i=0

(
d + 1

i

)

(1 + x)i(−x)d+1−i

=

d+1∑

i=0

(
d + 1

i

)

(1 + x)ixd+1−i(1 + (−1)d−i)

=

d+1∑

d−i is even

2

(
d + 1

i

)

(1 + x)ixd+1−i

=

⌊ d
2
⌋

∑

l=0

2

(
d + 1

d − 2l

)

x2l+1(1 + x)d−2l

=

⌊ d
2
⌋

∑

l=0

2(d + 1)!

(2l + 1)!(d − 2l)!
x2l+1(1 + x)d−2l

=

⌊ d
2
⌋

∑

l=0

2d + 2

2l + 1

d!

(2l)!(d − 2l)!
x2l+1(1 + x)d−2l

=

⌊ d
2
⌋

∑

l=0

n

2l + 1

(
d

2l

)

x2l+1(1 + x)d−2l.

This completes our proof.

As an additional corollary, we now have a formula for α(Bn), since this is just the

degree of I(Bn, x).

Corollary 2.18 Let Bn = Cn,{d+1,d+2,...,⌊n
2
⌋}. Then, α(Bn) = d + 1. Furthermore,

[xd+1]I(Bn, x) = 2
n
2 if n = 2d + 2 and [xd+1]I(Bn, x) = n if n > 2d + 2.

Proof: If n = 2d + 2, then Bn = C2d+2,{d+1}, and so I(Bn, x) = (1 + 2x)d+1. Thus,

[xd+1]I(Bn, x) = 2d+1 = 2
n
2 . Thus, assume that n > 2d + 2, i.e., r = n − 2d − 2 > 0.

Theorem 2.10 gives us a formula for I(Bn, x), where r = n − 2d − 2 > 0 is a

fixed integer. For each 0 ≤ l ≤ ⌊ d
r+2

⌋, our formula for I(Bn, x) adds a polynomial

of degree 2l + 1 + d − l(r + 2) = d − lr + 1. Thus, α(Bn) = deg(I(Bn, x)) = d + 1.

Furthermore, xd+1 terms appear in our polynomial precisely when l = 0 or r = 0.
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From our assumption that r > 0, an xd+1 term can only appear when l = 0. From

this, we immediately derive the desired result that [xd+1]I(Bn, x) = n.

2.3 Circulants of Degree at Most 3

Armed with these theorems, we now find an explicit formula for I(Cn,S, x) for all

circulants of degree at most 3. While this may appear to be a straightforward problem,

we will discover that calculating the independence polynomials of 3-regular circulants

is surprisingly difficult.

The degree 1 case is trivial, as the only 1-regular circulant is G = C2n,{n} for some

positive integer n. Then, G is a disjoint union of n edges, and so Theorem 1.6 gives

us I(G, x) = I(K2, x)n = (1 + 2x)n.

Let G be 2-regular. Then G = Cn,{a} for some 1 ≤ a < n
2
. Let d = gcd(n, a).

Then G is a disjoint union of d cycles with n
d

vertices [68]. By Corollary 2.4 and

Theorem 1.6, it follows that

I(G, x) = I(Cn
d
, x)d =





⌊ n
2d

⌋
∑

k=0

n

n − dk

(n
d
− k

k

)

xk





d

.

The interesting case occurs when the circulant graph G is 3-regular. In this case,

we must have G = C2n,{a,n} for some 1 ≤ a < n. The following result shows that G

must be isomorphic to one of two graphs.

Lemma 2.19 ([55]) Let t = gcd(2n, a).

(a) If 2n
t

is even, then G = C2n,{a,n} is isomorphic to t copies of C 2n
t

,{1, n
t
}.

(b) If 2n
t

is odd, then G = C2n,{a,n} is isomorphic to t
2

copies of C 4n
t

,{2, 2n
t
}.

We now find a formula for I(C2n,{1,n}, x) and I(C2n,{2,n}, x). By Lemma 2.19,

once we find an explicit formula for these two independence polynomials, we can

derive a formula for the independence polynomial of all 3-regular circulant graphs.

Before proving a lemma that relates our two independence polynomials, we require

the following definition.
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Definition 2.20 Un is the ladder graph on 2n vertices (with the vertices labelled

a0, . . . , an−1, b0, . . . , bn−1) if a0b0, an−1bn−1 ∈ E(Un), and for each 1 ≤ j ≤ n − 2, aj

is adjacent to bj−1, bj , bj+1 and bj is adjacent to aj−1, aj , aj+1.

The ladder graph Un is illustrated in Figure 2.1.

a b a b ab

ab ab a0

0

1

1 2

2

n-1

n-1

3

3 bn-2

n-2

Figure 2.1: The ladder graph Un.

We now describe a connection between the graphs Gn = C2n,{1,n} and Hn =

C2n,{2,n} (a valid labelling for n = 9 is given in Figure 2.2), and the ladder graph Un.

Figure 2.2: The graphs G9 = C18,{1,9} and H9 = C18,{2,9}.

The key insight is that Un is bipartite, and is a subgraph of both Gn and Hn, with

exactly two fewer edges. Since n is odd, we have

Gn ≃ Un + {an−1b0, bn−1a0}
Hn ≃ Un + {an−1a0, bn−1b0}.
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Note that G9 is bipartite, but H9 is not. In the above figures comparing U9 to G9,

we have the following labelling of the ai’s and bi’s to show that G9 ≃ U9+{a8b0, b8a0}:

(a0, a1, a2, . . . , a8) = (0, 10, 2, 12, 4, 14, 6, 16, 8)

(b0, b1, b2, . . . , b8) = (9, 1, 11, 3, 13, 5, 15, 7, 17)

And comparing U9 to H9, we have the following labelling of the ai’s and bi’s to

show that H9 ≃ U9 + {a8a0, b8b0}:

(a0, a1, a2, . . . , a8) = (0, 2, 4, 6, 8, 10, 12, 14, 16)

(b0, b1, b2, . . . , b8) = (9, 11, 13, 15, 17, 1, 3, 5, 7)

This connection between Un and the graphs Gn and Hn gives us the following

lemma.

Lemma 2.21 For each odd integer n, let Gn = C2n,{1,n} and Hn = C2n,{2,n}. Then

I(Gn, x) = I(Hn, x) + 2xn.

Proof: We can regard Gn as the Möbius strip of Hn. In fact, Gn is known in the

literature as the Möbius Graph [82]. We now explain why Gn−{ai, bi} ≃ Hn−{ai, bi}
for each 0 ≤ i ≤ n − 1. This can be seen by removing the two vertices ai and bi, and

then twisting the cut Möbius strip G′ := Gn − {ai, bi} so that it becomes isomorphic

to H ′ := Hn − {ai, bi}. More formally, the desired isomorphism φi : G′ → H ′ is

φi(aj) =

{

aj for 0 ≤ j ≤ i − 1

bj for i + 1 ≤ j ≤ n − 1

φi(bj) =

{

bj for 0 ≤ j ≤ i − 1

aj for i + 1 ≤ j ≤ n − 1

Hence, Gn−{ai, bi} ≃ Hn−{ai, bi} for each 0 ≤ i ≤ n−1. For a fixed i, it follows

that for each 0 ≤ k ≤ n − 1,

[xk]I(Gn − {ai, bi}, x) = [xk]I(Hn − {ai, bi}, x).

Now we count the number of times each independent k-set I ′ of Gn appears among

the n possible subgraphs Gn −{ai, bi}. Among the n possible values of 0 ≤ i ≤ n−1,
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there are k indices where either ai or bi is an element of I ′, since |I ′| = k and ai 6∼ bi.

Hence, there are exactly n − k indices i for which I ′ appears as an independent set

of Gn − {ai, bi}. Therefore, for each 0 ≤ k ≤ n − 1, we have

[xk]I(Gn, x) =
1

n − k

n−1∑

i=0

[xk]I(Gn − {ai, bi}, x).

By the exact same argument,

[xk]I(Hn, x) =
1

n − k

n−1∑

i=0

[xk]I(Hn − {ai, bi}, x).

Since we have shown that [xk]I(Gn − {ai, bi}, x) = [xk]I(Hn − {ai, bi}, x) for each

0 ≤ i ≤ n − 1, we conclude that [xk]I(Gn, x) = [xk]I(Hn, x), for each 0 ≤ k ≤ n − 1.

Now we prove that [xn]I(Gn, x) = 2 and [xn]I(Hn, x) = 0. Any independent set

of cardinality n must be either {a0, a1, . . . , an−1} or {b0, b1, . . . , bn−1}, since ajbj+1 ∈
E(G) and bjaj+1 ∈ E(G). Thus, there are at most two independent sets of cardinality

n. We quickly verify that both of these sets are independent in G (and not in H).

Thus, [xn]I(Gn, x) = 2 and [xn]I(Hn, x) = 0.

Therefore, we have shown that I(Gn, x) = I(Hn, x) + 2xn, as required.

In Theorem 2.10, we developed a complicated formula for I(Bn, x), from which

we obtain the identity for I(C2p,{p−1,p}, x), by substituting n = 2p and d = p − 2.

Corollary 2.22 Let p ≥ 2 be an integer. Then,

I(C2p,{p−1,p}, x) = 1 +

⌊ p−2
4

⌋
∑

l=0

2p

2l + 1

(
p − 2l − 2

2l

)

x2l+1(1 + x)p−4l−2.

From this, we may extract the xk coefficient of I(C2p,{p−1,p}, x), for any k ≥ 0. For

example,

[x4]I(C2p,{p−1,p}, x) = 2p

(
p − 2

3

)

+
2p

3

(
p − 4

2

)(
p − 6

1

)

=
2p(p − 4)(p2 − 8p + 18)

3
.

In the following two lemmas, we relate I(C2n,{n−1,n}, x) to I(C2n,{1,n}, x) and

I(C2n,{2,n}, x), which will allow us to determine an explicit formula for I(G, x), for

any circulant graph of degree 3.
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Definition 2.23 ([140]) Let S be any subset of {1, 2, . . . , ⌊n
2
⌋}. For each integer

r ≥ 1, define rS = {|rs|n : s ∈ S}. If T = rS for some integer r (with gcd(r, n) = 1),

then T is a multiplier of S.

Lemma 2.24 ([140]) Consider the circulant graphs Cn,S and Cn,T . If T = rS is a

multiplier of S, then Cn,S ≃ Cn,T .

Lemma 2.25 If n is odd, then I(C2n,{2,n}, x) = I(C2n,{n−1,n}, x). If n is even, then

I(C2n,{1,n}, x) = I(C2n,{n−1,n}, x).

Proof: We first make the following useful observation: to prove |x|2n = a for some

0 ≤ a ≤ n, it suffices to prove that either x+a ≡ 0 (mod 2n) or x−a ≡ 0 (mod 2n).

The case when n is even follows from Lemma 2.24, with the multiplier being

r = n − 1. Note that |n(n − 1)|2n = n, since n is even. Since the two circulants are

isomorphic, their independence polynomials must be equal.

Now consider the case when n is odd. We determine an isomorphism from G =

C2n,{2,n} to H = C2n,{n−1,n}. (As an example, Figure 2.3 illustrates an isomorphism

between the two graphs for the n = 9 case, namely the graphs G = C18,{2,9} and

H = C18,{8,9}).
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Figure 2.3: The graphs G = C18,{2,9} and H = C18,{8,9}.
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Let {0, 1, 2, . . . , 2n − 1} be the vertices of C2n,{2,n}. Define

φ(v) =

{
v(n−1)

2
if v is even

v(n−1)
2

+ 3n(n+1)
2

if v is odd

In both cases, we reduce the expression modulo 2n, if necessary. To prove that

φ is the desired isomorphism from G = C2n,{2,n} to H = C2n,{n−1,n}, we establish the

following.

(a) φ(v) has the same parity as v, for each 0 ≤ v ≤ 2n − 1.

(b) |u − v|2n = 2 in G iff |φ(u) − φ(v)|2n = n − 1 in H .

(c) |u − v|2n = n in G iff |φ(u) − φ(v)|2n = n in H .

First we establish part (a). If v is even, then v
2

is an integer. Since n − 1 is even,

φ(v) = v(n−1)
2

is even. If, on the other hand, v is odd, then φ(v) = v(n−1)
2

+ 3n(n+1)
2

.

Consider two cases for n: n = 4k + 1 and n = 4k + 3. In the former case, φ(v) =

2vk + 3(4k + 1)(2k + 1) and in the latter, φ(v) = v(2k + 1) + 3(4k + 3)(2k + 2). In

both cases, φ(v) is odd, since v is odd. This establishes part (a), since we have shown

that φ(v) and v must have the same parity.

Now we establish part (b). Without loss of generality, assume 0 ≤ v < u ≤ 2n−1.

If |u−v|2n = 2, then u−v = 2 or u−v = 2n−2. Since u and v have the same parity,

φ(u) − φ(v) ≡ (u−v)(n−1)
2

(mod 2n). We have two possible cases for u − v, either

u− v = 2 or u− v = 2n−2: in the former case, φ(u)−φ(v) = n−1, and in the latter

case, φ(u)−φ(v) = n+1, once reduced mod 2n. In both cases, |φ(u)−φ(v)|2n = n−1.

Let us establish the converse. If |φ(u)− φ(v)|2n = n− 1, then φ(u) and φ(v) have

the same parity (since n is odd), implying by part (a) that u and v have the same

parity. Thus, φ(u) − φ(v) ≡ (u−v)(n−1)
2

(mod 2n), for some 0 ≤ v < u ≤ 2n − 1.

Define k = u−v
2

∈ N so that u− v = 2k. Then n− 1 = |φ(u)− φ(v)|2n = |k(n− 1)|2n,

which implies that k(n − 1) is congruent to either n − 1 or −(n − 1) modulo 2n. In

other words, either (k − 1)(n − 1) or (k + 1)(n − 1) is a multiple of 2n. Since n is

odd, we have gcd(n − 1, 2n) = 2, and so this implies that k − 1 or k + 1 must be a
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multiple of n. Finally, since 1 ≤ k ≤ n − 1, we conclude that k = 1 or k = n − 1.

Thus, we have shown that u − v = 2k equals 2 or 2n − 2. Therefore, |u − v|2n = 2.

Finally, we establish part (c). Without loss of generality, assume 0 ≤ v < u ≤
2n − 1. If |u − v|2n = n, then u − v = n. Since u and v have opposite parity,

φ(u) − φ(v) ≡ (u−v)(n−1)
2

± 3n(n+1)
2

(mod 2n). Substituting u − v = n, we have

φ(u)−φ(v) ≡ n(n−1)
2

± 3n(n+1)
2

(mod 2n). This simplifies to either 2n2+n or −n2−2n,

depending on the sign. Since n is odd, both expressions are congruent to n modulo

2n. It follows that |φ(u) − φ(v)|2n = n in each case.

Let us establish the converse. If |φ(u) − φ(v)|2n = n, then φ(u) and φ(v) have

opposite parity, implying by part (a) that u and v do too. Letting u − v = n + k

for some −n < k < n, we have n = |φ(u) − φ(v)|2n = | (n+k)(n−1)
2

± 3n(n+1)
2

|2n =

|k(n−1)
2

+ n(n−1)
2

± 3n(n+1)
2

|2n. In the previous paragraph, we proved that n(n−1)
2

± 3n(n+1)
2

is congruent to n modulo 2n.

Therefore, the above equation simplifies to n = | k(n−1)
2

+ n|2n. This implies that
k(n−1)

2
must be a multiple of 2n. Since −n < k < n and gcd(n, n − 1) = 1, k must

divide n. It follows that k = 0, i.e., u − v = n. We conclude that |u − v|2n = n.

By parts (b) and (c), we have shown that φ is an isomorphism from C2n,{2,n} to

C2n,{n−1,n}. Therefore, their independence polynomials must be equal.

Applying Corollary 2.22, the following theorem gives us the exact formula for

I(G, x), where G is any circulant of degree 3.

Theorem 2.26 Let G = C2n,{a,n} for some 1 ≤ a < n. Let t = gcd(2n, a). Then,

(a) If
n

t
is even, then I(G, x) =

(

I(C 2n
t

,{n
t
−1, n

t
}, x)

)t

.

(b) If
2n

t
is even and

n

t
is odd, then I(G, x) =

(

I(C 2n
t

,{n
t
−1, n

t
}, x) + 2x

n
t

)t

.

(c) If
2n

t
is odd, then I(G, x) =

(

I(C 4n
t

,{ 2n
t
−1, 2n

t
}, x)

) t
2
.

Proof: Since t divides 2n, 2n
t

is an integer; if this quantity is even, then n
t

is also an

integer. Thus, we have three cases to consider:
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(a) 2n
t

is even and n
t

is even. (Trivially, if n
t

is even, then 2n
t

is too).

(b) 2n
t

is even and n
t

is odd.

(c) 2n
t

is odd.

We consider each of these three cases in order. If 2n
t

is even, then by Lemma 2.19,

G is isomorphic to t copies of C 2n
t

,{1, n
t
}.

If n
t

is also even, then I(C 2n
t

,{1, n
t
}, x) = I(C 2n

t
,{n

t
−1, n

t
}, x) by Lemma 2.25. Oth-

erwise, n
t

is odd, and by Lemma 2.21, I(C 2n
t

,{1, n
t
}, x) = I(C 2n

t
,{2, n

t
}, x) + 2x

n
t , which

equals I(C 2n
t

,{n
t
−1, n

t
}, x) + 2x

n
t , by Lemma 2.25.

If 2n
t

is odd, then by Lemma 2.19, G is isomorphic to t
2

copies of C 4n
t

,{2, 2n
t
}. By

Lemma 2.25, I(C 4n
t

,{2, 2n
t
}, x) = I(C 4n

t
,{ 2n

t
−1, 2n

t
}, x).

For example, the above theorem shows that

I(C60,{18,30}, x) = (I(C10,{3,5}, x))6

= (I(C10,{4,5}, x) + 2x5)6

= (1 + 10x + 30x2 + 30x3 + 10x4 + 2x5)6.

We now have a formula for the independence number of any 3-regular circulant

graph, since α(G) = deg(I(G, x)).

Corollary 2.27 Let G = C2n,{a,n} for some 1 ≤ a < n. Let t = gcd(2n, a). Then,

(a) If
n

t
is even, then α(G) = n − t.

(b) If
2n

t
is even and

n

t
is odd, then α(G) = n.

(c) If
2n

t
is odd, then α(G) = n − t

2
.

Proof: By Corollary 2.18, α(C2m,{m−1,m}) = m − 1, for any m ≥ 2. From Theo-

rem 2.26, the result follows.

We have now found a formula for I(G, x), for all circulants of degree at most 3.

As noted previously, we will not be able to obtain a general formula for an arbitrary
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k-degree circulant, due to the NP -hardness of the problem [46]. Even for the case

when G is degree 4, there is no clear method to find an explicit formula for I(G, x),

as there is no known characterization or classification of degree 4 circulant graphs.

For the degree 3 case, we were able to prove that every 3-regular circulant must be

isomorphic to one of three specific families of graphs. This greatly simplified the

analysis, as we only needed to determine the independence polynomials for these

three families. However, no such result holds for circulants of degree 4. To illustrate,

even for the case n = 12, there are seven non-isomorphic circulants of degree 4, and

all of them have distinct independence polynomials.

I(C12,{1,2}, x) = 1 + 12x + 42x2 + 40x3 + 3x4.

I(C12,{1,3}, x) = 1 + 12x + 42x2 + 52x3 + 30x4 + 12x5 + 2x6.

I(C12,{1,4}, x) = 1 + 12x + 42x2 + 48x3 + 15x4.

I(C12,{1,5}, x) = 1 + 12x + 42x2 + 52x3 + 33x4 + 12x5 + 2x6.

I(C12,{2,3}, x) = 1 + 12x + 42x2 + 52x3 + 18x4.

I(C12,{2,4}, x) = 1 + 12x + 42x2 + 36x3 + 9x4.

I(C12,{3,4}, x) = 1 + 12x + 42x2 + 48x3 + 18x4.

It would be nice if these polynomials were all factorable, so that we could explore

deeper connections. However, five of these seven polynomials are irreducible, with

the two exceptions being I(C12,{1,5}, x) = (1 + 4x + 2x2)(1 + 8x + 8x2 + 4x3 + x4)

and I(C12,{2,4}, x) = (1 + 6x + 3x2)2. Note that the latter polynomial is trivially

factorable, as C12,{2,4} is simply two disjoint copies of C6,{1,2}. While there is no

obvious reason to see why I(C4, x) = 1+4x+2x2 should be a factor of I(C12,{1,5}, x),

we will explain exactly why this must be the case in the following section, when we

discuss lexicographic products of graphs and their independence polynomials.

Alas, we suspect that it is intractable to find a general formula for I(G, x), for

an arbitrary circulant of degree d ≥ 4. Nevertheless, we were able to find an explicit

formula for I(G, x), for any circulant of degree 3, as well as every graph in the

family An and Bn. These formulas will be of great help to us throughout the thesis,

including the following section, where we develop infinitely many formulas for I(G, x)

using products of graphs.
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2.4 Graph Products of Circulants

In this section, we apply graph products to generate additional formulas for I(Cn,S, x).

Definition 2.28 For any two graphs G and H, the graph product is a new graph

with vertex set V (G) × V (H) such that for any two vertices (g, h) and (g ′, h′) in

the product, the adjacency of these vertices is determined solely by the adjacency (or

non-adjacency) of g and g′, and of h and h′:

1. In the Cartesian product graph G✷H, the vertices (g, h) and (g ′, h′) are

adjacent if (g ∼ g′ and h = h′) or (g = g′ and h ∼ h′).

2. In the categorical product graph G × H, the vertices (g, h) and (g ′, h′) are

adjacent if g ∼ g′ and h ∼ h′.

3. In the lexicographic product graph G[H ], the vertices (g, h) and (g ′, h′) are

adjacent if (g ∼ g′) or (g = g′ and h ∼ h′).

4. In the strong product graph G⊗H, the vertices (g, h) and (g ′, h′) are adjacent

if (g ∼ g′ and h = h′) or (g = g′ and h ∼ h′) or (g ∼ g′ and h ∼ h′).

If G and H are both regular, so are G✷H , G × H , G[H ], and G ⊗ H . Thus, reg-

ularity is a property closed under graph products. Due to the symmetry of circulant

graphs, a natural conjecture is that circulants are also closed under graph products,

i.e., if G and H are both circulants, then so is their product. We now prove that this

statement is true for lexicographic products, but false for all of the others.

Proposition 2.29 Circulant graphs are not closed under the Cartesian, categorical,

or strong product.

Proof: It suffices to find one pair of graphs (G, H) for which the product is not a

circulant. We establish our counterexample by comparing independence polynomials.

We will prove that circulants are not closed under the Cartesian or categorical product

by considering the graphs C3✷C3 and C3×C3, and prove that circulants are not closed

under the strong product by considering the graph C4 ⊗ C4.
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Consider G = C3 and H = C3. Then, G✷H and G × H are graphs of degree 4

and order 9. These product graphs are isomorphic to the graphs illustrated in Figure

2.4.

(0,0)

(2,2)

(1,2)

(0,2)

(2,1) (1,1)

(0,1)

(2,0)

(1,0) (2,2)

(1,2)

(0,2)

(2,1) (1,1)

(0,1)

(2,0)

(1,0)

(0,0)

Figure 2.4: The graph products C3✷C3 and C3 × C3.

Suppose G✷H and G × H are circulants. Then, we may write G✷H ≃ C9,S1 and

G × H = C9,S2 , for some generating sets S1, S2 ⊆ {1, 2, 3, 4}, with |S1| = |S2| = 2.

By inspection, vertex (0, 0) in both G✷H and G × H appears as a vertex in an

independent 2-set four times and an independent 3-set twice. By symmetry, this must

be the case for each of the nine vertices, in each of the two graphs. Thus, there are

9·4
2

= 18 independent 2-sets and 9×2
3

= 6 independent 3-sets. Also it follows quickly

that there exist no independent sets of cardinality 4. Thus,

I(G✷H, x) = I(G × H, x) = 1 + 9x + 18x2 + 6x3.

Each degree 4 circulant on 9 vertices is isomorphic to either C9,{1,2} or C9,{3,4},

which can easily be checked using Lemma 2.24. (Note that C9,{1,2} is isomorphic to

C9,{1,4} and C9,{2,4}, while C9,{3,4} is isomorphic to C9,{1,3} and C9,{2,3}). By Theo-

rems 2.3 and 2.10, I(C9,{1,2}, x) = 1 + 9x + 18x2 + 3x3 and I(C9,{3,4}, x) = 1 + 9x +

18x2 + 9x3. Therefore, neither G✷H or G × H is a circulant.

Now consider G = C4 and H = C4. Then, G ⊗ H is a degree 8 graph of order

16. Thus, if G ⊗ H ≃ C16,S for some S ⊆ {1, 2, 3, 4, 5, 6, 7, 8}, then |S| = 4, with
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8 /∈ S. From a computation on Maple, I(G ⊗ H, x) = 1 + 16x + 56x2 + 48x3 + 12x4.

Looking at each of the 35 possible 4-subsets of {1, 2, 3, 4, 5, 6, 7}, we find (using a

Maple computation once again) that only S = {1, 2, 6, 7} and S = {2, 3, 5, 6} satisfy

I(C16,S , x) = I(G⊗H, x). Let us show that G⊗H is not isomorphic to either of these

circulants. This will enable us to conclude that G ⊗ H is not necessarily a circulant,

whenever G and H are both circulants.

First consider the case S = {1, 2, 6, 7}. On the contrary, suppose G ⊗ H ≃
C16,S . Note that C16,S includes two non-adjacent vertices (namely 0 and 8), which

are adjacent to the same set of eight vertices, namely {1, 2, 6, 7, 9, 10, 14, 15}. Since

G⊗H is assumed to be isomorphic to C16,S , there must exist two non-adjacent vertices

a and b in G ⊗ H that are adjacent to the same set T of eight vertices.

By the symmetry of G⊗H = C4⊗C4, assume without loss that a = (0, 0). Letting

T be the set of vertices in G ⊗ H that are adjacent to a, we have

T = {(0, 1), (0, 3), (1, 0), (1, 1), (1, 3), (3, 0), (3, 1), (3, 3)}.

Let T ′ = {(0, 2), (1, 2), (2, 1), (2, 0), (2, 3), (2, 2), (3, 2)} be the set of vertices in

G⊗H that are not adjacent to a = (0, 0). There must exist a vertex b ∈ G⊗H that

is not adjacent to a, but is adjacent to each vertex in T . Since b 6∼ a, we have b ∈ T ′.

This vertex b, which is of degree 8, must be adjacent to each of the eight vertices of

T , and so must be adjacent to no vertices in T ′. However, by the definition of the

strong product, the following pairs of vertices are adjacent in G ⊗ H = C4 ⊗ C4:

(0, 2) ∼ (1, 2), (2, 1) ∼ (2, 0), (2, 3) ∼ (2, 2), (2, 2) ∼ (3, 2).

Therefore, each choice of b ∈ T ′ leads to a contradiction. We conclude that C16,S is

not isomorphic to C4⊗C4, where S = {1, 2, 6, 7}. Now the case S = {2, 3, 5, 6} follows

immediately from the previous case, since Lemma 2.24 implies that C16,{1,2,6,7} ∼
C16,{2,3,5,6}, with the desired multiplier being r = 3. Therefore, we conclude that

C4 ⊗ C4 is not a circulant.

Let us now investigate the lexicographic product G[H ]. The graph G[H ] can be

thought of as the graph arising from G and H by substituting a copy of H for every
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vertex of G. We prove that circulants are closed under the lexicographic product. We

first require the following lemma.

Lemma 2.30 Let G = Cn,S1 and H = Cm,S2 be circulant graphs. Construct the

lexicographic product graph G[H ], and relabel each vertex (g, h) with the integer g+nh.

Then,

(a) This relabelling of the vertices ensures that each of the nm vertices in G[H ] is

assigned a unique integer label between 0 and nm − 1 inclusive.

(b) Let x = g1 + nh1 and y = g2 + nh2 be the new labels assigned to the vertices

(g1, h1) and (g2, h2) in G[H ]. Suppose that x > y so that 1 ≤ x − y ≤ nm − 1.

Among these nm − 1 possible values for x − y, (g1, h1) ∼ (g2, h2) in G[H ] iff

x − y ≡ ±r (mod n) for some r ∈ S1, or n divides x − y and x−y
n

≡ ±q

(mod m) for some q ∈ S2.

Proof: We first prove part (a) of the lemma. Let (g, h) be a vertex of G[H ]. By

definition, 0 ≤ g ≤ n−1 and 0 ≤ h ≤ m−1. Thus, 0 ≤ g+nh ≤ (n−1)+n(m−1) =

n − 1 + nm − n = nm − 1. So each of the nm vertices under this labelling is given

an integer value between 0 and nm − 1 inclusive. Now suppose that some integer

value is assigned twice, i.e., g1 + nh1 = g2 + nh2 for some (g1, h1) 6= (g2, h2). Then

g1 − g2 = n(h2 − h1), implying that g1 ≡ g2 (mod n). Since 0 ≤ g1, g2 ≤ n − 1, we

must have g1 = g2. From this it follows that h1 = h2, contradicting the fact that

(g1, h1) 6= (g2, h2). Hence, each of the nm vertices in G[H ] is assigned a unique integer

value by this labelling.

Now we prove part (b). Let g1 and g2 be two vertices in G. By the definition

of adjacency in circulants, as well as the definition of circular distance, we have the

following:

(a) g1 ∼ g2 in G = Cn,S1 iff g1 − g2 ≡ ±r (mod n), for some r ∈ S1.

(b) h1 ∼ h2 in H = Cm,S2 iff h1 − h2 ≡ ±q (mod m), for some q ∈ S2.

By definition, (g1, h1) ∼ (g2, h2) in G[H ] iff (g1 = g2 and h1 ∼ h2 in H) or (g1 ∼ g2

in G). We consider the two cases separately. Note that x−y = (g1−g2)+n(h1 −h2).
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We start with the case (g1 = g2 and h1 ∼ h2 in H). We prove that this case

is equivalent to the condition that n divides x − y and x−y
n

≡ ±q (mod m), for

some q ∈ S2. One direction is clear, since g1 = g2 and h1 ∼ h2 in H immediately

implies the desired result, since x − y = n(h1 − h2), i.e., n divides x − y and x−y
n

=

h1 − h2 ≡ ±q (mod m), for some q ∈ S2. We establish the converse: if n divides

x− y = (g1 − g2)+n(h1 −h2) and x−y
n

≡ ±q (mod m), then g1 = g2 by the condition

0 ≤ g1, g2 ≤ n − 1. Thus, x − y = n(h1 − h2), and so h1 − h2 = x−y
n

≡ ±q (mod m)

for some q ∈ S2, which from above implies that h1 ∼ h2 in H .

Now consider the case (g1 ∼ g2 in G). We prove that this case is equivalent to

the condition that x− y ≡ ±r (mod n) for some r ∈ S1. One direction is clear, since

g1 ∼ g2 in G implies that x−y = (g1−g2)+n(h1−h2) ≡ ±r+0 = ±r (mod n) for some

r ∈ S1. The converse follows just as quickly: if x − y = (g1 − g2) + n(h1 − h2) ≡ ±r

(mod n) for some r ∈ S1, then we must have g1 ∼ g2 in G (note that there is no

restriction on h1 and h2).

Part (b) of the lemma now follows from the two previous paragraphs.

With this lemma, we can now prove the following theorem, that circulant graphs

are closed under the lexicographic product.

Theorem 2.31 Let G = Cn,S1 and H = Cm,S2 be circulant graphs. Define

S =





⌊m−1
2

⌋
⋃

t=0

tn + S1




⋃





⌊m
2
⌋

⋃

t=1

tn − S1




⋃

nS2,

where tn ± S1 = {tn ± r : r ∈ S1} and nS2 = {nq : q ∈ S2}.

Then, G[H ] is isomorphic to the circulant Cnm,S.

Proof: Relabel the vertices of G[H ] so that (g, h) is assigned the new vertex g +nh.

By part (a) of Lemma 2.30, the nm vertices of G[H ] are the integers from 0 to nm−1

inclusive. By part (b) of Lemma 2.30, if x = g1 + nh1 and y = g2 + nh2 for some

0 ≤ g1, g2 ≤ n−1 and 0 ≤ h1, h2 ≤ m−1, then x ∼ y in G[H ] iff x−y ≡ ±r (mod n)

for some r ∈ S1, or x−y
n

≡ ±q (mod m) for some q ∈ S2.

Let S ′ denote the set of possible values x−y (where 1 ≤ x−y ≤ nm−1) satisfying

the congruence equations above. We note that each integer of the form nq or n(m−q)
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is in S ′, where q ∈ S2. It is simple to check that each such integer lies in the required

interval [1, nm − 1], since 1 ≤ q ≤ ⌊m
2
⌋.

In addition to these values already in S ′, we must also include each value of cn+r,

over all choices of 0 ≤ c ≤ m−1 and r ∈ S1, and each value of dn−r, over all choices

of 1 ≤ d ≤ m and r ∈ S1. We note that all of these values lie in the required interval

[1, nm − 1], for any choice of c, d, and r. We remark that any c and d not satisfying

the given inequality (i.e., c < 0, c > m − 1, d < 1, d > m) will make cn + r and/or

dn − r fall outside of the required interval for any choice of r, since 1 ≤ r ≤ ⌊n
2
⌋.

As a final note, remark that v ∈ S ′ iff nm − v ∈ S ′. This will make it very easy to

compute the set of circular distances |x − y|nm.

We have shown that x ∼ y in G[H ] iff x−y ∈ S ′. By letting S = {|x−y|nm : x−y ∈
S ′} be the generating set produced by computing the circular distance (mod nm) for

each value of S ′, we have x ∼ y in G[H ] iff |x − y|nm ∈ S. This proves that G[H ] is

a circulant Cnm,S, for this generating set S. Given that we know which elements are

in S ′, we can describe exactly the set of elements in S. Since v ∈ S ′ iff nm − v ∈ S ′,

the elements of S are precisely those elements in S ′ that are in the interval [1, ⌊nm
2
⌋].

Let us give an explicit characterization of this generating set.

First look at all the multiples of n: each integer of the form nq and nm−nq belong

to S ′, where q ∈ S2. Clearly each nq ∈ S, since nq ≤ n⌊m
2
⌋ ≤ ⌊nm

2
⌋. Thus, each of

n, 2n, 3n, . . . , n⌊m
2
⌋ are counted in S. Conversely, all of the elements in the latter set

are greater than ⌊nm
2
⌋, and hence do not belong to the set S. The only exception to

this occurs when m is even and q = m
2
; however, this value has already been added

to our set S, since n · m
2

= nm − n · m
2
. Among the multiples of n, the only values in

S are the elements nq, over all q ∈ S2.

Define tn ± S1 = {tn ± r : r ∈ S1} and nS2 = {nq : q ∈ S2}. From our analysis

above, we have proven that G[H ] ≃ Cnm,S, where

S =

(
c⋃

t=0

tn + S1

)
⋃
(

d⋃

t=1

tn − S1

)
⋃

nS2,

for some indices c and d.

Recall for the full set S ′, we had 0 ≤ c ≤ m − 1 and 1 ≤ d ≤ m. We will show

that for this reduced set S, we require 0 ≤ c ≤ ⌊m−1
2

⌋ and 1 ≤ d ≤ ⌊m
2
⌋: given that
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we are selecting the elements of S ′ in the “bottom half”, this result is completely

unsurprising. We do not need to consider the lower bounds c ≥ 0 and d ≥ 1, as they

have already been dealt with previously. We now prove the upper bounds for c and

d, by establishing that all possible values of the form cn + r and dn − r belong to S

(for those two bounds), and proving that we have not missed any other values.

If c ≤ ⌊m−1
2

⌋, then cn + r ≤ n · ⌊m−1
2

⌋ + ⌊n
2
⌋ ≤ ⌊nm

2
⌋ for all choices of r. And if

c > ⌊m−1
2

⌋, this is equivalent to the inequality c ≥ m
2
, since c and m are both integers.

Then cn + r ≥ mn
2

+ r > ⌊nm
2
⌋.

If d ≤ ⌊m
2
⌋, then dn − r ≤ n · ⌊m

2
⌋ − r < ⌊nm

2
⌋. And if d > ⌊m

2
⌋, this is equivalent

to the inequality d ≥ m+1
2

, since d and m are integers. We have dn−r ≥ mn
2

+ n
2
−r >

⌊nm
2
⌋, except in the one special case when the following four conditions hold: n is

even, r = n
2
, m is odd, and d = m+1

2
.

However, this case is easily dealt with: we have dn − r = mn+n
2

− n
2

= mn
2

∈ S.

But this value was already taken into account for the case c = ⌊m−1
2

⌋ and r = n
2
, since

cn + r = ⌊m−1
2

⌋n + r = m−1
2

· n + n
2

= mn
2

. Hence, the desired upper bound is correct:

no elements of S have been omitted, and every element of S has been included.

Therefore, we have proven that G[H ] is isomorphic to Cnm,S , where

S =





⌊m−1
2

⌋
⋃

t=0

tn + S1




⋃





⌊m
2
⌋

⋃

t=1

tn − S1




⋃

nS2,

where tn ± S1 = {tn ± r : r ∈ S1} and nS2 = {nq : q ∈ S2}.
Our proof is now complete.

To illustrate with an example, let G = C10,{1} and H = C9,{4}. Then, n = 10,

m = 9, S1 = {1}, and S2 = {4}. Therefore,

S =

(
4⋃

t=0

10t + {1}
)
⋃
(

4⋃

t=1

10t − {1}
)
⋃

10 · {4},

which simplifies to S = {1, 9, 11, 19, 21, 29, 31, 39, 40, 41}.
Thus, G[H ] = C90,{1,9,11,19,21,29,31,39,40,41}. By a similar analysis, if we were to switch

G and H to determine the lexicographic product H [G], we derive

S =

(
4⋃

t=0

9t + {4}
)
⋃
(

4⋃

t=1

9t − {4}
)
⋃

9 · {1},
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which simplifies to S = {4, 5, 9, 13, 14, 22, 23, 31, 32, 40, 41}.
Thus, H [G] = C90,{4,5,9,13,14,22,23,31,32,40,41}. As a corollary to Theorem 2.31, we

have the following.

Corollary 2.32 For each n and m, the graph Cn[Km] is a circulant.

Proof: Note that Cn = Cn,{1} is a circulant, as is Km = Cm,∅. From Theorem 2.31,

we have Cn[Km] = Cnm,S , where

S =





⌊m−1
2

⌋
⋃

t=0

tn + {1}




⋃





⌊m
2
⌋

⋃

t=1

tn − {1}




⋃

∅

=
{

x : 1 ≤ x ≤
⌊nm

2

⌋

, x ≡ ±1 (mod n)
}

.

This completes the proof.

The following theorem shows that the independence polynomial of I(G[H ], x) can

be calculated from I(G, x) and I(H, x).

Theorem 2.33 ([23]) For any graphs G and H, I(G[H ], x) = I(G, I(H, x) − 1).

As an application of the above identity, consider the independence polynomial

I(C12,{1,5}, x) = (1 + 4x + 2x2)(1 + 8x + 8x2 + 4x3 + x4), which was mentioned in the

preceding section. At first glance, it is not clear why I(C4, x) should be a factor of

I(C12,{1,5}, x). Let us explain why this follows as a direct corollary of Theorem 2.33.

Let G = C6,{1} and H = C2 = C2,{∅}. By Theorem 2.31, C6[C2] = C12,{1,5}.

Also, we have I(C6, x) = 1 + 6x + 9x2 + 2x3 from Chapter 1, which factors nicely as

(1 + 2x)(1 + 4x + x2). Therefore, we have

I(C12,{1,5}, x) = I(C6[C2], x)

= I(C6, I(C2, x) − 1) by Theorem 2.33

= I(C6, 2x + x2)

= (1 + 2(2x + x2))(1 + 4(2x + x2) + (2x + x2)2)

= (1 + 4x + 2x2)(1 + 8x + 8x2 + 4x3 + x4).
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From above, I(C4, x) divides I(C12,{1,5}, x), i.e., I(C2[C2], x) divides I(C6[C2], x).

In general, if I(G′, x) divides I(G, x), then for any graph H , Theorem 2.33 proves

that I(G′[H ], x) divides I(G[H ], x). This theorem enables us to determine formulas

for I(Cn,S, x) for infinitely many circulants. As an example, we highlight the following

result.

Corollary 2.34 Let (m, n) be an ordered pair of integers with m, n ≥ 2. Define

S = {m} ∪ {x : 1 ≤ x ≤ ⌊nm
2
⌋, x ≡ ±1 (mod n)}. Then,

I(Cmn,S, x) =

⌊m
2
⌋

∑

k=0

m

m − k

(
m − k

k

)




⌊n
2
⌋

∑

j=1

n

n − j

(
n − j

j

)

xj





k

Proof: Let G = Cm,{1} and H = Cn,{1}. By Theorem 2.31, G[H ] is a circulant on

nm vertices, with S = {m} ∪ {x : 1 ≤ x ≤ ⌊nm
2
⌋, x ≡ ±1 (mod n)}. Therefore, we

may apply Theorem 2.33 to find an explicit formula for I(Cnm,S, x). By Corollary 2.4,

the result follows.

To illustrate, if we substitute (m, n) = (7, 5) into our corollary, we obtain

I(C35,{1,6,7,8,13,15}, x) = 1 + 35x + 385x2 + 1575x3 + 2975x4 + 2625x5 + 875x6.

When Theorem 2.33 is combined with Theorems 2.3 and 2.10, we are able to

determine infinitely many formulas for I(Cn,S, x). It is highly unlikely that these

formulas can be obtained by a direct enumerative approach. Nevertheless, with The-

orem 2.33, we can immediately obtain formulas for independence polynomials such

as I(C84,{3,4,10,11,17,18,24,25,28,31,32,35,38,39,42} , x), since this circulant is the lexicographic

product of C7,{3} and C12,{4,5,6}.

As an aside, we mention that the Cartesian product G✷H of two circulants G =

Cn,S1 and H = Cm,S2 is a circulant whenever gcd(m, n) = 1. We state the following

result, which will be proven in Chapter 4 in the context of line graphs.

Theorem 2.35 Let G = Cn,S1 and H = Cm,S2 be circulant graphs. Define S to be

the set of integers k in {1, 2, . . . , ⌊nm
2
⌋} that satisfy one of the following conditions:

1. k = im, for some i ∈ S1.
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2. k = jn, for some j ∈ S2.

Then, G✷H is isomorphic to the circulant graph Cnm,S.

In Chapter 4, we will prove that whenever gcd(m, n) = 1, the line graph of Km,n is

a circulant, and is isomorphic to the Cartesian product Kn✷Km. However, as we saw

for the m = n = 3 case in Proposition 2.29, the Cartesian product of two circulants

is not necessarily a circulant when gcd(m, n) > 1.

In Chapter 5, we investigate the roots of independence polynomials, and apply

Theorem 2.33 to show that the roots of I(G, x) are dense in the complex plane C,

even when G is restricted to the one specific family of circulant graphs, Cn[Km].

2.5 Evaluating the Independence Polynomial at x = t

In this chapter, we developed a number of formulas for I(G, x). Computing I(G, x)

enables us to determine [xk]I(G, x), the number of independent sets of cardinality k

in G. However, we may also be interested in evaluating I(G, x) at particular points

x = t. As an example, evaluating I(G, x) at x = 1 gives us the total number of

independent sets in the graph. There are many contexts for which such information

is useful. Evaluating a graph polynomial at particular points has been a subject of

much interest, especially for chromatic polynomials [60, 103].

To give one illustration, we provide an application from music. The 12-tone music

scale consists of the pitch classes C, C#, D, D#, E, F, F#, G, G#, A, A#, and B. Each

note is identified with its pitch class (i.e., each C refers to the same note, regardless of

its octave). Essentially, these “pitch classes” are the musical analogue of equivalence

classes.

Suppose we want to play a chord consisting of k different pitch classes from this

scale. Clearly, the number of different possibilities is
(
12
k

)
. But if we were to intro-

duce forbidden intervals and ask for the number of chords we could play with this

restriction, then we can answer this problem using independence polynomials. In

particular, if the forbidden intervals correspond to pitch classes that are close to-

gether (and hence, dissonant), we show that this problem can be answered from the

independence polynomial I(An, x) = I(Cn,{1,2,...,d}, x).
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As a simple example, suppose that we are forbidden to include any chord with

two pitch classes separated by a semitone or tone (for example, C and C#, or G and

A). In other words, if we were to draw a graph with these 12 pitch classes as our

vertices, we would require every pair of pitch classes to be separated by a distance of

at least three (i.e., a minor third), to avoid any semitones or tones. Now we can ask

how many possible chords can be played with this given restriction.

Mathematically, this is equivalent to the problem of evaluating the independence

polynomial I(C12,{1,2}, x), and then substituting x = 1 to determine our answer. In

other words, every possible chord is some independent set of the circulant C12,{1,2},

since each pair of pitch classes in an independent set is separated by at least a mi-

nor third. By Theorem 2.3, I(C12,{1,2}, x) = 1 + 12x + 42x2 + 40x3 + 3x4, and so

I(C12,{1,2}, 1) = 98. We conclude that there are 98 possible chords that can be played,

including the 55 trivial “chords” of less than three pitch classes.

We can generalize the 12-semitone octave to the n-semitone octave. As in the

12-semitone octave, the n-semitone octave is divided into n equally tempered tones,

each formed by multiplying the frequency by 2
1
n . Musicians refer to this as the n-tet

scale (where “tet” is an acronym of Tone Equal-Tempered). While the 12-tet scale is

most common, the 19-tet and 31-tet scales have also been employed by musicians.

In an n-tet scale, the ratio between any two semitones is constant. Since notes

with similar frequencies sound dissonant when played together, we can require that

no chord include two pitch classes separated by d semitones or less, for some integer

d ≥ 1. Now, if we were to ask how many possible chords can be played with this

restriction, we could answer that question directly from our formula for I(An, x) =

I(Cn,{1,2,...,d}, x).

Let f(n, d) be the number of possible chords that can be played with this given

restriction. By Theorem 2.3, the answer is simply

f(n, d) =

⌊ n
d+1

⌋
∑

k=3

n

n − dk

(
n − dk

k

)

,

which we derive from evaluating I(Cn,{1,2,...,d}, x) at x = 1, and then subtracting the

number of trivial chords with less than three pitch classes.
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Given a graph G, how difficult is it to evaluate I(G, 1)? In the above example

with G = An = Cn,{1,2,...,d}, we first took our known formula for I(G, x) and then

substituted x = 1. But in general, it is NP -hard to determine I(G, x), since we know

that evaluating α(G) is NP -hard [79]. Thus, it is not computationally efficient to

solve the problem by first computing the independence polynomial. Possibly we can

develop a polynomial-time algorithm to count I(G, 1) (i.e., the number of independent

sets of G), without actually calculating the independence polynomial. This motivates

the problem of determining the computational complexity of evaluating I(G, x) at the

point x = t. To solve this problem, it is necessary to first introduce some terminology

from complexity theory.

A computational problem can be regarded as a function mapping instances to

solutions. In the case of graph-theoretic problems, our instance will always be a graph

G. Thus, we can investigate the computational complexity of evaluating invariants

such as α(G), χ(G), and I(G, x). If A and B are two computational problems for

which A is polynomial time reducible to B, then we denote this as A ∝ B. Well-

known complexity classes include P , NP , and NP -hard. For formal definitions on

these classes, we refer the reader to [79].

The complexity class #P (pronounced “sharp-P”) is the class of enumeration

problems in which the structures being counted are recognizable in polynomial time,

i.e., there exists a constant k for which there is an O(nk) algorithm to verify whether a

given structure has the correct form to be included in the count. While an NP prob-

lem is usually of the form, “are there any solutions that satisfy certain constraints?”,

a #P problem asks, “how many solutions satisfy certain constraints?”.

What makes #P important is that it contains #P -complete problems which

are proven to be at least as hard as any problem in the class. A problem A in #P is

#P -complete if for any problem B in #P , B ∝ A. As discussed in [103], examples of

#P -complete problems include counting the number of Hamiltonian paths in a graph

and evaluating the permanent of a square (0, 1)-matrix.

A problem is #P -hard if some #P -complete problem is polynomial time re-

ducible to it [103]. By definition, the class of #P -complete problems is a subset of

the class of #P -hard problems. A #P -hard problem may or may not be in #P - in
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fact, a #P -hard problem is in #P iff it is #P -complete.

If a problem π is #P -hard, then the existence of a polynomial-time algorithm

for π would imply the existence of such an algorithm for all problems in the class

#P . As mentioned by Jaeger et. al. [103], since #P contains such notoriously

intractable problems, proving that a problem is #P -hard is very strong evidence of

its computational intractability.

We wish to determine the complexity of evaluating I(G, t) for an arbitrary number

t. We note that the equivalent problem for chromatic polynomials has already been

solved.

Theorem 2.36 ([103]) For a graph G, let π(G, x) be the chromatic polynomial of

G. Then, π(G, t) can be evaluated in polynomial time for t = 0, t = 1, and t = 2.

For all other real values of t, evaluating π(G, t) is #P -hard.

We now give a complete solution to the evaluation problem for independence

polynomials: we prove that for any complex number t 6= 0, it is #P -hard to evaluate

I(G, t). Furthermore, if t = 1, then the problem is #P -complete. In fact, this latter

result follows immediately from a result in [103].

Proposition 2.37 It is #P -complete to evaluate I(G, 1).

Proof: By a theorem in [103], it is #P -hard to evaluate the Tutte polynomial of

a cycle matroid G at the point (2, 1), which counts the total number of independent

sets in G. In other words, it is #P -hard to compute I(G, 1). However, I(G, 1) is

also in #P , since the structures being counted (i.e., the independent sets of G) are

recognizable in polynomial time. Therefore, we conclude that evaluating I(G, 1) is

#P -complete.

We now solve the problem for I(G, t) for a general t ∈ C. We develop an elegant

and simple proof, by applying our results on graph products from the previous section.

Theorem 2.38 Computing I(G, t) for a given number t ∈ C is #P -hard iff t 6= 0.

Proof: First, we note that I(G, 0) = 1 for any graph G, and so the evaluation is

trivial at t = 0. Now suppose there exists a number t 6= 0 for which I(G, t) can be
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evaluated in polynomial-time. In other words, given any graph G on n vertices, for

this t 6= 0 there exists an O(nk) algorithm to compute the value of I(G, t) (for some

constant k).

Let G be a fixed graph on n vertices. For each 1 ≤ m ≤ n + 1, define Hm to be

the lexicographic product graph G[Km]. By our assumption, there is an O(mknk) ≤
O(n2k) algorithm to compute the value of I(Hm, t).

The construction of each Hm creates nm ≤ n2 + n vertices and decides if each

pair of vertices is adjacent in Hm. The number of pairs of vertices in Hm is at most
(

n2+n
2

)
= O(n4), and so constructing each Hm can be done in polynomial-time.

By Theorem 2.33, I(Hm, x) = I(G, I(Km, x) − 1) = I(G, mx). So I(Hm, t) =

I(G, mt) for all 1 ≤ m ≤ n + 1. We know that there is an O(mknk) ≤ O(n2k)

algorithm to compute the value of I(Hm, t), for each m. Therefore, it takes O(n2k+1)

steps to evaluate I(G, x) for each x = mt. Since t 6= 0, these n values of x are distinct.

We know that the independence polynomial of G is I(G, x) = i0 + i1x + i2x
2 +

. . . + inx
n, for some integers ik. (Note that deg(I(G, x)) ≤ |G| = n). Letting x = mt

for each 1 ≤ m ≤ n + 1, we have a system of n + 1 equations and n + 1 unknowns.

i0 + i1t + i2t
2 + . . . + intn = I(G, t)

i0 + i1(2t) + i2(2t)
2 + . . . + in(2t)n = I(G, 2t)

...
...

i0 + i1(n + 1)t + i2((n + 1)t)2 + . . . + in((n + 1)t)n = I(G, (n + 1)t).

This system has a unique solution iff the matrix

M =










1 t t2 · · · tn

1 2t (2t)2 · · · (2t)n

...
...

...
. . .

...

1 (n + 1)t ((n + 1)t)2 · · · ((n + 1)t)n










has a non-zero determinant.

M is an example of a Vandermonde matrix, and the formula for its determinant

is well-known. It is straightforward to show that

det(M) = t(
n+1

2 )
n∏

k=1

k!
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Since det(M) 6= 0, this system has a unique solution (i0, i1, . . . , in). This system of

equations can be solved in O(n3) time using Gaussian elimination, and so each of the

ik’s can be determined in polynomial time, which in turn, gives us the independence

polynomial I(G, x).

For any graph G, we have found an O(n2k+1) + O(n3) algorithm to determine the

formula for the independence polynomial I(G, x), where k is some positive integer.

Since deg(I(G, x)) = α(G), we have shown that α(G) can be computed in polynomial-

time for any G. This contradicts the well-known result [46, 79] that no such algorithm

exists. Since it is NP -hard to evaluate α(G) for an arbitrary graph G [79], we conclude

that it is #P -hard to evaluate I(G, t), for all non-zero t ∈ C.

2.6 Independence Unique Graphs

We conclude this chapter by classifying all circulant graphs that are uniquely char-

acterized by its independence polynomial.

In [68], Farrell and Whitehead investigate circulant graphs that are chromatically

unique and matching unique. In other words, they attempt to characterize circulants

that are uniquely defined by their chromatic or matching polynomials. They prove

that of the 30 non-isomorphic circulants of order at most eight, 23 are chromatically

unique, with the seven exceptions being C4,{2}, C6,{2}, C6,{3}, C8,{2}, C8,{4}, C8,{2,4},

and C8,{1,3,4}. Then they prove that each of these seven circulants is matching unique,

proving that every circulant on n ≤ 8 vertices is either chromatically unique or

matching unique (or both). They conjecture that this result holds for all n.

Their analysis motivates the equivalent problem for independence polynomials.

In this section, we provide a full answer to the uniqueness problem for independence

polynomials: we prove that a circulant is uniquely characterized by its independence

polynomial iff it is the disjoint union of isomorphic complete graphs (e.g. C8,{1,2,3,4}

and C24,{3,6,9,12}). In other words, circulants are independence unique only in a handful

of cases. More precisely, we will prove that there are exactly φ(n) non-isomorphic

circulants on n vertices, where φ(n) denotes the number of positive divisors of n.

Definition 2.39 A graph G is independence unique if I(G, x) = I(H, x) implies

G ≃ H.
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Some simple examples of independence unique graphs include Kn and Kn. To give

an example of a graph G that is not independence unique, consider the complement

of a tree. For any tree on n vertices, we have D(G, x) = 1 + nx + (n − 1)x2, where

D(G, x) is the dependence polynomial of G, as defined in Chapter 1. Then, I(G, x) =

D(G, x) = 1 + nx + (n − 1)x2. So any complement of an n-vertex tree has the same

independence polynomial.

It is shown in [60] that two non-isomorphic trees can have the same independence

polynomial. An example is illustrated in Figure 2.5. It can be shown that for these

two trees,

I(T1, x) = I(T2, x) = 1 + 10x + 36x2 + 58x3 + 42x4 + 12x5 + x6.

Figure 2.5: Two trees with the same independence polynomial.

Much work has been done to characterize graphs that are chromatically unique

[35, 38, 61, 112, 126, 153, 175], in addition to graphs that are Tutte unique [57] and

reliability unique [37]. Since the problem of independence unique graphs was first

posed in [98], very few results have been found [120]. Some work has been conducted

on classifying independence unique graphs for spider graphs [119] and threshold graphs

[165]. However, other than these two specific families of graphs, not much is known.

In the recent survey paper on independence polynomials [120], these are the only two

families of graphs that are discussed.

An independence polynomial I(G, x) of the form 1 + nx + . . . corresponds to a

graph G on n vertices. To prove that G is independence unique, we must theoretically

examine all graphs on n vertices and determine their independence polynomials. For

small values of n, the computation is trivial. However, for an arbitrary graph, it is

NP -hard [79] to compute the independence polynomial.

Based on our analysis of independence polynomials of circulant graphs, we may

naturally ask the following:
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Problem 2.40 Is G independence unique for all circulants?

We prove that the answer is no, as evidenced by the following counterexample.

Theorem 2.41 G = Cn is not independence unique, for any n ≥ 4.

Proof: Let H be the graph formed by taking the path Pn−1, adding a new vertex u,

and connecting u to an endpoint v1 (of Pn−1) and its neighbour v2. Then, I(G, x) =

I(Pn−1, x) + x · I(Pn−3, x) and I(H, x) = I(Pn−1, x) + x · I(Pn−3, x) by Theorem 1.5.

The latter identity follows by removing vertex u from H .

Then, I(G, x) = I(H, x), but clearly G 6≃ H for n ≥ 4. Thus, G = Cn is not

independence unique, for any n ≥ 4.

We have just shown that Cn is not independence unique. Are there any circulants

that are independence unique, and if so, can we characterize all of them? The analo-

gous question for matching polynomials and chromatic polynomials is partially solved

in [68]. As mentioned earlier, Farrell and Whitehead prove that every circulant graph

on at most 8 vertices is uniquely characterized either by its matching polynomial or

chromatic polynomial. They conjecture that this result holds for all circulant graphs.

However, they have been unable to solve the problem for any n ≥ 9.

We will now give a complete solution to the question for independence unique

circulants, where we prove the surprising result that a circulant G is independence

unique iff G is the disjoint union of isomorphic complete graphs. This result will

follow as a corollary of the following theorem.

Theorem 2.42 Let G = Cn,S be a connected circulant graph. Then, G is indepen-

dence unique iff G ≃ Kn.

We conclude that circulants are not rich in independence unique graphs, even

though they are rich in chromatically unique and matching unique graphs. To prove

Theorem 2.42, we first require the following definition and lemma.

Definition 2.43 Let G = Cn,S be a circulant graph. Define

S ′ = {x : |x|n ∈ S} ∪ {0}.
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Note that S ′ = NG[0], the closed neighbourhood of vertex 0 in G.

For each i ∈ S ′, the graph Hi is formed by taking G− {0}, creating a new vertex

u, and then joining u to every vertex y ∈ V (G − {0}) for which y = i + r (mod n)

for some r ∈ S ′.

For example, let G = C8,{3,4}, and i = 3. The graphs G and H3 are illustrated in

Figure 2.6.

1

3

2

45

6
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0 1

3

2

45

6

7

u

Figure 2.6: The graphs G = C8,{3,4} and the corresponding graph H3.

Now we prove that I(G, x) = I(Hi, x), for each i ∈ S ′.

Lemma 2.44 Consider the set S ′ and the graph Hi, as described above. For each

i ∈ S ′, I(Hi, x) = I(G, x).

Proof: It is clear that Hi − {u} = G− {0}. Note that x ∈ V (G−NG[0]) iff x /∈ S ′,

and y ∈ V (Hi − NHi
[u]) iff y − i (mod n) /∈ S ′.

Letting φ(x) = x + i (mod n), we see that φ is an isomorphism from G − NG[0]

to Hi − NHi
[u]. Therefore, I(G − NG[0], x) = I(Hi − NHi

[u], x). By Theorem 1.5,

I(Hi, x) = I(Hi − {u}, x) + x · I(Hi − NHi
[u], x)

= I(G − {0}, x) + x · I(G − NG[0], x)

= I(G, x).

Therefore, we conclude that I(Hi, x) = I(G, x).
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By this lemma, G is not independence unique whenever we can find i ∈ S such

that Hi 6≃ G. So in the above example, G = C8,{3,4} is not independence unique.

We require one additional result, which is a straightforward observation.

Proposition 2.45 ([17]) Let Cn,S have generating set S = {s1, s2, . . . , sm}. Then

Cn,S is connected iff d = gcd(n, s1, s2, . . . , sm) = 1.

We now prove Theorem 2.42, that a connected circulant graph G = Cn,S is inde-

pendence unique iff G ≃ Kn.

Proof: If G ≃ Kn, then I(G, x) = 1 + nx. Clearly G is independence unique, as

any graph H with I(H, x) = 1 + nx must have n vertices and satisfy α(H) = 1.

Now suppose that G is independence unique, where G is a connected circulant.

Define S ′ to be the closed neighbourhood of vertex 0. For all i ∈ S ′, Lemma 2.44

shows that the graph Hi satisfies I(Hi, x) = I(G, x). Since G is independence unique,

each Hi must be isomorphic to G.

Since G is a circulant, G must be r-regular, for some r. Then the degree of each

vertex in Hi must also be r. By definition, G − {0} = Hi − {u}. It follows that 0

and u must connect to the same set of vertices in G−{0} and Hi −{u}, respectively,

as otherwise degHi
(w) 6= degG(w) = r for some vertex w. By definition of Hi, this

implies that x ∈ S ′ iff x + i (mod n) ∈ S ′. This implication is true for all i ∈ S ′.

Let i be the smallest non-zero element of S ′. Then, ki (mod n) ∈ S ′ for all

k ∈ N. By the Euclidean Algorithm, there exists an integer k such that ki (mod n) =

gcd(i, n) ∈ S ′. By the minimality of i, this implies that gcd(i, n) = i, so i|n. If i = 1,

then S ′ = Zn, which implies that S = {1, 2, . . . , ⌊n
2
⌋}, i.e., G ≃ Kn.

Now let us assume that i > 1. If S ′ only contains multiples of i, then G = Cn,S is

disconnected by Proposition 2.45, which contradicts our given assumption that G is

connected. So we can assume that there is an element j ∈ S ′ with d = gcd(i, j) < i.

Since x ∈ S ′ implies that x + i (mod n) ∈ S ′ and x + j (mod n) ∈ S ′, it follows

that pi + qj (mod n) ∈ S ′ for all pairs of positive integers (p, q). By the Euclidean

algorithm, there exists a pair (p, q) for which pi + qj (mod n) = d = gcd(i, j) < i,

which contradicts the minimality of i.
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We conclude that if G = Cn,S is a connected circulant graph that is independence

unique, then G ≃ Kn. This completes the proof.

As a direct corollary of Theorem 2.42, we now establish that a circulant G = Cn,S

is independence unique iff G is the disjoint union of isomorphic complete graphs.

Corollary 2.46 The circulant graph G = Cn,S is independence unique iff n = dk

and S = {d, 2d, 3d, . . . , ⌊k
2
⌋d} for some positive integers k and d.

Proof: Suppose G = Cn,S is independence unique, and let S = {s1, s2, . . . , sm}.
By Proposition 2.45, Cn,S is connected iff d = gcd(n, s1, s2, . . . , sm) = 1. If d = 1,

then G = Kn by Theorem 2.42. So suppose d > 1, and let n = dk. Then G is the

disjoint union of d isomorphic copies of G′ = Cn′,S′, where n′ = n
d

and s′i = si

d
for

each 1 ≤ i ≤ m. If G′ 6≃ Kn′, then there exists a graph H ′ not isomorphic to G′

for which I(G′, x) = I(H ′, x). Letting H be the disjoint union of d copies of H ′, we

have I(G, x) = (I(G′, x))d = (I(H ′, x))d = I(H, x). In other words, if G = Cn,S is

independence unique, we must have G′ = Kk, i.e., n′ = k and S ′ = {1, 2, . . . , ⌊k
2
⌋}.

The desired conclusion follows.

We now enumerate the number of independence unique circulants on n vertices,

for each integer n ≥ 1. From the above theorem, this question is easily answered.

Proposition 2.47 Define φ(n) to be the number of positive divisors of n. Then there

are φ(n) independence unique circulants on n vertices, for each n ≥ 1.

Proof: From Corollary 2.46, G = Cn,S is independence unique iff n = dk for some

ordered pair (d, k) = (d, n
d
). In this case, the generating set S is uniquely defined.

Therefore, exactly one independence unique circulant exists for each d|n. The desired

conclusion follows.

We have now proven that other than disjoint unions of isomorphic complete

graphs, circulant graphs are not independence unique. We proved this by construct-

ing a non-circulant graph H with I(G, x) = I(H, x). Let us explore this concept

further.
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If G and H are both restricted to the family of circulants: must they have different

independence polynomials? A variation of this question is posed in [165], where it

is shown that if Γ is the family of threshold graphs (i.e., graphs with no induced

subgraph isomorphic to P4, C4, or C4), then I(G, x) 6= I(H, x) whenever G and

H are non-isomorphic graphs in Γ. If Γ is the family of well-covered spider graphs

(i.e., trees having at most one vertex of degree ≥ 3), then it is known [119] that

I(G, x) 6= I(H, x) for all G, H ∈ Γ with G 6≃ H . In other words, every graph in Γ

has a unique independence polynomial within these two families. This motivates the

following question, for the family of circulant graphs.

Problem 2.48 Let G and H be circulants. If I(G, x) = I(H, x), then must this

imply that G ≃ H?

We prove that the answer is no. The following is a simple counterexample.

Proposition 2.49 Let G = C8,{1,2,4} and H = C8,{1,3,4}. Then, I(G, x) = I(H, x)

but G 6≃ H.

Proof: It is easily checked that I(G, x) = I(H, x) = 1 + 8x + 8x2. To prove that

G 6≃ H , it suffices to show that G 6≃ H. But this is clear, since G = C8,{3} is

isomorphic to C8, and H = C8,{2} is isomorphic to two disjoint copies of C4.

To give another example, G = C13,{1,2,4} and H = C13,{1,3,4} are graphs with

I(G, x) = I(H, x) = 1 + 13x + 39x2 + 26x3 but G 6≃ H . The non-isomorphism of G

and H is verified by noting that the 5-wheel W5 is an induced subgraph of G, but not

of H .

Proposition 2.49 can also be proved by comparing the sets of eigenvalues of G and

H , and showing that they are different. To compute the eigenvalues of a graph, we

find its adjacency matrix A, and then the eigenvalues correspond to all scalars λ such

that Ax = λx for some non-zero vector x.

In a circulant G = Cn,S, each row of the adjacency matrix A is a cyclic permutation

of every other row. Let a = [a0, a1, . . . , an−1] be the first row of A, where ai = an−i = 1

iff i ∈ S. Several papers and books have been written on circulant matrices and their
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properties [12, 46, 56, 115, 156]. In all of these works, the eigenvalues of these matrices

are studied. Here is the formula for the set of eigenvalues of Cn,S.

Theorem 2.50 ([46]) If n is odd, the eigenvalues of G are

λ0 =

(n−1)/2
∑

k=1

2ak, λj = λn−j =

(n−1)/2
∑

k=1

2ak cos

(
2jkπ

n

)

for 1 ≤ j ≤ n − 1

2
.

If n is even, then for all 1 ≤ j ≤ n
2
,

λ0 = an/2 +

n/2−1
∑

k=1

2ak, λj = λn−j = an/2 cos(jπ) +

n/2−1
∑

k=1

2ak cos

(
2jkπ

n

)

.

From Theorem 2.50, we can manually verify that the set of eigenvalues of G =

C8,{1,2,4} is different from those of H = C8,{1,3,4}. Hence, we must have G 6≃ H .

Therefore, we conclude that there are pairs of non-isomorphic circulants that have

the same independence polynomial. There are several techniques to verify that two

circulants are (not) isomorphic. For example, the techniques discussed in Propo-

sition 2.49 and Theorem 2.50 are straightforward, but tedious. Is there a simpler

method to determine whether two circulants Cn,S and Cn,T are isomorphic?

In Lemma 2.24, we gave a sufficient condition for isomorphism. In [1], Ádám

conjectured that this multiplier condition is also necessary. This was later disproved

[65]. To give one counterexample, C16,{1,2,7} ≃ C16,{2,3,5}, yet there is no r for which

{2, 3, 5} ≡ {r, 2r, 7r} (mod 16). It is known that the conjecture is false if n is divisible

by 8 or is the square of an odd prime [140]. However, Ádám’s conjecture is true

whenever n is square-free, i.e., there is no integer d > 1 with d2|n.

Theorem 2.51 ([140]) If n is square-free, then Cn,S ≃ Cn,T iff there exists an inte-

ger r with gcd(r, n) = 1 such that T = rS.

By Theorem 2.51, we immediately have another proof that C13,{1,2,4} 6≃ C13,{1,3,4}.

A complete solution to the isomorphism problem for circulant graphs was recently

given by Muzychuk [141]. The results are developed in the context of Schur rings,

and an efficient algorithm is given for recognizing isomorphism between two circulant

graphs.
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In this section, we proved that a circulant graph is independence unique iff it

is the disjoint union of isomorphic complete graphs. The problem of classifying all

independence unique graphs G remains open.



Chapter 3

Analysis of a Recursive Family of Circulant Graphs

Due to the structure and symmetry of a circulant graph, one might expect that

there is a simple algorithm to compute α(G) when G is restricted to circulants.

But as we discussed earlier, determining the independence number of an arbitrary

circulant is NP -hard. Moreover, it is shown in [46] that it is NP -hard even to get a

good approximation for α(G). A formula for α(Cn,S) is known only for a handful of

generating sets. We gave several examples in Chapter 2, where we directly computed

α(Cn,S) from a formula for I(Cn,S, x). But even for these “simple” cases, determining

a formula for I(G, x) is an extremely complicated task.

While it may be computationally intractable to determine I(Cn,S, x) for an ar-

bitrary generating set S, we may be able to determine families of sets S for which

α(Cn,S) = deg(I(Cn,S, x)) can be calculated without determining its independence

polynomial. In this section, we will determine an infinite family of generating sets

S for which this is the case. Our formula for α(Cn,S) will be a simple recurrence

relation, from which the independence number can easily be computed.

This infinite class of circulants will feature prominently in four important and

varied applications: a new classification of star extremal graphs; a generalization of

known results on the chromatic number of integer distance graphs; an explicit formula

for the generalized fractional Ramsey number; and the optimal Nordhaus-Gaddum

inequalities for the fractional chromatic and circular chromatic numbers. In each of

these four applications, using the formula for α(Cn,S) will be the key step.

3.1 Calculating the Independence Number α(Cn,S)

Let S ⊆ {1, 2, . . . , ⌊n
2
⌋} be the generating set for some circulant G = Cn,S. Define

±S (mod n) = {x ∈ Z : x ∈ S or n − x ∈ S}.

63
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For each k-tuple of integers (a1, a2, . . . , ak) with each ai ≥ 3, we construct the

graphs Gj(a1, a2, . . . , ak) as follows.

Definition 3.1 Let k ≥ 1 and let (a1, a2, . . . , ak) be a k-tuple of integers with each

ai ≥ 3.

Define n0 = 1, and ni = aini−1 − 1, for 1 ≤ i ≤ k. Then for each 1 ≤ j ≤ i ≤ k,

set

Sj,i =







±Sj,i−1 (mod ni−1) for all 1 ≤ j < i

{

1, 2, . . . ,
⌊ni

2

⌋}

−
i−1⋃

j=1

Sj,i for j = i

Then Gj(a1, a2, . . . , ak) := Cnk ,Sj,k
, the circulant graph on nk vertices with

generating set Sj,k.

For notational convenience, we will now abbreviate Gj(a1, a2, . . . , ak) as Gj,k,

where the ai’s are assumed to be fixed integers with each ai ≥ 3. To illustrate

our construction, let (a1, a2, a3) = (5, 6, 8). Then, we get (n1, n2, n3) = (4, 23, 183).

We have

S1,1 = {1, 2}
S1,2 = {1, 2, 3}
S2,2 = {4, 5, 6, . . . , 11}
S1,3 = {1, 2, 3, 20, 21, 22}
S2,3 = {4, 5, . . . , 19}
S3,3 = {23, 24, . . . , 91}.

Therefore, we have G1,3 = C183,{1,2,3,20,21,22}, G2,3 = C183,{4,5,...,19}, and G3,3 =

C183,{23,24,...,91} for the ordered triplet (a1, a2, a3) = (5, 6, 8).

Note that in our example, the Sj,k’s form a partition of {1, 2, . . . , ⌊nk

2
⌋} for k = 3.

We prove that this is always the case, for any fixed k. This will show that the Gj,k’s

form an edge partition of Knk
, i.e., the Gj,k’s induce a k-edge colouring of Knk

.
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Lemma 3.2 The Sj,k’s form a partition of {1, 2, . . . , ⌊nk

2
⌋}. In other words, given

any 1 ≤ x ≤ ⌊nk

2
⌋, there is a unique index 1 ≤ j ≤ k such that x ∈ Sj,k.

Proof: We proceed by induction on k. The result is trivial for k = 1, so assume k ≥ 2.

Suppose that the Sj,k−1’s form a partition of {1, 2, . . . , ⌊nk−1

2
⌋}, where 1 ≤ j ≤ k − 1.

By definition, Sj,k = ±Sj,k−1 (mod nk−1). Therefore, every element in the set

{1, 2, . . . , nk−1 − 1} will appear in exactly one Sj,k, for some 1 ≤ j ≤ k − 1. Clearly

no other elements will appear. By definition, it follows that Sk,k = {nk−1, nk−1 +

1, . . . , ⌊nk

2
⌋}. Hence, the Sj,k’s form a partition of {1, 2, . . . , ⌊nk

2
⌋}, which completes

the proof.

Definition 3.3 For any generating set S = {s1, s2, . . . , st} with 1 ≤ s1 < s2 < . . . <

st ≤ ⌊n
2
⌋, the end sum is Ω(S) = min(S) + max(S) = s1 + st.

Definition 3.4 A generating set S = {s1, s2, . . . , st} is reversible if si + st+1−i =

Ω(S) for all 1 ≤ i ≤ t.

In our example, S1,3 and S2,3 are both reversible sets with end sum n2 = 23. The

following results are all straightforward to prove; we will constantly refer to them

throughout this chapter.

Proposition 3.5 For any k-tuple of positive integers (a1, a2, . . . , ak) with each ai ≥
3, the Sj,k’s satisfy the following conditions:

(a) Sj,k = Sj,k−1

⋃{nk−1 − x : x ∈ Sj,k−1}, for all 1 ≤ j < k.

(b) Sj,i−1 ⊂ Sj,i for each 1 ≤ j < i ≤ k.

(c) 0 ≤ nk−1 − 1 < ⌊nk

2
⌋, with equality iff k = 1.

(d) Sk,k = {nk−1, nk−1 + 1, . . . , ⌊nk

2
⌋}.

(e) Sk−1,k = {nk−2, nk−2 + 1, . . . , nk−1 − nk−2}.

(f) For every 1 ≤ j ≤ k, the connection set Sj,k is reversible. Furthermore, if

1 ≤ j ≤ k − 1, then Ω(Sj,k) = nk−1.
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(g) For all 1 ≤ j ≤ k − 1, max(Sj,k) ≤ nk−1 − 1.

Proof: By definition, Sj,k = ±Sj,k−1 (mod nk−1). So each y ∈ Sj,k satisfies y ∈ Sj,k−1

or nk−1 − y ∈ Sj,k−1. Therefore, Sj,k = Sj,k−1

⋃{nk−1 − x : x ∈ Sj,k−1}. This proves

part (a).

By the same argument as part (a), Sj,i = Sj,i−1

⋃{ni−1−x : x ∈ Sj,i−1}, for each

1 ≤ j < i ≤ k. Thus, Sj,i−1 ⊂ Sj,i, proving part (b).

We note that part (c) is trivial for k = 1, since n0 = 1 and n1 = a1 − 1 ≥ 2.

If k ≥ 2, then nk−1 = ak−1nk−2 − 1 ≥ ak−1 − 1 > 1. Finally, ⌊nk

2
⌋ = ⌊aknk−1−1

2
⌋ ≥

aknk−1

2
− 1 > nk−1 − 1, since each ak ≥ 3. This proves part (c).

Part (d) was established in the proof of Lemma 3.2. From part (d), Sk−1,k−1 =

{nk−2, nk−2 + 1, . . . , ⌊nk−1

2
⌋}. By part (a),

Sk−1,k = Sk−1,k−1

⋃

{nk−1 − x : x ∈ Sk−1,k−1} = {nk−2, nk−2 + 1, . . . , nk−1 − nk−2},

which proves part (e).

Now we prove part (f). Fix 1 ≤ j ≤ k − 1. Let Sj,k−1 = {s1, s2, . . . , st}. Then,

Sj,k = ±Sj,k−1 (mod nk−1) = {s1, s2, . . . , st, st+1, st+2, . . . , s2t}, where si + s2t+1−i =

nk−1 for all 1 ≤ i ≤ 2t. To confirm that Sj,k is reversible, we must verify that these

elements appear in non-decreasing order. Since st = max(Sj,k−1) ≤ ⌊nk−1

2
⌋, we have

st ≤ st+1, which implies that Sj,k is non-decreasing. It follows that Sj,k is reversible,

with Ω(Sj,k) = nk−1. Note that if j = k, then Sk,k = {nk−1, nk−1+1, . . . , ⌊nk

2
⌋}, which

is also reversible, but has a different end sum.

Finally, part (g) follows from the observation that min(Sj,k) = s1 ≥ 1, and so by

part (f), max(Sj,k) = s2t = Ω(Sj,k) − s1 = nk−1 − s1 ≤ nk−1 − 1.

Each result in Proposition 3.5 holds for any k-tuple of integers (a1, a2, . . . , ak),

where each ai ≥ 3. Consider the truncation of the k-tuple to the first m ≤ k ele-

ments, i.e., the m-tuple (a1, a2, . . . , am). By the same argument, each of the results

in Proposition 3.5 hold for this m-tuple, which we derive by simply replacing k by m.

For example, Sj,m = Sj,m−1

⋃{nm−1−x : x ∈ Sj,m−1}. We refer to this as the Trun-

cation Principle. Although it will not be explicitly stated, the Truncation Principle
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will be applied repeatedly throughout this chapter, especially in our analysis of star

extremal graphs in Section 3.2.

Definition 3.6 We say that an interval of a generating set Sj,k is a maximum

sequence of consecutive terms.

For example, S1,3 = {1, 2, 3, 20, 21, 22} consists of two intervals of length 3, namely

the intervals {1, 2, 3} and {20, 21, 22}. For any integer k ≥ 1, the generating set

Sk,k = {nk−1, nk−1 + 1, . . . , ⌊nk

2
⌋} consists of one interval of length ⌊nk

2
⌋ − nk−1 + 1.

Lemma 3.7 Let 1 ≤ j ≤ k−1. Then Sj,k consists of 2k−j−1 intervals of equal length.

Proof: We proceed by induction on k. The base case k = 2 is trivial, as S1,2 =

{1, 2, . . . , n1 − 1}. Let k ≥ 3 and suppose the lemma is true for k − 1. Then, for

all 1 ≤ j ≤ k − 2, the set Sj,k−1 consists of 2k−j−2 intervals of equal length. As

noted earlier in the proof of Proposition 3.5 (f), if Sj,k−1 = {s1, s2, . . . , st}, then

Sj,k = {s1, s2, . . . , st, st+1, st+2, . . . , s2t} where si + s2t+1−i = nk−1 for all 1 ≤ i ≤ 2t.

Each half of Sj,k (namely the first t elements and the last t elements) consists of

exactly 2k−j−2 intervals of equal length, by the induction hypothesis. Now we show

that no elements overlap, and that these intervals are disjoint. By Proposition 3.5

(g), max(Sj,k−1) = st ≤ nk−2 − 1, and so

st+1 − st = (nk−1 − st) − st

= nk−1 − 2st

≥ nk−1 − 2(nk−2 − 1)

= (ak−1nk−2 − 1) − 2nk−2 + 2

= (ak−1 − 2)nk−2 + 1

> 1.

It follows that all of these intervals are disjoint. Thus, Sj,k consists of 2k−j−1

intervals of equal length, completing the induction. Finally, if j = k − 1, then we

need to show that Sk−1,k consists of just 2k−j−1 = 1 interval. This follows as Sk−1,k =

{nk−2, nk−2 + 1, . . . , nk−1 − nk−2}, by Proposition 3.5 (e).

Now we state the main theorem of this section.
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Theorem 3.8 Let a1, a2, . . . , ak be integers such that 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak−2 ≤
ak−1 ≤ ak + 1. Then,

α(Gj,k) =

{

akα(Gj,k−1) − 1 for 1 ≤ j ≤ k − 1

nk−1 for j = k

This theorem gives us a formula for each α(Gj,k), for any k-tuple (a1, a2, . . . , ak)

satisfying the given conditions. This powerful theorem gives us a simple recurrence

relation to compute exact values of α(G) for an infinite family of circulant graphs,

rather than just upper and lower bounds. Past papers [30, 46, 48, 78, 99, 121, 123]

have established many bounds on α(G) for various families of circulants, but only a

few formulas for α(G) have been found. In all of these known examples, the generating

set S has either consisted of at most two intervals of equal length, or has been a set

of at most 4 singleton elements (e.g. S = {x, y, x + y, x − y} for some x > y). By

Lemma 3.7, this theorem will give us the exact value of α(G) for families of circulants

with 2k intervals, for any integer k ≥ 1. Therefore, Theorem 3.8 extends much of

what is currently known about the values of α(Cn,S).

Theorem 3.8 gives us a simple polynomial time recurrence to determine α(G)

for any graph in this infinite family. To illustrate, we compute the independence

number for the graph G = C183,{1,2,3,20,21,22}. Recall that this graph is G1,3, where

(a1, a2, a3) = (5, 6, 8).

α(C183,{1,2,3,20,21,22}) = 8α(C23,{1,2,3}) − 1

= 8(6α(C4,{1,2}) − 1) − 1

= 8(6 · 1 − 1) − 1

= 39.

In fact, we can find an explicit formula for α(Gj,k) from Theorem 3.8.

Corollary 3.9 For each 1 ≤ j < k,

α(Gj,k) = nj−1

k∏

p=j+1

ap −
k∑

i=j+2

(
k∏

p=i

ap

)

− 1.
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Proof: Fix a1, a2, . . . , ak, and let g(k) equal the right side of the above identity.

Then g(k) = akg(k−1)−1. Also, α(Gj,k) = akα(Gj,k−1)−1. The desired result then

follows by a simple induction argument.

Now we prove Theorem 3.8. First, we prove the j = k case directly. Then we

establish the 1 ≤ j ≤ k − 1 case by proving the upper bound, then the lower bound.

Proposition 3.10 Let k ≥ 1. Then, α(Gk,k) = nk−1.

Proof: By Proposition 3.5 (d), Sk,k = {nk−1, nk−1 + 1, . . . , ⌊nk

2
⌋}. The set I =

{0, 1, 2, . . . , nk−1 − 1} is independent in Gk,k, which shows that α(Gk,k) ≥ |I| = nk−1.

But if I is an independent set with |I| > nk−1, then there must be two elements with

a circular distance of at least nk−1, which is a contradiction.

Now we prove that α(Gj,k) ≤ akα(Gj,k−1) − 1, for each 1 ≤ j ≤ k − 1. The result

will follow immediately from two lemmas. The first lemma is a result of Collins [48].

Lemma 3.11 ([48]) Let G = Cn,S. Let GS be the subgraph of G induced by taking

any set of Ω(S) consecutive vertices in G. Then, α(G)
|G| ≤ α(GS)

|GS | .

Lemma 3.12 Let 1 ≤ j ≤ k − 1 be fixed. Let H be the subgraph of Gj,k induced by

taking any set of Ω(Sj,k) consecutive vertices in Gj,k. Then, H ≃ Gj,k−1.

Proof: By Proposition 3.5 (f), Sj,k is reversible with Ω(Sj,k) = nk−1. Since Gj,k

is a circulant, all induced subgraphs of Gj,k with nk−1 consecutive vertices will be

isomorphic. So without loss, we can take H to be the subgraph of Gj,k induced by

the vertices 0, 1, 2, . . . , nk−1 − 1. To show H ≃ Gj,k−1, we prove that uv ∈ E(H) iff

uv ∈ E(Gj,k−1). The latter is equivalent to the condition |u − v|nk−1
∈ Sj,k−1.

Let 0 ≤ u < v ≤ nk−1 − 1. Since nk = aknk−1 − 1 > 2(nk−1 − 1), uv ∈ E(H) iff

|u−v|nk
= v−u ∈ Sj,k. By Proposition 3.5 (a), Sj,k = Sj,k−1

⋃{nk−1−x : x ∈ Sj,k−1},
and so v − u ∈ Sj,k iff v − u ∈ Sj,k−1 or nk−1 − (v − u) ∈ Sj,k−1. In other words,

uv ∈ E(H) iff |u − v|nk−1
∈ Sj,k−1. This proves that H ≃ Gj,k−1, and our proof is

complete.

Proposition 3.13 For each 1 ≤ j ≤ k − 1, we have α(Gj,k) ≤ akα(Gj,k−1) − 1.
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Proof: From Lemmas 3.11 and 3.12,
α(Gj,k)

|Gj,k| ≤ α(Gj,k−1)

|Gj,k−1| . Since |Gj,k| = nk and

|Gj,k−1| = nk−1, we have

α(Gj,k) ≤
nk

nk−1

α(Gj,k−1) =
aknk−1 − 1

nk−1

α(Gj,k−1) < akα(Gj,k−1).

Since α(Gj,k) < akα(Gj,k−1), this implies that α(Gj,k) ≤ akα(Gj,k−1) − 1, as

required.

Now we prove that α(Gj,k) ≥ akα(Gj,k−1) − 1, for each 1 ≤ j ≤ k − 1. We will

require two lemmas. Once again, the first lemma is a result of Collins [48].

Lemma 3.14 ([48]) Let H1 = Cn,S have a reversible generating set S, and suppose

n ≥ Ω(S) + max(S). For k ≥ 2, define Hk to be the circulant with n + (k − 1)Ω(S)

vertices and generating set S. Let HS be the subgraph induced by taking any set of

Ω(S) vertices from H1. Then, α(Hk) ≥ α(H1) + (k − 1)α(HS) for all k ≥ 1.

In the actual lemma found in [48], the given condition is n > Ω(S) + max(S).

However, Lemma 3.14 is also correct when n = Ω(S) + max(S), as the proof just

requires that there is no element x ∈ S such that 0 ≤ n − x ≤ Ω(S) − 1. And if

n = Ω(S)+max(S), then n−x ≥ n−max(S) = Ω(S). Thus, Lemma 3.14 also holds

in this special case, and so we include this in the statement of the lemma.

Lemma 3.15 Let i ∈ Sj,k, where 1 ≤ j ≤ k − 2. Then i = x or i = nk−1 − nk−2 + x

for some x ∈ Sj,k−1.

Proof: By Proposition 3.5 (f), Sj,k−1 is a reversible set with Ω(Sj,k−1) = nk−2. Let

Sj,k−1 = {s1, s2, . . . , st}. Then the reversibility of Sj,k−1 implies that st−q+1 = nk−2−sq

for any 1 ≤ q ≤ t.

Since Sj,k = ±Sj,k−1 (mod nk−1), we have Sj,k = {s1, s2, . . . , st, st+1, . . . , s2t},
which is also reversible. Therefore, for any 1 ≤ q ≤ t, we have st+q = nk−1 − st−q+1 =

nk−1 − (nk−2 − sq), and so st+q = nk−1 − nk−2 + sq.

Let x ∈ Sj,k−1 = {s1, s2, . . . , st}. By our analysis, we conclude that i = x or

i = nk−1 − nk−2 + x for some x ∈ Sj,k−1.



71

Lemma 3.16 Let k ≥ 3, and fix 1 ≤ j ≤ k − 2. Define H = Cak−1(nk−1−nk−2),Sj,k
and

H ′ = Cnk−1−nk−2,Sj,k−1
. Then, α(H) ≥ ak−1α(H ′).

Proof: Let α(H ′) = t, and let I ′ = {v1, v2, . . . , vt} be a maximum independent set

of H ′. We will prove that α(H) ≥ tak−1.

Since I ′ is independent, for any va, vb ∈ I ′, we have |va − vb||V (H′)| /∈ Sj,k−1, which

implies that va − vb 6≡ ±r′ (mod nk−1 − nk−2), for all r′ ∈ Sj,k−1. This holds because

|V (H ′)| = nk−1 − nk−2.

By Lemma 3.15, every r ∈ Sj,k satisfies r ≡ r′ (mod nk−1 − nk−2), for some

r′ ∈ Sj,k−1.

Let us construct an independent set of H with tak−1 vertices. Define

I = {p(nk−1 − nk−2) + vq : 0 ≤ p ≤ ak−1 − 1, 1 ≤ q ≤ t}.

We show that I is independent, which will prove that α(H) ≥ |I| = tak−1. Let

x, y ∈ I. Then |x − y||V (H)| = z(nk−1 − nk−2) + (va − vb), for some integer z and

va, vb ∈ I ′. Since |V (H)| = ak−2(nk−1 − nk−2), it follows that |x − y||V (H)| ≡ va − vb

(mod nk−1 − nk−2). From above, this implies that |x − y||V (H)| 6≡ ±r′ (mod nk−1 −
nk−2), for any r′ ∈ Sj,k−1. But we just showed that every element in Sj,k is congruent

modulo nk−1 − nk−2 to some r′ ∈ Sj,k−1. Therefore, |x − y||V (H)| /∈ Sj,k, i.e, x, y ∈ I

implies that xy /∈ E(H). Thus, I is independent, and our proof is complete.

To illustrate Lemma 3.16, let us use our earlier example of (a1, a2, a3) = (5, 6, 8).

For this ordered triplet, we have n1 = 4, n2 = 23, and n3 = 183. This lemma states

that α(C114,{1,2,3,20,21,22}) ≥ 6α(C19,{1,2,3}). We have α(C19,{1,2,3}) = 4, and a maximal

independent set is {0, 4, 8, 12}. By our lemma, the set I = {19p + 4q : 0 ≤ p ≤ 5, 0 ≤
q ≤ 3} is an independent set in C114,{1,2,3,20,21,22} with 24 vertices.

Now we are ready to prove the upper bound.

Proposition 3.17 Let a1, a2, . . . , ak be integers such that 3 ≤ a1 ≤ a2 ≤ . . . ≤
ak−2 ≤ ak−1 ≤ ak + 1. Then, α(Gj,k) ≥ akα(Gj,k−1) − 1, for each 1 ≤ j ≤ k − 1.

Proof: First, we prove that the result is true for j = k − 1. By Proposition 3.5 (e),

Sk−1,k = {nk−2, nk−2 + 1, . . . , nk−1 − nk−2}. Now define

I = {pnk−1 + q : 0 ≤ p ≤ ak − 1, 0 ≤ q ≤ nk−2 − 1}.
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Then, it is straightforward to check that I−{0} is an independent set of Sk−1,k, which

proves that α(Gk−1,k) ≥ |I|−1 = aknk−2−1 = akα(Gk−1,k−1)−1, by Proposition 3.10.

Now let 1 ≤ j ≤ k − 2. We proceed by induction on k. There is nothing to prove

for the case k = 2, so let k ≥ 3, and suppose that the statement is true for all indices

less than k.

By definition, nk = aknk−1 − 1 and nk−1 = ak−1nk−2 − 1. Hence,

nk = aknk−1 + nk−1 − ak−1nk−2

= ak−1(nk−1 − nk−2) + (ak − ak−1 + 1)nk−1

= ak−1(nk−1 − nk−2) + (ak − ak−1 + 1)Ω(Sj,k).

For each k ≥ 1, define Hk to be the circulant on ak−1(nk−1 − nk−2) + (k − 1)nk−1

vertices, with generating set Sj,k. We wish to apply Lemma 3.14. Before we apply

the lemma, we must check that the required conditions are satisfied. We require

(ak − ak−1 + 1) ≥ 0 and ak−1(nk−1 − nk−2) ≥ Ω(Sj,k) + max(Sj,k). The former is

satisfied because of the given inequality a1 ≤ a2 ≤ . . . ≤ ak−2 ≤ ak−1 ≤ ak + 1. Now

we verify the latter inequality. Since ak−1 ≥ 3, we have

(ak−1 − 3)nk−1 ≥ 0

=⇒ ak−1nk−1 − (nk−1 + 1) ≥ 2nk−1 − 1

=⇒ ak−1nk−1 − ak−1nk−2 ≥ nk−1 + (nk−1 − 1)

=⇒ ak−1(nk−1 − nk−2) ≥ Ω(Sj,k) + (nk−1 − 1)

=⇒ ak−1(nk−1 − nk−2) ≥ Ω(Sj,k) + max(Sj,k), by Proposition 3.5 (g).

Therefore, the conditions of the lemma are indeed met. By Lemma 3.14 and

Lemma 3.12, we have

α(Gj,k) = α(Cnk,Sj,k
) ≥ α(Cak−1(nk−1−nk−2),Sj,k

) + (ak − ak−1 + 1)α(Gj,k−1).

We claim that α(Cnk−1−nk−2,Sj,k−1
) = α(Gj,k−1) − α(Gj,k−2). By the induction

hypothesis, Proposition 3.17 holds for all (k − 1)-tuples of integers (b1, b2, . . . , bk−1)

for which 3 ≤ b1 ≤ b2 ≤ . . . ≤ bk−2 ≤ bk−1 + 1. Therefore, by the given condi-

tion 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak−2 ≤ ak−1, the corollary holds for both the k-tuples

(a1, a2, . . . , ak−2, ak−1) and (a1, a2, . . . , ak−2, ak−1 − 1).
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This translates to the following inequalities, by the induction hypothesis:

α(Cak−1nk−2−1,Sj,k−1
) = α(Gj,k−1) ≥ ak−1α(Gj,k−2) − 1.

α(C(ak−1−1)nk−2−1,Sj,k−1
) = α(Cnk−1−nk−2,Sj,k−1

) ≥ (ak−1 − 1)α(Gj,k−2) − 1.

But by Proposition 3.13, equality is reached in both cases. Note that in the

second case, equality follows by replacing ak−1 by ak−1−1 in the statement of Propo-

sition 3.13.

Subtracting one identity from the other, we have α(Gj,k−1)−α(Cnk−1−nk−2,Sj,k−1
) =

α(Gj,k−2), which is equivalent to α(Cnk−1−nk−2,Sj,k−1
) = α(Gj,k−1) − α(Gj,k−2).

Therefore, by Lemma 3.16,

α(Gj,k) ≥ α(Cak−1(nk−1−nk−2),Sj,k
) + (ak − ak−1 + 1)α(Gj,k−1)

≥ ak−1α(Cnk−1−nk−2,Sj,k−1
) + (ak − ak−1 + 1)α(Gj,k−1)

= ak−1(α(Gj,k−1) − α(Gj,k−2)) + (ak − ak−1 + 1)α(Gj,k−1)

= akα(Gj,k−1) + α(Gj,k−1) − ak−1α(Gj,k−2)

≥ akα(Gj,k−1) − 1, by the induction hypothesis.

This completes the proof.

Now Theorem 3.8 follows immediately from Propositions 3.10, 3.13, and 3.17.

3.2 Application 1: Star Extremal Graphs

A graph G is star extremal if its fractional chromatic number equals its circular

chromatic number. Let us now define these two graph invariants. First, we provide a

brief introduction to fractional graph theory.

For invariants such as ω(G) and χ(G), we may define a corresponding fractional

invariant [158], where we no longer require our solution to consist of whole pieces. For

example, in the case of the fractional chromatic number, denoted by χf (G), we will

require that each vertex get a total of one colour, allowing cases such as a vertex being

coloured 1
2

red, 1
3

blue, and 1
6

white. We will still require that no two adjacent vertices

share any amount of the same colour, i.e., we want a proper fractional colouring. If no
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vertex gets assigned a red part of more than 1
2
, then this colour contributes 1

2
to the

“total” number of colours used. The fractional chromatic number χf (G) is defined to

be the smallest number of “total” colours used in a proper fractional colouring of G.

For example, it can be shown that χf(C5) = 5
2
. Figure 3.1 illustrates a proper

fractional 5
2
-colouring of C5. Our colours are denoted by the letters A, B, C, D, E.

By definition, χf(G) ≤ χ(G).

Figure 3.1: A 3-colouring of C5 and a fractional 5
2
-colouring of C5.

The chromatic number χ(G) can be alternatively defined as the smallest cardinal-

ity of a vertex cover of G by independent sets. For example, in the above 3-colouring

of C5, the vertices that are assigned to each colour form an independent set. Since

three independent sets are required to cover all of the vertices, χ(C5) = 3. In this

context, we can define χ(G) using concepts from linear programming. This, in turn,

motivates the definition for χf(G).

Let M denote the vertex-independent set incidence matrix of G. The rows of

M are indexed by the vertices {v1, v2, . . . , vn}, and the columns are indexed by the

independent subsets of the vertices, {I1, I2, . . . , Im}. The (i, j) entry of M is 1 when

vi ∈ Ij , and is 0 otherwise.

Definition 3.18 ([158]) The chromatic number χ(G) = min1Tx, where Mx ≥ 1,

x ≥ 0, and x ∈ Zm. (Here, 1 denotes the m by 1 vector of all 1’s).
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The fractional chromatic number χf(G) is the relaxation of the integer pro-

gram into a linear program:

χf (G) = min1Tx, where Mx ≥ 1, x ≥ 0, and x ∈ Rm.

A comprehensive reference on fractional graph theory is found in [158]. Using

the idea of relaxing integer programs of graph invariants to the linear case, they

similarly define invariants such as the fractional matching number, the fractional

edge colouring number, and the fractional arboricity number. It is shown that these

invariants always take on rational (or fractional) values, hence the name. The topic

of fractional graph theory makes important connections between graph theory and

combinatorial optimization. Now we define the circular chromatic number χc(G).

Definition 3.19 ([169]) Let k and d be positive integers such that k ≥ 2d. A (k, d)-

colouring of a graph G = (V, E) is a mapping C : V → {0, 1, . . . , k−1} such that the

circular distance |C(x) − C(y)|k ≥ d for any xy ∈ E(G). Then, the circular chro-

matic number χc(G) is the infimum of k
d

for which there exists a (k, d)-colouring of

G.

For any non-trivial graph, χ(G) is just the smallest k for which there exists a (k, 1)-

colouring of G. So χc(G) is a generalization of χ(G). The circular chromatic number

is sometimes referred to as the star chromatic number [169, 181]. The following

theorems are known.

Theorem 3.20 ([169]) For any graph G, χ(G) = ⌈χc(G)⌉.

Theorem 3.21 ([102]) For any circulant graph G, χf (G) = |G|
α(G)

. More generally,

this identity holds for every vertex transitive graph G.

Theorem 3.22 ([121]) χf (G) and χc(G) are rational numbers satisfying

max

{

ω(G),
|G|

α(G)

}

≤ χf (G) ≤ χc(G) ≤ χ(G).

Since χf(G) ≤ χc(G) for all G, a natural question is to investigate when these two

invariants are equal. This motivates the definition of star extremality.
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Definition 3.23 ([78]) A graph G is star extremal if χf(G) = χc(G).

The notion of star extremality in graphs is first introduced in the study of the

chromatic number and the circular chromatic number of the lexicographic product

of graphs [78]. In all of the examples that follow, knowing that a graph is star

extremal enables us to quickly determine the circular chromatic number χc(G), which

is equal to the fractional chromatic number χf (G). By Lemma 3.20, this immediately

gives us the chromatic number χ(G). For many graphs, it is extremely difficult to

compute χ(G). However, in some cases, the value of χf(G) is known, or can be

quickly computed. Thus, proving the star extremality of G enables us to determine

χ(G).

Therefore, star extremal graphs are highly useful and important as it provides a

powerful technique to compute χ(G). In all of the papers on star extremal graphs,

the focus has been to characterize families of star extremal circulant graphs.

While several papers [30, 99, 111, 121, 123, 124, 125, 177, 178] have been written

on this topic, only a few examples of star extremal circulants are known. Gao and

Zhu [78] prove that Cn,{1,2,...,d} is star extremal for any n ≥ 2d. This is generalized

by Lih et. al., who show in [121] that Cn,{a,a+1,...,b} is star extremal for any ordered

triplet (n, a, b) satisfying n ≥ 2b and b ≥ 5a
4
. Other families of star extremal graphs

are given in [123], where S is of the form {1, 2, . . . , m−1, k, k +1, . . . , k +m−2} and

{k, k + 1, . . . , k1, k2, k2 + 1, . . . , ⌊n
2
⌋}. In each of the known families of star extremal

graphs, the generating set consists of at most two intervals. Even for these relatively

simple cases, it is extremely technical to prove that these circulant graphs are star

extremal, as the proof requires a great deal of case work. In this section, we will prove

the star extremality of an infinite family of circulant graphs, where these circulants

have 2k intervals of arbitrary length, for any k ≥ 0. The main theorem presented in

this section will greatly extend (or generalize) many of the currently known results.

Before we proceed further, let us mention that there are infinitely many circulant

graphs G that are not star extremal. The construction [181] is as follows: take any

circulant H with χf (H) 6= χ(H) (e.g. an odd cycle). Then let G be the disjoint

union of k copies of H, for some k ≥ 2. Then, G is a circulant, which implies that

G is a circulant. Zhu [181] proves that for this G, χf(G) < χc(G). Therefore, we
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know that infinitely many non star extremal graphs exist. To give one example of this

construction, G = C10,{1,3,4,5} is not star extremal. For this graph, we have χf(G) = 5

and χc(G) = 6.

Given G = Cn,S, and a positive integer t, let

λt(G) = min{|ti|n : i ∈ S},

where the product ti is reduced modulo n. Then define

λ(G) = max{λt(G) : t = 1, 2, 3, . . . , n}.

Unlike α(G), we note that λ(G) can be determined in polynomial-time for any

G = Cn,S.

The following lemma provides a sufficient condition for a graph to be star extremal.

Lemma 3.24 ([78]) Let G = Cn,S. Then, λ(G) ≤ α(G). Furthermore, if λ(G) =

α(G), then χf(G) = χc(G) = n
α(G)

, i.e., G is star extremal.

In any graph G satisfying λ(G) = α(G), the value of χ(G) can be calculated by

Theorem 3.20, namely χ(G) = ⌈ n
α(G)

⌉.
Lemma 3.24 is the main technique used to verify that a circulant G = Cn,S is

star extremal, and every paper on star extremal graphs has relied on this lemma.

But as we noted earlier, it is NP -hard to compute α(G) explicitly [46], even when

G is restricted to circulants. That is why so few star extremal graphs are known.

However, by Theorem 3.8, we know the exact value of α(G) for an infinite family of

circulants Gj,k with 2k intervals (for any k ≥ 0). Thus, it is a natural question to

consider the star extremality of these graphs. If we can calculate a formula for λ(G)

for each G = Gj,k in our infinite family, we can compare it to α(G) and check if these

values are equal.

In this section, we just restrict our analysis to the family of circulants Gj,k, where

3 ≤ a1 ≤ a2 ≤ . . . ≤ ak−1 ≤ ak. We make this restriction as the condition ak−1 =

ak + 1 was just a special case we introduced to prove Theorem 3.8.

Using Lemma 3.24, we will prove the following theorem, which proves the surpris-

ing result that every graph in our infinite family is star extremal. This is the main
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result in this section of the thesis, and we will devote the next 30 pages to formally

justify this theorem.

Theorem 3.25 Let k ≥ 2 be an integer, and let (a1, a2, . . . , ak) be a k-tuple of inte-

gers satisfying the inequality

3 ≤ a1 ≤ a2 ≤ . . . ≤ ak−1 ≤ ak.

Consider the circulant Gj,k = Gj(a1, a2, . . . , ak), as introduced in Definition 3.1.

Then Gj,k is star extremal for all j satisfying 1 ≤ j ≤ k.

Let (a1, a2, . . . , ak) be a k-tuple satisfying 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak−1 ≤ ak.

For notational convenience, we now refer to all such k-tuples as satisfying the non-

decreasing condition. Note that in all these k-tuples, we require a1 ≥ 3.

Theorem 3.25 encompasses many of the known families of star extremal graphs

that were highlighted earlier. For example, Gk−1,k is a one-interval set of the form

{a, a + 1, . . . , b}, and G1,3 is a two-interval set of the form {1, 2, . . . , a − 1, b, b +

1, . . . , b + a− 2}. For many of the known examples of circulant star extremal graphs,

we can determine the k-tuple (a1, a2, . . . , ak) corresponding to that graph. And as

we noted earlier, our construction for Sj,k (see Definition 3.1) generates infinitely

many examples of circulant graphs with 2k intervals, for any k ≥ 0. Therefore,

Theorem 3.25 represents a completely new classification of star extremal circulants,

significantly extending currently known results.

In the following definition, we introduce the ordered pair i (pi,m, qi,m), for each

j + 1 ≤ m ≤ k and i ∈ Sj,m. We will repeatedly use this definition in our inductive

proof that Sj,k is star extremal, for each 1 ≤ j ≤ k − 1. (Note: the j = k case is

trivial, and will be handled as a separate case).

Definition 3.26 Let (a1, a2, . . . , ak) be a k-tuple satisfying the non-decreasing condi-

tion, and fix 1 ≤ j ≤ k−1. Consider the generating set Sj,m, for each j +1 ≤ m ≤ k.

Define tj = 1 and tm = aj+1aj+2 · · · am for each j + 1 ≤ m ≤ k. For each m

satisfying j +1 ≤ m ≤ k, define for each i ∈ Sj,m the ordered pair (pi,m, qi,m), where

(pi,m, qi,m) is the unique pair of integers satisfying

tmi = pi,mnm + qi,m
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and

−nm

2
< qi,m ≤ nm

2
.

By definition, |qi,m| = |tmi|nm
for all i ∈ Sj,m.

Let us illustrate this definition with a specific example.

Consider the ordered triplet (a1, a2, a3) = (5, 6, 8), and fix j = 1. As described

previously, n0 = 1, n1 = 4, n2 = 23, and n3 = 183, from which we derive S1,2 =

{1, 2, 3}, and S1,3 = {1, 2, 3, 20, 21, 22}. By definition, t1 = 1, t2 = a2 = 6, and

t3 = a2a3 = 48.

We calculate (pi,m, qi,m) for m = 2 and m = 3. For m = 2, each i ∈ S1,2 satisfies

6i = 23pi,2 + qi,2, and for m = 3, each i ∈ S1,3 satisfies 48i = 183pi,3 + qi,3. We have

6 · 1 = 0 · 23 + 6

6 · 2 = 1 · 23 − 11

6 · 3 = 1 · 23 − 5

48 · 1 = 0 · 183 + 48

48 · 2 = 1 · 183 − 87

48 · 3 = 1 · 183 − 39

48 · 20 = 5 · 183 + 45

48 · 21 = 6 · 183 − 90

48 · 22 = 6 · 183 − 42

We derive the following ordered pairs, from the condition that −nm

2
< qi,m ≤ nm

2
.

(p1,2, q1,2) = (0, 6)

(p2,2, q2,2) = (1,−11)

(p3,2, q3,2) = (1,−5)
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(p1,3, q1,3) = (0, 48)

(p2,3, q2,3) = (1,−87)

(p3,3, q3,3) = (1,−39)

(p20,3, q20,3) = (5, 45)

(p21,3, q21,3) = (6,−90)

(p22,3, q22,3) = (6,−42)

By definition, λtm(Gj,m) = min{|qi,m| : i ∈ Sj,m}. In the above example, we have

λ6(G1,2) = min{6, 11, 5} = 5 and λ48(G1,3) = min{48, 87, 39, 45, 90, 42} = 39.

By Theorem 3.8, α(G1,2) = 6 · 1 − 1 = 5 and α(G1,3) = 8 · 5 − 1 = 39. By

Lemma 3.24, both of these circulants are star extremal since 5 = λ6(G1,2) ≤ λ(G1,2) ≤
α(G1,2) = 5 and 39 = λ48(G1,3) ≤ λ(G1,3) ≤ α(G1,3) = 39.

We will prove that λtk(Gj,k) = α(Gj,k) for each 1 ≤ j ≤ k − 1, and prove that

λ1(Gk,k) = α(Gk,k). By Lemma 3.24, this will establish that every Gj,k is star ex-

tremal.

To prove Theorem 3.25, we will require several technical lemmas. The first result

just highlights some trivial inequalities, and reiterates the definitions of some key

variables that will be applied repeatedly in the following proofs.

Proposition 3.27 Let (a1, a2, . . . , ak) be a k-tuple of integers satisfying the non-

decreasing condition. Let 1 ≤ j ≤ k−1 be fixed. Then, the following inequalities hold

for each j + 1 ≤ m ≤ k.

(a) 3 ≤ am−1 ≤ am.

(b) nm = amnm−1 − 1.

(c) tm = amtm−1.

(d) nm > nm−1 ≥ 2.
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(e) tm > tm−1 > 0.

Proof: Parts (a), (b), and (c) follow by definition.

Since am ≥ 3, we have nm = amnm−1 − 1 > nm−1. Also, nm−1 ≥ nj ≥ n1 =

a1 − 1 ≥ 2. This proves part (d).

Since am ≥ 3, we have tm = amtm−1 > tm−1. Also, tm−1 ≥ tj = 1. This proves

part (e).

The following lemma provides a bound on pi,m, which will be essential when

proving our recursive formula for (pi,m, qi,m), for each i ∈ Sj,m.

Lemma 3.28 Let (a1, a2, . . . , ak) be a k-tuple satisfying the non-decreasing condition

and fix 1 ≤ j ≤ k − 1. Consider the generating set Sj,m for each j + 1 ≤ m ≤ k.

Let tmi = pi,mnm + qi,m, for each i ∈ Sj,m. Then, 0 ≤ pi,m ≤ tm−1, for all i ∈ Sj,m.

Furthermore, if qi,m ≥ 0, then pi,m ≤ tm−1 − 1.

Proof: By definition, qi,m = tmi − pi,mnm ≤ nm

2
. Since each i ≥ 1, we must have

pi,m ≥ 0, or else qi,m ≥ tm · 1 + nm > nm

2
, a contradiction. This establishes the lower

bound. Now suppose that pi,m ≥ tm−1 + 1 for some i ∈ Sj,m. Then

tmi = pi,mnm + qi,m

≥ (tm−1 + 1)nm + qi,m

> (tm−1 + 1)nm − nm

2
> tm−1nm

= tm−1(amnm−1 − 1)

= tmnm−1 − tm−1

> tmnm−1 − tm

= tm(nm−1 − 1).

It follows that i > nm−1 − 1. However, by Proposition 3.5 (g), i ≤ max(Sj,m) ≤
nm−1 − 1, which is a contradiction. Hence, 0 ≤ pi,m ≤ tm−1, as required.

Now we prove that pi,m ≤ tm−1 − 1 whenever qi,m ≥ 0. Since i ≤ nm−1 − 1, we
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have qi,m = tmi − pi,mnm ≤ tm(nm−1 − 1) − pi,mnm. If pi,m = tm−1, then

qi,m ≤ tm(nm−1 − 1) − pi,mnm

= tmnm−1 − tm − tm−1nm

= amtm−1nm−1 − tm − tm−1(amnm−1 − 1)

= tm−1 − tm < 0.

Thus, if qi,m ≥ 0, we must have pi,m ≤ tm−1 − 1.

The next three results are technical algebraic proofs, which we will require to

prove the key lemmas that imply Theorem 3.25.

Lemma 3.29 Let (a1, a2, . . . , ak) be a k-tuple satisfying the non-decreasing condition,

and fix 1 ≤ j ≤ k − 1. Consider the generating set Sj,m, for each j + 1 ≤ m ≤ k. Let

tmi = pi,mnm + qi,m, for each i ∈ Sj,m. Then, for j + 2 ≤ m ≤ k, we have

nm > 2tm−2am + 2tm−2 + 1.

Proof: We prove the inequality by induction on m.

The base case m = j+2 is equivalent to nj+2 > 2tjaj+2+2tj +1 = 2aj+2+3. Since

nj+1 = aj+1nj−1 ≥ 3 ·2−1 = 5, we have nj+2 = aj+2nj+1−1 ≥ 5aj+2−1 > 2aj+2+3,

since aj+2 ≥ 3. This establishes the base case.

Now suppose the inequality is true for all indices less than m, for some m ≥ j +3.

By the induction hypothesis, we have

nm−1 > 2tm−3am−1 + 2tm−3 + 1

amnm−1 > 2amtm−3am−1 + 2amtm−3 + am

amnm−1 ≥ 2amtm−3am−2 + 2am−2tm−3 + am

nm + 1 ≥ 2amtm−2 + 2tm−2 + am

nm ≥ 2amtm−2 + 2tm−2 + (am − 1)

nm > 2tm−2am + 2tm−2 + 1.

This completes the induction, and so we are done.
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Lemma 3.30 Let (a1, a2, . . . , ak) be a k-tuple satisfying the non-decreasing condition,

and fix 1 ≤ j ≤ k − 1. Consider the generating set Sj,m, for each j + 1 ≤ m ≤ k. Let

tmi = pi,mnm + qi,m, for each i ∈ Sj,m. Then nm > 2tm−1 + 1 for j + 1 ≤ m ≤ k.

Proof: For j + 2 ≤ m ≤ k, the lemma follows as a direct corollary of Lemma 3.29,

since nm > 2tm−2am + 2tm−2 + 1 ≥ 2tm−2am−1 + 0 + 1 = 2tm−1 + 1. It remains

to prove part the lemma for the case m = j + 1. However, this is trivial since

nj+1 = aj+1nj − 1 ≥ 3 · 2 − 1 > 3 = 2tj + 1.

Lemma 3.31 Let (a1, a2, . . . , ak) be a k-tuple satisfying the non-decreasing condition.

Then

tk(nk−1 − nk−2) = (tk−1 − tk−2)nk − tk−2(ak − ak−1 + 1).

Proof: This proof follows directly from our established identities.

tk(nk−1 − nk−2)

= aktk−1(nk−1 − nk−2)

= tk−1aknk−1 − aktk−1nk−2

= tk−1(nk + 1) − tk−2nk + tk−2nk − aktk−1nk−2

= (tk−1 − tk−2)nk + tk−1 + tk−2nk − aktk−1nk−2

= (tk−1 − tk−2)nk + tk−2ak−1 + tk−2(aknk−1 − 1) − aktk−2ak−1nk−2

= (tk−1 − tk−2)nk + tk−2ak−1 + tk−2(aknk−1 − 1) − aktk−2(nk−1 + 1)

= (tk−1 − tk−2)nk + tk−2ak−1 − tk−2 − tk−2ak

= (tk−1 − tk−2)nk − tk−2(ak − ak−1 + 1).

This completes the proof.

By Lemma 3.15, if i ∈ Sj,k, then either i = x or i = nk−1 − nk−2 + x, for

some x ∈ Sj,k−1. In our earlier example with (a1, a2, a3) = (5, 6, 8), we showed that

S1,2 = {1, 2, 3} and S1,3 = {1, 2, 3, 20, 21, 22}. Hence, each i ∈ S1,3 equals x or 19 + x

for some x ∈ S1,2. Note that n2 − n1 = 23 − 4 = 19.

Now we prove that each pair (pi,k, qi,k) can be recursively generated from some

previous term (px,k−1, qx,k−1), where i ∈ Sj,k and x ∈ Sj,k−1. There are four possible
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representations for (pi,k, qi,k), depending on the value of i ∈ Sj,k. We will define a

term rx,k, which is a particular function of px,k−1 and qx,k−1. This term rx,k is not to

be confused with a remainder function; it is simply a term we introduce for notational

convenience.

To avoid confusion in the following proof, i will always refer to an element in Sj,k,

and x will always refer to an element in Sj,k−1.

Lemma 3.32 Let (a1, a2, . . . , ak) be a k-tuple satisfying the non-decreasing condition

and fix 1 ≤ j ≤ k − 2. Consider the generating set Sj,k. Select any i ∈ Sj,k. Then

i = x or i = nk−1 − nk−2 + x, for some x ∈ Sj,k−1. Let rx,k = px,k−1 + akqx,k−1 for

this value of x.

Then, there are four possible representations of (pi,k, qi,k) as a function of px,k−1

and qx,k−1.

Type I : (pi,k, qi,k) = (px,k−1, rx,k)

Type II : (pi,k, qi,k) = (px,k−1 + 1, rx,k − nk)

Type III : (pi,k, qi,k) = (px,k−1 + tk−1 − tk−2, rx,k − tk−2(ak − ak−1 + 1))

Type IV : (pi,k, qi,k) = (px,k−1 + tk−1 − tk−2 − 1, rx,k − tk−2(ak − ak−1 + 1) + nk)

If i = x ∈ Sj,k−1, then we have a Type I or Type II pair. And if i = nk−1−nk−2+x

for some x ∈ Sj,k−1, then we have a Type III or Type IV pair.

Proof: For each i ∈ Sj,k, (pi,k, qi,k) is the unique ordered pair satisfying tki =

pi,knk + qi,k, where −nk

2
< qi,k ≤ nk

2
.

Also, for each x ∈ Sj,k−1, (px,k−1, qx,k−1) is the unique ordered pair satisfying

tk−1x = px,k−1nk−1 + qx,k−1, where −nk−1

2
< qx,k−1 ≤ nk−1

2
.

In the following proof, we will find all possible ways that (pi,k, qi,k) can be expressed

recursively as a function of (px,k−1, qx,k−1).

We split our analysis into two cases.

Case 1: i = x, where x ∈ Sj,k−1.

If i = x ∈ Sj,k−1, we have tk−1i = tk−1x = px,k−1nk−1 + qx,k−1 for some pair of
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integers (px,k−1, qx,k−1) with −nk−1

2
< qx,k−1 ≤ nk−1

2
. Multiplying both sides of the

identity by ak, we have

aktk−1x = px,k−1aknk−1 + akqx,k−1

tkx = px,k−1(nk + 1) + akqx,k−1

tki = px,k−1nk + (px,k−1 + akqx,k−1)

tki = px,k−1nk + rx,k.

Since tki = tkx = px,knk + qx,k, we have rx,k ≡ qx,k (mod nk). Thus, qx,k =

rx,k + lnk, for some integer l. We now show that l = 0 or l = −1.

Since qx,k−1 > −nk−1

2
, this implies that qx,k−1 ≥ −nk−1

2
+ 1

2
. Also, px,k−1 ≥ 0 by

Lemma 3.28. Therefore,

rx,k = px,k−1 + akqx,k−1

≥ 0 − aknk−1

2
+

ak

2

= −nk + 1

2
+

ak

2

= −nk

2
+

ak − 1

2

> −nk

2
.

Thus, each rx,k > −nk

2
. Now we show that rx,k < nk. By definition, qx,k−1 ≤ nk−1

2
,

and by Lemma 3.28, px,k−1 ≤ tk−2. By Lemma 3.30, nk > nk−1 > 2tk−2+1. Therefore,

rx,k = px,k−1 + akqx,k−1 ≤ tk−2 + ak · nk−1

2
= tk−2 + nk

2
+ 1

2
< nk−1

2
+ nk

2
+ 1

2
= nk.

So we have shown that −nk

2
< rx,k < nk. Since qi,k = qx,k = rx,k + lnk must be in

the interval (−nk

2
, nk

2
], we must have l = 0 or l = −1.

If −nk

2
< rx,k ≤ nk

2
, then l = 0. In this case, qi,k = rx,k, and so (pi,k, qi,k) =

(px,k−1, px,k−1 + akqx,k−1). This is a Type I pair.

If nk

2
< rx,k < nk, then l = −1. In this case, qi,k = rx,k − nk, and so (pi,k, qi,k) =

(px,k−1 + 1, px,k−1 + akqx,k−1 − nk). This is a Type II pair.

Therefore, we conclude that (pi,k, qi,k) must be a Type I or Type II pair, when

i = x ∈ Sj,k−1.
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Case 2: i = nk−1 − nk−2 + x, where x ∈ Sj,k−1.

By Lemma 3.31, we have

tki = tk(nk−1 − nk−2) + tkx

= (tk−1 − tk−2)nk − tk−2(ak − ak−1 + 1) + tkx

= (tk−1 − tk−2)nk − tk−2(ak − ak−1 + 1) + (px,knk + qx,k)

= (px,k + tk−1 − tk−2)nk + (qx,k − tk−2(ak − ak−1 + 1)).

Let vi,k = qx,k − tk−2(ak − ak−1 + 1). By definition, tki = pi,knk + qi,k, and so

qi,k ≡ vi,k (mod nk).

Note that x ∈ Sj,k−1 ⊆ Sj,k. From Case 1, we know that x ∈ Sj,k and −nk

2
<

qx,k ≤ nk

2
.

We prove that −nk < vi,k ≤ nk

2
. The upper bound is clear, since qx,k ≤ nk

2
, tk−2 >

0, and ak−1 ≤ ak. Now we show that vi,k > −nk. By Lemma 3.30, nk−1 > 2tk−2 + 1.

Also, qx,k > −nk

2
. Thus,

vi,k = qx,k − tk−2(ak − ak−1 + 1)

> −nk

2
− tk−2(ak − ak−1 + 1)

= −nk

2
− tk−2ak + tk−2(ak−1 − 1)

> −nk

2
− tk−2ak

> −nk

2
+

ak

2
(−nk−1 + 1) by Lemma 3.30

= −nk

2
− nk + 1

2
+

ak

2

= −nk +
ak − 1

2
> −nk.

Hence, −nk < vi,k ≤ nk

2
. From above, tki = (px,k + tk−1 − tk−2)nk + vi,k. Since

qi,k ≡ vi,k (mod nk), qi,k = vi,k + lnk for some integer l. Since −nk < vi,k ≤ nk

2
, l

must be 0 or 1, so that qi,k falls in the desired range (−nk

2
, nk

2
].
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If −nk

2
< vi,k ≤ nk

2
, then l = 0. In this case, qi,k = vi,k and so

(pi,k, qi,k) = (px,k + tk−1 − tk−2, vi,k).

If −nk < vi,k ≤ −nk

2
, then l = 1. In this case, qi,k = vi,k + nk, and so

(pi,k, qi,k) = (px,k + tk−1 − tk−2 − 1, vi,k + nk).

Our motivation is to express pi,k and qi,k recursively in terms of px,k−1 and qx,k−1.

To do this, we first express qi,k in terms of vi,k, which is a function of qx,k. We then

express qx,k as a function of rx,k = px,k−1 + akqx,k−1.

Note that vi,k = qx,k − tk−2(ak −ak−1 +1) is a function of qx,k, and from the earlier

analysis of Type I and Type II pairs, qx,k = rx,k or qx,k = rx,k − nk. In all, there are

four possible subcases that we need to consider for (pi,k, qi,k).

(a) qi,k = vi,k, with qx,k = rx,k.

(b) qi,k = vi,k with qx,k = rx,k − nk.

(c) qi,k = vi,k + nk, with qx,k = rx,k.

(d) qi,k = vi,k + nk, with qx,k = rx,k − nk.

Consider subcase (a). We have tki = (px,k + tk−1 − tk−2)nk + vi,k. In this case,

qi,k = vi,k, i.e., −nk

2
< qi,k = vi,k ≤ nk

2
. Therefore, we have

pi,k = px,k + tk−1 − tk−2

qi,k = vi,k

= qx,k − tk−2(ak − ak−1 + 1)

= rx,k − tk−2(ak − ak−1 + 1).

Hence, this subcase corresponds to a Type III pair.

By a similar argument, subcase (c) corresponds to a Type IV pair, and subcase (d)

corresponds to a Type III pair. To conclude the proof, it suffices to prove that subcase

(b) leads to a contradiction, i.e., qi,k falls outside of the required range (−nk

2
, nk

2
].
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In subcase (b), qi,k = rx,k−nk−tk−2(ak−ak−1+1). We prove that qi,k < −nk

2
, which

establishes the desired contradiction. First assume that qx,k−1 ≥ 0. By Lemma 3.28,

this implies that px,k−1 ≤ tk−2 − 1. We have

qi,k = vi,k

= qx,k − tk−2(ak − ak−1 + 1)

= rx,k − nk − tk−2(ak − ak−1 + 1)

= px,k−1 + akqx,k−1 − nk − tk−2(ak − ak−1 + 1)

≤ (tk−2 − 1) + ak ·
nk−1

2
− nk − tk−2(ak − ak−1 + 1)

= tk−2 − 1 +
nk + 1

2
− nk − tk−2(ak − ak−1 + 1)

=
−nk − 1

2
− tk−2(ak − ak−1)

< −nk

2
since ak ≥ ak−1 and tk−2 ≥ 0.

The case qx,k−1 < 0 follows just as easily: we have

qi,k = px,k−1 + akqx,k−1 − nk − tk−2(ak − ak−1 + 1)

< tk−2 + 0 − nk − tk−2(ak − ak−1 + 1) by Lemma 3.28

= −nk − tk−2(ak − ak−1)

< −nk

2
.

Therefore, subcase (b) leads to a contradiction.

Our proof is now complete. In the first case i = x ∈ Sj,k−1, we established that

(pi,k, qi,k) must be Type I or Type II. In the second case i = nk−1 − nk−2 + x with

x ∈ Sj,k−1, we established that (pi,k, qi,k) must be Type III or Type IV. This concludes

the proof.

This lemma generalizes to all j + 2 ≤ m ≤ k by the same argument: (pi,m, qi,m)

can be represented as a function of px,m−1 and qx,m−1 in exactly four ways, where

i ∈ Sj,m and x ∈ Sj,m−1. These four representations correspond to the four types

given in Lemma 3.32 (by replacing k by m). The proof follows in exactly the same

way.
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Now we introduce the element the element y = nj −nj−1. By Proposition 3.5 (e),

y ∈ Sj,j+1. (Also by Proposition 3.5 (d), y /∈ Sj,j). Hence, Proposition 3.5 (b) implies

that y ∈ Sj,m for all j + 1 ≤ m ≤ k. We will prove that i = y is the element for

which |qi,k| is minimized over all i ∈ Sj,k. As we will refer to this constant element y

throughout the next few lemmas, we formally define it here.

Definition 3.33 Let 1 ≤ j ≤ k − 1 be a fixed integer. Then set y = nj − nj−1 .

The following three lemmas deal with the value of qy,k, and will be extremely

useful in proving our key result that qy,k is a negative number satisfying the inequality

|qi,k| ≥ −qy,k for all i ∈ Sj,k. This will imply that for t = tk, λt(Gj,k) = −qy,k. We

will then prove that α(Gj,k) = −qy,k, immediately implying that λ(Gj,k) = α(Gj,k).

Thus, the star extremality of Gj,k will be formally established, and this will conclude

the proof of Theorem 3.25.

Lemma 3.34 Let (a1, a2, . . . , ak) be a k-tuple satisfying the non-decreasing condition

and fix 1 ≤ j ≤ k − 1. Consider the generating set Sj,m for each j + 1 ≤ m ≤ k. Let

tmi = pi,mnm + qi,m, for each i ∈ Sj,m. Let y = nj − nj−1. Then

py,j+1 = 1 and qy,j+1 = −aj+1nj−1 + 1.

Proof: By definition, tj+1y = py,j+1nj+1+qy,j+1. Since tj+1 = aj+1 and y = nj−nj−1,

we have qy,j+1 = aj+1(nj − nj−1) − lnj+1, for some integer l = py,j+1.

There is a unique integer l for which −nj+1

2
< qy,j+1 ≤ nj+1

2
. We will prove that

l = 1.

First, we establish that nj − nj−1 ≥ nj

2
. This inequality is equivalent to nj =

ajnj−1 − 1 ≥ 2nj−1, or (aj − 2)nj−1 ≥ 1, which holds since aj ≥ 3 and nj−1 ≥ n0 = 1.

If l ≤ 0, then the above identity shows that qy,j+1 ≥ aj+1(nj − nj−1) ≥ aj+1nj

2
=

nj+1+1

2
>

nj+1

2
, a contradiction.

If l ≥ 2, then qy,j+1 ≤ aj+1(nj−nj−1)−2nj+1 < aj+1nj−2nj+1 = nj+1+1−2nj+1 <

−nj+1

2
, a contradiction.

It follows that l = 1, and so qy,j+1 = aj+1(nj −nj−1)−nj+1 = aj+1nj −aj+1nj−1 −
nj+1 = (nj+1 + 1) − aj+1nj−1 − nj+1 = −aj+1nj−1 + 1.
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We now prove that (py,m, qy,m) is a Type I pair for each j + 2 ≤ m ≤ k. By

induction, we prove that if (py,m, qy,m) is a Type I pair for the base case m = j + 2,

then it must be a Type I pair for all m ≥ j + 2.

Lemma 3.35 Let (a1, a2, . . . , ak) be a k-tuple satisfying the non-decreasing condition

and fix 1 ≤ j ≤ k − 1. Consider the generating set Sj,m for each j + 1 ≤ m ≤ k. Let

tmi = pi,mnm+qi,m, for each i ∈ Sj,m. Let y = nj−nj−1. Then for each j+2 ≤ m ≤ k,

(a) (py,m, qy,m) is a Type I pair with py,m = 1.

(b) qy,m = 1 + amqy,m−1 < 0.

Proof: We first prove that nm

2
< tmy = tm(nj − nj−1) < nm, for all j + 1 ≤ m ≤ k.

We proceed by induction on m.

We establish the base case m = j+1. By definition, tj+1 = aj+1. We have tj+1(nj−
nj−1) = aj+1nj − aj+1nj−1 < aj+1nj − 1 = nj+1, which proves the upper bound. The

lower bound holds since tj+1(nj − nj−1) = aj+1(nj − nj−1) = aj+1

(

nj − nj+1

aj

)

≥
aj+1

(

nj − nj+1

3

)

> aj+1 · nj

2
>

aj+1nj−1

2
=

nj+1

2
.

Now suppose the inequality is true for all indices less than m, for some m ≥ j +2.

By the induction hypothesis, we have

tm−1(nj − nj−1) ≤ nm−1 − 1

amtm−1(nj − nj−1) ≤ amnm−1 − am

tm(nj − nj−1) < amnm−1 − 1

tm(nj − nj−1) = nm.

This establishes the upper bound. The lower bound follows just as easily, since

tm−1(nj − nj−1) >
nm−1

2

amtm−1(nj − nj−1) >
amnm−1

2

tm(nj − nj−1) >
amnm−1

2

tm(nj − nj−1) >
amnm−1 − 1

2

tm(nj − nj−1) =
nm

2
.
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Hence, we have proven the desired inequality by induction.

By definition, tmy = tm(nj − nj−1) = py,mnm + qy,m, where −nm

2
< qy,m ≤ nm

2
.

From the above inequality, −nm

2
< tmy − nm < 0 ≤ nm

2
.

Therefore, it follows that tmy−py,mnm = qy,m = tmy−nm, implying that py,m = 1

for all j + 2 ≤ m ≤ k.

Note that (py,m, qy,m) is one of four possible types by Lemma 3.32. By this Lemma,

(py,m, qy,m) must be Type I or Type II, since y ∈ Sj,m−1 as well.

Since Type I is the only case where py,m = py,m−1, it follows that (py,m, qy,m) must

be Type I, since py,j+1 = py,j+2 = . . . = py,k = 1.

By the definition of a Type I pair, qy,m = ry,m = py,m−1+amqy,m−1 = 1+amqy,m−1.

Since qy,j+1 < 0 by Lemma 3.34, a trivial induction shows that each qy,m < 0.

We have now proven that each qy,m is negative. Now we find a bound on this

value of qy,m.

Lemma 3.36 Let (a1, a2, . . . , ak) be a k-tuple satisfying the non-decreasing condition

and fix 1 ≤ j ≤ k − 1. Consider the generating set Sj,m for each j + 1 ≤ m ≤ k. Let

tmi = pi,mnm + qi,m, for each i ∈ Sj,m. Let y = nj − nj−1. Then −qy,m > tm−2 − 1,

for all j + 2 ≤ m ≤ k.

Proof: We prove a slightly stronger result, that −qy,m > tm−2 + 1. We proceed by

induction on m.

First, we establish the base case m = j + 2. The desired inequality is equivalent

to −qy,j+2 > tj + 1 = 2, or qy,j+2 < −2. By Lemma 3.34, qy,j+1 = −aj+1nj−1 + 1 ≤
−3 · 1 + 1 = −2. By Lemma 3.35, qy,j+2 = 1 + aj+2qy,j+1 ≤ 1 + 3 · (−2) < −2.

This establishes the base case. Now suppose the inequality is true for all indices
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less than m, for some m ≥ j + 3. By the induction hypothesis,

−qy,m−1 > tm−3 + 1

−amqy,m−1 > amtm−3 + am

−qy,m + 1 > amtm−3 + am by Lemma 3.35

−qy,m > amtm−3 + (am − 1)

−qy,m ≥ am−2tm−3 + (am − 1)

−qy,m = tm−2 + (am − 1)

−qy,m > tm−2 + 1.

This completes the induction, and so we are done.

Now we will prove a major lemma that will require multiple pages to justify

rigorously. Part (a) of the lemma will determine the maximum value of qi,m when

qi,m < 0 and Part (b) will determine the minimum value of qi,m when qi,m ≥ 0.

Combining both parts, this will enable us to determine the minimum value of |qi,m|
over all i ∈ Sj,m. We will prove that this minimum value is −qy,m, where y = nj−nj−1.

Lemma 3.37 Let (a1, a2, . . . , ak) be a k-tuple satisfying the non-decreasing condition

and fix 1 ≤ j ≤ k − 1. Consider the generating set Sj,m for each j + 1 ≤ m ≤ k.

Let tmi = pi,mnm + qi,m, for each i ∈ Sj,m. Let y = nj − nj−1. Then, the following

statements hold for all j + 1 ≤ m ≤ k.

(a) If qi,m < 0, then

0 ≤ pi,m − py,m ≤ (am − 1)(qy,m − qi,m).

In other words, qi,m ≤ qy,m, whenever qi,m < 0. Equality occurs when i = y.

(b) If qi,m ≥ 0, then

qi,m ≥ −qy,m + tm−1.

Equality occurs when i = nm−1 − y.
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Proof: We will prove the lemma by induction on m. We first establish the base case

m = j + 1 for both Parts (a) and (b). Then we will prove Part (a) of the lemma, by

splitting the analysis into the four types described in Lemma 3.32. For each of these

four cases, we prove the lemma via the induction hypothesis. We use the exact same

technique to prove Part (b) of the lemma. Thus, all in all, we must prove the base

case, and then consider eight different cases to justify the lemma.

We first establish the base case m = j + 1.

By Proposition 3.5 (e), Sj,j+1 = {nj−1, nj−1+1, . . . , nj−nj−1}. For each i ∈ Sj,j+1,

we calculate the pair (pi,j+1, qi,j+1). We have 0 < tj+1i = aj+1i ≤ aj+1(nj − nj−1) ≤
aj+1(nj − 1) = aj+1nj − aj+1 = nj+1 + 1 − aj+1 < nj+1. Therefore, 0 < tj+1i < nj+1.

Since tj+1i = pi,j+1nj+1 + qi,j+1 satisfies −nj+1

2
< qi,j+1 ≤ nj+1

2
, we must have

pi,j+1 = 0 or pi,j+1 = 1. In the former case, qi,j+1 > 0, and in the latter case,

qi,j+1 < 0.

To illustrate the proof that follows, we introduce the example given at the begin-

ning of this section. In this example, recall that (a1, a2, a3) = (5, 6, 8), n3 = 183, and

S2,3 = {4, 5, 6, . . . , 19}. For j = 2, we also have t3 = a3 = 8. Letting j = 2, the

following table generates the values of qi,3 for each i ∈ S2,3.

8 · 4 = 0 · 183 + 32

8 · 5 = 0 · 183 + 40

8 · 6 = 0 · 183 + 48
...

...

8 · 10 = 0 · 183 + 80

8 · 11 = 0 · 183 + 88

8 · 12 = 1 · 183 − 87
...

...

8 · 17 = 1 · 183 − 47

8 · 18 = 1 · 183 − 39

8 · 19 = 1 · 183 − 31
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If qi,3 < 0, then |qi,3| = −qi,3 ≥ 31, where the minimum value is attained at the

endpoint i = 19. If qi,3 ≥ 0, then qi,3 ≥ 32, where the minimum value is attained

at the endpoint i = 4. We prove that in the general case, these minimum values of

|qi,j+1| always occur at the endpoints.

Among all the values of i for which qi,j+1 < 0 (i.e., pi,j+1 = 1), the minimum

value of |qi,j+1| occurs at the endpoint i = nj − nj−1. This follows from the identity

−qi,j+1 = nj+1 − tj+1i, which is minimized when i ∈ Sj,j+1 is maximized. Thus, the

minimum value of −qi,j+1 (i.e., the maximum of qi,j+1) occurs at i = nj − nj−1 = y.

By Lemma 3.34, qy,j+1 = −aj+1nj−1 + 1. From the previous paragraph, we have

qy,j+1 − qi,j+1 > 0 for all i 6= y with qi,j+1 < 0. Since pi,j+1 = py,j+1 = 1, we have

0 = pi,j+1 − py,j+1 ≤ (aj+1 − 1)(qy,j+1 − qi,j+1).

This proves Part (a) of the base case m = j + 1. Now we prove Part (b). Among

all the values of i for which qi,j+1 ≥ 0 (i.e., pi,j+1 = 0), the minimum value of qi,j+1

occurs at the endpoint i = nj−1. This follows from the identity qi,j+1 = tj+1i, which

is minimized when i ∈ Sj,j+1 is minimized. Thus, the minimum value of qi,j+1 occurs

at i = nj−1 = nj − (nj − nj−1) = nj − y.

Therefore, if qi,j+1 ≥ 0, then qi,j+1 ≥ tj+1nj−1 = aj+1nj−1 = −qy,j+1 + 1, by

Lemma 3.34. Since tj = 1, we have shown that qi,j+1 ≥ −qy,j+1 + tj, with equality

occurring when i = nj − y. This proves Part (b) of the base case.

This establishes the base case m = j +1. Now let m ≥ j +2, and suppose that the

lemma holds for all indices less than m. By the induction hypothesis, the following

identities hold for each x ∈ Sj,m−1.

(a) If qx,m−1 < 0, then 0 ≤ px,m−1 − py,m−1 ≤ (am−1 − 1)(qy,m−1 − qx,m−1).

(b) If qx,m−1 ≥ 0, then qx,m−1 ≥ −qy,m−1 + tm−2.

In proving Part (a) of Lemma 3.37, we will constantly refer to this induction

hypothesis.
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Proof of Part (a)

We split our analysis into the four cases corresponding to the types determined

in Lemma 3.32. In all four possibilities for part (a), we are only interested in

the case qi,m < 0, since there is nothing to prove when qi,m ≥ 0. By Lemma 3.32,

each qi,m can be expressed recursively as a function of rx,m = px,m−1 + amqx,m−1,

where x ∈ Sj,m−1 satisfies i = x or i = x + nm−1 − nm−2. Recall that the i = x case

corresponds to the Type I and Type II pairs, while the i = x + nm−1 − nm−2 case

corresponds to the Type III and Type IV pairs.

For each of our four types, either qx,m−1 < 0 or qx,m−1 ≥ 0. We will determine

which inequality holds for each of our four types (there will be only one), which then

enables us to use the correct statement of the induction hypothesis.

Recall by Lemma 3.35 that (py,m, qy,m) is a Type I pair with py,m = py,m−1 = 1

and qy,m = ry,m = py,m−1 + amqy,m−1 = 1 + amqy,m−1 < 0.

Case 1: (pi,m, qi,m) is a Type I pair.

In this case, pi,m = px,m−1 and qi,m = rx,m = px,m−1 + amqx,m−1, where i = x ∈
Sj,m−1 ⊆ Sj,m.

As discussed above, either qx,m−1 ≥ 0 or qx,m−1 < 0. We prove that in this case,

the former leads to a contradiction.

If qx,m−1 ≥ 0, then Lemma 3.28 tells us that qi,m = px,m−1+amqx,m−1 ≥ 0+am ·0 =

0, contradicting the assumption that qi,m < 0. Thus, qx,m−1 < 0. Since qx,m−1 < 0,

we may apply the induction hypothesis on the pair (px,m−1, qx,m−1). By the first

statement of the induction hypothesis, we have

pi,m − py,m = px,m−1 − py,m−1 ≥ 0.



96

Now we prove the second half of our desired inequality. We have

qy,m − qi,m = (py,m−1 + amqy,m−1) − (px,m−1 + amqx,m−1)

= am(qy,m−1 − qx,m−1) + (py,m−1 − px,m−1)

≥ am

am−1 − 1
(px,m−1 − py,m−1) − (px,m−1 − py,m−1) by the Ind. Hyp.

=
am − am−1 + 1

am−1 − 1
(px,m−1 − py,m−1)

≥ px,m−1 − py,m−1

am−1 − 1
since am ≥ am−1

=
pi,m − py,m

am−1 − 1
since (pi,m, qi,m) and (py,m, qy,m) are Type I pairs

≥ pi,m − py,m

am − 1
since am ≥ am−1.

Multiplying both sides by am − 1, we obtain the desired conclusion.

Case 2: (pi,m, qi,m) is a Type II pair.

In this case, pi,m = px,m−1 + 1 and qi,m = rx,m − nm = px,m−1 + amqx,m−1 − nm,

where i = x ∈ Sj,m−1 ⊆ Sj,m.

First, we must determine whether qx,m−1 ≥ 0 or qx,m−1 < 0.

Suppose that qx,m−1 < 0. Then

qi,m = px,m−1 + amqx,m−1 − nm

< px,m−1 − nm

≤ tm−2 − nm by Lemma 3.28

<
nm−1 − 1

2
− nm by Lemma 3.30

<
nm

2
− nm

= −nm

2
.

This contradicts the inequality −nm

2
< qi,m ≤ nm

2
. Therefore, we must have

qx,m−1 ≥ 0.

By the second statement of the induction hypothesis, we have qx,m−1 ≥ −qy,m−1 +

tm−2, i.e., qy,m−1 ≥ −qx,m−1 + tm−2.
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By Lemma 3.28, we have pi,m−py,m = (px,m−1 +1)−1 = px,m−1 ≥ 0, which proves

the first inequality.

Now we prove that (am − 1)(qy,m − qi,m) ≥ pi,m − py,m = px,m−1. We have

(am − 1)(qy,m − qi,m)

≥ qy,m − qi,m since am ≥ 3

= (py,m−1 + amqy,m−1) − (px,m−1 + amqx,m−1 − nm)

= (py,m−1 + nm) + am(qy,m−1 − qx,m−1) − px,m−1

= (1 + nm) + am(qy,m−1 − qx,m−1) − px,m−1 by Lemma 3.35

≥ amnm−1 + am(−qx,m−1 + tm−2 − qx,m−1) − px,m−1 by the I.H.

= am(nm−1 − 2qx,m−1) + amtm−2 − px,m−1

≥ am · 0 + amtm−2 − px,m−1 by the inequality qx,m−1 ≤ nm−1

2

> 2tm−2 − px,m−1 since am ≥ 3

≥ px,m−1 by Lemma 3.28

= (px,m−1 + 1) − 1

= pi,m − py,m by Lemma 3.35 .

We have proven the desired inequality.

Case 3: (pi,m, qi,m) is a Type III pair.

Let x = i − (nm−1 − nm−2) ∈ Sj,m−1. In this case, pi,m = px,m−1 + (tm−1 − tm−2)

and qi,m = rx,m − tm−2(am − am−1 + 1) = px,m−1 + amqx,m−1 − tm−2(am − am−1 + 1).
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First assume that qx,m−1 ≥ 0. By the second statement of the Induction Hypoth-

esis, this implies that qx,m−1 ≥ −qy,m−1 + tm−2. In this case, we have

qi,m = px,m−1 + amqx,m−1 − tm−2(am − am−1 + 1)

≥ 0 + am(−qy,m−1 + tm−2) − tm−2(am − am−1 + 1) by the I.H.

= −amqy,m−1 + amtm−2 − amtm−2 + am−1tm−2 − tm−2

= −amqy,m−1 + am−1tm−2 − tm−2

> am(tm−2 − 1) + am−1tm−2 − tm−2 by Lemma 3.36

≥ 3(tm−2 − 1) + am−1tm−2 − tm−2 since am ≥ 3

= tm−2(am−1 + 2) − 3

≥ 1(3 + 2) − 3

> 0.

Hence, we have qi,m > 0, contradicting the assumption that qi,m < 0.

Therefore, we have shown that qx,m−1 < 0. Hence, we can use the first statement

of the induction hypothesis. Since tm−1 = am−1tm−2 > tm−2, we have

pi,m − py,m = (px,m−1 − py,m−1) + (tm−1 − tm−2) > 0,
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by the induction hypothesis. We now establish the second half of our desired inequal-

ity. We have

qy,m − qi,m

= qy,m − (px,m−1 + amqx,m−1 − tm−2(am − am−1 + 1))

= (py,m−1 + amqy,m−1) − (px,m−1 + amqx,m−1) + tm−2(am − am−1 + 1)

= am(qy,m−1 − qx,m−1) + (py,m−1 − px,m−1) + tm−2(am − am−1 + 1)

≥ am(px,m−1 − py,m−1)

am−1 − 1
− (px,m−1 − py,m−1) + tm−2(am − am−1 + 1) by the I.H.

=
am − am−1 + 1

am−1 − 1
(px,m−1 − py,m−1) + tm−2(am − am−1 + 1)

≥ px,m−1 − py,m−1

am−1 − 1
+ tm−2(am − am−1 + 1) since am ≥ am−1

=
1

am−1 − 1
((pi,m − py,m) − (tm−1 − tm−2)) + tm−2(am − am−1 + 1) from above

=
pi,m − py,m

am−1 − 1
− tm−1 − tm−2

am−1 − 1
+ tm−2(am − am−1 + 1)

=
pi,m − py,m

am−1 − 1
− am−1tm−2 − tm−2

am−1 − 1
+ tm−2(am − am−1 + 1)

=
pi,m − py,m

am−1 − 1
− tm−2 + tm−2(am − am−1 + 1)

=
pi,m − py,m

am−1 − 1
+ tm−2(am − am−1)

≥ pi,m − py,m

am−1 − 1
since am ≥ am−1

≥ pi,m − py,m

am − 1
since am ≥ am−1.

Multiplying both sides by am − 1, we obtain the desired conclusion.

Case 4: (pi,m, qi,m) is a Type IV pair.

Let x = i− (nm−1−nm−2) ∈ Sj,m−1. In this case, pi,m = px,m−1 +(tm−1− tm−2−1)

and qi,m = rx,m − tm−2(am − am−1 + 1) + nm.

We now prove that qi,m > 0, which is irrespective of the sign of qx,m−1, i.e., the

induction hypothesis is unnecessary in this case.
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This result will then contradict our assumption that qi,m < 0. We have

qi,m = rx,m − tm−2(am − am−1 + 1) + nm

> rx,m − tm−2am + nm since am ≥ 3

= px,m−1 + amqx,m−1 − tm−2am + nm

> 0 + am · −nm−1

2
− tm−2am + nm

> −amnm−1

2
+

am(−nm−1 + 1)

2
+ nm by Lemma 3.30

= −amnm−1 +
am

2
+ nm

= −(nm + 1) +
am

2
+ nm

=
am

2
− 1

> 0 since am ≥ 3.

This yields the desired contradiction.

We have considered all four possibilities, and completed the induction in each

case. Therefore, we have proven Part (a) of Lemma 3.37. Now we prove Part (b).

Recall that by the induction hypothesis, we have the following.

(a) If qx,m−1 < 0, then qx,m−1 ≤ qy,m−1, with equality occurring when x = y =

nj − nj−1.

(b) If qx,m−1 ≥ 0, then qx,m−1 ≥ −qy,m−1 + tm−2, with equality occurring when

x = nm−2 − y = nm−2 − (nj − nj−1).

We will require both parts of the induction hypothesis in the following proof.

Proof of Part (b)

We have already proven the result for the base case m = j + 1. So suppose part

(b) of the lemma is true for all indices less than m, for some m ≥ j + 2. Since our

desired inequality requires the condition qi,m ≥ 0, we will now assume that qi,m ≥ 0.
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For i ∈ Sj,m ⊆ {1, 2, . . . , nm−1 − 1}, define i = nm−1 − i. Note that by Proposi-

tion 3.5 (a), i ∈ Sj,m for each i ∈ Sj,m. We will now prove that

qi,m + qi,m = tm−1.

Immediately thereafter, we will show that qi,m ≥ 0 implies qi,m < 0. By part (a)

of the lemma, which we just proved, we must have qi,m ≤ qy,m. Note that we may

apply this inequality in part (a), since i ∈ Sj,m.

Combining these two results, we will have qi,m = −qi,m + tm−1 ≥ −qy,m + tm−1,

proving part (b) for the case qi,m ≥ 0.

First we prove that qi,m + qi,m = tm−1 for all i ∈ Sj,m, where i = nm−1 − i. Since

tmi = pi,mnm + qi,m and tmi = pi,mnm + qi,m, we have

(pi,m + pi,m)nm + (qi,m + qi,m) = tm(i + i)

= tmnm−1

= tm−1amnm−1

= tm−1(nm + 1)

= tm−1 + tm−1nm.

It follows that qi,m+qi,m ≡ tm−1 (mod nm), for all i ∈ Sj,m. Therefore, qi,m+qi,m =

tm−1 + lnm for some integer l.

We know that 0 ≤ qi,m ≤ nm

2
and −nm

2
< qi,m ≤ nm

2
. The former inequality holds

since i ∈ Sj,m, and the latter inequality holds by the definition of qi,m, since i ∈ Sj,m.

If l ≤ −1, then qi,m + qi,m ≤ tm−1 − nm. In this case, qi,m ≤ tm−1 − nm − qi,m ≤
tm−1 − nm <

(
nm

2
− 1

2

)
− nm = −nm

2
− 1

2
, by Lemma 3.30. However, this contradicts

the inequality qi,m > −nm

2
, which holds by definition.

If l ≥ 1, then qi,m + qi,m ≥ tm−1 + nm > nm. However, both qi,m ≤ nm

2
and

qi,m ≤ nm

2
. Adding these two inequalities, we arrive at our desired contradiction.

Therefore, we must have l = 0, i.e., qi,m + qi,m = tm−1.

For any i ∈ Sj,m with qi,m ≥ 0, we have either qi,m < 0 or qi,m ≥ 0. We now

explain how the former inequality implies part (b) of the lemma.



102

In the case qi,m < 0, we may directly quote the result of part (a), which we just

proved, since i ∈ Sj,m. By replacing i with i, we have qi,m ≤ qy,m.

Therefore, if qi,m < 0, we have qi,m = −qi,m + tm−1 ≥ −qy,m + tm−1, with equality

occurring when i = y, i.e., i = nm−1 − y. This establishes Part (b) of Lemma 3.37 for

all i ∈ Sj,m satisfying qi,m < 0.

It remains to consider the case qi,m ≥ 0. We now prove that this case will never

occur (i.e., every possibility leads to a contradiction), which will complete the proof

of Lemma 3.37. We prove that this i ∈ Sj,m cannot satisfy both qi,m ≥ 0 and qi,m ≥ 0.

Suppose the contrary. Then by the identity qi,m + qi,m = tm−1, we must have

0 ≤ qi,m ≤ tm−1. Let us consider all four of the possible types for (pi,m, qi,m) given in

the proof of Lemma 3.32, and prove that in no case can the inequality 0 ≤ qi,m ≤ tm−1

hold. This will give us our desired contradiction.

Let us consider each of the four types and derive a contradiction in each case.

This will complete the proof of Lemma 3.37.

Case 1: (pi,m, qi,m) is a Type I pair.

In this case, i = x ∈ Sj,m−1, and qi,m = rx,m = px,m−1 + amqx,m−1.

As we did previously, we must consider the two possibilities: either qx,m−1 ≥ 0 or

qx,m−1 < 0. We will derive a contradiction in each case.
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If qx,m−1 ≥ 0, then by the second statement of the induction hypothesis, we have

qx,m−1 ≥ −qy,m−1 + tm−2. Therefore,

qi,m = px,m−1 + amqx,m−1

≥ 0 + amqx,m−1 by Lemma 3.28

≥ am(−qy,m−1 + tm−2) by the induction hypothesis

= −amqy,m−1 + amtm−2

= −qy,m + 1 + amtm−2 by Lemma 3.35

> tm−2 + amtm−2 by Lemma 3.36

≥ tj + amtm−2 since m ≥ j + 2

≥ 1 + am−1tm−2 since am ≥ am−1 and tj = 1

> am−1tm−2

= tm−1.

If qx,m−1 < 0, then we have

qi,m = px,m−1 + amqx,m−1

≤ px,m−1 + amqy,m−1 by the induction hypothesis

≤ tm−2 + amqy,m−1 by Lemma 3.28

= tm−2 + (qy,m − 1) by Lemma 3.35

< 0 by Lemma 3.36 .

In both situations, we have shown that qi,m cannot lie in the interval [0, tm−1],

giving us our desired contradiction.
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Case 2: (pi,m, qi,m) is a Type II pair.

In this case, i = x ∈ Sj,m−1, and qi,m = rx,m − nm = px,m−1 + amqx,m−1 − nm. We

will prove that qi,m < 0, irrespective of the sign of qx,m−1. We have

qi,m = rx,m − nm

= px,m−1 + amqx,m−1 − nm

≤ tm−2 + am · nm−1

2
− nm by Lemma 3.28

< tm−1 +
amnm−1

2
− nm

<
nm − 1

2
+

nm + 1

2
− nm by Lemma 3.30

= 0.

Therefore, we have proven that qi,m < 0, a contradiction.

Case 3: (pi,m, qi,m) is a Type III pair.

Let x = i−(nm−1−nm−2) ∈ Sj,m−1. In this case, qi,m = rx,m−tm−2(am−am−1+1).

We consider two cases: either qx,m−1 ≥ 0 or qx,m−1 < 0. We derive a contradiction in

each case.

If qx,m−1 ≥ 0, then by the second statement of the induction hypothesis, qx,m−1 ≥
−qy,m−1 + tm−2. We have

qi,m = rx,m − tm−2(am − am−1 + 1)

= px,m−1 + amqx,m−1 − tm−2(am − am−1 + 1)

≥ 0 + amqx,m−1 − tm−2(am − am−1 + 1) by Lemma 3.28

≥ 0 + am(−qy,m−1 + tm−2) − tm−2(am − am−1 + 1) by the Ind Hyp.

= −amqy,m−1 + amtm−2 − amtm−2 + am−1tm−2 − tm−2

= −amqy,m−1 + am−1tm−2 − tm−2

= (−qy,m + 1) + tm−1 − tm−2 by Lemma 3.35

> tm−2 + tm−1 − tm−2 by Lemma 3.36

= tm−1.
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On the other hand, if qx,m−1 < 0, then by the first statement of the induction

hypothesis, qx,m−1 ≤ qy,m−1. We have

qi,m = rx,m − tm−2(am − am−1 + 1)

= px,m−1 + amqx,m−1 − tm−2(am − am−1 + 1)

≤ tm−2 + amqx,m−1 − tm−2(am − am−1 + 1) by Lemma 3.28

< tm−2 + amqx,m−1 since am ≥ am−1 and tm−2 > 0

≤ tm−2 + amqy,m−1 by the induction hypothesis

= tm−2 + (qy,m − 1) by Lemma 3.35

< 0 by Lemma 3.36.

In both situations, we have shown that qi,m does not lie in the interval [0, tm−1],

giving us our desired contradiction.

Case 4: (pi,m, qi,m) is a Type IV pair.

Let x = i− (nm−1 −nm−2) ∈ Sj,m−1. In this case, qi,m = rx,m − tm−2(am − am−1 +

1) + nm.

We prove that qi,m > tm−1, irrespective of the sign of qx,m−1. We have

qi,m = rx,m − tm−2(am − am−1 + 1) + nm

= px,m−1 + amqx,m−1 − tm−2(am − am−1 + 1) + nm

≥ 0 + am · −nm−1

2
− tm−2(am − am−1 + 1) + nm by Lemma 3.28

= −amnm−1

2
− tm−2(am − am−1 + 1) + nm

= −nm + 1

2
− tm−2(am − am−1 + 1) + nm

=
nm

2
− tm−2(am − am−1 + 1) − 1

2

>

(

tm−2am + tm−2 +
1

2

)

− tm−2(am − am−1 + 1) − 1

2
by Lemma 3.29

= tm−2am + tm−2 − tm−2am + tm−2am−1 − tm−2

= tm−2am−1

= tm−1.
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Therefore, we have proven that qi,m > tm−1, a contradiction.

In all four cases, we have shown that there exists no i ∈ Sj,m for which qi,m ≥ 0

and qi,m ≥ 0. If qi,m ≥ 0, then we must have qi,m < 0. As discussed before, we may

now directly quote part (a) of the lemma which states that qi,m ≤ qy,m, with equality

occurring when i = y, i.e., i = nm−1 − y.

Combined with our earlier proof that qi,m + qi,m = tm−1, we conclude that qi,m ≥
−qy,m + tm−1, with equality occurring when i = nm−1 − y. This establishes Part (b)

of Lemma 3.37.

We have now examined every possible case for both Parts (a) and (b), and com-

pleted the induction. This concludes the proof of Lemma 3.37.

With these results, we are finally able to prove Theorem 3.25, the main theorem

of this section.

Proof: Before proceeding, we recall some definitions. Given G = Cn,S, and a positive

integer t,

λt(G) = min{|ti|n : i ∈ S},

where the product ti is reduced modulo n. In addition,

λ(G) = max{λt(G) : t = 1, 2, 3, . . . , n}.

By Lemma 3.24, λ(G) ≤ α(G). Furthermore, to prove that G is star extremal, it

suffices to prove that λ(G) = α(G). Specifically, to prove G is star extremal, we only

need to find one integer t for which λt(G) = α(G).

For j = k, we have λ1(Gj,k) = min{nk−1, nk−1 +1, . . . , ⌊nk

2
⌋} = nk−1, which equals

α(Gk,k), by Theorem 3.8. Thus, t = 1 satisfies the desired identity.

For 1 ≤ j ≤ k−1, we require a more sophisticated strategy, and that is the reason

why we introduced the ordered pair (pi,k, qi,k). As discussed earlier, to prove that

each Gj,k is star extremal, it suffices to find one integer t for which

λt(Gj,k) = min{|ti|nk
: i ∈ Sj,k} = min{|qi,k| : i ∈ Sj,k} = α(Gj,k).
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Finding such a t for each 1 ≤ j ≤ k − 1 will complete the proof of Theorem 3.25.

We now prove that tk = aj+1aj+2 · · ·ak is the desired value of t. Recall that by

our definition of qi,k, we have |tki|nk
= |qi,k|. For this index t = tk, we prove that

i = nj −nj−1 = y gives us the minimum value of |ti|nk
= |qi,k|, and we will show that

this minimum value equals α(Gj,k).

By Theorem 3.8, recall that

α(Gj,k) =

{

akα(Gj,k−1) − 1 for 1 ≤ j ≤ k − 1

nk−1 for j = k

If qi,k < 0, Lemmas 3.35 and 3.37 give us qi,k ≤ qy,k < 0, or |qi,k| ≥ |qy,k| = −qy,k.

Equality occurs when i = y.

If qi,k ≥ 0, Lemmas 3.35 and 3.37 give us qi,k ≥ −qy,k + tk−1 > 0, with equality

when i = nk−1 − y. In other words, |qi,k| ≥ −qy,k + tk−1.

This proves that min{|qi,k| : i ∈ Sj,k} = min{−qy,k,−qy,k + tk−1} = −qy,k.

This implies that for t = tk, λt(Gj,k) = −qy,k, where y = nj − nj−1. By

Lemma 3.35, qy,k = 1 + akqy,k−1, from which it follows that |qy,k| = ak|qy,k−1| − 1. In

other words, λtk(Gj,k) = akλtk−1
(Gj,k−1) − 1. This identity holds for any k-tuple sat-

isfying 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak, with 1 ≤ j ≤ k − 1. This argument easily generalizes

to the identity λtm(Gj,m) = amλtm−1(Gj,m−1) − 1 for each j + 1 ≤ m ≤ k.

By Theorem 3.8, α(Gj,m) = amα(Gj,m−1)− 1, which is the exact same recurrence

relation. So to prove that λtk(Gj,k) = α(Gj,k), it suffices to verify that the func-

tions have the same value for the base case m = j + 1. But this is trivial, since

λtj+1
(Gj,j+1) = −qy,j+1 = aj+1nj−1 −1 = aj+1α(Gj,j)−1 = α(Gj,j+1), by Lemma 3.34

and Theorem 3.8.

We have thus shown that every Gj,k is star extremal, for all k-tuples satisfying

3 ≤ a1 ≤ a2 ≤ . . . ≤ ak. Our proof is finally complete.

3.3 Application 2: Integer Distance Graphs

If S is a subset of the positive integers, then the integer distance graph G(Z, S) is

defined to be the graph with vertex set Z, where two vertices u and v are adjacent iff

|u − v| ∈ S. As with other families of graphs, a natural question is to determine the
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chromatic number of G(Z, S), the minimum number of colours required to colour the

vertices of G(Z, S), so that no two adjacent vertices receive the same colour.

Thus, S is the set of forbidden distances with respect to colouring the integers

on the real line. In a way, we can regard the integer distance graph G(Z, S) as the

infinite analogue of the circulant Cn,S.

The distance graph, first introduced by Eggleton, Erdös and Skilton [63], is mo-

tivated by the well-known Hadwiger-Nelson problem which asks for the minimum

number of colours needed to colour all points of the plane such that points at unit

distances receive different colours. This problem is equivalent to determining the

chromatic number of G(R2, {1}), which is known to be at least 4 and at most 7. A

comprehensive survey of this well-studied problem appears in [40].

Motivated by the plane colouring problem, we can consider the analogue to the

one-dimensional case by investigating the chromatic numbers of distance graphs on

the real line R and the integer set Z. A particularly interesting problem is deter-

mining the value of χ(G(Z, S)) for a given set S. Much work has been done on this

problem [30, 34, 63, 64, 99, 107, 108, 109, 110, 123, 125, 170, 171, 172], and we now

highlight some of the known results from these papers. For notational convenience,

we abbreviate χ(G(Z, S)) by χ(Z, S) .

If |S| ≤ 3, then an explicit formula for χ(Z, S) is known [34, 170] for all possible

sets S. For sets with |S| ≥ 4, only some partial results have been solved [107, 171].

For example, a formula is known for S = {x, y, x + y, y − x} with y > x > 0 and

also for S = {1, 2, 3, 4n}. If S = {2, 3, x, x + y}, then χ(Z, S) is known for many

pairs (x, y). It is shown [109] that χ(Z, S) ≤ |S| + 1, for an arbitrary S, and so a

natural question is to classify the sets S for which equality is reached. However, a

full classification has not yet been found.

If S is of a particular form, then several results are known. For example, it

is proven [125] that χ(Z, S) = m if S = {1, 2, . . . , n}\{m, 2m, . . . , sm}, for some

n ≥ (s+1)m. If S = {x, 2x, . . . , nx, y} where (x, y, n) is an ordered triplet of positive

integers, then it is known [110] that χ(Z, S) = |S|+ 1 if x = 1 and (n + 1) divides y;

otherwise, χ(Z, S) = |S|.
We highlight one final result, as we will employ it later in this section.
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Theorem 3.38 ([108]) Let a and d be positive integers so that S = {a + kd : k =

0, 1, 2, . . .} is an arithmetic sequence (either finite or infinite). Then

χ(Z, S) =







⌈ |S| − 1

a

⌉

+ 2 if d = 1

2 if d is even or |S| = 1

3 otherwise

Most of the known formulas for χ(Z, S) occur when S is a small set of singleton

elements, or when S is a highly structured set, such as an arithmetic sequence. We

generalize many of these results in this section, by determining a formula for χ(Z, S),

for every generating set S = Sj,k in our infinite family of circulants. This gives us

explicit values of χ(Z, S) for a new (infinite) family of sets S, which extends much of

what is currently known. For example, if (a1, a2, a3, a4) = (5, 6, 8, 10), then

S1,4 = {1, 2, 3, 20, 21, 22, 161, 162, 163, 180, 181, 182}.

And from the main theorem in this section, we will derive that χ(Z, S1,4) = 10. Our

theorem will calculate χ(Z, S) for sets S with 2k intervals of arbitrary length, for any

k ≥ 0. This is a significant extension of previously published results. In this main

theorem, we give the correct formula for χ(Z, S), for every S = Sj,k. As an immediate

corollary, we can determine the formula for the chromatic number χ(Gj,k), for each

1 ≤ j ≤ k. As we will see at the end of this section, the formula is remarkably simple.

Recall how the Sj,k’s are defined. Given any k-tuple of non-decreasing integers

(a1, a2, . . . , ak), we first define n0 = 1, and ni = aini−1 − 1, for 1 ≤ i ≤ k. Then for

each 1 ≤ j ≤ i ≤ k, we define

Sj,i =







±Sj,i−1 (mod ni−1) for all 1 ≤ j < i

{

1, 2, . . . ,
⌊ni

2

⌋}

−
i−1⋃

j=1

Sj,i for j = i

We now state the main theorem of this section.
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Theorem 3.39 Let 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak−1 ≤ ak, and let Sj,k be defined as above.

Then,

χ(Z, Sj,k) =







aj if 1 ≤ j ≤ k − 1 and k ≥ 3

⌊
aj + 3

2

⌋

if j = k ≥ 3 or if j = k = 2 and a1 > 3

⌊
a2 + 2

2

⌋

if j = k = 2 and a1 = 3

⌊
a1 + 1

2

⌋

if j = k = 1

a1 − 1 if (j, k) = (1, 2)

Before we prove Theorem 3.39, we will require two lemmas.

Lemma 3.40 Let Cn,S be a circulant, where S ⊆ {1, 2, . . . , ⌊n
2
⌋}. Then, χ(Z, S) ≤

χ(Cn,S).

Proof: Define S ′ = S
⋃{n − x : x ∈ S}. Since S ⊆ S ′, it follows that χ(Z, S) ≤

χ(Z, S ′), as |u − v| /∈ S ′ implies that |u − v| /∈ S. In other words, any k-colouring of

G(Z, S ′) must also be a k-colouring of G(Z, S).

We now prove that χ(Z, S ′) = χ(Cn,S). Combined with the inequality χ(Z, S) ≤
χ(Z, S ′), this will complete the proof. By definition, any proper colouring of G(Z, S ′)

must satisfy u− v /∈ S ′ whenever u > v. By the definition of S ′, any proper colouring

of Cn,S must satisfy u− v /∈ S ′ whenever u > v. The condition for a proper colouring

is identical for both graphs: the only difference is that G(Z, S ′) is an infinite graph,

while Cn,S is not.

We now justify that χ(Z, S ′) = χ(Cn,S). First note that any k-colouring of G(Z, S ′)

can be made into a k-colouring of Cn,S by taking its restriction to just the n vertices

of the circulant. Now we establish the converse: start with any k-colouring of Cn,S.

We explain how this generates a k-colouring of G(Z, S ′).
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For a particular k-colouring of Cn,S, let {V1, V2, . . . , Vk} be the set of colour classes

produced. We define the following tiling of the k colour classes:

Wi = Vi + nZ = {x + ny : x ∈ Vi, y ∈ Z.}

We now justify that each Wi is independent in G(Z, S ′), thus proving that the set

{W1, W2, . . . , Wk} represents the colour classes corresponding to a proper k-colouring

of G(Z, S ′).

Suppose on the contrary that a and b are not independent in some Wi, where

a > b. Then |a − b| = a − b = pn + v1 − v2 ∈ S ′, where v1, v2 ∈ Vi and p is some

non-negative integer. Since 0 ≤ v1, v2 ≤ n−1 and 1 ≤ pn+ v1− v2 ≤ n−1, it follows

that p = 0 or p = 1.

If p = 0, then v1 − v2 ∈ S ′, from above. So v1 > v2. By definition of S ′, this

implies that v1 − v2 ∈ S or n − (v1 − v2) ∈ S. In other words, v1 and v2 are not

independent in Cn,S, and thus cannot belong to the same colour class Vi. We have a

contradiction.

If p = 1, then n + v1 − v2 ∈ S ′. So v2 > v1. By definition of S ′, this implies that

n + v1 − v2 = n− (v2 − v1) ∈ S or n− (n + v1 − v2) = v2 − v1 ∈ S. In other words, v1

and v2 are not independent in Cn,S, and thus cannot belong to the same colour class

Vi. We have a contradiction.

This establishes the converse, that every k-colouring of Cn,S can be extended to

a k-colouring of G(Z, S ′). Hence we conclude that χ(Z, S ′) = χ(Cn,S). Since we have

already proven that χ(Z, S) ≤ χ(Z, S ′), the proof is complete.

There are infinitely many sets S for which equality does not hold. As a simple

example, consider the case n = 4 and S = {1, 2}. Then χ(Z, S) = 3, while χ(Cn,S) =

χ(K4) = 4.

Lemma 3.41 Let (a1, a2, . . . , ak) be a k-tuple of integers such that 3 ≤ a1 ≤ a2 ≤
. . . ≤ ak. Then, nk

α(Gj,k)
< aj for all 1 ≤ j ≤ k.

Proof: Let 1 ≤ m ≤ k be an integer. By induction on m, we will prove that the

inequality ajα(Gj,m) − nm ≥ 1 holds for all 1 ≤ j ≤ m. Letting m = k, this will

establish the lemma.
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We proceed by induction on m, proving the inequality for each 1 ≤ j ≤ m. The

base case m = 1 is trivial, as n1 = a1−1, and α(G1,1) = 1. So let m ≥ 2, and suppose

the lemma is true for all indices less than m. Then, by the induction hypothesis,

ajα(Gj,m−1) − nm−1 ≥ 1 for each 1 ≤ j ≤ m − 1. We have

ajα(Gj,m−1) − nm−1 ≥ 1

ajamα(Gj,m−1) − amnm−1 ≥ am

aj(α(Gj,m) + 1) − nm − 1 ≥ am, by Theorem 3.8.

ajα(Gj,m) − nm ≥ am − aj + 1

ajα(Gj,m) − nm ≥ 1, since am ≥ aj.

This proves the lemma for each 1 ≤ j ≤ m − 1. Finally for j = m, we have

α(Gm,m) = nm−1, by Theorem 3.8. And so amα(Gm,m) − nm = amnm−1 − nm = 1,

and our induction is complete.

Thus, letting m = k, we have shown that ajα(Gj,k) − nk ≥ 1, from which the

desired conclusion follows.

Now we are ready to prove Theorem 3.39.

Proof: We first deal with the most difficult (and most interesting!) case 1 ≤ j ≤ k−1,

with k ≥ 3. We prove that χ(Z, Sj,k) = aj in this case.

By Theorem 3.25, Gj,k is star extremal. By Lemma 3.24 and Lemma 3.41,

χc(Gj,k) = nk

α(Gj,k)
< aj. Therefore, χ(Gj,k) = ⌈χc(Gj,k)⌉ ≤ aj, by Theorem 3.20.

Finally, Lemma 3.40 implies that χ(Z, Sj,k) ≤ χ(Cnk,Sj,k
) = χ(Gj,k) ≤ aj .

To complete the proof, we need to prove that there is no (aj − 1) colouring of

χ(Z, Sj,k). We split our analysis into two subcases: when j = 1, and when 2 ≤ j ≤
k − 1.

Subcase 1: j = 1.

On the contrary, suppose there is an (a1 − 1)-colouring of G(Z, S1,k). We note

that S1,2 = {1, 2, . . . , a1 − 2}. Note that an (a1 − 1)-colouring of G(Z, S1,2) must be

unique, up to a permutation of colours. In fact, the colouring can be characterized
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very easily as follows: u and v have the same colour iff u ≡ v (mod a1 − 1).

By Proposition 3.5 (b), S1,2 ⊆ S1,k, and so any (a1 − 1)-colouring of G(Z, S1,k)

must have the property that u and v have the same colour iff u ≡ v (mod a1 − 1).

So in any proper colouring, the vertices 0 and (a1 − 1)(a2 − 1) must be coloured the

same, and hence (a1 − 1)(a2 − 1) /∈ S1,k, for all k ≥ 2.

We claim that n2 − n1 + 1 ∈ S1,3. To see this, note that a1 − 2 = n1 − 1 ∈ S1,2.

Since S1,3 = ±S1,2 (mod n2), we have n2 − (n1 − 1) ∈ S1,3. Thus, n2 − n1 + 1 ∈ S1,k

for all k ≥ 3.

However, n2 −n1 + 1 = (a2n1 − 1)−n1 +1 = n1(a2 − 1) = (a1 − 1)(a2 − 1) /∈ S1,k.

And this is a contradiction for all k ≥ 3. Therefore, no such (a1 − 1)-colouring exists.

Subcase 2: 2 ≤ j ≤ k − 1.

On the contrary, suppose there is an (aj−1)-colouring of G(Z, Sj,k). Let Hj be the

restriction of this graph to the vertices {0, 1, 2, . . . , (aj − 1)nj−1}. By the Pigeonhole

Principle, there must be nj−1 + 1 vertices in Hj that appear in the same colour class.

Let these vertices be v1, v2, . . . , vm, arranged in increasing order, where m = nj−1 +1.

Thus, vm − v1 ≤ (aj − 1)nj−1.

Let ui = vi+1 − vi for each 1 ≤ i ≤ m − 1. Since vi and vi+1 belong to the same

colour class, ui /∈ Sj,k. By Proposition 3.5 (b), Sj,j+1 ⊆ Sj,k, and so ui /∈ Sj,j+1. By

Proposition 3.5 (e), Sj,j+1 = {nj−1, nj−1 + 1, . . . , nj − nj−1}, so either 1 ≤ ui < nj−1

or ui > nj − nj−1. First, suppose some up ≥ nj − nj−1 + 1, for some 1 ≤ p ≤ m − 1.

Since each of the other ui’s are at least 1, we have

vm − v1 =

m−1∑

i=1

ui

≥ (nj − nj−1 + 1) + (m − 2) · 1
= (nj − nj−1 + 1) + (nj−1 + 1 − 2)

= nj

= ajnj−1 − 1

> (aj − 1)nj−1.

Since vm − v1 ≤ (aj − 1)nj−1, we have our desired contradiction. This shows that
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ui < nj−1, for each 1 ≤ i ≤ m − 1.

For each 1 ≤ i ≤ m, define wi = vi−v1. Since v1 and vi belong to the same colour

class, wi = vi−v1 /∈ Sj,j+1. Consider the strictly increasing sequence {w1, w2, . . . , wm}.
Since wm = vm − v1 ≥ m− 1 = nj−1 and wm /∈ Sj,j+1, we must have wm > nj − nj−1.

Since w1 = 0 < nj−1 and wm > nj − nj−1, there must exist a unique index r

for which wr < nj−1 and wr+1 > nj − nj−1. For this r, we have ur = vr+1 − vr =

wr+1 −wr ≥ (nj − nj−1 + 1)− (nj−1 − 1) = nj − 2nj−1 + 2 = (aj − 2)nj−1 + 1 > nj−1.

And this contradicts our claim that every ui < nj−1.

In both subcases, we have proven that no (aj − 1)-colouring exists in G(Z, Sj,k).

Therefore, we have shown that χ(Z, Sj,k) = aj for all k ≥ 3 and 1 ≤ j ≤ k − 1.

To complete the proof of Theorem 3.39, we must consider the cases j = k and

(j, k) = (1, 2). We split these cases into further subcases.

In all of these cases, we remark that Sj,k is a sequence of consecutive integers. If

j = k ≥ 1, then by Proposition 3.5 (d), Sk,k = {nk−1, nk−1 + 1, . . . , ⌊nk

2
⌋}. And if

(j, k) = (1, 2), then S1,2 = {1, 2, . . . , a1 − 2}, by Proposition 3.5 (e).

By Theorem 3.38, we have χ(Z, S1,2) = ⌈ (a1−2)−1
1

⌉ + 2 = a1 − 1, which proves the

final case of Theorem 3.39.

Also by Theorem 3.38, χ(Z, Sk,k) = ⌈ |S|−1
nk−1

⌉+2, where |S| = ⌊nk

2
⌋−nk−1 +1. From

this, it follows that for all k ≥ 1,

χ(Z, Sk,k) =

⌈ |S| − 1

nk−1

⌉

+ 2

=

⌈⌊nk

2
⌋

nk−1

− 1

⌉

+ 2

=

⌈⌊nk

2
⌋

nk−1

⌉

+ 1.

We now determine a simple formula for
⌈
⌊nk

2
⌋

nk−1

⌉

for each k ≥ 1.
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If j = k = 1, we have n0 = 1 and n1 = a1 − 1. Thus,

χ(Z, S1,1) =

⌈⌊n1

2
⌋

n0

⌉

+ 1

=

⌈⌊
a1 − 1

2

⌋⌉

+ 1

=

⌊
a1 − 1

2

⌋

+ 1

=

⌊
a1 + 1

2

⌋

.

If j = k = 2 and a1 = 3, we have n0 = 1, n1 = a1 − 1 = 2, and n2 = a2n1 − 1 =

2a2 − 1. Thus,

χ(Z, S2,2) =

⌈⌊n2

2
⌋

n1

⌉

+ 1

=

⌈⌊2a2−1
2

⌋
2

⌉

+ 1

=

⌈
a2 − 1

2

⌉

+ 1

=
⌊a2

2

⌋

+ 1

=

⌊
a2 + 2

2

⌋

.

We have two cases remaining: when j = k ≥ 3, and when j = k = 2 and a1 > 3.

Note that in both of these cases, nk−1 is at least 3. Since nk = aknk−1 − 1, we have

aknk−1 − 2

2
≤
⌊nk

2

⌋

=

⌊
aknk−1 − 1

2

⌋

≤ aknk−1 − 1

2
.

This implies that
ak

2
− 1

nk−1
≤ ⌊nk

2
⌋

nk−1
≤ ak

2
− 1

2nk−1
.

If ak is even, then the above inequality shows that ak

2
− 1 ≤ ⌊nk

2
⌋

nk−1
≤ ak

2
, implying

that
⌈
⌊nk

2
⌋

nk−1

⌉

= ak

2
.

And if ak is odd, then the above inequality shows that ak−1
2

≤ ⌊nk
2
⌋

nk−1
≤ ak+1

2
, since

nk−1 ≥ 3. This implies that
⌈
⌊nk

2
⌋

nk−1

⌉

= ak+1
2

.
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Consolidating both of these case into one identity, we have
⌈
⌊nk

2
⌋

nk−1

⌉

=
⌊

ak+1
2

⌋
.

Therefore,

χ(Z, Sk,k) =

⌈⌊nk

2
⌋

nk−1

⌉

+ 1

=

⌊
ak + 1

2

⌋

+ 1

=

⌊
ak + 3

2

⌋

=

⌊
aj + 3

2

⌋

since j = k.

Therefore, we have shown that

χ(Z, Sj,k) =







aj if 1 ≤ j ≤ k − 1 and k ≥ 3

⌊
aj + 3

2

⌋

if j = k ≥ 3 or if j = k = 2 and a1 > 3

⌊
a2 + 2

2

⌋

if j = k = 2 and a1 = 3

⌊
a1 + 1

2

⌋

if j = k = 1

a1 − 1 if (j, k) = (1, 2)

This completes the proof of Theorem 3.39.

Therefore, we have successfully verified our formula for χ(Z, Sj,k), for every pos-

sible generating set Sj,k in our construction. As a corollary of Theorem 3.39, we

can quickly derive the chromatic number for every graph in this infinite family

Gj,k = Cnk,Sj,k
.

Theorem 3.42 Let 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak−1 ≤ ak, and 1 ≤ j ≤ k. Then,

χ(Gj,k) =

{

aj − 1 if j = k = 1

aj otherwise
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Proof: By Theorem 3.21, χf (Gj,k) = nk

α(Gj,k)
. Since Gj,k is star extremal by The-

orem 3.25, χc(Gj,k) = χf(Gj,k) < aj by Lemma 3.41. By Theorem 3.20, χ(Gj,k) =

⌈χc(Gj,k)⌉ ≤ aj. This identity holds for all 1 ≤ j ≤ k.

In Theorem 3.39, we showed that χ(Z, Sj,k) = aj whenever 1 ≤ j ≤ k − 1 and

k ≥ 3. In this case, we must have χ(Gj,k) = aj , since χ(Gj,k) = χ(Cnk,Sj,k
) ≥

χ(Z, Sj,k) = aj by Lemma 3.40.

Now consider the other cases. If j = k ≥ 1, then by Theorems 3.21 and 3.8,

χc(Gj,k) = χf(Gj,k) = nk

α(Gj,k)
=

nj

α(Gj,j )
=

ajnj−1−1

nj−1
= aj − 1

nj−1
.

If j = k = 1, then nj−1 = 1 and so χc(Gj,k) = a1 − 1 in this case. Hence,

χ(Gj,k) = ⌈χc(Gj,k)⌉ = a1 − 1. And if j = k > 1, then nj−1 > 1 and so χ(Gj,k) =

⌈χc(Gj,k)⌉ = ⌈aj − 1
nj−1

⌉ = aj .

Finally, consider the case (j, k) = (1, 2). By Theorem 3.8, α(G1,2) = a2α(G1,1) −
1 = a2 − 1. Therefore, χc(Gj,k) = χf (Gj,k) = n2

α(G1,2)
= a2n1−1

a2−1
= a2(a1−1)−1

a2−1
. Since

3 ≤ a1 ≤ a2, we have a1 − 1 < a2(a1−1)−1
a2−1

< a1. This implies that χ(Gj,k) =

⌈χc(Gj,k)⌉ = ⌈a2(a1−1)−1
a2−1

⌉ = a1.

Therefore, in all cases, we have shown that χ(Gj,k) = aj , with the exceptional

case χ(Gj,k) = a1 − 1 when j = k = 1.

3.4 Application 3: Fractional Ramsey Numbers

In this section, we determine an explicit formula for the generalized fractional Ramsey

number rωf
(a1, a2, . . . , ak), solving an open problem from [102, 117].

Stated in its most general form, Ramsey Theory claims that within any sufficiently

large system, some regularity must always exist. In other words, “complete disorder

is impossible” [83]. Ramsey Theory is the study of regularity in complex random

structures. This branch of mathematics has laid the groundwork for many important

areas of current combinatorial research, which have applications to diverse areas of

pure and applied mathematics. Ramsey theorists have made significant contributions

to fields such as dynamical systems and ergodic theory.

This branch of mathematics grew out of the seminal paper by Frank Ramsey

[152] in 1930, which constituted a first step in an unsuccessful attempt to prove the

continuum hypothesis [132]. The motivation for Ramsey Theory originates from the
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so-called “party problem” [83], which is stated as follows.

Problem 3.43 If six people attend a party, prove that there must be a group of three

mutual acquaintances, or a group of three mutual strangers.

The proof is a straightforward application of the Pigeonhole Principle. We now

define the Ramsey number r(a, b).

Definition 3.44 The Ramsey number r(a, b) is the smallest positive integer n

such that if H1 and H2 are any graphs for which Kn = H1 ⊕ H2, then ω(H1) ≥ a or

ω(H2) ≥ b.

In other words, in any 2-edge decomposition of Kn, either the first subgraph has

a clique of cardinality a or the second subgraph has a clique of cardinality b. We can

generalize this to a k-edge decomposition H1 ⊕ H2 ⊕ · · · ⊕ Hk.

Definition 3.45 The generalized Ramsey number r(a1, a2, . . . , ak) is the small-

est positive integer n such that if H1, H2, . . ., Hk are any graphs for which Kn =

H1 ⊕ H2 ⊕ · · · ⊕ Hk, then ω(Hi) ≥ ai for some 1 ≤ i ≤ k.

Ramsey’s celebrated theorem [83, 152] states that r(a1, a2, . . . , ak) is well-defined,

for any choice of the ai’s.

Problem 3.43 tells us that r(3, 3) ≤ 6. To show that r(3, 3) > 5, it suffices to

find two K3-free graphs H1 and H2 with K5 = H1 ⊕ H2. A solution is H1 = C5,{1}

and H2 = C5,{2}. Both H1 and H2 are isomorphic to C5, and hence, contain no K3

subgraph. Thus, r(3, 3) = 6.

Since H2 = H1 and ω(H2) = ω(H1) = α(H1), we can alternatively define r(a, b)

to be the smallest n such that for any graph G on n vertices, either ω(G) ≥ a or

α(G) ≥ b.

Definition 3.46 ([83]) A graph G is Ramsey (a, b)-critical if |G| = r(a, b) − 1,

and G contains neither a clique of order a or an independent set of order b.

For example, it can be shown that the only Ramsey (3, 3)-critical graph is G = C5.

We will assume that in the generalized Ramsey number r(a1, a2, . . . , ak), each ai ≥ 2,
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as the case min{a1, a2, . . . , ak} = 1 implies that r(a1, a2, . . . , ak) = 1 (since a single

vertex is a clique of cardinality 1). Also we will assume that k ≥ 2, since r(a1) = a1.

The following observations are trivial.

1. If ai ≤ bi for each 1 ≤ i ≤ k, then r(a1, a2, . . . , ak) ≤ r(b1, b2, . . . , bk).

2. If σ is a permutation of {ai}, then r(a1, a2, . . . , ak) = r(aσ(1), aσ(2), . . . , aσ(k)).

3. r(a1, a2, . . . , ak, 2) = r(a1, a2, . . . , ak).

Thus, we will assume that 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak. Remarkably, r(3, 3, 3) = 17

is the only non-trivial Ramsey number known for k > 2. All other known Ramsey

numbers are of the form r(a, b), and only nine have been determined. An excellent

survey of known results and bounds appears in [151]. Table 3.1 lists the nine known

non-trivial Ramsey numbers of the form r(a, b).

(a, b) r(a, b)
(3, 3) 6
(3, 4) 9
(3, 5) 14
(3, 6) 18
(3, 7) 23
(3, 8) 28
(3, 9) 36
(4, 4) 18
(4, 5) 25

Table 3.1: The nine known Ramsey numbers of the form r(a, b).

The proofs for the cases (a, b) = (3, 6), (3, 7), (3, 8), (3, 9), (4, 5) require computer

analysis and elaborate case-checking. More details can be found in [151]. But the

other four cases require no case-checking at all. We provide a new proof of these

results, by involving independence polynomials to prove our lower bounds.

We first state a lemma that can be proven using a simple parity argument.

Lemma 3.47 ([83]) Suppose r(a, b−1) and r(a−1, b) are both even. Then r(a, b) ≤
r(a, b−1)+r(a−1, b)−1. If they are not both even, then r(a, b) ≤ r(a, b−1)+r(a−1, b).
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Now we compute the exact values of three Ramsey numbers. All of these results

were known to Greenwood and Gleason [85] in 1955, and were cited in [83]. However,

our proofs for the lower bounds are slightly different, as we will apply our work on

independence polynomials.

Theorem 3.48 r(3, 4) = 9, r(3, 5) = 14, and r(4, 4) = 18.

Proof: We know that r(3, 3) = 6 and r(2, 4) = r(4) = 4. By Lemma 3.47,

r(3, 4) ≤ r(3, 3)+r(2, 4)−1 = 9. By Lemma 3.47, we have r(3, 5) ≤ r(2, 5)+r(3, 4) =

5+r(3, 4) ≤ 14 and r(4, 4) ≤ r(3, 4)+r(3, 4) ≤ 18. This establishes the upper bounds.

To complete the proof that r(a, b) = n, we must construct a Ramsey (a, b)-critical

graph G. All of our critical graphs will be circulants.

Let G = C8,{1,4}. Then, G = C8,{2,3}. By Theorems 2.10 and 2.26, I(G, x) =

1+8x+16x2 +8x3. By Theorem 1.5, I(G, x) = 1+8x+12x2. Thus, ω(G) = α(G) =

deg(I(G, x)) = 2 < 3 and ω(G) = α(G) = deg(I(G, x)) = 3 < 4.

Let G = C13,{1,5}. Then, G = C13,{2,3,4,6}. By Theorem 1.5, I(G, x) = 1 + 13x +

52x2 + 78x3 + 39x4 and I(G, x) = 1 + 13x + 26x2. Thus, ω(G) = α(G) = 2 < 3 and

ω(G) = α(G) = 4 < 5.

Let G = C17,{1,2,4,8}. By Lemma 2.24, G = C17,{3,5,6,7} ≃ C17,{1,2,4,8}, with the

multiplier r = 3. By Theorem 1.5, I(G, x) = I(G, x) = 1 + 17x + 68x2 + 68x3, so

ω(G) = ω(G) = 3 < 4.

This technique of calculating the independence polynomial is more rigorous than

the approach where we can determine the graph invariants by simply drawing the

diagram. For small graphs, the “by inspection” method is sufficient, but we will

require a more formal approach for graphs of larger order.

In [104], it is proven that the Ramsey (3, 3)-critical, (3, 5)-critical, and (4, 4)-

critical graphs are unique. In addition to G = C8,{1,4} and its complement, there are

two other Ramsey (3, 4)-critical graphs. However, neither graph is a circulant.

Unfortunately, not all Ramsey (a, b)-critical graphs are circulants. It would be

very convenient if that were the case, as that would produce better lower bounds for

the Ramsey numbers than the ones currently known. But to quote [83], “it appears

likely (though not certain) that the structure of these maximal Ramsey graphs is
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illusory. Perhaps combinatorialists have again been victimized by the Law of Small

Numbers: patterns discovered for small k evaporate for k sufficiently large to make

calculation difficult”. Despite extensive research, hardly anything is known about the

Ramsey numbers, and it has become increasingly difficult to improve the currently

known bounds.

While it appears intractable to calculate an explicit formula for r(a1, a2, . . . , ak),

we now introduce the generalized fractional Ramsey number rωf
(a1, a2, . . . , ak), and

determine an explicit formula for this function.

Earlier in this chapter, we defined the fractional chromatic number χf(G) as the

linear relaxation of the IP for χ(G). We do the same for the fractional clique number

ωf(G).

Definition 3.49 ([158]) Let M be the vertex-independent set incidence matrix of G.

The dual IP of χ(G) gives us the value of the clique number ω(G).

ω(G) = max1 · y, where M ty ≤ 1, y ≥ 0, and y ∈ Zn.

Then the fractional clique number ωf (G) is

ωf(G) = max 1 · y, where M ty ≤ 1, y ≥ 0, and y ∈ R
n.

For any graph G, we have ω(G) ≤ ωf(G) = χf(G) ≤ χ(G), by the duality

theorem of linear programming [45]. In [102, 117], the fractional Ramsey number

rωf
(a1, a2, . . . , ak) is introduced as an analogue to the Ramsey number.

Definition 3.50 The fractional Ramsey function is the smallest positive integer

n such that if H1, . . . , Hk are any graphs for which Kn = H1 ⊕ H2 ⊕ · · · ⊕ Hk, then

ωf(Hi) ≥ ai for some i.

Note that rωf
(a1, a2, . . . , ak) must exist for any choice of the ai’s, as it is bounded

above by r(a1, a2, . . . , ak). This follows because ω(Hi) ≤ ωf (Hi), for each subgraph

Hi.

Since χf (G) = ωf(G) for all G, rχf
(a1, a2, . . . , ak) = rωf

(a1, a2, . . . , ak). Hence, we

make the important note that these two functions are interchangeable. For notational

consistency, we will only refer to the function rωf
(a1, a2, . . . , ak).
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Trivially, we have rωf
(a) = a and rωf

(2, a2, a3, . . . , ak) = rωf
(a2, a3, . . . , ak). So we

will assume that (a1, a2, . . . , ak) is a k-tuple of integers with 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak,

and k ≥ 2. The following formulas are known:

Theorem 3.51 ([102, 117]) Let a and b be positive integers with 3 ≤ a ≤ b. Then

rωf
(a, b) = ab − b.

Theorem 3.52 ([102, 117]) Let a ≥ 3 be an integer. Then for any integer k ≥ 2,

rωf
(a, a, . . . , a
︸ ︷︷ ︸

k times

) = ak − ak−1 − ak−2 − . . . − a2 − a.

These are the only known results for the fractional Ramsey function, where the

ai’s are all integers. In this section, we apply Theorem 3.8 to prove a complete

generalization, for any k-tuple of integers (a1, a2, . . . , ak). As with other Ramsey

functions, this formula is invariant under any permutation of the ai’s. However, in

this formula, there is a slight twist: to get the desired Ramsey number, one must first

order the ai’s in increasing order. Nevertheless, this does not change the invariance

of our generalized formula.

Note that by Theorem 3.21, ωf(G) = χf(G) = |G|
α(G)

for any circulant graph G.

Theorem 3.53 Let a1, a2, . . . , ak be integers with 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak. Then,

rωf
(a1, a2, . . . , ak) =

k∏

j=1

aj −
k∑

i=2

(
k∏

j=i

aj

)

.

Proof: Recall that we defined n0 = 1 and ni = aini−1 − 1 for each 1 ≤ i ≤ k. By

the same argument as Corollary 3.9, the right side of the identity is equal to nk + 1.

We first prove the upper bound rωf
(a1, a2, . . . , ak) ≤ nk + 1. We proceed by

induction on k. The case k = 1 is trivial. By the induction hypothesis, suppose that

the result is true for the index k − 1, where k ≥ 2. Let n = nk + 1 = aknk−1. Let

Kn = H1 ⊕ H2 ⊕ · · · ⊕ Hk. We will show that ωf(Hi) ≥ ai for some 1 ≤ i ≤ k. This

will prove the upper bound.

Consider G′ = H1 ⊕ H2 ⊕ · · · ⊕ Hk−1. If ω(G′) ≥ nk−1 + 1, then G′ contains a

clique of cardinality nk−1 + 1. Restricting G′ to the set of vertices belonging to this
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clique, we have a (k − 1)-edge colouring of Knk−1+1. By the induction hypothesis,

rωf
(a1, a2, . . . , ak−1) ≤ nk−1 + 1, and so we must have ωf(Hi) ≥ ai for some 1 ≤ i ≤

k − 1.

Now consider the case that ω(G′) ≤ nk−1. Then by Theorem 3.21, we have

ωf(Hk) ≥
|Hk|

α(Hk)
=

n

ω(Hk)
=

n

ω(G′)
≥ aknk−1

nk−1
= ak.

In any k-edge colouring of Kn, we have shown that ωf(Hi) ≥ ai, for some 1 ≤ i ≤
k. This proves that rωf

(a1, a2, . . . , ak) ≤ nk + 1.

To complete the proof, we need to find a k-edge colouring of Knk
such that if Hj

is the subgraph induced by colour j, then ωf(Hj) < aj , for all j. This will establish

the lower bound rωf
(a1, a2, . . . , ak) > nk. Conveniently, the earlier construction of the

Gj,k’s is exactly what we need for our k-edge colouring (i.e., k-edge decomposition) of

Knk
.

Let Hj = Gj(a1, a2, . . . , ak) = Gj,k for each 1 ≤ j ≤ k. By Lemma 3.2, the

Sj,k’s form a partition of {1, 2, . . . , ⌊nk

2
⌋}, and so the Hj’s induce a k-edge colouring

of Knk
. We wish to prove that ωf(Gj,k) < aj, for each 1 ≤ j ≤ k. But this follows

immediately, since ωf (Gj,k) = nk

α(Gj,k)
< aj , by Theorem 3.21 and Lemma 3.41.

Therefore, we have proven that rωf
(a1, a2, . . . , ak) = nk + 1, as required.

This completes the main theorem of this section.

We now introduce a generalized class of Ramsey numbers, which we will call

π-Ramsey functions. This definition first appeared in the literature as f -Ramsey

functions in [33], and was developed further in [116].

Definition 3.54 ([33]) Let (a1, a2, . . . , ak) be a k-tuple of positive real numbers.

Then for any parameter π, the π-Ramsey function rπ(a1, a2, . . . , ak) is the smallest

integer n such that in any k-edge decomposition G1⊕G2⊕· · ·⊕Gk of Kn, π(Gi) ≥ ai

for at least one index i.

Hence, the ω-Ramsey function is r(a1, a2, . . . , ak). Similarly, rωf
(a1, a2, . . . , ak) is

the π-Ramsey function for the fractional clique number (i.e., the fractional chromatic

number).
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We note that for some graph parameters π, the π-Ramsey function is not well-

defined. For example, if we let π(G) be the number of components of G, then rπ(2, 2)

does not exist. To see this, note that Cn and Cn are both connected for every

n ≥ 5, and so we have π(Cn) = π(Cn) = 1 < 2. But by a theorem in [116], if

limn→∞ π(Kn) = ∞ and π(H) ≤ π(G) whenever H ⊆ G, then rπ(a1, a2, . . . , ak) is

well-defined.

Thus, we may define rπ(a1, a2, . . . , ak) for any parameter π satisfying these two

conditions. Three such parameters are χ(G), χc(G), and χf (G) = ωf(G). Having

already determined a formula for rχf
(a1, a2, . . . , ak) = rωf

(a1, a2, . . . , ak), we turn our

attention to the corresponding Ramsey functions for the first two parameters.

Let us consider the Ramsey functions rχ(a1, a2, . . . , ak) and rχc
(a1, a2, . . . , ak). The

former appears in [116].

Theorem 3.55 ([116]) Let a1, a2, . . . , ak be integers with ai ≥ 3 for each i. Then,

rχ(a1, a2, . . . , ak) = (a1 − 1)(a2 − 1) · · · (ak − 1) + 1.

Like with other Ramsey functions, this formula is invariant under permutation of

the ai’s. As discussed earlier, this invariance property also holds for our formula for

rωf
(a1, a2, . . . , ak), proven in Theorem 3.53.

To our surprise, the circular chromatic Ramsey number equals the fractional Ram-

sey number. The proof is essentially a corollary of our previous theorems.

Theorem 3.56 Let a1, a2, . . . , ak be integers with 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak. Then,

rχc
(a1, a2, . . . , ak) =

k∏

j=1

aj −
k∑

i=2

(
k∏

j=i

aj

)

.

Proof: As we showed in the proof of Theorem 3.53, the right side of the identity

is equal to nk + 1, where n0 = 1 and ni = aini−1 − 1 for each 1 ≤ i ≤ k. Since

χf(G) ≤ χc(G) for all G, it follows by definition that

rχc
(a1, a2, . . . , ak) ≤ rχf

(a1, a2, . . . , ak).

Therefore, rχc
(a1, a2, . . . , ak) ≤ nk + 1, by Theorem 3.53.
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To complete the proof, we need to find a k-edge colouring of Knk
such that if Hj

is the subgraph induced by colour j, then χc(Hj) < aj , for all j. We use the same

k-edge partition as in Theorem 3.53. Let Hj = Gj(a1, a2, . . . , ak) = Gj,k for each

1 ≤ j ≤ k. By Lemma 3.2, the Sj,k’s form a partition of {1, 2, . . . , ⌊nk

2
⌋}, and so the

Hj’s induce a k-edge colouring of Knk
. It suffices to prove that χc(Gj,k) < aj , for

each 1 ≤ j ≤ k.

In Theorem 3.25, we proved that each Gj,k is star extremal, i.e., χf (Gj,k) =

χc(Gj,k). Therefore, we have χc(Gj,k) = χf (Gj,k) = nk

α(Gj,k)
< aj , by Theorem 3.21

and Lemma 3.41. This completes the proof.

Our analysis of π-Ramsey functions will be continued in the following section,

where we use π-Ramsey functions to determine the optimal Nordhaus-Gaddum in-

equalities for the fractional chromatic and fractional clique number.

3.5 Application 4: Nordhaus-Gaddum Inequalities

In [143], Nordhaus and Gaddum determined bounds for the sum and product of the

chromatic numbers of a graph and its complement.

Theorem 3.57 ([143]) Let G be a graph on n vertices. Then,

⌈2√n⌉ ≤ χ(G) + χ(G) ≤ n + 1,

n ≤ χ(G) · χ(G) ≤
⌊(

n + 1

2

)2
⌋

.

Nordhaus and Gaddum also showed that these bounds are optimal by finding

examples of graphs for which equality is reached. Since then, various papers have

been published on determining optimal bounds for π(G) + π(G) and π(G) · π(G), for

other graph parameters π. In the literature, these results are known as Nordhaus-

Gaddum inequalities.

Since the notion of an optimal bound is ambiguous, let us formally define our

notion of optimality. We say that the function f(n) is an optimal lower bound for

π(G)+π(G) if for every integer n, f(n) ≤ π(G)+π(G) for any graph G on n vertices,

and the value f(n) cannot be replaced by any larger real number.
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Since there are only finitely many graphs on n vertices, the optimal bound f(n)

is simply the minimum value of π(G)+π(G) over all possible graphs G on n vertices.

Thus, there must be at least one graph G (with |G| = n) for which equality is attained.

In all cases, the function f(n) is uniquely defined. As a specific example, f(n) =

⌈2√n⌉ is the optimal lower bound for χ(G)+χ(G). In some papers, it is written that

2
√

n ≤ π(G) + π(G) is the optimal lower bound; by our definition, that will not be

the case.

Nordhaus-Gaddum inequalities have been established for many other graph pa-

rameters, such as the independence and edge-independence number [32, 67], list-

colouring number [54, 77], diameter, girth, circumference, and edge-covering number

[179], connectivity and edge-connectivity number [51], achromatic and pseudoachro-

matic number [7, 180], and arboricity [136, 173]. In some cases, bounds are found,

yet it is unknown if they are optimal. A survey of known theorems (pre-1971) is given

in [31]. Two such results are as follows.

Let α1(G) be the edge-independence number of G. Then, it is shown [32] that

⌊n

2

⌋

≤ α1(G) + α1(G) ≤ 2 ·
⌊n

2

⌋

,

0 ≤ α1(G) · α1(G) ≤
⌊n

2

⌋2

.

Let β1(G) be the edge-covering number of G. Then, it is shown [179] that

2 ·
⌈n

2

⌉

≤ β1(G) + β1(G) ≤ 2n − 2 −
⌊n

2

⌋

,

⌊n

2

⌋2

≤ β1(G) · β1(G) ≤ n(n − 1)

2
.

G ⊕ G is a 2-edge decomposition of Kn, i.e., a partition of the edges of Kn into

two subgraphs. (For convenience, we will now refer to all edge decompositions as

decompositions). We can generalize this to examine all k-decompositions of Kn,

and determine bounds for
∑k

i=1 π(Gi) and
∏k

i=1 π(Gi). We refer to these as gener-

alized Nordhaus-Gaddum inequalities. Generalized bounds have been found when π

is the chromatic number [51, 77, 146], the clique number, list colouring number, and

Szekeres-Wilf number [77].
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In this section, we apply the π-Ramsey function, introduced at the end of the previ-

ous section. Using π-Ramsey functions, we derive a theorem that gives us the optimal

lower bound of
∑k

i=1 π(Gi), for any graph parameter π for which limn→∞ π(Kn) = ∞
and π(H) ≤ π(G) whenever H ⊆ G.

As an application, we derive an explicit formula for this optimal lower bound,

when π is the chromatic number χ(G) and the vertex arboricity ρ(G).

In all of the known examples in the literature, the parameter π(G) is integer-

valued. In this section, we also provide the first instances of Nordhaus-Gaddum

inequalities where the parameters are rational-valued, and our optimal bounds are

non-integers. We will determine the optimal bounds for π(G) + π(G) and π(G) ·
π(G), when π(G) is the fractional chromatic number χf (G) and when π(G) is the

circular chromatic number χc(G). For the most difficult of the four inequalities, we

will establish the optimality by finding a star extremal circulant graph G for which

χf(G) + χf (G) = χc(G) + χc(G) attains the desired lower bound. Our result will

follow as an immediate consequence of theorems proven earlier in this chapter.

We will first prove our optimal lower bound of
∑k

i=1 π(Gi), for any graph param-

eter π. As an application, we determine the exact lower bound for the parameters

χ(G) and ρ(G). Following that, we will determine the optimal Nordhaus-Gaddum in-

equalities for χf(G) and χc(G). Thus, the remainder of this section will be separated

into two parts.

In the previous section, we defined the π-Ramsey function rπ(a1, a2, . . . , ak). In the

following theorem, we make an important connection showing that the lower bound

for any generalized Nordhaus-Gaddum inequality can be expressed in terms of the

corresponding π-Ramsey function. Note that in the following theorem, π(G) is not

restricted to be an integer; in fact, π(G) can be any positive real number. This result

will enable us to determine the correct Nordhaus-Gaddum inequalities for χf (G) and

χc(G).

Theorem 3.58 Let π be a graph parameter, with limn→∞ π(Kn) = ∞ and π(H) ≤
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π(G) whenever H ⊆ G. Then, for any k-decomposition G1 ⊕ G2 ⊕ . . . ⊕ Gk of Kn,

k∑

i=1

π(Gi) ≥ inf

{
k∑

i=1

ai | rπ(a1 + ε, a2 + ε, . . . , ak + ε) > n ∀ε > 0

}

.

Moreover, this lower bound is optimal.

Proof: Let S be the set of real numbers t for which there is a k-tuple (a1, a2, . . . , ak)

of real numbers with t =
∑k

i=1 ai and rπ(a1 + ε, a2 + ε, . . . , ak + ε) > n, for all ε > 0.

First we justify that S is non-empty. Let r be the smallest number for which

π(H) ≤ r for every subgraph H ⊆ Kn. Then for any k-decomposition G1 ⊕ G2 ⊕
. . .⊕Gk of Kn, we must have π(Gi) ≤ r. Then (r, r, . . . , r) is a k-tuple satisfying the

above conditions, and so kr ∈ S.

Thus S is non-empty and it must have a finite-valued infimum. In fact, it is

straightforward to see that S = (m,∞) or S = [m,∞), where m = inf S. We wish to

prove that
∑k

i=1 π(Gi) ≥ m.

On the contrary, suppose that there exists a k-decomposition G1 ⊕G2 ⊕ . . .⊕Gk

of Kn for which
∑k

i=1 π(Gi) = m′ < m. Let π(Gi) = bi for each i. Now consider the

π-Ramsey number rπ(b1 + ε, b2 + ε, . . . , bk + ε).

If there exists an ε > 0 such that rπ(b1 + ε, b2 + ε, . . . , bk + ε) ≤ n, then by

definition, there must exist an index i such that π(Gi) ≥ bi + ε. But then bi ≥ bi + ε,

a contradiction. Therefore, we must have rπ(b1+ε, b2+ε, . . . , bk +ε) > n for all ε > 0.

But then
∑k

i=1 bi = m′ < m ≤ ∑k
i=1 ai, contradicting the minimality of m. Hence,

no such m′ exists, and we conclude that
∑k

i=1 π(Gi) ≥ m for all k-decompositions

G1 ⊕ G2 ⊕ . . . ⊕ Gk of Kn.

By the definition of the π-Ramsey function, rπ(a1+ε, a2+ε, . . . , ak+ε) > n implies

the existence of a k-decomposition G1 ⊕G2 ⊕ . . .⊕Gk of Kn with π(Gi) < ai + ε for

each i. So in this decomposition,
∑k

i=1 π(Gi) < m + kε. Since such a decomposition

exists for any ε > 0, we conclude that
∑k

i=1 π(Gi) can be made as close to m as

we wish. Therefore, we conclude that
∑k

i=1 π(Gi) ≥ m, and that this lower bound

cannot be reduced any further.

As a specific case of Theorem 3.58, we have the following result.
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Corollary 3.59 Let π be a graph parameter such that π(G) ∈ N for all G. Then, for

any decomposition G1 ⊕ G2 ⊕ . . . ⊕ Gk of Kn,

k∑

i=1

π(Gi) ≥ min

{
k∑

i=1

ai | rπ(a1 + 1, a2 + 1, . . . , ak + 1) > n, ai ∈ N

}

.

Moreover, this is the optimal lower bound.

Proof: Observe that for any small ε > 0, we have π(Gi) ≥ ai + 1 iff π(Gi) ≥ ai + ε.

Since π(G) is an integer-valued function, we must have rπ(a1 +1, a2 +1, . . . , ak +1) =

rπ(a1 + ε, a2 + ε, . . . , ak + ε) for any k-tuple (a1, a2, . . . , ak), with 0 < ε ≤ 1. The

conclusion follows from Theorem 3.58.

Using Corollary 3.59, we now determine the optimal lower bounds for
∑k

i=1 π(Gi)

for two parameters, namely the chromatic number χ(G), and the vertex arboricity

number ρ(G). The vertex arboricity is the minimum number of subsets that V (G)

can be partitioned into so that each subset induces an acyclic subgraph.

First, we require additional definitions and a theorem from Lesniak-Foster and

Roberts [116].

Definition 3.60 Let P be a graphical property that is possessed by the trivial graph

K1. Then the vertex partition number ν(G) of a graph G is the minimum number

of subsets into which the vertex set of G can be partitioned so that each subset induces

a subgraph having property P .

As an example, if we let P be the property that a graph is edge-free, then ν(G)

is simply the chromatic number χ(G). Hence, χ(G) is a vertex partition parameter.

Note that every vertex partition parameter is integer-valued.

Definition 3.61 If ν is a vertex partition parameter, then for each positive integer

k, let ν(k) denote the largest integer m for which there exists a k-decomposition of

Km such that ν(Hi) = 1 for all 1 ≤ i ≤ k.

As a simple example, χ(G) is a vertex partition parameter for which χ(k) = 1 for

all k.
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Definition 3.62 A graphical property P is co-hereditary if P is closed under sub-

graphs and disjoint unions.

To be more specific, if P is co-hereditary, then every subgraph of a graph having

property P also has property P , and the graph consisting of disjoint subgraphs each

having property P , also has property P . As an example, the property that a graph

is edge-free is co-hereditary, but the property that a graph is connected is not.

Letting π be a vertex partition parameter ν, we can investigate the ν-Ramsey

function rν(a1, a2, . . . , ak), defined the same way as our π-Ramsey function. The

following result is proved by Lesniak [116].

Theorem 3.63 ([116]) Let a1, a2, . . . , ak be positive integers and let ν be a vertex

partition parameter for which lim
n→∞

ν(Kn) = ∞ and the corresponding property P is

co-hereditary. Then,

rν(a1, a2, . . . , ak) = 1 + ν(k) ·
k∏

i=1

(ai − 1).

From Corollary 3.59 and Theorem 3.63, we can derive the optimal lower bound of
∑k

i=1 π(Gi), for the parameter π = ν.

Theorem 3.64 Let ν be a vertex partition parameter for which lim
n→∞

ν(Kn) = ∞
and the corresponding property P is co-hereditary. If G1 ⊕ G2 ⊕ . . . ⊕ Gk is any

k-decomposition of Kn, then

k∑

i=1

ν(Gi) ≥
⌈

k · k

√
n

ν(k)

⌉

.

Moreover, this is the optimal lower bound.

Proof: From Theorem 3.63 and Corollary 3.59, we have

k∑

i=1

ν(Gi) ≥ min

{
k∑

i=1

ai | rν(a1 + 1, a2 + 1, . . . , ak + 1) > n, ai ∈ N

}

= min

{
k∑

i=1

ai | ν(k)a1a2 . . . ak + 1 > n, ai ∈ N

}

= min

{
k∑

i=1

ai | ν(k)a1a2 . . . ak ≥ n, ai ∈ N

}

≥ k · k

√
n

ν(k)
, by the AM-GM inequality.
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Note that equality occurs iff n = ν(k)mk for some m ∈ N, and each ν(Gi) = m.

Such a decomposition G1 ⊕ G2 ⊕ . . . ⊕ Gk of Kn must exist, since

rν(m + 1, m + 1, . . . , m + 1) > ν(k)mk = n.

Also, if n
ν(k)

is not a perfect kth power, then we apply a discrete smoothing ar-

gument, to establish the following claim: given a fixed product a1a2 . . . ak, the sum

a1 + a2 + . . . + ak is maximized when the ai’s are as close as possible. If the ai’s are

all integers, we require each ai to be ⌊r⌋ or ⌈r⌉, where r = k

√
n

ν(k)
. From this, one

must have
k∑

i=1

ν(Gi) ≥
⌈

k · k

√
n

ν(k)

⌉

.

Moreover, this must be the optimal lower bound.

In [116], it is shown that χ(k) = 1 and ρ(k) = 2k. Also, it is straightforward to

verify that both χ(G) and ρ(G) satisfy the conditions of Theorem 3.64. Therefore,

by Theorem 3.64, we have

Corollary 3.65 Let G1 ⊕ G2 ⊕ . . . ⊕ Gk be any k-decomposition of Kn. Then,

k∑

i=1

χ(Gi) ≥ k · k
√

n and

k∑

i=1

ρ(Gi) ≥ k · k

√
n

2k
.

The first result on
∑k

i=1 χ(Gi) appeared in [146] with a different proof, while the

second result is original. Our lower bound on
∑k

i=1 ρ(Gi) is a generalization of the

k = 2 case, which was shown in [136].

By determining a formula for ν(k) for other co-hereditary vertex partition param-

eters, we will immediately derive a formula for the lower bound of
∑k

i=1 ν(Gi). It is

hoped that several other Nordhaus-Gaddum inequalities can be established through

this process.

We can also determine optimal lower bounds for various generalized Nordhaus-

Gaddum inequalities by computing formulas for various π-Ramsey functions. For

some parameters (such as the clique number ω(G)), it seems intractable to determine

values for rπ(a1, a2, . . . , ak), even for the case k = 2. That is why the optimal lower
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bound for the Nordhaus-Gaddum inequality α(G)+α(G) = ω(G)+ω(G) is a formula

in terms of Ramsey functions [32].

We now state the main theorem of this section, which determines the optimal

Nordhaus-Gaddum inequalities for both χf (G) and χc(G). We note that two of the

trivial bounds were established by Wang and Zhou [174], who proved that χc(G) +

χc(G) ≤ n + 1 and χc(G) · χc(G) ≥ n. We now provide all of the correct optimal

bounds, for both graph invariants.

To simplify the proof, we split the main result into two separate theorems; first

we establish our desired bounds, and then we prove the optimality of these bounds

by constructing for each n, a graph G of order n for which equality is attained.

Theorem 3.66 Let G be a graph on n vertices. Then,

min

{

⌈2
√

n⌉, n

⌊√n⌋ +
n

⌊
√

n +
√

n⌋

}

≤ χf (G) + χf(G) ≤ χc(G) + χc(G) ≤ n + 1,

n ≤ χf(G) · χf(G) ≤ χc(G) · χc(G) ≤
⌊(

n + 1

2

)2
⌋

.

Theorem 3.67 All four bounds given in the statement of Theorem 3.66 are optimal.

Note the similarity of Theorem 3.66 to Theorem 3.57: in three of the four cases,

the bounds are identical. However, the lower bound for χf(G)+χf (G) is different. For

example, if n = 7, then Theorem 3.66 implies that χf(G)+χf (G) ≥ min{6, 35
6
} = 35

6
,

whereas Theorem 3.57 shows that χ(G) + χ(G) ≥ ⌈2
√

7⌉ = 6. For this lower bound

of χf(G) + χf(G), we will prove the optimality by finding a star extremal circulant

graph G attaining the desired bound.

In the previous section, we discussed the generalized fractional Ramsey function

rωf
(a1, a2, . . . , ak), which is the π-Ramsey function for the parameter ωf (G) = χf(G).

By Theorem 3.22, ωf(G) = χf(G) ≥ ω(G), and so rωf
(a1, a2, . . . , ak) is well-defined,

since it is bounded above by r(a1, a2, . . . , ak).
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Theorem 3.68 ([102, 117]) Let rωf
(x, y) be the ωf -Ramsey function for two vari-

ables. Let x, y ≥ 2 be any real numbers. Then,

rωf
(x, y) = min {⌈(⌈x⌉ − 1)y⌉ , ⌈(⌈y⌉ − 1)x⌉} .

Knowing this formula for rωf
(x, y) = rχf

(x, y) is the key to proving Theorem 3.66,

since Theorem 3.58 provides the optimal lower bound for χf (G) + χf(G) in terms of

this Ramsey function.

Corollary 3.69

χf(G) + χf (G) ≥ inf
{
a1 + a2 | rωf

(a1 + ε, a2 + ε) > n ∀ε > 0
}

.

We now determine the minimum value of a1 + a2 for which rωf
(a1 + ε, a2 + ε) > n

for all ε > 0. This will establish the optimal lower bound for χf (G) + χf (G), which

in turn will give us the optimal lower bound for χc(G) + χc(G).

Before we proceed with the proof of Theorem 3.66, we require a definition and

several lemmas. To simplify notation, we introduce the function t(n) .

Definition 3.70 For each integer n ≥ 1, set

t(n) = min

{

⌈2
√

n⌉, n

⌊√n⌋ +
n

⌊
√

n +
√

n⌋

}

.

The following lemmas will all include this definition of t(n). Our main theorem,

Theorem 3.66, will follow quickly from these three results.

Lemma 3.71 Let p = ⌊√n⌋. Then n = p2 + q for some 0 ≤ q ≤ 2p. Then, t(n) can

be represented as the following piecewise function.

t(n) =







2n

p
if p2 ≤ n < p2 + p

2

⌈2√n⌉ = 2p + 1 if p2 + p
2
≤ n ≤ p2 + p

n(2p + 1)

p2 + p
if p2 + p + 1 ≤ n ≤ p2 + 3p

2

⌈2√n⌉ = 2p + 2 if p2 + 3p+1
2

≤ n ≤ p2 + 2p
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Proof: Since p2 + p < (p + 1
2
)2 < p2 + p + 1, we can readily verify the following

identities.

⌈2
√

n⌉ =







2p if n = p2

2p + 1 if p2 < n ≤ p2 + p

2p + 2 if p2 + p + 1 ≤ n ≤ p2 + 2p

n

⌊√n⌋ +
n

⌊
√

n +
√

n⌋
=







n

p
+

n

p
if p2 ≤ n ≤ p2 + p

n

p
+

n

p + 1
if p2 + p + 1 ≤ n ≤ p2 + 2p

If n ≤ p2 + 3p
2
, then n < p2 + 3p

2
+ p

4p+2
= (4p3+2p2)+3p(2p+1)+p

4p+2
= 2p3+4p2+2p

2p+1
=

(2p+2)(p2+p)
2p+1

, which implies that n
p
+ n

p+1
= n(2p+1)

p2+p
< 2p+2. Similarly, if n ≥ p2 + 3p+1

2
,

then n > p2 + 3p
2

+ p
4p+2

= (2p+2)(p2+p)
2p+1

, which implies that n
p

+ n
p+1

= n(2p+1)
p2+p

> 2p + 2.

We will use these inequalities in our case analysis below.

If n = p2, then ⌈2√n⌉ = n
⌊√n⌋ + n

⌊
√

n+
√

n⌋
, and so t(n) = 2p = 2n

p
.

If p2 < n < p2 + p
2
, then 2p + 1 > 2n

p
, and so t(n) = n

⌊√n⌋ + n

⌊
√

n+
√

n⌋
= 2n

p
.

If p2 + p
2
≤ n ≤ p2 + p, then 2p + 1 ≤ 2n

p
, and so t(n) = ⌈2√n⌉ = 2p + 1.

If p2 +p+1 ≤ n ≤ p2 + 3p
2
, then 2p+2 > n

p
+ n

p+1
, and so t(n) = n

⌊√n⌋ + n

⌊
√

n+
√

n⌋
=

n
p

+ n
p+1

= n(2p+1)
p2+p

.

If p2 + 3p+1
2

≤ n ≤ p2 + 2p, then 2p + 2 < n
p

+ n
p+1

, and so t(n) = ⌈2√n⌉ = 2p + 2.

This completes the proof.

By inspection, we can verify that 2
√

n ≤ t(n) < 2
√

n + 1 in each of the four cases

above. Therefore, ⌈2
√

n⌉ and n
⌊√n⌋ + n

⌊
√

n+
√

n⌋
are “close” in the sense that for any n,

these two expressions differ by at most 1.

Lemma 3.72 Let n be a fixed positive integer. For each integer 1 ≤ k ≤ n, define

f1(k) = k + ⌈n
k
⌉ and f2(k) = n

k
+ n

⌊n
k
⌋ . Then, min{f1(k), f2(k)} ≥ t(n), for all

k. Moreover, this is the optimal lower bound, i.e., there exists at least one index

1 ≤ k ≤ n with min{f1(k), f2(k)} = t(n).
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Proof: Fix n. We first prove that f1(k) ≥ ⌈2√n⌉ for all 1 ≤ k ≤ n, which implies

by definition that f1(k) ≥ t(n) for each k. Let n = p2 + q, where 0 ≤ q ≤ 2p.

If q = 0, then f1(k) ≥ ⌈2√n⌉ = 2p is equivalent to k + ⌈n
k
⌉ ≥ 2p, or ⌈n

k
⌉ ≥ 2p− k.

Since (p − k)2 ≥ 0, n = p2 ≥ 2pk − k2 = k(2p − k). Therefore, ⌈n
k
⌉ ≥ n

k
≥ 2p − k.

If 1 ≤ q ≤ p, then f1(k) ≥ ⌈2√n⌉ = 2p + 1 is equivalent to ⌈n
k
⌉ ≥ 2p − k + 1.

Since (p− k)2 ≥ 0, n > p2 ≥ 2pk− k2 = k(2p− k), and so n
k

> 2p− k. It follows that

⌈n
k
⌉ ≥ 2p − k + 1.

If p + 1 ≤ q ≤ 2p, then f1(k) ≥ ⌈2√n⌉ = 2p + 2 is equivalent to ⌈n
k
⌉ ≥ 2p− k + 2.

Since p and k are integers, (p − k)(p − k + 1) ≥ 0, and so p2 + p ≥ 2pk − k2 + k =

k(2p−k+1), from which we get n
k

> p2+p
k

≥ 2p−k+1. It follows that ⌈n
k
⌉ ≥ 2p−k+2.

Note that in all three cases, equality occurs if k = p = ⌊√n⌋. Therefore, we have

shown that f1(k) ≥ ⌈2√n⌉ for all 1 ≤ k ≤ n, with at least one value of k for which

equality occurs.

Now let us prove that f2(k) ≥ t(n) for each k. This will conclude the proof of

the lemma. We split our analysis into the four cases described in Lemma 3.71, which

conveniently allows us to apply the formula for t(n).

Case 1: p2 ≤ n < p2 + p
2
.

The desired inequality f2(k) ≥ 2n
p

is equivalent to n
k

+ n
⌊n

k
⌋ ≥ 2n

p
, which simplifies

to ⌊n
k
⌋(2k

p
−1) ≤ k. If 2k−p ≤ 0, the result is trivial, so assume otherwise. We divide

both sides by 2k−p > 0, and so it suffices to prove that ⌊n
k
⌋ ≤ kp

2k−p
. We consider two

further subcases: when p2 + p
2
≥ (2p + 1)k − k2, and when p2 + p

2
< (2p + 1)k − k2.

In fact, for each of our four cases, we will separate our analysis into two subcases.
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If p2 + p
2
≥ (2p + 1)k − k2, then

(2p + 1)k −
(

p2 +
p

2

)

≤ k2

(

p +
1

2

)

(2k − p) ≤ k2

(

p2 +
p

2

)

(2k − p) ≤ k2p

p2 + p
2

k
≤ kp

2k − p
.

Therefore,
⌊n

k

⌋

≤ n

k
<

p2 + p
2

k
≤ kp

2k − p
.

If p2 + p
2

< (2p + 1)k − k2, then ⌊n
k
⌋ ≤ ⌊p2+ p

2

k
⌋ ≤ 2p − k. Since 2(k − p)2 ≥ 0, we

have 4pk − 2k2 − 2p2 + kp ≤ kp, which is equivalent to 2p − k ≤ kp
2k−p

. Therefore, we

have ⌊n
k
⌋ ≤ 2p − k ≤ kp

2k−p
, with equality iff k = p = ⌊√n⌋.

Case 2: p2 + p
2
≤ n ≤ p2 + p.

The desired inequality f2(k) ≥ 2p + 1 is equivalent to ⌊n
k
⌋( (2p+1)k

n
− 1) ≤ k. If

(2p + 1)k ≤ n, the inequality is trivial, so assume that (2p+1)k
n

− 1 > 0. Then, it

suffices to prove that ⌊n
k
⌋ ≤ kn

(2p+1)k−n
.

If n ≥ (2p + 1)k − k2, then

n ≥ (2p + 1)k − k2

(2p + 1)k − n ≤ k2

n((2p + 1)k − n) ≤ k2n
n

k
≤ kn

(2p + 1)k − n
.

Therefore,
⌊n

k

⌋

≤ n

k
≤ kn

(2p + 1)k − n
.
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If n < (2p + 1)k − k2, then ⌊n
k
⌋ ≤ 2p − k. From n ≥ p2 + p

2
and p2 ≥ k(2p − k),

we have

n ≥ p2 +
p

2

n =
p2(2p + 1)

2p

n ≥ k(2p − k)(2p + 1)

2p
2pn ≥ k(2p − k)(2p + 1)

(2p − k)(2p + 1)k − 2pn + kn ≤ kn

(2p − k)((2p + 1)k − n) ≤ kn

2p − k ≤ kn

(2p + 1)k − n
.

Therefore,
⌊n

k

⌋

≤ 2p − k ≤ kn

(2p + 1)k − n
.

Case 3: p2 + p < n ≤ p2 + 3p
2
.

The desired inequality f2(k) ≥ n(2p+1)
p2+p

is equivalent to ⌊n
k
⌋( (2p+1)k

p2+p
− 1) ≤ k.

If (2p + 1)k ≤ p2 + p, the inequality is trivial, so assume otherwise. Then, it

suffices to prove that ⌊n
k
⌋ ≤ k(p2+p)

(2p+1)k−(p2+p)
.

Since (2p + 3)(2p + 1) = (2p + 2)2 − 1, we have (2p+3)(2p+1)
2p+2

< 2p + 2, which is

equivalent to 2p + 2 >
(p+ 3

2)(2p+1)

p+1
.

If p2 + 3p
2
≥ (2p + 2)k − k2, then

p2 +
3p

2
≥ (2p + 2)k − k2

p2 +
3p

2
>

(
p + 3

2

)
(2p + 1)

p + 1
k − k2

(

p2 +
3p

2

)

(p + 1) >

(

p +
3

2

)

(2p + 1)k − k2(p + 1)

(

p +
3

2

)

((2p + 1)k − (p2 + p)) < k2(p + 1)

(

p2 +
3p

2

)

((2p + 1)k − (p2 + p)) < k2(p2 + p)

p2 + 3p
2

k
<

k(p2 + p)

(2p + 1)k − (p2 + p)
.
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Therefore,
⌊n

k

⌋

≤ n

k
≤ p2 + 3p

2

k
<

k(p2 + p)

(2p + 1)k − (p2 + p)
.

If p2 + 3p
2

< (2p + 2)k − k2, then ⌊n
k
⌋ ≤ ⌊p2+ 3p

2

k
⌋ ≤ 2p − k + 1.

Since k and p are both integers, (k − p)(k − p − 1) ≥ 0, with equality iff k = p =

⌊√n⌋ or when k = p + 1 = ⌊√n⌋ + 1. Thus, we have

(k − p)(k − p − 1) ≥ 0

(k − p)2 − (k − p) ≥ 0

2pk + k − p2 − p ≤ k2

(2p + 1)k − (p2 + p) ≤ k2

(2p + 1)((2p + 1)k − (p2 + p)) ≤ k2(2p + 1)

(2p + 1)((2p + 1)k − (p2 + p)) − k2(2p + 1) + k(p2 + p) ≤ k(p2 + p)

(2p + 1 − k)((2p + 1)k − (p2 + p)) ≤ k(p2 + p)

2p − k + 1 ≤ k(p2 + p)

(2p + 1)k − (p2 + p)
.

Therefore,
⌊n

k

⌋

≤ 2p − k + 1 ≤ k(p2 + p)

(2p + 1)k − (p2 + p)
, with equality holding iff k =

⌊√n⌋ or k = ⌊√n⌋ + 1.

Case 4: p2 + 3p+1
2

≤ n ≤ p2 + 2p.

The desired inequality f2(k) ≥ 2p + 2 is equivalent to ⌊n
k
⌋( (2p+2)k

n
− 1) ≤ k. If

(2p+2)k ≤ n, the inequality is trivial, so assume otherwise. Then, it suffices to prove

that ⌊n
k
⌋ ≤ kn

(2p+2)k−n
.

If n ≥ (2p + 2)k − k2, then

(2p + 2)k − k2 ≤ n

(2p + 2)kn − k2n ≤ n2

(2p + 2)kn − n2 ≤ k2n
n

k
≤ kn

(2p + 2)k − n
.

Therefore,
⌊n

k

⌋

≤ n

k
≤ kn

(2p + 2)k − n
.
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If n < (2p + 2)k − k2, then ⌊n
k
⌋ ≤ 2p − k + 1. Since (k − p)(k − p − 1) ≥ 0, we

have k2 − (2p + 1)k + p(p + 1) ≥ 0, or p2 + p ≥ (2p + 1)k − k2. Also, (2p+2)(p2+p)
2p+1

=

p2 + 3p
2

+ p
4p+2

< p2 + 3p+1
2

. Thus, we have

n ≥ p2 +
3p + 1

2

n >
(2p + 2)(p2 + p)

2p + 1

(2p + 1)n > (2p + 2)(p2 + p)

(2p + 1)n ≥ (2p + 2)((2p + 1)k − k2)

(2p + 1)(2p + 2)k − (2p + 1)n ≤ k2(2p + 2)

(2p + 1)((2p + 2)k − n) ≤ k2(2p + 2)

(2p + 1)((2p + 2)k − n) − k2(2p + 2) + kn ≤ kn

(2p + 1 − k)((2p + 2)k − n) ≤ kn

2p − k + 1 ≤ kn

(2p + 2)k − n
.

Therefore, we have
⌊n

k

⌋

≤ 2p − k + 1 ≤ kn

(2p + 2)k − n
.

This clears all of the cases, and so we have shown that f2(k) ≥ t(n) for each

1 ≤ k ≤ n. Earlier we showed that f1(k) ≥ ⌈2√n⌉ ≥ t(n). Therefore, we conclude

that min{f1(k), f2(k)} ≥ t(n), for all 1 ≤ k ≤ n. Furthermore, we showed that

in Cases 1 and 3, f2(⌊
√

n⌋) = t(n) and in Cases 2 and 4, f1(⌊
√

n⌋) = ⌈2√n⌉ =

t(n). Therefore, for any integer n, there is at least one index 1 ≤ k ≤ n for which

min{f1(k), f2(k)} = t(n), which implies that our lower bound is indeed optimal.

Lemma 3.73 Let n ≥ 2 be a fixed integer. Say that a pair (x, y) of real numbers is

n-amicable if (⌈y⌉ − 1)x > n and (⌈x⌉ − 1)y > n, where x, y ≥ 2. If (x, y) is an

n-amicable pair, then x + y > t(n). Moreover, this is the optimal lower bound, i.e.,

inf(x + y) = t(n), where the infimum is taken over all n-amicable pairs.

Proof: Given any fixed x ≥ 2, (x, y) is amicable if y satisfies ⌈y⌉ > n
x

+ 1 and

y > n
⌈x⌉−1

. Let Y denote the set of real numbers y satisfying both inequalities. Then,

inf Y = m or inf Y = n
m

, for some positive integer 1 ≤ m ≤ n. We have the same
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result for x: for a fixed y ≥ 2, the infimum of x must be k or n
k
, for some integer

1 ≤ k ≤ n.

So let us consider two cases: when x = k + ε and when x = n
k

+ ε, where ε is some

infinitely small positive real number. In each case, we will determine the infimum of

x + y such that (x, y) is n-amicable. Note that for any fixed x, (x, y) is amicable iff

⌈y⌉ > n
x

+ 1 and y > n
⌈x⌉−1

.

If x = k + ε, then we require ⌈y⌉ > n
k+ε

+ 1 and y > n
k
. Then, (x, y) is not n-

amicable when y = ⌈n
k
⌉, but is n-amicable when y = ⌈n

k
⌉ + ε′, for any ε′ > 0. Hence,

in this case, inf(x + y) = k + ⌈n
k
⌉, for some 1 ≤ k ≤ n.

If x = n
k

+ ε, then we require ⌈y⌉ > n
n
k
+ε

+ 1 and y > n
⌈n

k
+ε⌉−1

= n
⌊n

k
⌋ . The latter

inequality does not hold if y = n
⌊n

k
⌋ , but does if y = n

⌊n
k
⌋ + ε′, for any ε′ > 0. We check

that this value of y also satisfies the former inequality: if y = n
⌊n

k
⌋ +ε′ ≥ n

n
k

+ε′ = k+ε′,

then ⌈y⌉ ≥ k + 1, implying that ⌈y⌉ ≥ k + 1 = n
n
k

+ 1 > n
n
k
+ε

+ 1.

Thus, (x, y) is n-amicable when y = n
⌊n

k
⌋ + ε′, for any ε′ > 0. Hence, in this case,

inf(x + y) = n
k

+ n
⌊n

k
⌋ for some 1 ≤ k ≤ n.

In Lemma 3.72, we defined f1(k) = k + ⌈n
k
⌉ and f2(k) = n

k
+ n

⌊n
k
⌋ . We just proved

that there exists a pair (x, y) with inf(x+y) = min{f1(k), f2(k)} for some 1 ≤ k ≤ n.

But in Lemma 3.72, we proved that there exists a k for which min{f1(k), f2(k)}
attains the minimum value of t(n). Thus, we conclude that inf(x + y) = t(n), and

our proof is complete.

We are finally ready to prove Theorem 3.66. In addition to our lemmas, we will

repeatedly apply Theorem 3.22, which states that for any graph G on n vertices,

max

{

ω(G),
n

α(G)

}

≤ χf (G) ≤ χc(G) ≤ χ(G).

We now prove Theorem 3.66.
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Proof: By Theorems 3.22 and 3.57, χf(G)+χf(G) ≤ χc(G)+χc(G) ≤ χ(G)+χ(G) ≤
n + 1. Similarly, χf(G)χf (G) ≤ χc(G)χc(G) ≤ χ(G)χ(G) ≤

⌊(
n+1

2

)2
⌋

. From three

applications of Theorem 3.22, χc(G)χc(G) ≥ χf (G)χf(G) ≥ nχf (G)

α(G)
=

nχf (G)

ω(G)
≥ n.

Thus, we have justified three of the four bounds.

Finally, we prove that t(n) ≤ χf (G) + χf(G). Let x = a1 + ε and y = a2 + ε. By

Corollary 3.69, the optimal lower bound of χf(G) + χf(G) is the infimum of the set

of possible sums a1 + a2 such that rχf
(x, y) = rχf

(a1 + ε, a2 + ε) > n, for any ε > 0.

Thus, we require x and y to be chosen so that (⌈x⌉ − 1)y > n and (⌈y⌉ − 1)x > n.

In other words, we seek to find the n-amicable pair (x, y) so that its sum x + y

is as small as possible. By Lemma 3.73, the infimum of all possible sums x + y

equals t(n), implying that inf(a1 + a2) = t(n), taken over all possible sums a1 + a2.

Therefore, we have proven that χf(G) + χf (G) ≥ t(n). By Theorem 3.22, we also

have χc(G) + χc(G) ≥ t(n). This completes the proof of Theorem 3.66.

To verify Theorem 3.67, we only need to establish the existence of one extremal

graph for each of our four bounds.

We require the following definition and theorem.

Definition 3.74 ([73]) For each ordered triplet (n, x, y) with x + y − 1 ≤ n ≤ xy,

the set T (n, x, y) of graphs is defined as follows: consider a rectangular array M

with x rows and y columns, where we place at most one dot in each of the xy entries

of M . We place a dot in each entry of the first row and first column of M , which

accounts for x + y − 1 dots. Now place n − (x + y − 1) dots in any of the remaining

entries of M . Then a graph G in the family T (n, x, y) is formed by taking the n dots

of M as the vertices of G, and defining adjacency as follows:

(a) Any two dots in the same column are adjacent.

(b) No two dots in the same row are adjacent.

(c) Any two dots which belong to distinct rows and columns may or may not be

adjacent.

Note that for any G ∈ T (n, x, y), we have χ(G) = ω(G) = x and χ(G) = ω(G) = y.

By Theorem 3.22, this implies that χc(G) = χf(G) = x and χc(G) = χf(G) = y.
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Theorem 3.75 ([73]) Let G be a graph on n vertices. Then, χ(G)+χ(G) = ⌈2√n⌉
iff G ∈ T (n, x, y), where x + y = ⌈2√n⌉.

To finish this section, we prove Theorem 3.67, which enables us to conclude that

the Nordhaus-Gaddum inequalities found in Theorem 3.66 are indeed optimal. For

the most difficult case among our four bounds, our extremal graph will be a star

extremal circulant.

Proof: For each of our four bounds, it suffices to find one graph on n vertices for

which equality is attained. This will complete the proof of Theorem 3.67.

Let G = Kn. Then, ω(G) = χ(G) = n, which implies that χf(G) = χc(G) = n,

by Theorem 3.22. By the same argument, χf(G) = χc(G) = 1. Hence, for this graph

G, χf(G) + χf (G) = χc(G) + χc(G) = n + 1, and χf(G)χf(G) = χc(G)χc(G) = n.

Let G = Km ∪ Kn−m be the disjoint union of Km and n − m isolated vertices,

where m = ⌊n+1
2
⌋. Then, ω(G) = χ(G) = m, implying that χf (G) = χc(G) = m.

Also, G consists of a complete Kn−m subgraph, of which every vertex is joined to each

of the other m vertices of the graph. Thus, ω(G) = χ(G) = n−m + 1, implying that

χf(G) = χc(G) = n − m + 1. Since m = ⌊n+1
2
⌋, we have

χf (G) · χf(G) = χc(G) · χc(G)

=

⌊
n + 1

2

⌋

·
(

n + 1 −
⌊

n + 1

2

⌋)

=

⌊(
n + 1

2

)2
⌋

.

The last line follows from a simple case analysis (n even and n odd).

Finally, we verify the existence of a graph G for which χf(G) + χf(G) = χc(G) +

χc(G) = t(n). Since t(n) is defined to be the minimum of two functions, we consider

both possibilities separately.

Case 1: t(n) = ⌈2√n⌉.

By Theorem 3.75, χ(G) + χ(G) = ⌈2√n⌉ = t(n) iff G ∈ T (n, x, y). In any

such graph G, χ(G) = ω(G) and χ(G) = ω(G). By Theorem 3.22, we must have

χf(G)+χf(G) = χc(G)+χc(G) = χ(G)+χ(G) = t(n). Any such graph G ∈ T (n, x, y)

is an extremal graph.
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Case 2: t(n) = n
⌊√n⌋ + n

⌊
√

n+
√

n⌋
.

By Lemma 3.71, this case only occurs when p2 ≤ n < p2 + p
2

or p2 + p + 1 ≤ n ≤
p2 + 3p

2
. For the values of n for which ⌈2√n⌉ = n

⌊√n⌋ + n

⌊
√

n+
√

n⌋
, an extremal graph

must exist from the analysis in Case 1.

Thus, we may assume that t(n) = n
⌊√n⌋ + n

⌊
√

n+
√

n⌋
> ⌈2√n⌉. It is easy to check

that this requires n ≥ 7. Let G = Cn,{1,2,...,d}, where d = ⌊√n⌋ − 1. Then, G =

Cn,{d+1,d+2,...,⌊n
2
⌋}. By Theorem 2.3 and Corollary 2.18, α(G) = ⌊ n

d+1
⌋ and α(G) =

d + 1. We now prove that both G and G are star extremal.

To prove that G is star extremal, we cite theorem by Gao and Zhu [78] which

states that Cn,{1,2,...,d} is star extremal for any n ≥ 2d. By this theorem, G is star

extremal for each n ≥ 7 since n ≥ 2d = 2⌊√n⌋− 2. To prove that G is star extremal,

we cite the theorem by Lih et. al. [121] which states that Cn,{a,a+1,...,b} is star extremal

for any n ≥ 2b and b ≥ 5a
4
. By this theorem, G = Cn,{d+1,d+2,...,⌊n

2
⌋} is star extremal

for each n ≥ 7, since n ≥ 2 · ⌊n
2
⌋ and ⌊n

2
⌋ ≥ 5(d+1)

4
= 5⌊√n⌋

4
. Therefore, we have proven

that both G and G are star extremal.

By Lemma 3.21, we have

χf (G) = χc(G) =
n

α(G)
=

n

⌊ n
d+1

⌋ =
n

⌊ n
⌊√n⌋⌋

χf (G) = χc(G) =
n

α(G)
=

n

d + 1
=

n

⌊√n⌋

From above, note that p2 ≤ n < p2 + p
2

or p2 + p + 1 ≤ n ≤ p2 + 3p
2
. In both these

cases, a simple case analysis shows that
⌊

n

⌊√n⌋

⌋

=

⌊√

n +
√

n

⌋

.

Therefore, χf(G)+χf(G) = χc(G)+χc(G) = n
⌊√n⌋ + n

⌊
√

n+
√

n⌋
= t(n), as required.

Thus, for all four bounds, we have determined the existence of an extremal graph.

This completes the proof of Theorem 3.67, and hence our Nordhaus-Gaddum inequal-

ities are indeed optimal.



Chapter 4

Properties and Applications of Circulant Graphs

In this chapter, we study various properties and applications of circulants. First,

we investigate line graphs, and give a full characterization of all graphs G for which

its line graph L(G) is a circulant. Then we determine the list colouring number of

a particular family of circulants, by making an elegant connection to independence

polynomials. We then characterize families of circulant graphs that are well-covered,

and show that it is co-NP complete to determine if an arbitrary circulant is well-

covered. To conclude the chapter, we study independence complexes of circulant

graphs, and characterize pure complexes that are shellable.

4.1 Line Graphs of Circulants

Recall that the line graph of G, denoted L(G), is the graph with vertex set E(G),

where vertices x and y are adjacent in L(G) iff edges x and y share a common vertex

in G. As an example, we can readily verify that if G = K4, then L(K4) ≃ C6,{1,2}.

This example was also presented in the introductory chapter of the thesis.

Line graphs make connections between many important areas of graph theory.

For example, determining a maximum matching in a graph is equivalent to finding a

maximum independent set in the corresponding line graph. Similarly, edge colouring

is equivalent to vertex colouring in the line graph. Much research has been done on

the study and application of line graphs; a comprehensive survey of results is found

in [149].

In [176], Whitney solves the determination problem for line graphs, by showing

that with the exception of the graphs K1,3 and K3, a graph is uniquely characterized

by its line graph.

Theorem 4.1 ([176]) Let G and H be two graphs for which L(G) ≃ L(H). If

{G, H} 6= {K1,3, K3}, then G ≃ H.
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By Whitney’s Theorem, we will refer to G as the corresponding graph of L(G),

whenever L(G) 6≃ K3.

Let Φ be any mapping from the set of finite graphs to itself. For example, the line

graph operator L is such a mapping. A natural question is to determine all families

of graphs Γ for which Γ is closed under Φ.

This question is investigated in [149] for Φ = L, where the author surveys known

families of graphs Γ for which G ∈ Γ implies L(G) ∈ Γ. As a simple example, the

family of regular graphs is closed under L, since the line graph of an r-regular graph

G is a (2r − 2)-regular graph. Other L-closed families include k-connected graphs,

non-chordal graphs, non-perfect graphs, non-comparability graphs [2], and Eulerian

graphs [95].

Since a circulant is regular and vertex transitive, a natural conjecture is that

L(G) is a circulant whenever G is a circulant. As discussed above, such is the case

for G = K4 = C4,{1,2}. It is also true for Cn = Cn,{1}, since L(Cn) ≃ Cn. However, a

counterexample to the conjecture is found for G = K5.

Theorem 4.2 L(K5) is not a circulant graph.

Proof: Since K5 has 10 edges, L(K5) has 10 vertices. Suppose on the contrary that

L(K5) is a circulant. Then, L(K5) = C10,S for some generating set S ⊆ {1, 2, 3, 4, 5}.
Since K5 is 4-regular, this implies that L(K5) is 6-regular, and hence |S| = 3. Fur-

thermore, 5 /∈ S, as otherwise L(K5) would have odd degree. Thus, S must be one of

{1, 2, 3}, {1, 3, 4}, {1, 2, 4}, or {2, 3, 4}. We may reject the latter two cases since C10,S

has a 5-clique (namely the set {0, 2, 4, 6, 8}), while L(K5) clearly has no 5-clique.

Therefore, S = {1, 2, 3} or S = {1, 3, 4}. By Lemma 2.24, C10,{1,2,3} ≃ C10,{1,3,4}

with the multiplier r = 3, which implies that L(K5) must be isomorphic to C10,{1,2,3}.

This circulant contains ten distinct 4-cliques, namely the cliques {i, i + 1, i + 2, i + 3}
for 0 ≤ i ≤ 9, where each element is reduced mod 10. This implies that L(K5) must

also have ten 4-cliques. However, L(K5) has only 5 cliques of cardinality 4, since a

4-clique must arise from four pairwise adjacent edges in K5, and this occurs iff all

four edges share a common vertex in K5. Therefore, no such set S exists.

We have given examples of graphs G for which L(G) is a circulant, and shown that
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G = K5 does not satisfy this property. A natural question is to characterize all graphs

G such that L(G) is a circulant. A complete characterization theorem is the main

result of this section. Before we proceed with the main theorem, let us characterize

a specific family of graphs (which appeared in the proof of Theorem 2.35) for which

its line graph is always a circulant.

Lemma 4.3 Let G = Ka,b, where gcd(a, b) = 1. Then, L(G) ≃ Cab,S, where

S =

{

1 ≤ k ≤
⌊

ab

2

⌋

: a|k or b|k
}

.

Proof: Let (X, Y ) be the bipartition of G, with |X| = a and |Y | = b. Represent

each edge in G by an ordered pair (x, y), where 0 ≤ x ≤ a− 1 and 0 ≤ y ≤ b− 1. We

will label each edge xy in G with the integer ex,y := bx + ay (mod ab). Thus, edge

(x, y) in G will correspond to the vertex ex,y in L(G).

We claim that ex,y is one-to-one. On the contrary, suppose that ex,y = ex′,y′ for

some (x, y) 6= (x′, y′). Then b(x − x′) ≡ a(y′ − y) (mod ab). Since gcd(a, b) = 1, we

must have a|(x − x′) and b|(y′ − y). But 0 ≤ x, x′ ≤ a − 1 and 0 ≤ y, y′ ≤ b − 1, and

so this implies that (x, y) = (x′, y′), a contradiction. Therefore, the vertices of L(G)

are the integers from 0 to ab − 1, inclusive.

Vertices ex,y and ex′,y′ are adjacent in L(G) iff x = x′ or y = y′. In the former case,

we have |ex,y−ex′,y′ |ab = |ay−ay′|ab = a|y−y′|b, and in the latter case, |ex,y−ex′,y′|ab =

|bx− bx′|ab = b|x− x′|a. Hence, ex,y ∼ ex′,y′ in L(G) iff |ex,y − ex′,y′|ab ∈ S, where S is

the union of all possible values of a|y−y′|b and b|x−x′|a. Note that 1 ≤ |y−y′|b ≤ ⌊ b
2
⌋

and 1 ≤ |x− x′|a ≤ ⌊a
2
⌋. Then this implies that S takes on every multiple of a and b

less than or equal to
⌊

ab
2

⌋
. Hence,

S =

{

1 ≤ k ≤
⌊

ab

2

⌋

: a|k or b|k
}

.

We conclude that L(G) is isomorphic to the circulant Cab,S .

To give an example, if G = K7,12, then L(G) ≃ C84,{7,12,14,21,24,28,35,36,42}. We

note that Lemma 4.3 fails when gcd(a, b) 6= 1. As an example, consider G = K3,3.

Then L(G) is the Cartesian product K3✷K3, which is not a circulant by the proof of

Theorem 2.29.
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As an aside, we can easily compute the independence polynomial I(L(Ka,b), x).

Even though our line graph may not be a circulant when gcd(a, b) 6= 1, the following

theorem holds for all ordered pairs (a, b).

Theorem 4.4 Let G = Ka,b, for any positive integers a and b. Then,

I(L(G), x) =

min(a,b)
∑

k=0

k!

(
a

k

)(
b

k

)

xk.

Proof: By definition, I(L(G), x) =
∑

k≥0 ikx
k, where ik is the number of indepen-

dent sets of cardinality k in L(G). But an independent set with k vertices in L(G)

corresponds to a unique matching of k edges in G. Thus, if we let mk be the number

of matchings with k edges in G, then I(L(G), x) =
∑

k≥0 mkx
k.

So it remains to compute the number of matchings in Ka,b with k edges. The

first edge can be any of the ab edges in Ka,b. Other edges in our matching cannot

include either endpoint of this edge, so we can delete all edges incident with these

two vertices. So the second edge can be any of the (a − 1)(b − 1) edges remaining.

We continue this process, and find that there are (a−k +1)(b−k +1) choices for the

kth edge. Therefore, mk is the product of all of these terms, divided by k! to account

for each of the permutations of selecting our k edges. Therefore, we have

mk =
a(a − 1) . . . (a − k + 1)b(b − 1) . . . (b − k + 1)

k!
= k!

(
a

k

)(
b

k

)

.

Since I(L(G), x) =
∑

k≥0 mkx
k, our proof is complete.

We remark that a special case of Theorem 4.4 (when a = b) appears in [81].

Theorem 4.4 gives us an additional family of building blocks from which we may

derive even more explicit formulas for independence polynomials of circulants. For

example, letting (a, b) = (4, 9) gives us

I(C36,{4,8,9,12,16,18}, x) = 1 + 36x + 432x2 + 2016x3 + 3024x4.

Now taking the lexicographic product of G = C36,{4,8,9,12,16,18} with any other

circulant H for which I(H, x) is known, we can determine I(G[H ], x). For example,

if H = C5,{1}, then Theorems 2.31 and 2.33 enable us to determine the independence
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polynomial I(G[H ], x) = I(C180,S , x), where S is the following generating set on 29

elements.

S = {4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48,

52, 54, 56, 60, 63, 64, 68, 76, 80, 81, 84, 88, 90}.

Therefore, the independence polynomial of circulants with “seemingly random”

generating sets can be exactly determined by this process of taking the lexicographic

product.

We have now shown that L(G) is a (connected) circulant if G = K4, G = Cn, or

G = Ka,b for some gcd(a, b) = 1. What is surprising is that these are the only such

possibilities. The rest of this section is devoted to proving this theorem.

Theorem 4.5 Let G be a connected graph such that L(G) is a circulant. Then G

must either be Cn, K4, or Ka,b for some a and b with gcd(a, b) = 1.

Proof: If G is connected, then so is L(G). So let us assume that L(G) = Cn,S is a

connected circulant graph.

If i is a vertex of L(G), then the corresponding edge in G will be denoted ei. Thus,

x ∼ y in L(G) iff ex and ey share a common vertex in G.

First, we consider the case when 1 is an element of the generating set S. We will

prove that if 1 ∈ S, then G must be K1,n, Cn, or K4.

If S = {1, 2, . . . , ⌊n
2
⌋}, then L(G) = Kn. This implies that G = K1,n for all n (and

in the special case n = 3, we could also have G = K3 = C3). So assume L(G) 6= Kn.

Then, there must exist a smallest index k such that 1, 2, . . . , k ∈ S and k + 1 /∈ S.

Note that k ≤ ⌊n
2
⌋ − 1. We split our analysis into three subcases.

Case 1: 3 ≤ k ≤ ⌊n
2
⌋ − 1.

The vertices {0, 1, 2, . . . , k} induce a copy of Kk+1 in L(G), since 1, 2, . . . , k ∈ S.

Therefore, the edges in {e0, e1, e2, . . . , ek} must be pairwise adjacent in G. Since

k ≥ 3, these k + 1 edges must share a common vertex u in G. Now consider edge

ek+1. This edge is adjacent to ei for each 1 ≤ i ≤ k, and thus, shares a common
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vertex with each of these k edges. Since k ≥ 3, u must also be an endpoint of ek+1.

But then e0 ∼ ek+1, which contradicts the assumption that k+1 /∈ S. Thus, no graph

G exists in this case.

Case 2: k = 2.

First note that if n ≤ 5, then L(G) = Kn, so suppose that n ≥ 6. If n = 6,

then L(G) = C6,{1,2}, from which we immediately derive G = K4 (this result was

also quoted in the introduction to this section). So assume that n ≥ 7. Consider the

subgraph of G induced by the edges {e0, e1, e2, e3, en−3, en−2, en−1}.
If 1, 2 ∈ S and 3 /∈ S, we claim that this subgraph of G must be isomorphic to

one of the graphs in Figure 4.1. For notational convenience, we represent edge ek by

just the index k.

n-3

n-1

n-2

1

0

2

3

n-1

n-2

n-3 0

1

23

n-3

n-1

n-2

1
0

2

3 n-3

n-1

n-2

10

2

3
n-3

n-1

n-2

10

2

3

Figure 4.1: Possible subgraphs of G induced by these 7 edges.

To explain why this subgraph of G must be isomorphic to one of these five graphs,

we perform a step-by-step case analysis. Start with the edges e0, e1, and e2. Either

these three edges induce a K3 or a K1,3. In each case, add edge e3. Since 3 /∈ S, e3 is
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adjacent to e1 and e2, but not e0. Now add en−1. This edge is adjacent to e0 and e1,

but not e2. At this stage, we have three possible cases, as illustrated in Figure 4.2.

Figure 4.2: Possible subgraphs of G induced by {e0, e1, e2, e3, en−1}.

Now add edge en−2, which is adjacent to e0 and en−1, but not e1. Finally, add

edge en−3, which is adjacent to en−2 and en−1, but not e0. Adding these two edges in

all possible ways to our three graphs in Figure 4.2, we find that there are five possible

subgraphs. These five subgraphs correspond to the graphs in Figure 4.1.

If n = 7, then e1 ∼ e4 in the second graph of Figure 4.1 (top centre) and e2 ∼ e5

in other four. But this contradicts the assumption that 3 /∈ S. So assume n ≥ 8.

In the second graph, en−3 ∼ e1 and en−2 ≁ e2, which shows that 4 ∼ S and 4 ≁ S,

a contradiction. We get a similar contradiction for the other four graphs: en−2 ∼ e2

and either en−3 ≁ e1 or en−1 ≁ e3.

So in the case k = 2, we must have n = 6. Thus, L(G) = C6,{1,2}, implying that

G = K4.
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Case 3: k = 1.

If S = {1}, then L(G) = Cn, and so G = Cn (in the special case that n = 3, we

could also have G = K1,n). So we may assume that |S| > 1 and that n ≥ 4. We know

that 2 /∈ S since k = 1. Let l be the smallest index for which 1 ∈ S, 2, 3, . . . , l /∈ S,

and l + 1 ∈ S. Note that 2 ≤ l ≤ ⌊n
2
⌋ − 1.

The vertices {0, 1, . . . , l + 1} induce a copy of Cl+2 in L(G), since 2, 3, . . . , l /∈ S.

Since l ≥ 2, the edges {e0, e1, . . . , el+1} must induce an (l + 2)-cycle in G. Let x be

the vertex shared by e0 and e1, and let y be the vertex shared by el+1 and e0.

Now consider el+2. Since el+2 ∼ el+1 and el+2 ≁ el, one of the endpoints of el+2

must be y. Since el+2 ∼ e1 and el+2 ≁ e2, one of the endpoints of el+2 must be x. But

then this forces el+2 = xy = e0, which is a contradiction, since l + 2 ≤ ⌊n
2
⌋ + 1 < n.

Thus, no graph G exists in this case.

We have proven that if 1 ∈ S and L(G) is a circulant, then G must be K1,n, K4

or Cn. Now consider all generating sets S with 1 /∈ S.

Suppose we have L(G) = Cn,S with some element x ∈ S such that gcd(x, n) = 1.

There must exist an integer y with xy ≡ 1 (mod n). Then the set yS = {|yi|n : i ∈ S}
is a generating set with |S| elements, and by Lemma 2.24, Cn,S ≃ Cn,yS . Since 1 ∈ yS,

we have reduced the problem to the previously-solved case of 1 ∈ S.

Therefore, we may assume that every i ∈ S satisfies gcd(i, n) > 1. We now

prove that in such a generating set S, if L(G) = Cn,S, then G must be the complete

bipartite graph Ka,b, where a and b are integers for which gcd(a, b) = 1 and n = ab.

The remaining details of the proof are quite technical as we require multiple subcases,

and a very careful treatment of the Extreme Principle.

Let S = {s1, s2, . . . , sm}. By Proposition 2.45, gcd(n, s1, s2, . . . , sm) = 1, or else

G = Cn,S is disconnected. For every integer t with gcd(t, n) = 1, define

tS = {|tx|n : x ∈ S} = {t1, t2, . . . , tm}.

We claim that there exists an integer t ≥ 1 so that gcd(t1, t2, . . . , tm) = 1.

If gcd(s1, s2, . . . , sm) = 1, then this claim is trivial, since we can set t = 1. So
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suppose gcd(s1, s2, . . . , sm) = d > 1. Note that gcd(n, s1, s2, . . . , sm) = gcd(n, d) = 1.

Therefore, there must exist an integer t ≥ 1 such that td ≡ 1 (mod n). Then,

tsi = td · si

d
≡ si

d
(mod n) for each 1 ≤ i ≤ m, implying that ti = |tsi|n = si

d
. Hence,

gcd(t1, t2, . . . , tm) = 1
d
gcd(s1, s2, . . . , sm) = 1.

Hence, we have proven the existence of such an index t. Therefore, by Lemma 2.24,

L(G) = Cn,S ≃ Cn,tS, with gcd(t1, t2, . . . , tm) = 1.

For each 2 ≤ k ≤ m, consider all k-tuples (a1, a2, . . . , ak) comprised of the elements

of tS so that gcd(a1, a2, . . . , ak) = 1. Clearly such a k-tuple exists for k = m by setting

ai = ti for each 1 ≤ i ≤ k = m. Of all k-tuples satisfying gcd(a1, a2, . . . , ak) = 1 (over

all k ≥ 2), select a k-tuple for which the sum a1 + a2 + . . . + ak is minimized.

We will show that k = 2, i.e., there exists an ordered pair (a1, a2) such that

a1, a2 ∈ tS and gcd(a1, a2) = 1. Suppose on the contrary that the minimum k-tuple

satisfies k ≥ 3. Then L(G) = Cn,tS is a connected circulant graph with vertex 0

adjacent to each of a1, a2, and a3. Consider e0 in the corresponding graph G. We

know that ea1 , ea2 , and ea3 share a common vertex with e0. By the Pigeonhole

Principle, two of these three edges must share the same common vertex, and hence

|aj − ai|n ∈ tS for some 1 ≤ i < j ≤ 3.

Without loss, suppose that a2 − a1 ∈ tS. We have gcd(a1, a2) = gcd(a1, a2 − a1).

If a2 − a1 = aj for some 1 ≤ j ≤ k, then gcd(a1, a3, a4, . . . , ak) = 1, contradicting

the minimality of our chosen k-tuple. If a2 − a1 does not already appear as some aj

in our minimum k-tuple, then gcd(a1, a2 − a1, a3, a4, . . . , ak) = 1, and once again we

have contradicted our minimality assumption.

Therefore, in a minimum k-tuple satisfying the given conditions, we must have

k = 2. This minimum k-tuple must be a pair (a, b), where a + b is minimized over all

pairs such that a, b ∈ tS and gcd(a, b) = 1. Without loss, assume a < b. Specifically,

this choice of (a, b) implies that b − a /∈ tS, as otherwise the pair (a, b − a) satisfies

gcd(a, b − a) = 1 and contradicts the minimality of (a, b). Since 1 /∈ tS, we have

2 ≤ a < b ≤ ⌊n
2
⌋.

We now show that |a + b|n /∈ tS. On the contrary, suppose that |a + b|n ∈ tS.

Consider the subgraph of G induced by the edges in the set {e0, ea, eb, eb−a, ea+b, e2a}.
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Since 2a < a + b < n and gcd(a, b) = 1, these six edges are distinct.

From a, b, |a + b|n ∈ tS and b − a /∈ tS, a simple case analysis shows that this

subgraph must be isomorphic to K4, with one of two possible edge labellings, as shown

in Figure 4.3. We arrive at this conclusion by considering the edges in the following

order: e0, ea, eb, ea+b, eb−a, and e2a. After we have included five edges, there are four

possible subgraphs. But after we include e2a, we must eliminate the two cases with

eb−a 6∼ ea, and this leaves us with the two labellings in Figure 4.3. As before, we

represent edge ek by just the index k for notational convenience.

Figure 4.3: Two possible edge labellings of K4.

In both valid labellings, e0 ∼ e2a. Therefore, if |a + b|n ∈ tS, this implies that

|2a|n ∈ tS as well.

Now consider the edge en−a. We claim that edge en−a is distinct from the other six

edges. Note that gcd(a, n) > 1, gcd(b, n) > 1, and gcd(a, b) = 1, with 2 ≤ a < b ≤ n
2
.

If n−a equals 0, a, b or b−a, then we have an immediate contradiction. If n−a = a+b,

then n = 2a + b, so that gcd(a, n) = gcd(a, 2a + b) = gcd(a, b) = 1, by the Euclidean

algorithm. But then gcd(a, n) = 1, which is a contradiction. Finally, if n − a = 2a

(i.e., n = 3a), we argue that (a, b) is not the minimum pair satisfying the given

conditions. Let b′ = |a + b|n ∈ tS. Since a < b, we have a + b > 2a > n
2
, and so

b′ = |a + b|n = n− (a + b) = 2a− b. Then, gcd(a, b′) = gcd(a, 2a− b) = gcd(a, b) = 1.

Note that b′ = 2a − b < b. So (a, b′) is a pair satisfying gcd(a, b′) = 1 and a, b′ ∈ tS,

thus contradicting the minimality of (a, b).

Thus, edge en−a is distinct from the six other edges in this K4 subgraph, and is
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adjacent to each of e0, ea, and eb. But the three edges {eb, e0, ea} induce the path P4,

and so en−a must coincide with one of the edges ea+b, eb−a, or e2a. This establishes

our desired contradiction, and so we have shown that |a + b|n /∈ tS.

We have now shown that a, b ∈ tS, gcd(a, b) = 1, b − a /∈ tS, and |a + b|n /∈ tS.

We will now prove that in our circulant L(G) = Cn,tS, n must equal ab, and that the

generating set tS must equal

tS =

{

1 ≤ k ≤
⌊

ab

2

⌋

: a|k or b|k
}

.

By Lemma 4.3 and Theorem 4.1, this will immediately establish our desired con-

clusion that G = Ka,b. Hence, it suffices to prove that n = ab, and that 1 ≤ k ≤ ⌊ ab
2
⌋

is an element of tS iff k is a multiple of a or b.

Now consider the subgraph of L(G) induced by the vertices {0, a, b, n− a, n− b}.
It is well-known (and straightforward to show) that any line graph L(G) is claw-free,

i.e., L(G) has no induced K1,3 subgraph. This implies that |2a|n ∈ tS, as otherwise

{0, a, b, n − a} induces a K1,3 subgraph in L(G), since b − a /∈ tS and |a + b|n /∈ tS.

Similarly, if n > 2b, then |2b|n ∈ tS as well. In the exceptional case that n = 2b (i.e.,

b = n
2

= ⌊n
2
⌋), we have b = n − b, and we will deal with this case separately.

We have shown that in our generating set tS, if a ∈ tS, then |2a|n ∈ tS. We now

prove that n must be a multiple of a. Since a < ⌊n
2
⌋, we know that n > 2a. Consider

two cases.

Case 1: |3a|n ∈ tS.

We will show that n must be a multiple of a, and that ka ∈ tS for each 1 ≤ k ≤
⌊ n

2a
⌋. The subgraph of G induced by the edges {e0, ea, e2a, e3a} must be isomorphic

to K1,4, since these edges are pairwise adjacent. Let u be the vertex common to

each edge. Since e4a is adjacent to ea, e2a, and e3a, it follows that u must also be

an endpoint of e4a, which implies that |4a|n ∈ tS since e0 ∼ e4a. Continuing in this

manner, we see that each |ka|n ∈ tS, for all k ≥ 4. Now, let d = gcd(a, n). Then,

there exists an integer m for which |ma|n = d, which implies that d ∈ tS. If d < a,

then (d, b) is a pair with gcd(d, b) = 1 since d = gcd(a, n)|a. And this contradicts the
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minimality of (a, b). Therefore, we must have d = a, which implies that a|n. Hence,

|ka|n ∈ tS for each k ≥ 1. In other words, ka ∈ tS for each 1 ≤ k ≤ ⌊ n
2a
⌋.

Case 2: |3a|n /∈ tS.

We prove that if |3a|n /∈ tS, then n = ka for some 3 ≤ k ≤ 6. Consider the

subgraph of G induced by the edges {e0, ea, e2a, e3a, e4a, e5a, e6a}, where the indices

are reduced mod n (if necessary). We now split our analysis into two subcases: when

n does not divide ma for any m ≤ 6, and when n|ma for some m ≤ 6.

If n does not divide ma for any m ≤ 6, then these seven edges must be distinct.

We claim that if |3a|n /∈ tS, then the edges {e0, ea, e2a, e3a, e4a, e5a} must induce a

copy of K4, with one of two possible edge-labellings as shown in Figure 4.4. In both

possible edge labellings, e0 ∼ e4a, i.e., |4a|n ∈ tS.

Figure 4.4: Two possible K4 subgraphs induced by {e0, ea, e2a, e3a, e4a, e5a}.

This is justified by doing a case analysis, considering the edges in the following

order: e0, ea, e2a, e3a, e4a, and e5a. After the first five edges have been included, there

are three possible subgraphs. But after we include e5a, we see that we must eliminate

the subgraph with e0 6∼ e4a. This leaves us with the two subgraphs in Figure 4.4.

Now consider e6a. We know that e6a ≁ e3a, while e6a is adjacent to each of e2a,

e4a, and e5a. And this implies that e6a and e0 coincide, which is a contradiction.

Therefore, n must divide ma for some m ≤ 6. If n < 6a, then this reduces to the

previously solved Case 1, where we showed that ka ∈ tS for 1 ≤ k ≤ ⌊ n
2a
⌋. Thus,

Case 2 only adds one possible scenario not previously considered, namely the case

n = 6a and 3a /∈ tS.
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Therefore, we have shown that n ≡ 0 (mod a) and that ka ∈ tS for each 1 ≤ k ≤
⌊ n

2a
⌋, with the only possible exception being the case when 3a /∈ tS and n = 6a. We

have an analogous result when we replace a by b, except in the special case n = 2b.

Thus, we have shown that L(G) = Cn,tS must satisfy one of the following four cases.

1. n = 6a, with a, 2a ∈ tS, 3a /∈ tS, and lb ∈ tS for 1 ≤ l ≤ ⌊ n
2b
⌋.

2. n = 6b, with b, 2b ∈ tS, 3b /∈ tS, and ka ∈ tS for 1 ≤ k ≤ ⌊ n
2a
⌋.

3. n = 2b, with b ∈ tS, and ka ∈ tS for 1 ≤ k ≤ ⌊ n
2a
⌋.

4. n = mab for some integer m, with ka ∈ tS for 1 ≤ k ≤ ⌊ n
2a
⌋ and lb ∈ tS for

1 ≤ l ≤ ⌊ n
2b
⌋.

Note that the third case is a special instance of the fourth case (when m = 1 and

a = 2), so we may disregard this case as we will include it in our analysis of the fourth

case. We first prove that the first two cases cannot occur, leaving us with only Case

4 to consider. In this remaining final case, we will prove that n must equal ab and

that

tS =

{

1 ≤ k ≤
⌊

ab

2

⌋

: a|k or b|k
}

.

As mentioned previously, this enables us to conclude that G = Ka,b, by Lemma 4.3

and Theorem 4.1.

We show that the first two cases are impossible. By symmetry, we will just

disprove the first case. As mentioned before, the subgraph of G induced by the edges

{e0, ea, e2a, e3a, e4a, e5a} must be isomorphic to K4, since a, 2a ∈ tS and 3a /∈ tS.

There are two possible labellings of the edges on K4, as shown in Figure 4.4. Now

consider the edges eb and ea+b, which are distinct from the six edges of the subgraph

since gcd(a, b) = 1 and a, b > 1. Since b−a /∈ tS, we must have eb ≁ ea and ea+b ≁ e2a.

Also, we must have eb ∼ ea+b, eb ∼ e0, and ea+b ∼ ea. Therefore, the only possible

edge labellings are given in Figure 4.5.

The first graph has ea+b ∼ e3a and eb ≁ e2a, and the second graph has ea+b ≁ e3a

and eb ∼ e2a. Therefore, in both graphs, |2a − b|n ∼ tS and |2a − b|n ≁ tS, a
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Figure 4.5: Two possible subgraphs induced by this set of eight edges.

contradiction. Thus, we have proven that the first two possible cases for L(G) = Cn,tS

are impossible, and so we only need to consider the fourth and final case.

We have n = mab for some integer m, where ka ∈ tS for 1 ≤ k ≤ ⌊ n
2a
⌋ and lb ∈ tS

for 1 ≤ l ≤ ⌊ n
2b
⌋. We now prove that n = ab, i.e., m = 1.

Suppose that m > 1. Since b > a > 1, we have a ≥ 2 and b ≥ 3. Therefore, the

edges {e0, ea, e2a, eb, eab, e(a+1)b} are distinct. The edges {e0, ea, e2a, eab} are pairwise

adjacent in G, and so they must induce a copy of K1,4. Let u be the vertex common

to all four edges. Since the edges {e0, eb, eab, e(a+1)b} are pairwise adjacent in G, these

four edges must also induce a copy of K1,4. It follows that eb and e(a+1)b must also

have vertex u as one of its endpoints. But then ea ∼ eb, which implies that b−a ∈ tS,

a contradiction. Thus, we must have m = 1.

If m = 1, then L(G) = Cab,tS , where the generating set tS includes every element

ka ∈ tS for 1 ≤ k ≤ ⌊ b
2
⌋, and lb ∈ tS for 1 ≤ l ≤ ⌊a

2
⌋. First assume that tS contains

no other elements. Then this implies that tS = {1 ≤ k ≤ ⌊ ab
2
⌋ : a|k or b|k}. From

Lemma 4.3, this is precisely the line graph for G = Ka,b, where gcd(a, b) = 1. By

Theorem 4.1, L(G) = Cab,tS implies that G = Ka,b.

Therefore, suppose that tS contains other elements than the multiples of a and b.

Let c be the smallest element of tS that is not a multiple of a or b. Note that c > a

and c > b since (a, b) is the smallest pair with gcd(a, b) = 1, and a, b ∈ tS.

Let e0 = xy in G. Since each multiple of a is an element of tS, the edges
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e0, ea, e2a, e3a, . . . all share the same vertex in G. Without loss, assume this ver-

tex is x. Similarly, the edges e0, eb, e2b, e3b, . . . all share the same vertex in G. This

common vertex must be y, since b−a /∈ tS. Now consider ec, which shares a common

vertex with e0. Without loss, assume ec has an endpoint x. Then, ec is adjacent to

eka for all k ≥ 1, where the index is reduced mod n. Thus, |c − ka|n = |c − ka|ab is

an element of tS for all k ≥ 1.

Let c = pa + q, where (p, q) is the unique integer pair with 0 ≤ q ≤ a− 1. Letting

k = p and k = p + 1, we have |c − pa|n = q ∈ tS and |c − (p + 1)a|n = a − q ∈ tS.

By the minimality of c, both q and a− q must be multiples of a or b. Clearly neither

is a multiple of a. Thus, q and a − q must both be multiples of b. But then its sum,

q + (a− q) = a, must be a multiple of b. This contradicts the fact that gcd(a, b) = 1.

We have shown that if tS contains some element c other than multiples of a or

b, we obtain a contradiction. Thus, tS cannot contain any other elements than the

multiples of a and b. We have proven that if L(G) = Cn,tS is a circulant, then we

must have n = ab and tS = {1 ≤ k ≤ ⌊ab
2
⌋ : a|k or b|k}. From our earlier analysis,

L(G) = Cab,tS implies that G = Ka,b.

In conclusion, we have proven that if L(G) is a circulant, then G must be one of

K4, Cn, or Ka,b where gcd(a, b) = 1. We have now given a complete characterization

of all circulant line graphs. This completes the proof of Theorem 4.5.

4.2 List Colourings

In this section, we investigate the list colouring number χl(G) of a graph, and cleverly

utilize the formula for the independence polynomial I(Cn, x) to calculate the values

of χl(G) for a particular family of circulant graphs. To our knowledge, the main

result in this section provides the first example of a graph family whose list colouring

number can be determined directly from its independence polynomial.

Definition 4.6 The list colouring number χl(G) is the smallest integer n such

that if each vertex v of G is assigned any list L(v) of possible colours with |L(v)| = n,

then G has a proper colouring.
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The list colouring number is introduced in [66], and is also known in the literature

as the choice number. Since a list colouring is a generalization of the usual colouring

(i.e., assigning the list L(v) = {1, 2, . . . , n} for each vertex), it follows that χl(G) ≥
χ(G), for all G.

We often have χl(G) = χ(G), but this is not always the case. For example,

χ(K2,4) = 2 and χl(K2,4) = 3. The former is clear since K2,4 is bipartite. To prove

the latter, we first note that any 3-list colouring of K2,4 admits a proper colouring

(select any colour for each of the vertices of degree 4, and then there is at least one

colour left to properly colour each of the remaining four vertices). To show that

χl(G) = 3, we exhibit a list of two colours for each vertex of K2,4, such that the lists

do not admit a proper colouring. This is illustrated in Figure 4.6.

Figure 4.6: A 2-list colouring of K2,4 that is not proper.

We also give the following example, where χ(K7,7) = 2 and χl(K7,7) = 4. Figure

4.7 gives a 3-list colouring that is not proper, showing that χl(K7,7) > 3. We remark

that the lists correspond to the edges of the Fano Plane.

We now show that the difference χl(G) − χ(G) can be made as large as we wish.

Proposition 4.7 The difference χl(G) − χ(G) can take on infinitely large values,

even when G is restricted to circulants.

Proof: First, we establish that χl(Kn,n) > k, for n =
(
2k−1

k

)
. To find the desired

k-list colouring of Kn,n, let (X, Y ) be the bipartition of Kn,n and assign each of the
(
2k−1

k

)
k-subsets of {1, 2, . . . , 2k − 1} to a vertex of X. We do the same for Y . Any

proper colouring of Kn,n must consist of at least k distinct colours assigned to the
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Figure 4.7: A 3-list colouring of K7,7 that is not proper.

vertices of X and at least k distinct colours assigned to the vertices of Y (which must

all be different from the colours used to colour X). Therefore, any proper colouring

of Kn,n must require at least 2k distinct colours. Hence, we conclude that no proper

colouring exists with this assignment of 2k − 1 total colours.

Letting G = Kn,n, we have χl(G) > k, implying that χl(G)−χ(G) > k−2. Thus,

χl(G)− χ(G) can be made arbitrarily large. Even when G is restricted to circulants,

χl(G)− χ(G) can take on infinitely large values: this is immediate from the previous

paragraph, since Kn,n = C2n,{1,3,5,...,2n−1}.

We now develop more properties of χl(G) by investigating graph orientations,

where we direct each edge uv in E.

Definition 4.8 A directed graph (digraph)
−→
G is Eulerian if its in-degree equals the

out-degree for each vertex of G.

This digraph
−→
G is not required to be connected, and is allowed to have any number

of isolated vertices.

Definition 4.9 Let ee(
−→
G ) be the number of Eulerian subgraphs of

−→
G which have

an even number of edges, and let eo(
−→
G) be the number of Eulerian subgraphs which

have an odd number of edges.
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For convenience, we say that the empty graph is an even Eulerian subgraph. Our

results will involve applications of the following theorem by Alon and Tarsi [4] that

relates Eulerian subgraphs of
−→
G to the list colouring number χl(G). This theorem is

extremely surprising and powerful, as it connects two topics that appear to have no

connection.

Theorem 4.10 ([4]) Let
−→
G be an orientation of G such that the out-degree of each

vertex is k − 1. If ee(
−→
G ) 6= eo(

−→
G ), then χl(G) ≤ k.

To illustrate Theorem 4.10, we calculate the list colouring number of the circulant

G = C9,{1,2}.

Proposition 4.11 Let G = C9,{1,2}. Then χl(G) = 3.

Proof: Since G contains a K3-subgraph, we have χl(G) ≥ χ(G) ≥ 3. Now we show

that χl(G) ≤ 3, which will complete the proof.

We remark that G is the union of two edge-disjoint 9-cycles, C9,{1} and C9,{2}.

Let
−→
G be the orientation of G where each of these 9-cycles is oriented clockwise.

Specifically, the orientation will have v → v + 1 and v → v + 2 for each 0 ≤ v ≤ 8,

where addition is computed mod 9. For example, 1 → 3 → 4 → 6 → 8 → 0 → 1 is

an example of a 6-cycle in
−→
G , and hence is an Eulerian subgraph of

−→
G .

We determine the number of Eulerian subgraphs in
−→
G . Define uk to be the number

of Eulerian subgraphs of
−→
G with k edges. (Later in this section, we will prove that

each k-edge Eulerian subgraph with k ≤ 9 must be a directed k-cycle). With the aid

of Maple, we calculate the following values of uk, for each 0 ≤ k ≤ 9.

k 0 1 2 3 4 5 6 7 8 9
uk 1 0 0 0 0 9 30 27 9 2

Table 4.1: Eulerian subgraphs for the circulant C9,{1,2}.

Since
−→
G is Eulerian, the complement of an Eulerian subgraph of

−→
G is also Eulerian.

Because |E(
−→
G)| = 18, it follows that uk = u18−k for 0 ≤ k ≤ 9. Therefore, we have

ee(
−→
G ) = 1 + 30 + 9 + 9 + 30 + 1 = 80 and eo(

−→
G) = 9 + 27 + 2 + 27 + 9 = 74. Since

ee(
−→
G ) 6= eo(

−→
G ), Theorem 4.10 implies that χl(G) ≤ 3.
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Later in this section, we will provide a generalization to Proposition 4.11, by

proving that χl(C3m,{1,2}) = 3 for any m ≥ 2.

Our proof above is extremely unsatisfying, as we have relied on a Maple procedure

to enumerate our Eulerian subgraphs. However, there is no known algorithm to

enumerate Eulerian subgraphs of an arbitrary digraph
−→
G . We should note that

counting Eulerian orientations and Eulerian cycles in a general (undirected) graph is

#P -complete [19, 134], and so it is possible that counting the number of Eulerian

subgraphs of
−→
G is also #P -complete. We conjecture that this is indeed the case.

However, if the graph has a certain structure, then combinatorial techniques can

be used to count the number of Eulerian subgraphs. As an example, we prove the

following theorem which is a generalization of the above result. But first we require

a technical combinatorial lemma and a corollary.

Lemma 4.12 For each k ≥ 1, define S(k) =

⌊k−1
2 ⌋
∑

i=0

(−1)i ·
(

k − i

k − 2i − 1

)

. Then for

all k ≥ 1,

S(k + 2) − S(k + 1) + S(k) = 1.

Proof: Let k ≥ 1. Then,

S(k + 1) − S(k)

=

⌊k
2⌋∑

i=0

(−1)i ·
(

k − i + 1

k − 2i

)

−
⌊ k−1

2 ⌋
∑

i=0

(−1)i ·
(

k − i

k − 2i − 1

)

=

(
k + 1

k

)

+

⌊ k
2⌋∑

i=1

(−1)i ·
(

k − i + 1

k − 2i

)

−
⌊k−1

2 ⌋
∑

i=0

(−1)i ·
(

k − i

k − 2i − 1

)

=

(
k + 1

k

)

+

⌊k
2⌋−1
∑

i=0

(−1)i+1 ·
(

k − (i + 1) + 1

k − 2(i + 1)

)

−
⌊k−1

2 ⌋
∑

i=0

(−1)i ·
(

k − i

k − 2i − 1

)



163

=

(
k + 1

k

)

−
⌊ k−1

2 ⌋
∑

i=0

(−1)i ·
[(

k − i

k − 2i − 2

)

+

(
k − i

k − 2i − 1

)]

=

(
k + 1

k

)

−
⌊ k−1

2 ⌋
∑

i=0

(−1)i ·
(

k − i + 1

k − 2i − 1

)

, by Pascal’s Identity

= −1 +

(
k + 2

k + 1

)

−
⌊k+1

2 ⌋
∑

i=1

(−1)i−1 ·
(

k − (i − 1) + 1

k − 2(i − 1) − 1

)

= −1 +

(
k + 2

k + 1

)

+

⌊k+1
2 ⌋
∑

i=1

(−1)i ·
(

k − i + 2

k − 2i + 1

)

= −1 +

⌊ k+1
2 ⌋
∑

i=0

(−1)i ·
(

k − i + 2

k − 2i + 1

)

= −1 + S(k + 2).

Therefore, we have proven that S(k + 2) − S(k + 1) + S(k) = 1, for all k ≥ 1.

Corollary 4.13 S(u) = S(v) whenever u ≡ v (mod 6).

Proof: By Lemma 4.12, we have

S(k + 6) − S(k + 5) + S(k + 4) = 1

S(k + 5) − S(k + 4) + S(k + 3) = 1

−S(k + 3) + S(k + 2) − S(k + 1) = −1

−S(k + 2) + S(k + 1) − S(k) = −1

Adding the four equations, we have S(k + 6) − S(k) = 0. This identity holds for

any k ≥ 1, and hence the sequence {S(k)}∞k=1 has period 6. It is easy to show that

S(5) = S(6) = 0, S(1) = S(4) = 1, and S(2) = S(3) = 2. Thus, we can use these

initial values to compute S(k), for any k ≥ 1.

Having established Lemma 4.12 and Corollary 4.13, we now determine an infinite

family of circulants for which χl(G) = 3 for every graph in this family. We provide two
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proofs: the first will be a combinatorial enumeration, and the second will use inde-

pendence polynomials. The following theorem is a generalization of Proposition 4.11.

Theorem 4.14 Let G be the circulant C3m,{1,2}, where m ≥ 2 is an integer. Then,

χl(G) = 3.

Proof: Since K3 is a subgraph of G, we have χl(G) ≥ χ(G) = 3. We now use

Theorem 4.10 to prove that χl(G) ≤ 3. Given an orientation
−→
G , define uk to be the

number of Eulerian subgraphs of
−→
G with k edges. We determine a formula for uk.

Case 1: m = 2n + 1 is odd.

Note that G is the union of two disjoint Hamiltonian cycles, namely C3m,{1} and

C3m,{2}. Orient each edge of these cycles clockwise, i.e., v → v + 1 and v → v + 2,

where addition is computed mod (6n+3). Each vertex in this digraph has out-degree

2, and so it suffices to prove that ee(
−→
G ) 6= eo(

−→
G ) for this orientation

−→
G . Since

−→
G is

Eulerian and |E(
−→
G)| = 12n + 6, uk = u12n+6−k for 0 ≤ k ≤ 6n + 3. By inspection,

u0 = 1 and u6n+3 = 2. So let us assume that 1 ≤ k ≤ 6n + 2.

Let
−→
Ck be a connected Eulerian subgraph of

−→
G with k edges. We now prove that

each
−→
Ck must be a directed cycle. Since

−→
Ck has k edges, the entire trail

−→
Ck consists of

k+1 vertices, with possibly some vertices overlapping. But
−→
Ck is Eulerian, and so the

last vertex must coincide with the first vertex v1, so that v1 has the same in-degree

and out-degree.

If the vertices of
−→
Ck are v1, v2, . . . , vk, v1 (in that order), then we must have vi+1 −

vi = 1 or 2 (mod 6n + 3), for each 1 ≤ i ≤ k. Thus, the difference sequence of each
−→
Ck must only contain 1’s and 2’s. Furthermore, its sum must be congruent to 0 (mod

6n + 3), because the trail
−→
Ck starts and ends at the same vertex v1.

Since 1 ≤ k ≤ 6n + 2, it follows that the sum of these k elements must be at least

1 and at most 12n + 4, since each term is 1 or 2. From the previous paragraph, this

sum is congruent to 0 (mod 6n+3). Thus, this sum must be exactly 6n+3. In other

words, the trail
−→
Ck makes exactly one loop around the 6n+3 vertices of the circulant,

before returning to the initial vertex.
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Note that every connected Eulerian subgraph on k edges (with k ≤ 6n + 2) must

satisfy k ≥ ⌈6n+3
2

⌉ = 3n + 2. And so
−→
Ck cannot have more than one component.

Thus, every Eulerian subgraph
−→
Ck (with 1 ≤ k ≤ 6n + 2) is connected, and hence, is

a directed cycle.

To enumerate the number of possible Eulerian subgraphs
−→
Ck, we will determine

the number of k-tuples (d1, d2, . . . , dk) such that d1 + . . . + dk = 6n + 3, with each

di ∈ {1, 2}. We then will match up this k-tuple to a directed Eulerian subgraph
−→
Ck,

and check to make sure that each subgraph is counted only once.

Suppose that in a given k-tuple (d1, d2, . . . , dk), exactly i of the elements are 1

and the other k − i elements are 2. Then we have i + 2(k − i) = 6n + 3, which gives

i = 2k − 6n − 3. So there are
(

k
2k−6n−3

)
k-tuples satisfying the required conditions.

We consider two cases: either
−→
Ck includes vertex 0, or it does not. As mentioned

earlier, each
−→
Ck must be a directed cycle. So in our enumeration of all directed cycles,

we will cyclically arrange the vertices of each
−→
Ck so that the indices are in increasing

order (i.e., the first vertex is either 0 or 1).

If
−→
Ck includes vertex 0, then there are

(
k

2k−6n−3

)
possibilities for

−→
Ck, a unique

directed cycle for each of our k-tuples above. If
−→
Ck does not include vertex 0, then

it must include vertex 1. Hence, in our k-tuple (d1, d2, . . . , dk) corresponding to the

difference sequence of
−→
Ck, the last entry must be 2 (and not 1). Thus, we need to

enumerate the number of k-tuples satisfying this extra condition. In our k-tuple, we

can select any i = 2k − 6n − 3 of the first k − 1 elements to be 1. Thus, there are
(

k−1
2k−6n−3

)
possible choices. Each k-tuple corresponds to a unique

−→
Ck that does not

include the vertex 0.

We have considered all possible cases, and so we conclude that

uk =

(
k

2k − 6n − 3

)

+

(
k − 1

2k − 6n − 3

)

,

for each 1 ≤ k ≤ 6n + 2.

We now have a formula for uk for each 1 ≤ k ≤ 6n + 2. Using this formula,

we can determine an expression for ee(
−→
G ) − eo(

−→
G) in terms of S(n), as defined in
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Lemma 4.12. We have

ee(
−→
G ) − eo(

−→
G )

=

|E(
−→
G)|
∑

k=0

(−1)kuk

=
12n+6∑

k=0

(−1)kuk

= 2 ·
(

6n+2∑

k=1

(−1)kuk

)

+ u0 − u6n+3 + u12n+6

= 2 ·
(

6n+2∑

k=1

(−1)kuk

)

+ 1 − 2 + 1

= 2 ·
6n+2∑

k=1

(−1)k

(
k

2k − 6n − 3

)

+ 2 ·
6n+2∑

k=1

(−1)k

(
k − 1

2k − 6n − 3

)

= 2 ·
6n+2∑

k=1

(−1)k

(
k

2k − 6n − 3

)

+ 2 ·
6n+1∑

k=1

(−1)k

(
k − 1

2k − 6n − 3

)

+ 2 · (−1)6n+2 · 1

= 2 ·
6n+2∑

k=1

(−1)k

(
k

2k − 6n − 3

)

+ 2 ·
6n+1∑

k=1

(−1)k

(
k − 1

2k − 6n − 3

)

+ 2

= 2 ·
6n+1∑

i=0

(−1)6n+2−i

(
6n + 2 − i

6n + 1 − 2i

)

+ 2 ·
6n∑

i=0

(−1)6n+1−i

(
6n − i

6n − 1 − 2i

)

+ 2

= 2 ·
3n∑

i=0

(−1)6n+2−i

(
6n + 2 − i

6n + 1 − 2i

)

+ 2 ·
3n−1∑

i=0

(−1)6n+1−i

(
6n − i

6n − 1 − 2i

)

+ 2

= 2 ·
3n∑

i=0

(−1)i

(
6n + 2 − i

6n + 1 − 2i

)

− 2 ·
3n−1∑

i=0

(−1)i

(
6n − i

6n − 1 − 2i

)

+ 2

= 2S(6n + 2) − 2S(6n) + 2.

By Corollary 4.13, ee(
−→
G )−eo(

−→
G) = 2(S(6n+2)−S(6n)+1) = 2(S(2)−S(6)+1) =

2(2 − 0 + 1) = 6. Since this number is not 0, Theorem 4.10 implies that χl(G) = 3.

Case 2: m = 2n is even.

Note that G is the edge-disjoint union of C3m,{1} and C3m,{2}. The former is a

Hamiltonian cycle, and the latter is the union of two disjoint cycles on 3n vertices.

Orient each of these three cycles clockwise, i.e., v → v + 1 and v → v + 2, where
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addition is computed mod 6n. Each vertex in this digraph has out-degree 2.

By following the exact same technique as Case 1, we see that u0 = 1, u6n = 2, and

uk = u12n−k for all 1 ≤ k ≤ 6n−1. By the same reasoning as in the previous case, for

any Eulerian subgraph
−→
Ck with 1 ≤ k ≤ 6n − 1,

−→
Ck must be a directed cycle. By the

same combinatorial technique as earlier, we determine that uk =
(

k
2k−6n

)
+
(

k−1
2k−6n

)
,

for each 1 ≤ k ≤ 6n − 1. Using this formula, we now determine an expression for

ee(
−→
G ) − eo(

−→
G) in terms of S(n). We have

ee(
−→
G ) − eo(

−→
G )

=

|E(
−→
G)|
∑

k=0

(−1)kuk

=

12n∑

k=0

(−1)kuk

= 2 ·
(

6n−1∑

k=1

(−1)kuk

)

+ u0 + u6n + u12n

= 2 ·
(

6n+2∑

k=1

(−1)kuk

)

+ 1 + 2 + 1

= 2 ·
6n−1∑

k=1

(−1)k

(
k

2k − 6n

)

+ 2 ·
6n−1∑

k=1

(−1)k

(
k − 1

2k − 6n

)

+ 4

= 2 ·
6n−1∑

k=1

(−1)k

(
k

2k − 6n

)

+ 2 ·
6n−2∑

k=1

(−1)k

(
k − 1

2k − 6n

)

+ 2 · (−1)6n−1

(
6n − 2

6n − 2

)

+ 4

= 2 ·
6n−1∑

k=1

(−1)k

(
k

2k − 6n

)

+ 2 ·
6n−2∑

k=1

(−1)k

(
k − 1

2k − 6n

)

+ 2

= 2 ·
6n−2∑

i=0

(−1)6n−1−i

(
6n − 1 − i

6n − 2 − 2i

)

+ 2 ·
6n−3∑

i=0

(−1)6n−2−i

(
6n − 3 − i

6n − 4 − 2i

)

+ 2

= 2 ·
3n−1∑

i=0

(−1)6n−1−i

(
6n − 1 − i

6n − 2 − 2i

)

+ 2 ·
3n−2∑

i=0

(−1)6n−2−i

(
6n − 3 − i

6n − 4 − 2i

)

+ 2

= −2 ·
3n−1∑

i=0

(−1)i

(
6n − 1 − i

6n − 2 − 2i

)

+ 2 ·
3n−2∑

i=0

(−1)i

(
6n − 3 − i

6n − 4 − 2i

)

+ 2

= −2S(6n − 1) + 2S(6n − 3) + 2.
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Therefore, ee(
−→
G ) − eo(

−→
G ) = 2(S(6n − 3) − S(6n − 1) + 1). By Corollary 4.13,

this quantity equals 2(S(3)− S(5) + 1) = 2(2 − 0 + 1) = 6. Since this number is not

0, Theorem 4.10 implies that χl(G) = 3.

This combinatorial argument has some nice ideas, but there is a more elegant

proof of Theorem 4.14. For this proof, we incorporate ideas from our earlier work

on independence polynomials. We deliberately include both proofs in this section

to contrast the different techniques involved, and illustrate the power of connecting

our problem to the theory of independence polynomials. First, we require a new

definition.

Definition 4.15 Let
−→
G be a digraph. Then, the Alon-Tarsi polynomial of

−→
G is

AT (
−→
G, x) =

|E(
−→
G)|
∑

k=0

uk · xk, where uk is the number of Eulerian subgraphs of
−→
G with k

edges.

For example, in our earlier example for G = C9,{1,2}, the Alon-Tarsi polynomial is

AT (
−→
G, x) = 1 + 9x5 + 30x6 + 27x7 + 9x8 + 2x9 + 9x10 + 27x11 + 30x12 + 9x13 + x18.

The following observation is trivial.

Corollary 4.16 ee(
−→
G ) − eo(

−→
G) 6= 0 iff −1 is not a root of AT (

−→
G, x).

There is a significant benefit to combining these values of uk into one polynomial.

As we will see in the following proof, we will now be able to compute the coefficients

of the Alon-Tarsi polynomial without actually enumerating any subgraphs (as in

the first proof to Theorem 4.14). Once we obtain the polynomial, we just need to

check if x = −1 is a root. If it is not, then we obtain the desired condition that

ee(
−→
G ) 6= eo(

−→
G ), which enables us to apply Theorem 4.10.

Lemma 4.17 Define Hn = Cn,{1,2}. Let
−→
Hn be the orientation of Hn where v → v+1

and v → v + 2 (mod n), for 0 ≤ v ≤ n − 1. Then,

AT (
−→
Hn, x) = xn ·

[

I(Cn, x) + I

(

Cn,
1

x

)]

+ (1 + x2n).
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Proof: As an example, 1 → 3 → 4 → 6 → 8 → 0 → 1 is a directed 6-cycle of
−→
H9. As

discussed in the proof of Theorem 4.14, for each Eulerian subgraph with n − k edges

(with 1 ≤ k ≤ n−1), the subgraph must be isomorphic to
−−→
Cn−k, and hence, there are

k isolated vertices. Thus, for each Eulerian subgraph of
−→
Hn on n − k vertices, there

are k isolated vertices which we will represent by set S. So in the above example of

our directed 6-cycle of
−→
H9, we have S = {2, 5, 7}. We claim that these k vertices are

independent in Cn. In other words, we prove that each subgraph
−−→
Cn−k of

−→
Hn can be

mapped to an independent set of Cn by showing that no isolated pair of vertices in
−−→
Cn−k is adjacent in Cn.

On the contrary, suppose that S contains two adjacent vertices t and t + 1. Then

the directed cycle
−−→
Cn−k (formed by the complement of these k vertices) cannot include

either of these two vertices. But in this directed cycle v1 → v2 → . . . → vn−k → v1,

each vi+1 − vi (mod n) equals 1 or 2. So at least one of t or t + 1 must appear in

the directed cycle, which gives us our desired contradiction. Thus, each of the un−k

possible Eulerian subgraphs maps to a unique independent set of Cn with k vertices.

Similarly, for any set of k independent vertices in Cn, its complement will consist of

n−k vertices, which can be ordered to form a unique directed cycle in
−→
Hn. We simply

arrange the n − k vertices in increasing order (from 0 to n − 1), and this will give us

the desired directed cycle in
−→
Hn, since each pair of adjacent vertices has a distance

of 1 or 2. Letting ik be the number of independent sets of cardinality k in Cn, we

conclude that ik = un−k, for each 1 ≤ k ≤ n − 1.

We observe that u0 = 1, un = 2, and u2n−k = uk for each 1 ≤ k ≤ n − 1. Also,

i0 = 1. Therefore,

AT (
−→
Hn, x) =

2n∑

k=0

uk · xk

= 1 +

n−1∑

k=1

uk · xk + 2xn +

2n−1∑

k=n+1

uk · xk + x2n

=

n−1∑

k=1

uk · xk +

2n−1∑

k=n+1

uk · xk + (1 + 2xn + x2n)

=

n−1∑

k=1

un−k · xn−k +

2n−1∑

k=n+1

u2n−k · xk + (1 + 2xn + x2n)
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= xn ·
n−1∑

k=1

un−k · x−k +

n−1∑

k=1

un−k · xn+k + (1 + 2xn + x2n)

= xn ·
n−1∑

k=1

ik · x−k + xn ·
n−1∑

k=1

ik · xk + (1 + 2xn + x2n)

= xn ·
[

I

(

Cn,
1

x

)

+ I(Cn, x)

]

− 2i0 · xn + (1 + 2xn + x2n)

= xn ·
[

I(Cn, x) + I

(

Cn,
1

x

)]

+ (1 + x2n).

Thus, we have established the desired identity.

As an immediate corollary, we have a new and elegant proof to Theorem 4.14.

Proof: Let G = C3m,{1,2}, where
−→
G is the same orientation as described in the

statement of Lemma 4.17. Then, from Lemma 4.17, we have

AT (
−→
G, x) = x3m ·

[

I(C3m, x) + I

(

C3m,
1

x

)]

+ (1 + x6m).

Substituting x = −1, we have AT (
−→
G,−1) = (−1)3m · 2 · I(C3m,−1) + 2. From

Lemma 2.2, I(Ck, x) = I(Ck−1, x) + x · I(Ck−2, x) for all k ≥ 4. Substituting x = −1,

I(Ck,−1) = I(Ck−1,−1) − I(Ck−2,−1). From the initial values I(C2,−1) = −1

and I(C3,−1) = −2, we immediately see that I(C3m,−1) = 2 when m is even, and

I(C3m,−1) = −2 when m is odd. In other words, I(C3m,−1) = 2 · (−1)m.

Therefore, AT (
−→
G,−1) = (−1)3m · 2 · I(C3m,−1) + 2 = (−1)3m · 2 · 2 · (−1)m + 2 =

4 + 2 = 6.

Since x = −1 is not a root of AT (
−→
G, x), Corollary 4.16 implies that ee(

−→
G ) −

eo(
−→
G ) 6= 0. By Theorem 4.10, we conclude that χl(G) = 3.

We remark that when n 6≡ 0 (mod 3), Theorem 4.10 does not help us, since

AT (
−→
G,−1) = 2 · (−1)n · I(Cn,−1) + 2 = 0. Thus, we need to develop alternative

techniques to determine the list-colouring number of Cn,{1,2}, for n 6≡ 0 (mod 3).

To determine the list-colouring number of C3m,{1,2}, we developed a bijection be-

tween Eulerian subgraphs of C3m,{1,2} and independent sets of C3m. This enabled us
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to apply Theorem 4.10. Naturally, this leads us to ask if there are any other pairs of

graph families (G, H) for which we can obtain a simple correspondence between Eu-

lerian subgraphs of G and independent sets of H . We hypothesize that this technique

can be applied to calculate the values of χl(G), for other families of graphs G.

4.3 Well-Covered Circulants

Definition 4.18 ([147]) A graph G is well-covered if each maximal independent

set of vertices has the same cardinality.

In other words, a graph is well-covered iff every maximal independent set is also

a maximum independent set.

Given a graph G, the problem of determining α(G) is NP -hard [79]. But in a well-

covered graph, every independent set can be extended to a maximum independent

set, and so α(G) can be trivially computed using the greedy algorithm. In other

words, there is a polynomial-time algorithm to compute α(G) for any well-covered

graph. Well-covered graphs were first introduced by Plummer in [147], and a detailed

survey of properties of well-covered graphs appears in his survey article [148].

As an example, C7 is well-covered because each maximal independent set has three

vertices. However, C6 is not well-covered because the maximal independent sets are

{0, 3}, {1, 4}, {2, 5}, {0, 2, 4}, and {1, 3, 5}, and these sets do not all have the same

cardinality.

In this section, we will classify circulant graphs that are well-covered, by applying

our previously-determined formulas for independence polynomials. We characterize

the set of all well-covered circulant graphs Cn,S for the families S = {1, 2, . . . , d}
and S = {d + 1, d + 2, . . . , ⌊n

2
⌋}, as well as for the family of circulants of degree

3. By applying the lexicographic product to these well-covered graphs, we will also

generate a larger infinite family of well-covered circulants. Determining whether a

graph is well-covered is co-NP -complete [44, 157]. Even when restricted to the family

of circulants, we prove that it is still co-NP -complete to determine if the graph

is well-covered. Thus, there will not exist a nice characterization of well-covered

circulants. Nevertheless, we make some progress in characterizing families of well-

covered circulants.
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To start this section, we first list all connected non-isomorphic well-covered cir-

culants on at most 12 vertices. Table 4.2 was generated via a simple Maple program

that enumerated maximum independent sets, and manually checked the well-covered

property of each circulant.

n Possible generating sets S

6 {1, 3}
7 {1}
8 {1, 3}, {1, 4}
9 {1, 3}, {1, 2, 4}
10 {1, 4}, {2, 5}, {1, 2, 5}, {1, 3, 5}
11 {1, 2}, {1, 3}, {1, 2, 4}
12 {1, 4}, {3, 4}, {1, 2, 6}, {1, 3, 5}, {1, 3, 6}, {2, 3, 4}, {2,3,6},

{1, 4, 6}, {3, 4, 6}, {1, 2, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {1, 2, 3, 5, 6}

Table 4.2: Connected well-covered circulants on at most 12 vertices.

A characterization of all well-covered cubic graphs (i.e., graphs of degree 3) is

found in [28]. A natural question is to determine which of these graphs are circulants.

In this section, we answer this problem in two different ways. Our first proof will

follow from the main classification theorem given in [28], while our second proof will

follow more elegantly from our work on independence polynomials. In Chapter 3, we

introduced the infinite family of circulant graphs Gj,k. In this chapter, we determine

a necessary and sufficient condition for a circulant Gj,k to be well-covered.

The independence polynomial of well-covered graphs has been a topic of interest.

Brown, Dilcher, and Nowakowski [22] conjectured that if G is well-covered, then

I(G, x) is unimodal (i.e., the coefficients of I(G, x) are increasing up to a certain

term, then decreasing after that term). This was disproved by Michael and Traves

in [133], who found counterexamples for α(G) ∈ {4, 5, 6, 7}. Matchett [130] extended

this result by showing that for all 4 ≤ α(G) ≤ 11, there exists a counterexample G

to the well-covered unimodality conjecture. Recently in [118], Levit and Mandrescu

discovered a general construction for counterexamples for any α(G) ≥ 8.

Motivated by the literature connecting independence polynomials to well-covered

graphs, we investigate well-covered circulant graphs, and determine necessary and
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sufficient conditions for certain circulants to be well-covered. In some of our proofs, we

directly apply our earlier theorems on independence polynomials. The basic strategy

is as follows: to prove that a graph G is not well-covered, we first list all of its

maximum independent sets, and then determine a smaller independent set I ′ that is

not a subset of any of these maximum independent sets. This proves the existence

of a maximal independent set that is not maximum, which implies that G is not

well-covered.

If we know the exact formula for some I(Cn,S, x), we can calculate the xα(Cn,S )

coefficient of the polynomial, giving us the exact number of maximum independent

sets. Thus, once our enumeration technique has found [xα(Cn,S )]I(Cn,S, x) indepen-

dent sets of maximum cardinality, we can immediately stop, because we know that

there cannot be any more. This method of extracting the coefficients of our in-

dependence polynomials is powerful when proving that a particular circulant is not

well-covered. Another technique is to investigate difference sequences; this will be our

approach in proving the following two theorems on the well-coveredness of Cn,{1,2,...,d}

and Cn,{d+1,d+2,...,⌊n
2
⌋}. After we obtain these two results, we prove our result on the

well-coveredness of cubic circulants.

It is well-known [71] that Cn is well-covered iff n ≤ 5 or n = 7. The following

theorem generalizes this result.

Theorem 4.19 Let d ≥ 1 be fixed. Then, Cn,{1,2,...,d} is well-covered iff n ≤ 3d + 2

or n = 4d + 3.

Proof: Let G = Cn,{1,2,...,d}. By Theorem 2.3, α(G) = ⌊ n
d+1

⌋ = p, for some integer p.

Then, n = (d +1)p + q, for some 0 ≤ q ≤ d. If p ≤ 2, then G is trivially well-covered.

This is seen by noting that G is a circulant, and hence every vertex of G appears in

some maximum independent set, by vertex transitivity. Since the p ≤ 2 case been

dealt with, assume that p ≥ 3.

Let a and b be the unique pair of integers such that n = a(p − 1) + b, where

0 ≤ b ≤ p − 2. Since n = (d + 1)p + q = a(p − 1) + b, it follows that a ≥ d + 1.
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Consider the difference sequence

D′ = (a, a, . . . , a
︸ ︷︷ ︸

p − b − 1

, a + 1, a + 1, . . . , a + 1
︸ ︷︷ ︸

b

).

The sum of the elements of D′ is (p − b − 1)a + b(a + 1) = n. Each term in the

sequence is at least d+1. Thus, D′ is a valid difference sequence of G with |D′| = p−1.

It follows that D′ must be the difference sequence of (at least) one independent set

I ′ = {v1, v2, . . . , vp−1}, with 0 ≤ v1 < v2 < . . . < vp−1 ≤ n − 1.

If G is well-covered, then there exists an independent set I of cardinality α(G) = p

with I ′ ⊂ I. Let I = I ′ ∪ {w}, for some 0 ≤ w ≤ n− 1. Suppose 1 ≤ j ≤ p− 1 is the

index for which vj < w < vj+1, where addition is reduced mod (p − 1).

Since I is an independent set of G, we require vj+1−w ≥ d+1 and w−vj ≥ d+1.

Hence, vj+1 − vj ≥ 2d + 2. In other words, a necessary condition for G to be well-

covered is a + 1 ≥ vj+1 − vj ≥ 2d + 2, which simplifies to

⌊
(d + 1)p + q

p − 1

⌋

= a ≥ 2d + 1.

First suppose that p ≥ 4. Then,

⌊
(d + 1)p + q

p − 1

⌋

≤ (d + 1)p + d

p − 1
= d + 1 +

2d + 1

p − 1
≤ d + 1 +

2d + 1

3
≤ 2d + 1,

with equality iff (p, d, q) = (4, 1, 1). This case (which corresponds to G = C9) is not

well-covered; this is easily seen by inspection. In all other cases, we have established

a contradiction. Thus, G is not well-covered if n and d satisfy α(G) = p = ⌊ n
d+1

⌋ ≥ 4.

Now suppose p = 3. Then if q ≤ d − 2, then

⌊
(d + 1)p + q

p − 1

⌋

=

⌊
3(d + 1) + q

2

⌋

≤
⌊

3(d + 1) + (d − 2)

2

⌋

=

⌊
4d + 1

2

⌋

< 2d + 1.

Hence, if p = 3 and G is well-covered, then we must have q = d or q = d − 1.

Thus, the only two possible well-covered graphs occur in the cases (p, q) = (3, d) and

(p, q) = (3, d − 1). These pairs correspond to the circulants G = C4d+3,{1,2,...,d} and

G = C4d+2,{1,2,...,d}, respectively. We prove that the former is well-covered, while the

latter is not.
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Consider the graph G = C4d+3,{1,2,...,d}. By Theorem 2.3, α(G) = ⌊ 4d+3
d+1

⌋ = 3. We

show that every maximal independent set has cardinality 3. Let I ′ be an independent

2-set. Without loss, let I ′ = {0, x}, for some x ∈ [d+1, 3d+2]. If d+1 ≤ x ≤ 2d+1,

then I = {0, x, x + d + 1} is an independent 3-set of G. If 2d + 2 ≤ x ≤ 3d + 2, then

I = {0, d + 1, x} is an independent 3-set of G. In both cases, I ′ can be extended to a

maximum independent set I. Thus, we have shown that every maximal independent

set has cardinality p = 3, proving that G is well-covered.

Now consider the graph G = C4d+2,{1,2,...,d}. Assume G is well-covered. By Theo-

rem 2.3, α(G) = ⌊4d+2
d+1

⌋ = 3. Thus, every maximal independent set must have three

vertices. Since the set I ′ = {0, 2d + 1} is independent in G, there must exist a vertex

x such that I = I ′ ∪ {x} is independent in G. If 0 ≤ x ≤ d or 3d + 2 ≤ x ≤ 4d + 1,

then |x − 0|4d+2 ≤ d, and if d + 1 ≤ x ≤ 3d + 1, then |x − (2d + 1)|4d+2 ≤ d. In

both cases, we obtain a contradiction. Thus, no such x exists. We have shown that

I cannot be an independent set in G, and so I ′ is a maximal independent set in G

(with cardinality 2). Hence, G is not well-covered in this case.

We conclude that if p ≥ 3, then G is well-covered only for the case (p, q) = (3, d),

i.e., when n = 4d + 3. If p ≤ 2, then n ≤ 3d + 2, and G is trivially well-covered in

each of these cases. We conclude that G = Cn,{1,2,...,d} is well-covered iff n ≤ 3d + 2

or n = 4d + 3, and this completes the proof.

At the conclusion of this section, we prove that it is co-NP -complete to determine

whether an arbitrary circulant G is well-covered. Despite the difficulty of the general

problem, we have given a full characterization of well-covered graphs for the family

An = Cn,{1,2,...,d}. We now determine a full characterization for the complement family

Bn = Cn,{d+1,d+2,...,⌊n
2
⌋}.

Theorem 4.20 Let d ≥ 1 be fixed. Define G = Bn = Cn,{d+1,d+2,...,⌊n
2
⌋} for all

n ≥ 2d + 2. Then G is well-covered iff n > 3d or n = 2d + 2.

Proof: First note that G = Bn is clearly well-covered if n = 2d+2, since G is simply

d + 1 isomorphic copies of K2. Thus, we can assume that n > 2d + 2.
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By Corollary 2.18, α(G) = d + 1. It is easy to see that the difference sequence

(1, 1, . . . , 1
︸ ︷︷ ︸

d

, n− d) is valid. This gives rise to n independent sets of cardinality d+ 1,

namely the sets {i, i+1, i+2, . . . , i+d}, for each i = 0, . . . , n−1, where the elements

are reduced mod n. By Corollary 2.18, [xd+1]I(Bn, x) = n, and so there cannot be

any other maximum independent sets. Therefore, if G is well-covered, then every

independent set must be a subset of {i, i + 1, i + 2, . . . , i + d} for some 0 ≤ i ≤ n− 1.

First consider the case 2d + 3 ≤ n ≤ 3d. In this case, d ≥ 3. The set I ′ =

{0, d, n − d} is independent in G, since the circular distances are d, n − d, and

n − 2d ≤ d, none of which appear in the generating set S = {d + 1, d + 2, . . . , ⌊n
2
⌋}.

But I ′ cannot be contained in an independent set of cardinality d+1 > 3, since there

is no i for which I ′ ⊆ {i, i + 1, i + 2, . . . , i + d}. Hence, I ′ cannot be extended to a

maximal independent set of cardinality d + 1, and so G is not well-covered.

Finally, consider the case n > 3d. Let I ′ be any independent set {v1, v2, . . . , vk},
with k < d+1. Without loss, assume that v1 = 0 and 0 < v2 < v3 < . . . < vk ≤ n−1.

Since I ′ is independent in G, no vi ∈ [d + 1, n− d − 1]. So each vi ≤ d or vi ≥ n − d.

If v2 ≥ n − d, then I ′ ⊂ {i, i + 1, i + 2, . . . , i + d} where i = n − d. If vk ≤ d,

then I ′ ⊂ {i, i + 1, i + 2, . . . , i + d} where i = 0. In both cases, I ′ is contained in a

maximal independent set of cardinality d + 1. So the only other case to consider is

when v2 ≤ d and vk ≥ n − d. Then there is a unique index j such that vj ≤ d and

vj+1 ≥ n − d. We require |vj+1 − vj|n /∈ {d + 1, d + 2, . . . , ⌊n
2
⌋}, so |vj+1 − vj |n ≤ d.

Since 0 ≤ vj ≤ d, this implies that vj+1 ≥ n + vj − d. Letting i = n + vj − d, we

have I ′ ⊂ {i, i + 1, i + 2, . . . , i + d}, which shows that I ′ is contained in a maximal

independent set of cardinality d + 1. This proves that all maximal independent sets

have the same cardinality, so G is well-covered.

Thus, we have proven that Bn is well-covered iff n > 3d or n = 2d + 2.

In Chapter 2, we introduced the graph families An and Bn, and examined the

class of 3-regular circulants. Having determined the well-coveredness of An and Bn,

it is a natural question to investigate which 3-regular circulants are well-covered. Our

first proof will rely on a known classification of the set of well-covered cubic graphs.

Our second proof will be a more elegant proof, which will be a short application
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of independence polynomials. We provide both proofs as they utilize completely

different techniques.

Definition 4.21 Let X, Y , Z be the graphs defined in Figure 4.8.

Figure 4.8: Graphs which generate the family of cubic graphs.

Definition 4.22 A terminal pair is a pair of adjacent vertices of degree 2.

Thus, X and Y have two terminal pairs while Z has only one.

Theorem 4.23 ([28]) Let Ψ denote the class of cubic graphs, constructed as follows:

given a collection of copies of X, Y , Z, join every terminal pair by two edges to a

terminal pair in another (possibly the same) graph, so that the result is cubic. Then

every graph in Ψ is well-covered.
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Because X and Y have automorphisms exchanging the two vertices in one terminal

pair while fixing the vertices in the other terminal pair, it does not matter how we join

up each pair of terminal pairs. Realizing that each X and Y have two terminal pairs

and each Z has one, we construct graphs in the family Ψ by stringing together copies

of X and Y in cycles, or in paths with a copy of Z at each end. Thus, a connected

graph in Ψ can be characterized by giving the sequence in which we join the X’s,

Y ’s, and Z’s. For example, the graph ZXY Y Z is a cubic well-covered graph, as is

−XY Y XY −. In the latter case, the dashes indicate that the remaining terminal

pairs at the endpoints are to be joined in a cycle.

When we form “cyclic” elements of Ψ, we can use just a single X or Y . Thus, the

graphs −X− and −Y − belong to the family Ψ. We can quickly show that the former

is isomorphic to C6,{2,3} and the latter is isomorphic to C8,{1,4}. In [28], the following

characterization theorem of well-covered connected cubic graphs is presented.

Theorem 4.24 ([28]) Let G be a connected cubic graph. Then G is well-covered iff

G ∈ Ψ, G = K3,3, G = K4, or G is one of the four graphs in Figure 4.9.

Figure 4.9: Four well-covered cubic graphs.
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Using this characterization, we now determine all connected well-covered circulant

graphs of degree 3.

Theorem 4.25 Let G be a connected circulant cubic graph. If G is well-covered,

then G must be isomorphic to one of the following graphs: C4,{1,2}, C6,{1,3}, C6,{2,3},

C8,{1,4}, or C10,{2,5}.

Proof: As noted earlier, −X− and −Y − are both cubic circulants, corresponding

to the graphs C6,{2,3} and C8,{1,4}, respectively. We also note that K3,3 = C6,{1,3}

and K4 = C4,{1,2}. Of the four given graphs in the statement of Theorem 4.24, only

C5 × K2 is a circulant (the top right graph in Figure 4.9), and it is easily seen to be

isomorphic to C10,{2,5}. By Theorem 4.24, it remains to show that other than −X−
and −Y −, no other graph in Ψ is a circulant. This will complete the proof.

Suppose on the contrary that G ∈ Ψ is a circulant, where G is not isomorphic

to either −X− or −Y −. Then G must contain an induced subgraph of X, Y , or Z.

We show that none of these three cases is possible, completing the proof. Since G is

cubic, G must be isomorphic to C2n,{a,n}, for some 1 ≤ a < n.

Case 1: X is an induced subgraph of G.

Label the vertices of X, as shown in Figure 4.10.

Figure 4.10: Graph X and its vertices labelled.

Without loss, let w = 0. Then {u, v, x} must be a permutation of {a, n, 2n − a}.
There are six possible triplets (u, v, x) that arise. By isomorphism, we may assume

that u < v. Furthermore, X is an induced subgraph of G for the case (u, v, x) =
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(a, n, 2n− a) iff X is an induced subgraph of G for the case (u, v, x) = (2n− a, n, a).

This is seen by multiplying the colour assigned to each vertex by −1 and reducing

mod 2n. By this analysis, six cases reduce to four, which then reduce to two.

From the assumption u < v, there are only two distinct cases to consider: when

(u, v, x) = (n, 2n − a, a) and when (u, v, x) = (a, 2n − a, n). Since uv ∈ E(G), we

must have |u − v|2n ∈ {a, n}.
In the first case, we have |u− v| = n−a ∈ {a, n}. Since 1 ≤ a < n, it follows that

n − a = a, or a = n
2
. But then v = 3n

2
and x = n

2
. So |v − x|2n = n, which implies

that vx ∈ E(G), a contradiction.

In the second case, |u − v| = 2n − 2a ∈ {a, n}. If 2n − 2a = n, then a = n
2
, and

we get the same contradiction as above. Otherwise, 2n − 2a = a, so a = 2n
3

. Then

(u, v, w, x) = (2n
3

, 4n
3

, 0, n). Since y and z are adjacent to x = n, y is either 5n
3

or

n
3
. But then y is adjacent to u or v (since its circular distance is n), and that is a

contradiction because X is an induced subgraph of G.

Case 2: Y is an induced subgraph of G.

Label the vertices of Y , as shown in Figure 4.11.

Figure 4.11: Graph Y and its vertices labelled.

Without loss, let t = 0. Then {s, u, y} is a permutation of {a, n, 2n−a}. As we did

in Case 1, we only need to consider two cases by symmetry: (s, u, y) = (n, a, 2n − a)

and (s, u, y) = (2n− a, a, n). In the former case, either x or v must be n + a, since it

is adjacent to u = a. But then this vertex must be adjacent to s = n, a contradiction.

In the latter case, either (x, v) = (2a, n + a) or (x, v) = (n + a, 2a). But xy ∈ E(G)
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and vy /∈ E(G), so x = n + a and v = 2a. Since wx ∈ E(G), this forces w = n + 2a

(mod 2n). However, this implies that vw ∈ E(G), a contradiction.

Case 3: Z is an induced subgraph of G.

Label the vertices of Z, as shown in Figure 4.12.

Figure 4.12: Graph Z and its vertices labelled.

Without loss, let v = 0. Then {u, w, z} is a permutation of {a, n, 2n−a}. As we did

in Case 1, we only need to consider two cases by symmetry: (u, w, z) = (2n− a, a, n)

and (u, w, z) = (n, a, 2n − a). In the former case, zw ∈ E(G) and so n − a ∈ {a, n}.
Clearly this implies n − a = a, or a = n

2
. But then |u − z|2n = n

2
= a, which implies

uz ∈ E(G), a contradiction. In the latter case, |z − w|2n = 2n − 2a ∈ {a, n}. So

a = n
2

or a = 2n
3

. If a = n
2
, then uw ∈ E(G), a contradiction. And if a = 2n

3
, then

y = w + n = 5n
3

. But then uy ∈ E(G), a contradiction.

This clears all of the cases, and hence, we have established the proof of Theo-

rem 4.25.

In this proof, our solution quotes a known classification of connected well-covered

cubic graphs, and then determines which of these graphs are circulants. Although

this proof is not complicated, it is somewhat unsatisfying that this proof hinges on a

known classification theorem. However, when we use independence polynomials, we

can prove our result directly and more elegantly. Here we provide a second proof to

Theorem 4.25, using our theorems from Chapter 2.
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Proof: Every connected 3-regular circulant G is isomorphic to C2m,{a,m}, for some

1 ≤ a < m. By Proposition 2.45, G is not connected iff gcd(a, m) > 1. So we must

have gcd(a, m) = 1. By Lemma 2.19, every connected 3-regular circulant must be

isomorphic to one of the following graphs: C4n,{1,2n}, C4n+2,{1,2n+1}, or C4n+2,{2,2n+1}.

Let us consider each of these cases separately.

Case 1: G = C4n,{1,2n}.

G is well-covered for n ≤ 2 so suppose n ≥ 3. By Theorem 2.26, α(G) =

deg(I(G, x)) = 2n − 1. Let D = (d1, d2, . . . , d2n−1) be a valid difference sequence.

Then each di ≥ 2 and
∑

di = 4n. The only way this is possible is if some dj = 4 and

the rest of the di’s are 2, or if some dj = dk = 3 and the rest of the di’s are 2. In our

difference sequence D, we cannot have a subsequence of n consecutive terms equal

to 2, or else its total is 2n ∈ {1, 2n}, a contradiction. Thus, the only valid difference

sequence (up to cyclic permutation) is

D = (2, 2, . . . , 2
︸ ︷︷ ︸

n − 1

, 3, 2, 2, . . . , 2
︸ ︷︷ ︸

n − 2

, 3).

In other words, every maximum independent set must have the difference sequence

D. This difference sequence D gives rise to exactly 4n maximum independent sets

{v0, v0+d1, v0+d1+d2, . . . , v0+d1+d2+. . .+d2n−2}, by setting each vertex of G as the

“initial” vertex v0 and reducing each element mod 4n. By the structure of D, these

independent sets must all be distinct. We have not missed any maximum independent

sets, since [x2n−1]I(G, x) = [x2n−1]I(C4n,{1,2n}, x) = [x2n−1]I(C4n,{2n−1,2n}, x) = 4n, by

Corollary 2.18.

For n = 3, consider the independent set I ′ = {0, 4, 8}. I ′ is maximal in G =

C12,{1,6} because the addition of any vertex to I ′ will no longer preserve independence.

Thus, G is not well-covered in this case, since |I ′| = 3 < 2n − 1. For n ≥ 4, consider

I ′ = {0, 3, 6}. Suppose I ′ ⊂ I for some maximum independent set |I| = 2n − 1. If

any v ∈ {1, 2, 4, 5} appears in I, then I will no longer be independent. Thus, the

difference sequence of I must contain a pair of consecutive elements equal to 3, and

thus cannot be a cyclic permutation of D. So I cannot be a superset of {0, 3, 6},
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and we conclude that G is not well-covered in this case. Thus, G = C4n,{1,2n} is

well-covered iff n = 1 or n = 2.

Case 2: G = C4n+2,{1,2n+1}.

G is well-covered for n = 1 so suppose n ≥ 2. By Theorem 2.26, α(G) =

deg(I(G, x)) = 2n + 1, and the unique difference sequence is D = (2, 2, . . . , 2). There

are two possible maximum independent sets, the set of even vertices and the set of

odd vertices. Now let I ′ = {0, 3}. Clearly, I ′ cannot be extended to one of these

maximum independent sets. So G = C4n+2,{1,2n+1} is well-covered iff n = 1.

Case 3: G = C4n+2,{2,2n+1}.

G is well-covered for n ≤ 2 so suppose n ≥ 3. By Theorem 2.26, α(G) =

deg(I(G, x)) = 2n. Let D = (d1, d2, . . . , d2n) be a valid difference sequence. Then

each di 6= 2 and
∑

di = 4n + 2. We cannot have consecutive di’s being 1, so at most

n of the di’s equal 1. Suppose exactly p of the di’s equal 1, where p ≤ n. Then

the remaining (2n − p) di’s sum to 4n + 2 − p, each of which is at least 3. Hence,

(4n + 2 − p) ≥ 3(2n − p), or p ≥ n − 1.

So we either have p = n − 1 or p = n. In the first case, the remaining (n + 1)

terms must all equal 3 as its sum is 4n + 2 − p = 3n + 3. In the second case, the

remaining n terms must sum to 3n + 2.

If n is even (let n = 2t), a valid difference sequence D occurs when p = n − 1.

D = (1, 3, 3, 1, 3, . . . , 1, 3
︸ ︷︷ ︸

t − 1

, 1, 3, 3, 1, 3, . . . , 1, 3
︸ ︷︷ ︸

t − 2

).

And if n is odd (let n = 2t− 1), a valid difference sequence D occurs when p = n.

D = (1, 4, 1, 3, . . . , 1, 3
︸ ︷︷ ︸

t − 1

, 1, 4, 1, 3, . . . , 1, 3
︸ ︷︷ ︸

t − 2

).

For example, if n = 6, then D = (1, 3, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3), and if n = 5,

then D = (1, 4, 1, 3, 1, 3, 1, 4, 1, 3). In both cases, this difference sequence gives rise

to 4n + 2 distinct maximum independent sets. By Corollary 2.18, [x2n]I(G, x) =
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[x2n]I(C4n+2,{2,2n+1}, x) = [x2n]I(C4n+2,{2n,2n+1}, x) = 4n + 2, and so this confirms

that there are no other maximum independent sets.

If n ≥ 4 is even, we let I ′ = {0, 5} and if n ≥ 3 is odd, we let I ′ = {0, 3, 6}.
In both cases, I ′ cannot be a subset of an independent set I with cardinality 2n,

since the difference sequence of I must be a cyclic permutation of D. Therefore,

G = C4n+2,{2,2n+1} is well-covered iff n = 1 or n = 2.

We conclude that there are only five connected well-covered circulants of the form

G = C2n,{a,n}, where gcd(a, n) = 1. These circulants are isomorphic to one of the

following: C4,{1,2}, C6,{1,3}, C6,{2,3}, C8,{1,4}, C10,{2,5}. This completes the proof.

As a corollary, we classify all degree 3 circulants that are well-covered.

Theorem 4.26 Let G = C2n,{a,n}, where 1 ≤ a < n. Let t = gcd(2n, a). Then G is

well-covered iff 2n
t
∈ {3, 4, 5, 6, 8}.

Proof: In Lemma 2.19, we proved that

(a) If 2n
t

is even, then G = C2n,{a,n} is isomorphic to t copies of C 2n
t

,{1, n
t
}.

(b) If 2n
t

is odd, then G = C2n,{a,n} is isomorphic to t
2

copies of C 4n
t

,{2, 2n
t
}.

By Theorem 4.25, we require 2n
t

to be 4, 6, or 8 in Case (a), and 4n
t

to be 6 or 10

in Case (b). This establishes the desired result.

Therefore, we have found necessary and sufficient conditions for a graph G =

Cn,S to be well-covered, for each of our three families. The following result on the

lexicographic product enables us to determine even more families of well-covered

circulants.

Theorem 4.27 ([167]) Let G and H be nonempty graphs. Then G[H ] is well-

covered iff G and H are both well-covered.

From Theorems 2.31 and 4.27, if G and H are well-covered circulants, so is its

lexicographic product G[H ]. This gives us infinitely more examples of well-covered cir-

culant graphs. If G and H are any of the well-covered graphs found in Theorems 4.19,
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4.20, and 4.26, then G[H ] is also well-covered. For example, since G = C15,{1,2} and

H = C10,{4,5} are both well-covered, Theorem 2.31 shows that

G[H ] = C150,{1,2,13,14,16,17,28,29,31,32,43,44,46,47,58,59,60,61,62,73,74,75}

is also well-covered.

We have now given a full characterization of all well-covered circulants, for each

of the families appearing in Chapter 2. Using the lexicographic product, we have

determined infinitely more families of well-covered circulants. We now examine other

known families of well-covered graphs and determine which ones are circulants.

At the beginning of Chapter 3, we defined the circulant graph Gj,k = Cnk,Sj,k
for

each 1 ≤ j ≤ k, where (a1, a2, . . . , ak) is a k-tuple of integers with each ai ≥ 3. We

now determine a precise necessary and sufficient condition for Gj,k to be well-covered.

Before we present our characterization theorem, we require two lemmas.

Lemma 4.28 Let 1 ≤ j ≤ k − 1. If Gj,k−1 is not well-covered, then Gj,k is also not

well-covered.

Proof: If Gj,k−1 is not well-covered, there must exist a maximal independent set

I ′ = {v1, v2, . . . , vm} in Gj,k−1 that is not a maximum independent set. In other

words, |I ′| = m ≤ α(Gj,k−1) − 1. Thus, if we add any other vertex u′ ∈ Gj,k−1 to I ′,

then |u′ − vi|nk−1
∈ Sj,k−1 for some index 1 ≤ i ≤ m. Using I ′ as a building block, we

will construct a maximal independent set I∗ of Gj,k for which |I∗| < α(Gj,k). This

will prove that Gj,k is not well-covered. Without loss, assume that 0 ≤ v1 < v2 <

. . . < vm ≤ |Gj,k−1| − 1 = nk−1 − 1.

First define the set

I = {pnk−1 + vi : 0 ≤ p ≤ ak − 2, 1 ≤ i ≤ m}.

We claim that I is an independent set of Gj,k. Our proof is similar to that of

Lemma 3.16. On the contrary, suppose that I is not independent. Then there exist

distinct vertices x, y ∈ I such that |x−y|nk
∈ Sj,k. Note that 1 ≤ |x−y|nk

≤ nk−1−1,

since max(Sj,k) ≤ nk−1 − 1 by Proposition 3.5 (g).
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For any x, y ∈ I with 0 ≤ x < y ≤ nk−1 − 1, we have |x − y|nk
= y − x or

|x − y|nk
= nk + x − y. We now explain why the latter “wraparound” case cannot

occur if |x− y|nk
≤ nk−1 − 1. By definition of the set I, y ≤ (ak − 2)nk−1 + vm, where

vm ∈ Gj,k−1. Since Gj,k−1 is a graph on nk−1 vertices, labelled 0, 1, 2, . . . , nk−1 −1, we

have vm ≤ nk−1 − 1 implying that y ≤ (ak − 2)nk−1 + nk−1 − 1. Therefore,

nk + x − y ≥ nk + 0 − (ak − 2)nk−1 − (nk−1 − 1)

= aknk−1 − 1 − aknk−1 + 2nk−1 − nk−1 + 1

= nk−1

> nk−1 − 1.

Since |x − y|nk
≤ nk−1 − 1, we have shown that |x − y|nk

= y − x, for all choices

of x, y ∈ I. This implies that |x − y|nk
= znk−1 + (va − vb) for some integer z, and

va, vb ∈ I ′. By definition, Gj,k−1 has nk−1 vertices, labelled 0, 1, 2, . . . , nk−1 − 1. Since

0 ≤ va, vb ≤ nk−1 − 1, the inequality 1 ≤ |x − y|nk
≤ nk−1 − 1 implies that z = 0 or

z = 1.

If z = 0, then |x − y|nk
= va − vb, i.e, va − vb ∈ Sj,k. By Proposition 3.5 (a), this

implies that |va − vb|nk−1
∈ Sj,k−1, contradicting the assumption that va and vb are

independent in Gj,k−1.

If z = 1, then |x−y|nk
= nk−1 +va−vb ∈ Sj,k. By Proposition 3.5 (a), this implies

that vb − va = |va − vb|nk−1
∈ Sj,k−1, contradicting the assumption that va and vb are

independent in Gj,k−1.

Therefore, I is an independent set of Gj,k. Essentially, I is created by taking ak−1

translates of the maximal independent set I ′, thus constructing an independent set

with m(ak − 1) vertices. We note that every vertex v ∈ I satisfies the inequality

0 ≤ v ≤ nk − nk−1. The latter inequality follows from the fact that pnk−1 + vm ≤
(ak − 2)nk−1 + (nk−1 − 1) = (ak − 1)nk−1 − 1 = aknk−1 − nk−1 − 1 = nk − nk−1.

By the maximality of each of the translates of I ′, any u /∈ I with 0 ≤ u ≤ nk−nk−1

cannot be added to I while still preserving independence. Specifically, if u = pnk−1+u′

for some 0 ≤ p ≤ ak − 2 and 0 ≤ u′ ≤ nk−1 − 1, then there exists an index 1 ≤ i ≤ m

such that |u′ − vi|nk−1
∈ Sj,k−1. For this i, let v = pnk−1 + vi. Then v ∈ I satisfies

|u − v|nk
= |u′ − vi|nk

∈ Sj,k. Thus, I is maximal when restricted to this subset of
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nk − nk−1 + 1 vertices.

Now consider the other nk−1 − 1 vertices of Gj,k, which appear consecutively in

Gj,k. By Lemma 3.12, any subset of Ω(Gj,k) = nk−1 consecutive vertices in Gj,k

induces a copy of Gj,k−1. Thus, these remaining nk−1 − 1 vertices of Gj,k induce a

proper subgraph of Gj,k−1, and hence we can select at most α(Gj,k−1) of these vertices

so that they are independent in Gj,k.

We construct a maximal independent set I∗ of Gj,k that includes all of the m(ak−1)

vertices from our set I. From the above paragraph, any extension of I to a maximal

independent set I∗ of Gj,k will add at most α(Gj,k−1) additional vertices. We now

compute the cardinality of I∗ and prove that it is not maximum. We have

|I∗| ≤ |I| + α(Gj,k−1)

= m(ak − 1) + α(Gj,k−1)

≤ (α(Gj,k−1) − 1)(ak − 1) + α(Gj,k−1)

= akα(Gj,k−1) − (ak − 1)

< akα(Gj,k−1) − 1 , since ak ≥ 3.

= α(Gj,k) , by Theorem 3.8.

Hence, I∗ is a maximal independent set of Gj,k that is not maximum. Thus,

we conclude that for any 1 ≤ j ≤ k − 1, Gj,k is not well-covered if Gj,k−1 is not

well-covered.

Lemma 4.29 Let k ≥ 3 and let (a1, a2, . . . , ak) be a k-tuple satisfying the non-

decreasing condition 3 ≤ a1 ≤ . . . ≤ ak. Then Gk−1,k = Cnk,{nk−2,nk−2+1,...,nk−1−nk−2}

is not well-covered.

Proof: First, we deal with the special case k = 3 and a1 = a2 = a3 = 3. In this case,

we have n1 = 2, n2 = 5, and n3 = 14. Hence, we need to show that G2,3 = C14,{2,3}

is not well-covered. By two applications of Theorem 3.8, α(G2,3) = a3α(G2,2) − 1 =

a3n1 − 1 = 3 · 2 − 1 = 5.

For example, the set I = {0, 1, 5, 6, 10} is a maximum independent set of G2,3. This

set I has the difference sequence (1, 4, 1, 4, 4). Note that a valid difference sequence
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D = (d1, d2, d3, d4, d5) has at most two 1’s, or else two vertices in the corresponding

independent set will differ by 2 ∈ S2,3. Thus, at least three of the di’s must be at

least 4. Since the di’s sum to 14, it follows that every maximum independent set of

G2,3 must have a difference sequence that is a cyclic permutation of D = (1, 4, 1, 4, 4).

Thus, the independent 2-set {0, 7} cannot be extended to an independent 5-set in

G2,3 = C14,{2,3}. Therefore, we have proven the lemma in this special case, and hence

we can assume that k ≥ 4, or that k = 3 and a3 ≥ 4.

For each 1 ≤ i ≤ ak, define

Ti = {(i − 1)nk−1 + 1, (i − 1)nk−1 + 2, . . . , (i − 1)nk−1 + nk−1}
= {(i − 1)nk−1 + 1, (i − 1)nk−1 + 2, . . . , ink−1},

where each element is reduced modulo nk (if necessary).

For example, T1 = {1, 2, . . . , nk−1} and T2 = {nk−1+1, nk−1+2, . . . , 2nk−1}. Since

aknk−1 = nk + 1, the case i = ak corresponds to the set

Tak
= {(ak − 1)nk−1 + 1, (ak − 1)nk−1 + 2, . . . , nk − 1, 0, 1}.

Thus, every vertex of Gk−1,k is included in exactly one Ti, with the exception of

vertex v = 1 which appears twice. This separation of the nk = aknk−1 − 1 vertices

into ak classes is illustrated in Figure 4.13.

By Lemma 3.12, each subgraph Hi of Gk−1,k induced by the nk−1 vertices of Ti is

isomorphic to Gk−1,k−1. Hence, α(Hi) = α(Gk−1,k−1) = nk−2, by Theorem 3.8. For

any independent set I of Gk−1,k, we must have |I ∩ Ti| ≤ nk−2. Also by Theorem 3.8,

note that α(Gk−1,k) = akα(Gk−1,k−1) − 1 = aknk−2 − 1.

We now explain why every maximum independent set I (containing v1 = 1) must

have nk−2 elements in common with each Ti. We will then construct an independent

set that cannot be extended to satisfy this requirement, thus proving the existence

of a maximal non-maximum independent set. This will imply that Gk−1,k is not

well-covered.

Let I be a maximum independent set of Gk−1,k. By the vertex transitivity of

Gk−1,k, we assume without loss that v = 1 is an element of I. Suppose there exists
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Figure 4.13: Separating nk = aknk−1 − 1 vertices into ak classes.

an index 1 ≤ i ≤ ak for which |I ∩ Ti| < nk−2. Then,

ak∑

i=1

|I ∩ Ti| < aknk−2.

But every vertex of I is included in exactly one Ti, except for v = 1 which appears

twice. Thus,

|I| + 1 =

ak∑

i=1

|I ∩ Ti| < aknk−2.

This implies that |I| < aknk−2 − 1 = α(Gk−1,k), which contradicts the maximality

of I. Hence, in any maximum independent set I containing v = 1, we must have

|I ∩ Ti| = nk−2 for each 1 ≤ i ≤ ak.

We construct a maximal independent set I∗ by first setting four initial vertices:

v1 = 1, v2 = nk−1 − nk−2 + 2, v3 = 2(nk−1 − nk−2) + 3, and v4 = 3(nk−1 − nk−2) + 4.

We will extend this set of 4 vertices to a maximal independent set.

We now justify why these four vertices form an independent set in Gk−1,k. First

note that v4 < nk = aknk−1 − 1, since ak ≥ 3 and nk−2 ≥ n1 ≥ 2. Furthermore,

consecutive vertices are separated by a distance of nk−1 − nk−2 + 1, and so any two

vertices from {v1, v2, v3, v4} must be separated by a distance of at least nk−1−nk−2+1.
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The only possible exception to this inequality occurs when there is a “wraparound”

between v1 and v4, namely that |v1 − v4|nk
= nk − (v4 − v1). To prove that nk +

v1 − v4 6∈ Sk−1,k, it suffices to show that nk + v1 − v4 > nk−1 − nk−2, i.e., this

wraparound difference is greater than the maximum element in Sk−1,k. This will

justify the pairwise independence of these four vertices. We note that the following

inequalities are equivalent:

nk + v1 − v4 > nk−1 − nk−2

⇔ (aknk−1 − 1) + 1 − 3(nk−1 − nk−2) − 4 > nk−1 − nk−2

⇔ nk−1(ak − 4) + 4nk−2 > 4.

If ak ≥ 4, the inequality is trivial since nk−1(ak − 4) + 4nk−2 ≥ 4nk−2 ≥ 4n1 =

4(a1 − 1) > 4. So assume ak = 3. Having dealt with the exceptional case (k, ak) =

(3, 3) in the first paragraph of the proof, we can assume that k ≥ 4 if ak = 3. By the

non-decreasing condition 3 ≤ a1 ≤ a2 ≤ . . . ≤ ak, we have a1 = a2 = . . . = ak−1 = 3.

Thus, the inequality nk−1 ·(3−4)+4nk−2 > 4 simplifies to −ak−1nk−2+1+4nk−2 > 4,

or nk−2 > 3. Since k ≥ 4, we have nk−2 ≥ n2 = a2n1 − 1 = 3 · 2 − 1 = 5 > 3, as

required.

Therefore, the vertices {v1, v2, v3, v4} are independent in Gk−1,k, and so we include

them in I∗. We then add additional vertices (via the greedy algorithm) so that I∗

becomes maximal.

Earlier we proved that a maximum independent set I must contain exactly nk−2

elements of each Ti. In other words, I intersects each Ti in nk−2 places. By our

deliberate selection of the vi’s, we will prove that in any extension of this initial 4-set

to a maximal independent set I∗, this maximal set can intersect T2 in at most one

vertex. Since nk−2 ≥ n1 > 1, this will prove that not every maximal independent set

is maximum, implying that Gk−1,k is not well-covered.

We claim that there are no vertices of I∗ between v2 and v4, other than v3. On the

contrary, suppose that there exists a vertex v∗ in I between v2 and v4. First suppose

that v2 < v∗ < v3.
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If v2 < v∗ < v3, then v3 − v2 = nk−1 − nk−2 + 1. Since Sk−1,k = {nk−2, nk−2 +

1, . . . , nk−1 − nk−2}, neither v∗ − v2 nor v3 − v∗ can be an element of this generating

set. It follows that v∗ − v2 ≤ nk−2 − 1 and v3 − v∗ ≤ nk−2 − 1, as otherwise we derive

an immediate contradiction.

Adding the two inequalities, we have nk−1 − nk−2 + 1 = v3 − v2 ≤ 2nk−2 − 2,

which is equivalent to nk−1 ≤ 3nk−2 − 3. Since nk−1 = ak−1nk−2 − 1, we have

(ak−1 − 3)nk−2 ≤ −2. Since ak−1 ≥ 3, we obtain our contradiction.

If v3 < v∗ < v4, then v4 − v3 = nk−1 −nk−2 + 1, and we proceed in the exact same

manner as in the previous case, to obtain our contradiction. Therefore, there are no

vertices of I∗ between v2 and v4, other than v3. Now we go one step further and show

that neither v2 or v4 belong to the set T2 = {nk−1 + 1, nk−1 + 2, . . . , 2nk−1}. To do

this, we prove that v2 ≤ nk−1 and v4 ≥ 2nk−1 + 1. Recall that v2 = nk−1 − nk−2 + 2

and v4 = 3(nk−1 − nk−2) + 4.

The inequality v2 ≤ nk−1 is equivalent to nk−2 ≥ 2, which is trivial since nk−2 ≥
n1 = a1−1 ≥ 2. And the inequality v4 ≥ 2nk−1+1 is equivalent to 3nk−1−3nk−2+4 ≥
2nk−1 +1, which simplifies to nk−1 ≥ 3nk−2−3. Since nk−1 = ak−1nk−2−1, it suffices

to establish that nk−2(ak−1−3) ≥ −2. But this is trivial, since nk−2 ≥ 0 and ak−1 ≥ 3.

Consider I∗ ∩ T2. From above, |I∗ ∩ T2| ≤ 1, since the only vertex that can lie in

the set T2 = {nk−1+1, nk−1+2, . . . , 2nk−1} is v3. But this contradicts the requirement

that |I∗ ∩ Ti| = nk−2 for all 1 ≤ i ≤ ak.

Hence, I∗ is a maximal independent set that is not a maximum independent set.

Thus, we conclude that Gk−1,k is not well-covered.

We now give a complete characterization of all graphs Gj,k that are well-covered.

Theorem 4.30 Let (a1, a2, . . . , ak) be a k-tuple of positive integers, with each ai ≥ 3.

Define Gj,k for each k-tuple. Then Gj,k is well-covered iff j = k, or (j, k) = (1, 2)

with a2 ≤ 4.

Proof: First consider the case j = k. By Proposition 3.5 (d), Sk,k = {nk−1, nk−1 +

1, . . . , ⌊nk

2
⌋}. By definition, Gk,k = Cnk,Sk,k

. If k = 1, then G1,1 is complete, and thus

the circulant is (trivially) well-covered. Thus, let us assume that k ≥ 2.
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By Theorem 4.20, Gk,k is well-covered iff nk > 3(nk−1−1) or nk = 2(nk−1−1)+2.

We justify that the former inequality holds. The proof is immediate, since nk =

aknk−1−1 ≥ 3nk−1−1 > 3(nk−1−1). Thus, each Gk,k is well-covered, for any k-tuple

(a1, a2, . . . , ak).

Now consider the case (j, k) = (1, 2). By Proposition 3.5 (e), we have G1,2 =

Cn2,{1,2,...,a1−2}, where n2 = a2n1 − 1 = a2(a1 − 1) − 1. By Theorem 4.19, G1,2 is

well-covered iff n2 ≤ 3(a1 − 2) + 2 or n2 = 4(a1 − 2) + 3.

In the former case, the inequality a2(a1 − 1)− 1 = n2 ≤ 3(a1 − 2)+2 is equivalent

to a2 ≤ 3. And in the latter case, the equation a2(a1 − 1) − 1 = n2 = 4(a1 − 2) + 3

is equivalent to a2 = 4. Since a2 ≥ 3, it follows that G1,2 is well-covered iff a2 = 3 or

a2 = 4. This clears the case (j, k) = (1, 2).

Consider the graph Gj,k, with 2 ≤ j < k. By Lemma 4.29, the graph Gj,j+1 is

not well-covered. By repeated applications of Lemma 4.28, Gj,k is not well-covered

(since none of Gj,j+2, Gj,j+3, . . . , Gj,k−1 are either). From the above paragraph, the

graph G1,2 is not well-covered for a2 ≥ 5. By Lemma 4.28, G1,k is not well-covered,

whenever a2 ≥ 5.

It remains to resolve the well-coveredness of G1,3 when a2 = 3 or a2 = 4. In both

cases, we will prove that G1,3 is not well-covered. By another repeated application

of Lemma 4.28, we will conclude that G1,k is not well-covered for a2 ≤ 4 and k ≥ 3.

This will establish our claim that Gj,k is well-covered iff j = k, or (j, k) = (1, 2) with

a2 ≤ 4.

Case 1: The graph G1,3 satisfies a2 = 3.

Let a1 = a, a2 = 3, a3 = b. Then n1 = a− 1, n2 = 3a− 4, and n3 = b(3a− 4)− 1.

By the recursive definition of S1,3 as described in Proposition 3.5 (a), we derive

G1,3 = Cb(3a−4)−1,{1,2,...,a−2,2a−2,2a−1,...,3a−5}.

Also, G1,2 = C3a−4,{1,2,...,a−2}, and α(G1,2) = ⌊3a−4
a−1

⌋ = 2 by Theorem 2.3. By

Theorem 3.8, α(G1,3) = a3α(G1,2)− 1 = 2b− 1. We prove the existence of a maximal

independent set I with |I| = 2b − 2 < α(G1,3). Let D be the following difference
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sequence, where each of the differences a − 1 and 2a − 3 appear (b − 2) times each.

D = (4a − 5, a − 1, 2a − 3, a − 1, 2a − 3, . . . , a − 1, 2a − 3
︸ ︷︷ ︸

b − 2 copies

, 2a − 4).

This difference sequence D contains 1 + 2(b− 2) + 1 = 2b− 2 terms, and has sum
∑

D = (4a−5)+(b−2)(3a−4)+(2a−4) = b(3a−4)−1 = n3. It is straightforward

to check that D is a valid difference sequence of G1,3. For notational convenience, we

now abbreviate n3 by n.

Letting the initial vertex be v1 = 0, D corresponds to the following independent

set of G1,3, with 2b − 2 vertices.

I = {0, 4a− 5, 5a − 6, 7a − 9, 8a − 10, . . . , b(3a − 4) − 2a + 3}.

Let v1 = 0, v2 = 4a− 5, v3 = 5a− 6, and v2b−2 = b(3a− 4)− 2a + 3 = n− 2a + 4.

Suppose that a vertex t can be added to I so that I ∪ {t} is independent. Let

1 ≤ i ≤ 2b − 2 be the largest index for which vi < t.

If 2 ≤ i ≤ 2b − 3, then vi+1 − vi ≤ 2a − 3. Therefore, either t − vi ≤ a − 2 or

vi+1 − t ≤ a − 2, which implies that t must be adjacent to either vi or vi+1. Thus,

we obtain a contradiction. If i = 2b − 2, then |v0 − v2b−2|n = n − v2b−2 = 2a − 4,

which implies that either t− v2b−2 ≤ a− 2 or |v0 − t|n = n− t ≤ a− 2. So we have a

contradiction in this case as well.

It remains to check the case i = 1, i.e., 0 < t < 4a − 5. In all cases, we prove

the existence of a vertex vj such that |t − vj |n ∈ S1,3, i.e., vj and t are adjacent in

G1,3 = Cn,{1,2,...,a−2,2a−2,2a−1,...,3a−5}. This will establish our desired contradiction.

(a) If 1 ≤ t ≤ a − 2, then |t − v1|n = t ∈ S1,3.

(b) If t = a − 1, then |t − v2b−2|n = t + (2a − 4) = 3a − 5 ∈ S1,3.

(c) If a ≤ t ≤ 2a − 3, then |t − v2|n = (4a − 5) − t ∈ S1,3.

(d) If 2a − 2 ≤ t ≤ 3a − 5, then |t − v1|n = t ∈ S1,3.

(e) If t = 3a − 4, then |t − v3|n = (5a − 6) − t = 2a − 2 ∈ S1,3.

(f) If 3a − 3 ≤ t ≤ 4a − 6, then |t − v2|n = (4a − 5) − t ∈ S1,3.
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This clears all of the cases, and so we conclude that there does not exist a vertex t

so that I∪{t} is independent. Since I is a maximal independent set with |I| < α(G1,3),

we conclude that G1,3 is not well-covered.

Case 2: The graph G1,3 satisfies a2 = 4.

Let a1 = a, a2 = 4, a3 = b. Then n1 = a− 1, n2 = 4a− 5, and n3 = b(4a− 5)− 1.

By the recursive definition of S1,3 as described in Proposition 3.5 (a), we derive

G1,3 = Cb(4a−5)−1,{1,2,...,a−2,3a−3,3a−2,...,4a−6}.

Also, G1,2 = C4a−5,{1,2,...,a−2}, and α(G1,2) = ⌊4a−5
a−1

⌋ = 3 by Theorem 2.3. By

Theorem 3.8, α(G1,3) = a3α(G1,2)− 1 = 3b− 1. We prove the existence of a maximal

independent set I with |I| = 3b − 2 < α(G1,3). Let D be the following difference

sequence, where the difference 2a − 3 appears (b − 2) times and the difference a − 1

appears 2(b − 2) times.

D = (3a − 4, 2a− 3, a − 1, a − 1, . . . , 2a − 3, a − 1, a − 1
︸ ︷︷ ︸

b − 2 copies

, 2a − 3, a− 1, 2a − 3).

This difference sequence D contains 1 + 3(b− 2) + 3 = 3b− 2 terms, and has sum
∑

D = (3a−4)+(b−2)(4a−5)+(5a−7) = b(4a−5)−1 = n3. It is straightforward

to check that D is a valid difference sequence of G1,3. For notational convenience, we

now abbreviate n3 by n.

Letting the initial vertex be v1 = 0, D corresponds to the following independent

set of G1,3.

I = {0, 3a − 4, 5a − 7, 6a− 8, 7a− 9, . . . , b(4a − 5) − 2a + 2}.

Let v1 = 0, v2 = 3a− 4, v3 = 5a− 7, and v3b−2 = b(4a− 5)− 2a + 2 = n− 2a + 3.

Suppose that a vertex t can be added to I so that I ∪ {t} is independent. Let

1 ≤ i ≤ 3b − 2 be the largest index for which vi < t.

If 2 ≤ i ≤ 3b − 3, then vi+1 − vi ≤ 2a − 3. Therefore, either t − vi ≤ a − 2 or

vi+1 − t ≤ a − 2, which implies that t must be adjacent to either vi or vi+1. Thus,

we obtain a contradiction. If i = 3b − 2, then |v0 − v3b−2|n = n − v3b−2 = 2a − 3,
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which implies that either t− v3b−2 ≤ a− 2 or |v0 − t|n = n− t ≤ a− 2. So we have a

contradiction in this case as well.

It remains to check the case i = 1, i.e., 0 < t < 3a − 4. In all cases, we prove

the existence of a vertex vj such that |t − vj |n ∈ S1,3, i.e., vj and t are adjacent in

G1,3 = Cn,{1,2,...,a−2,3a−3,3a−2,...,4a−6}.

(a) If 1 ≤ t ≤ a − 2, then |t − v1|n = t ∈ S1,3.

(b) If a − 1 ≤ t ≤ 2a − 4, then |t − v3|n = (5a − 7) − t ∈ S1,3.

(c) If t = 2a − 3, then |t − v3b−2|n = t + (2a − 3) = 4a − 6 ∈ S1,3.

(d) If 2a − 2 ≤ t ≤ 3a − 5, then |t − v2|n = (3a − 4) − t ∈ S1,3.

This clears all of the cases, and so we conclude that there does not exist a vertex t

so that I∪{t} is independent. Since I is a maximal independent set with |I| < α(G1,3),

we conclude that G1,3 is not well-covered.

Therefore, we have proven that Gj,k is well-covered iff j = k, or (j, k) = (1, 2)

with a2 ≤ 4.

Let us now study the well-coveredness of two other families of graphs. This analy-

sis is motivated by some theorems of Finbow, Hartnell, and Nowakowski [71, 72]. Our

results will follow immediately from these powerful classification theorems. First, we

require several definitions.

Definition 4.31 ([71, 72]) A basic 5-cycle of G is any C5 subgraph that does not

contain two adjacent vertices of degree 3 or more in G.

Definition 4.32 ([71, 72]) A graph G belongs to the family F if the vertices of G

can be partitioned into two subsets P and C such that P contains all vertices incident

with pendant edges (i.e., edges incident to a vertex of degree 1), and C contains all

vertices of basic 5-cycles, where the basic 5-cycles form a partition of C.

In [71], the authors characterize all well-covered graphs of girth at least 5. They

define four special graphs P10, P13, P14, and Q13, which are well-covered graphs of
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girth 5. (For the definitions of these four graphs, we refer the reader to [71]). It is

straightforward to prove that none of these graphs are circulants: in fact, three of

these graphs are not even regular. Their main result is the following.

Theorem 4.33 ([71]) Let G be a connected well-covered graph of girth 5 or more.

Then G is in the family F , or G is isomorphic to one of K1, C7, P10, P13, Q13, or

P14.

From this theorem, we can give a full characterization of all well-covered circulants

with girth at least 5. We prove that if G is a connected well-covered circulant graph

with girth g ≥ 5, then G must be isomorphic to K1, K2, C5 or C7.

From Theorem 4.33, either G is one of the six given “special graphs”, or G ∈ F .

As discussed, only K1 and C7 are circulants, among these six special graphs. We now

classify the circulants in F . Let G be a circulant graph in the family F .

If G has a pendant edge, then G contains a vertex of degree 1. Since G is a

connected circulant, this implies that G = K2 = C2,{1}. If G has no pendant edges,

then each vertex of G must belong to a basic 5-cycle. Clearly G = C5 ∈ F . Suppose

G is not isomorphic to C5. Then G contains at least two basic 5-cycles, connected by

at least one edge. In other words, some vertex of G has degree at least 3. Since G is

a circulant, every vertex must have degree d ≥ 3. But this contradicts the definition

of a basic 5-cycle. We have proven that K2 and C5 are the only circulant graphs in

F , and this establishes our desired result.

We now examine well-covered graphs which contain neither 4-cycles nor 5-cycles.

In [72], the authors give a complete characterization of graphs in this family. We

determine which of these graphs are also circulants, giving us a complete characteri-

zation of all well-covered circulant graphs that contain no C4 or C5 subgraph.

Definition 4.34 A vertex v of G is simplicial if the subgraph induced by the vertices

in the closed neighbourhood N [v] is complete.

Definition 4.35 ([72]) S is the set of graphs G for which there exist a subset of

vertices {x1, x2, . . . , xk} ⊆ V (G) such that the following conditions hold:
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1. xi is simplicial for each i.

2. |N [xi]| ≤ 3.

3. {N [xi] | i = 1, 2, . . . , k} is a partition of V (G).

In [72], the authors define the graph T10, a particular graph on 10 vertices. This

graph is irrelevant to our discussion, as T10 is not regular, and hence, not a circulant.

The following is the characterization theorem of Finbow, Hartnell, and Nowakowski.

Theorem 4.36 ([72]) Let G be a connected well-covered graph containing neither

C4 or C5 as a subgraph. Then, G ∈ S, or G is isomorphic to C7 or T10.

As a simple corollary of Theorem 4.36, we now prove that if G is a connected

well-covered circulant graph containing neither C4 or C5 as a subgraph, then G is

isomorphic to K1, K2, K3, or C7.

Let G ∈ S. G contains at least one simplicial vertex v. Since |N [v]| ≤ 3, it follows

that deg(v) ≤ 2. Since G is a connected circulant, G must be r-regular, for some

r ≤ 2. If r = 0 or r = 1, then this corresponds to the cases G = K1 and G = K2.

If r = 2, then G must contain a triangle (since v is simplicial). This implies that

G = C3 = K3, as no other connected 2-regular circulant has a K3 subgraph.

We know that C7 is a circulant, while T10 is not (it is not regular). Thus, G must

be isomorphic to one of K1, K2, K3, or C7. This establishes the claim.

We have now fully classified all well-covered circulants with girth g ≥ 5, as well

as all well-covered circulants containing no C4 or C5 subgraph. However, this anal-

ysis does not include many other families of graphs, most notably the set of graphs

containing a K3 (i.e., graphs of girth 3). This is the most difficult case, and there

is no known characterization of well-covered graphs of girth 3 or girth 4. Since it is

co-NP -complete to decide if an arbitrary graph G is well-covered [44, 157], at least

one of these problems is intractable.

To conclude this section, we prove that it is co-NP -complete to decide if an

arbitrary circulant graph is well-covered. We first require two lemmas and a definition.
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Lemma 4.37 ([46]) For all n ∈ N, there are non-negative numbers a1, a2, . . . , an,

distinct mod 8⌈log2 n⌉ < 8n3, such that all sums ai+aj are distinct mod 8⌈log2 n⌉−1, and

all sums ai+aj +ak are distinct mod 8⌈log2 n⌉−1. Moreover, the sequence a1, a2, . . . , an

is computable in time polynomial in n, and the distinctness claims remain true modulo

any integer m satisfying m > 3 · (8⌈log2 n⌉ − 2).

Definition 4.38 Let G be an arbitrary graph, with V (G) = {v1, v2, . . . , vn}. Then

CG,A is a circulant on N = 8⌈log2 n⌉ − 1 vertices, with generating set

S = {|ai − aj |N : vivj ∈ E(G)},

where A = (a1, a2, . . . , an) is an n-tuple (a1, a2, . . . , an) of positive integers satisfying

the conditions of Lemma 4.37.

Note that CG,A is not well-defined; but for the purposes of the discussion that

follows, any CG,A can be chosen.

Also note that by Lemma 4.37, there is a polynomial-time algorithm to determine

an n-tuple (a1, a2, . . . , an) satisfying the conditions of this lemma.

As an example, let G be the graph with vertex set V (G) = {v1, v2, . . . , v7} and edge

set E(G) = {v1v2, v2v3, v3v4, v4v5, v5v6, v1v6, v1v7, v3v7, v4v7}. A 7-tuple satisfying the

conditions of Lemma 4.37 is

A = (a1, a2, a3, a4, a5, a6, a7) = (54, 113, 14, 27, 85, 92, 36),

from which we derive a circulant CG,A:

CG,A = C511,{7,9,13,18,22,38,58,59,99}.

Remark that any vertex w of CG,A adjacent to v = 0 satisfies w = ai−aj (mod N)

for some (i, j) with vivj ∈ E(G). As an example, w = 412 is a vertex of CG,A adjacent

to v = 0, and w = a3 − a2 (mod 511). In this context, we say that the edge vivj of G

corresponds to the vertex w = ai−aj (mod N) in CG,A. From now on, we will assume

that A is an arbitrarily chosen n-tuple satisfying the conditions of Lemma 4.37, and

so we will abbreviate CG,A by CG.
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Lemma 4.39 ([46]) Let w1, w2, . . . , wk be a k-clique in CG, with w1 = 0. Then for

all 2 ≤ i ≤ k, the edge ei of G corresponding to wi in CG is adjacent to a certain

vertex of G independent of i. Moreover, if wi = ap − aq (mod N) and wj = ar − as

(mod N), then p = r or q = s.

As shown in [46], this lemma follows quickly from Lemma 4.37. Let us use our

earlier example to illustrate Lemma 4.39. By inspection, {0, 13, 22} is a 3-clique in

CG = C511,{7,9,13,18,22,38,58,59,99}. Notice that w2 = 13 = a4 − a3 and w3 = 22 = a7 − a3,

i.e., e2 and e3 share the common vertex v3 in G.

Since w2 and w3 are also adjacent in CG, it follows that {v3, v4, v7} must be a

3-clique in G. In general, if CG has a k-clique, then this produces a k-clique in G

[46]. In the following lemma, we prove that a maximal k-clique of G corresponds to

a maximal k-clique of CG, and vice-versa.

Lemma 4.40 There exists a maximal k-clique in G iff there exists a maximal k-clique

in CG.

Proof: Let W = {w1, w2, w3, . . . , wk} be a maximal k-clique in CG. By the

vertex-transitivity of CG, we can assume that w1 = 0 without loss of generality.

By Lemma 4.39, wj = am −aij (mod N) for each 2 ≤ j ≤ k and some fixed index m.

This implies that T = {vm, vi2 , vi3 , . . . , vik} is a k-clique in G. Now suppose that this

k-clique is not maximal. Then we can add a new vertex vq that is adjacent to each

vertex in T , producing a (k + 1)-clique in G. Let wk+1 = am − aq (mod N). Clearly,

wk+1 is distinct from the previous k vertices of W . Then {w1, w2, . . . , wk, wk+1} is a

(k + 1)-clique in CG, contradicting the maximality assumption.

Now we prove the converse. Let {v1, v2, . . . , vk} be a maximal k-clique in G. Let

wj = aj − a1 (mod N) for each 1 ≤ j ≤ k. Then S = {w1, w2, w3, . . . , wk} is a

k-clique in CG, with w1 = 0. Suppose that this k-clique is not maximal. Then we

can add a new vertex wk+1 that is adjacent to each vertex in S, producing a (k + 1)-

clique in CG. By Lemma 4.39, wk+1 must have the vertex label aq − a1 (mod N),

for some vq ∈ V (G), distinct from all of the other vi’s. Then {v1, v2, . . . , vk, vq} is a

(k + 1)-clique in G, contradicting the maximality assumption.
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Therefore, we have proven that there exists a maximal k-clique in G iff there exists

a maximal k-clique in CG.

Theorem 4.41 Let G = Cn,S be an arbitrary circulant graph. Then it is co-NP -

complete to determine whether G is well-covered.

Proof: Say that a graph belongs to the family F ′ if it is isomorphic to some CG,A,

where G is a graph on n vertices and A = (a1, a2, . . . , an) is an n-tuple satisfying the

conditions of Lemma 4.37. Now let F be the family of all circulant graphs. Since

each CG,A is a circulant, it follows that F ′ ⊂ F .

It is NP -complete to decide if an arbitrary graph G is not well-covered [44, 157].

Thus, it is NP -complete to determine the existence of a maximal k-clique and max-

imal l-clique in an arbitrary graph G, for some k 6= l. By Lemma 4.40, it is NP -

complete to determine the existence of a maximal k-clique and maximal l-clique in

the corresponding graph CG, for some k 6= l.

Therefore, if we restrict our circulants to just the family F ′, it is NP -complete to

determine if an arbitrary graph in this family is not well-covered. This implies that the

decision problem is co-NP -complete. Since F ′ is a subset of the set of all circulants,

we conclude that it is co-NP -complete to determine if an arbitrary circulant graph

is well-covered.

This proves the main theorem of this section.

4.4 Independence Complexes of Circulant Graphs

We begin by defining the independence complex of a graph G, which is a special type

of simplicial complex.

Definition 4.42 A simplicial complex consists of a set V of vertices and a collec-

tion ∆ of subsets of V called faces with the following properties:

1. If v ∈ V , then {v} ∈ ∆.

2. If F ∈ ∆ and G ⊂ F , then G ∈ ∆.
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Definition 4.43 The independence complex ∆(G) of a graph G is a finite sim-

plicial complex where the faces correspond to independent sets of G.

Note that ∆(G) must be a simplicial complex since any subset of an independent

set is also independent.

We require several more definitions. While we only study independence complexes

in this chapter, these terms are defined for all simplicial complexes.

Definition 4.44 Let ∆ be a simplicial complex and F be a face of ∆. The dimen-

sions of F and ∆ are given by

dim(F ) = |F |, dim(∆) = max{dim(F ) | F ∈ ∆}.

Definition 4.45 For any face F of ∆, the simplex of F is

F = {σ ∈ ∆ | σ ⊆ F},

which is the set of all subsets of F .

Definition 4.46 The faces of maximal dimension are called facets. A complex ∆ is

pure if all facets have the same dimension.

Note that for combinatorists, the dimension is defined as above, but for topologists,

dim(F ) is defined as |F | − 1. To maintain consistency throughout this chapter, we

will use the combinatorial definition of dim(F ). A face with dimension dim(F )− 1 is

called a ridge.

The geometric realization of ∆(G) illustrates all of the facets belonging to the

complex. Figures 4.14 and 4.15 present realizations of the independence complexes

of G = C6 = C6,{1} and G = 3K2 = C6,{3}.

In ∆(C6), the facets are {0, 3}, {1, 4}, {2, 5}, {0, 2, 4}, and {1, 3, 5}. Hence, this

independence complex is not pure. On the other hand, ∆(3K2) is pure, since the facets

are {0, 1, 2}, {3, 1, 2}, {0, 1, 5}, {3, 1, 5}, {0, 4, 2}, {3, 4, 2}, {0, 4, 5}, and {3, 4, 5}.

An independent k-set contained in a maximal independent set is equivalent to a

k-dimensional face contained in a facet. Therefore, we make the following observation.
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Figure 4.14: The independence complex ∆(C6).
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Figure 4.15: The independence complex ∆(3K2).

Observation 4.47 For any graph G, ∆(G) is pure iff G is well-covered.

In the previous section, we characterized several families of well-covered circulants.

Hence, these circulants correspond directly to pure independence complexes. Moti-

vated by these results, we study the properties of these pure complexes. While we

can investigate numerous properties of pure independence complexes (such as its ho-

motopy, topology, and Cohen-Macaulayness), the remainder of this section will focus

on the shellability of these pure independence complexes. We restrict our attention to

problems relating to shellability, as we can develop new results on shellability directly

from our previous work on independence polynomials.

Definition 4.48 ([27]) A pure simplicial complex ∆ of dimension d is shellable if
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the facets of ∆ can be ordered F1, F2, . . . , Ft such that

Fi

⋂
(

i−1⋃

j=1

Fj

)

is pure of dimension d − 1 for all i ≥ 2.

In other words, a complex ∆ is shellable if its facets can be ordered so that the

simplex of each one (other than the first) intersects the union of the simplices of its

predecessors in a nonempty union of maximal proper faces. The idea is to build ∆

stepwise by introducing the facets one at a time, and attaching each new facet Fi to

the complex in the “nicest possible way”, i.e., along its ridges.

The 3-dimensional independence complex ∆(3K2) is shellable. A possible shelling

is F1 = {0, 1, 2}, F2 = {0, 4, 2}, F3 = {0, 1, 5}, F4 = {0, 4, 5}, F5 = {3, 1, 2}, F6 =

{3, 4, 2}, F7 = {3, 1, 5}, and F8 = {3, 4, 5}. On the other hand, we justify later in this

section that ∆(C7) is not shellable.

Shellability is introduced by Bruggesser and Mani in [27], who establish the shella-

bility of boundary complexes of polytopes. Shellability has applications to combina-

torial and computational geometry: to cite two examples, shellability is employed for

efficient convex hull construction of polytopes [160], and for the proof of the upper

bound of the number of faces of polytopes [131]. There is a technical generalization

of shellability for non-pure complexes, and we refer the reader to [15, 16] for more

information. However, in this section, we will only consider the shellability of pure

complexes.

As mentioned by Hachimori in his Ph.D. thesis [89], the decision problems of

combinatorial decomposition properties such as shellability are so challenging that

almost no result is known currently. One of the few exceptions is a linear time

algorithm by Danaraj and Klee [53] that determines if a 3-dimensional pseudomanifold

is shellable. A d-dimensional complex is a pseudomanifold if any ridge (i.e., a face

of dimension d − 1) is included in at most two facets. For example, ∆(3K2) is a

3-dimensional pseudomanifold. Unfortunately in all of our non-trivial examples, our

complexes will not be pseudomanifolds. Hence, determining if these pure complexes

are shellable is a formidable task.
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We mention the following lemma, which provides an equivalent definition of shella-

bility.

Lemma 4.49 ([15, 47]) An ordering F1, F2, . . . , Ft of the facets of ∆ is a shelling

iff for every i and k with 1 ≤ i < k ≤ t, there exists a j with 1 ≤ j < k such that

Fi ∩ Fk ⊆ Fj ∩ Fk = Fk − {x}, for some x ∈ Fk.

In [15], it is shown that the shellability of independence complexes is closed under

disjoint unions. Therefore, ∆(G) and ∆(H) are both shellable iff ∆(G∪H) is shellable

as well. Hence, we will not look at disconnected graphs: for the rest of this section,

∆(G) will always refer to the independence complex of a connected graph.

In the previous section, we gave a partial characterization of connected well-

covered circulants. By Observation 4.47, this gives us a partial characterization of

pure independence complexes. From Theorems 4.19, 4.20, 4.26, and 4.27, we have

the following.

Theorem 4.50 For each of the following circulants, ∆(G) is a pure independence

complex.

1. G = Cn,{1,2,...,d}, where n ≤ 3d + 2 or n = 4d + 3.

2. G = Cn,{d+1,d+2,...,⌊n
2
⌋}, where n > 3d.

3. G is one of C4,{1,2}, C6,{1,3}, C6,{2,3}, C8,{1,4}, or C10,{2,5}.

4. G is the lexicographic product of any two graphs in the above list.

In this section, we attempt to determine the shellability (or non-shellability) of

each of these families of pure complexes. We will use a wide variety of techniques,

and apply results found earlier in the thesis. The shellability problem for these four

families will be determined in reverse order; starting with the lexicographic product

(the easiest case) and working backwards to the family G = Cn,{1,2,...,d}, which is the

most difficult. For one particular case in this family, we will explain why the analysis
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is so challenging. Nevertheless, for every other family of well-covered circulants de-

scribed in Theorem 4.50, we will determine whether the corresponding independence

complex is shellable.

To develop our theorems, we require numerous lemmas and additional definitions.

From Theorem 4.27, G and H are well-covered iff G[H ] is well-covered. Therefore,

Observation 4.47 tells us that ∆(G) and ∆(H) are pure iff ∆(G[H ]) is pure. A natural

conjecture is that ∆(G[H ]) is shellable whenever ∆(G) and ∆(H) are both shellable

as well. However, the following lemma disproves this conjecture.

Lemma 4.51 Let G and H be well-covered graphs. If H is not complete, and ∆(G)

has at least two distinct facets, then ∆(G[H ]) is not shellable.

Proof: Let {v1, v2, . . . , vn} be the vertices of G, and let {w1, w2, . . . , wm} be the

vertices of H . Every maximum independent set of G[H ] has α(G)α(H) vertices,

where each vertex is of the form (vi, wj), for some 1 ≤ i ≤ n and 1 ≤ j ≤ m. By the

definition of the lexicographic product, vertices (va, wb) and (vc, wd) are adjacent in

G[H ] iff (va ∼ vc) or (va = vc and wb ∼ wd).

For each maximum independent set I, define φ(I) to be the set of vertices in G

that appear among the elements in I. In other words, φ(I) is the projection of I

onto the first coordinate. Note that each φ(I) must be a maximum independent set

of α(G) vertices in G.

Let {F1, F2, . . . , Ft} be a shelling of ∆(G[H ]). Then there exists a unique integer

2 ≤ k ≤ t such that φ(F1) = . . . = φ(Fk−1) and φ(F1) 6= φ(Fk). Such a k must exist,

as otherwise φ(F1) is the only maximum independent set of G (i.e., φ(F1) is the only

facet of ∆(G)), which contradicts our assumption that ∆(G) has at least two facets.

So consider this unique index k. Since H 6= Kn, α(H) ≥ 2. Also, we have

φ(Fj) 6= φ(Fk) for all 1 ≤ j ≤ k − 1. Therefore,

|Fj ∩ Fk| ≤ (α(G) − 1)α(H) < α(G)α(H)− 1 = |Fk| − 1.

By Lemma 4.49, if ∆(G[H ]) is shellable, then there must exist some index 1 ≤
j < k such that Fj ∩ Fk = Fk − {x}, for some x ∈ Fk. But this necessitates that
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|Fj ∩ Fk| = |Fk| − 1, a contradiction. Therefore, we conclude that ∆(G[H ]) is not

shellable whenever H is not complete, and ∆(G) has at least two distinct facets.

Lemma 4.51 gives us the first main theorem in this section, which examines the

shellability of ∆(G[H ]).

Theorem 4.52 Let G and H be connected well-covered circulants with G 6= K1 and

H 6= Km. Then ∆(G[H ]) is not shellable.

Proof: Since G and H are both well-covered, so is G[H ], implying that ∆(G[H ]) is

pure. We claim that ∆(G) has at least two facets.

There are many graphs with a unique maximum independent set; for example,

consider any odd path. However, there are no connected circulants with this prop-

erty. To prove this, assume that I = {v1, v2, . . . , vr} is a maximum independent set

of G = Cn,S. Since G is a circulant, I ′ = {v1 +1, v2 +1, . . . , vr +1} is also a maximum

independent set, where addition is taken mod n. If I ≡ I ′ then I = I ′ = V (G), imply-

ing that G = Kn. This contradicts the assumption that G is connected. Therefore,

I 6≡ I ′, establishing that any connected circulant graph has at least two maximum

independent sets.

Since H is not complete, and ∆(G) has at least two facets, Lemma 4.51 implies

that ∆(G[H ]) is not shellable.

This covers the shellablity decision problem for the final case of Theorem 4.50.

Now we consider the well-covered circulants of degree 3. These correspond to five

pure complexes, as described in Theorem 4.50. We now determine the shellability

of each complex. To do this, we require two results - the first is a characterization

of all shellable 2-dimensional complexes, and the second is a powerful theorem of

Stanley [164]. In order to establish our result, much work is required to introduce all

necessary definitions and theorems. This is done over the next several pages. The

following lemma holds for all graphs G (not just circulants).

Lemma 4.53 If G is a connected graph with α(G) = 2, then ∆(G) is shellable iff G

is connected.
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Proof: If α(G) = 2, the facets of ∆(G) are precisely the non-edges of G. Suppose

there are t non-edges of G. Then G contains t edges and ∆(G) contains t facets.

If G is connected, there exists an ordering of edges e1, e2, . . . , et so that for any

1 ≤ i ≤ t, the subgraph induced by the edges e1, e2, . . . , ei is connected. One possible

ordering is to select any spanning tree of G, and let the first |V (G)| − 1 edges be

the edges of this spanning tree, arranged so that connectedness is preserved at each

step. Then the remaining edges can be selected arbitrarily. Letting Fi be the facet

consisting of the two vertices of ei, we see that F1, F2, . . . , Ft is a shelling of ∆(G).

However, if G is not connected, then there is no ordering of edges e1, e2, . . . , et

with the aforementioned property. Therefore, no shelling F1, F2, . . . , Ft can exist.

This completes the proof.

As a corollary, we have a characterization of all shellable independence complexes

of dimension 2.

Corollary 4.54 Let G = Cn,S be a connected circulant with α(G) = 2. Define G =

Gn,S, where S = {t1, t2, . . . , tk}. Then, ∆(G) is shellable iff gcd(n, t1, t2, . . . , tk) = 1.

Proof: By Proposition 2.45, G is connected iff d = gcd(n, t1, t2, . . . , tk) = 1. The

conclusion now follows immediately from Lemma 4.53.

The case α(G) ≥ 3 is significantly harder; in fact, even for dim(∆) = α(G) = 3,

there is no known classification of the set of shellable complexes. When G is restricted

to circulants, virtually nothing is known about ∆(G). In fact, there is no known

example of even one connected circulant G = Cn,S for which ∆(G) is a pure shellable

3-dimensional independence complex. At the end of this chapter, we provide the first

such example.

By a remarkable theorem of Stanley [164], there is a simple necessary and sufficient

condition to verify that a simplicial complex is shellable. Before stating the theorem,

we need to first define the f -vector, h-vector, and M-sequence of a complex ∆.

Definition 4.55 Let fi(∆) be the number of faces of dimension i. The f-vector of

∆ is the sequence (f0(∆), f1(∆), . . . , fd(∆)), where dim(∆) = d.
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Note that the f -vector represents the sequence of coefficients of the independence

polynomial I(G, x). In other words, fk = [xk]I(G, x) for all 0 ≤ k ≤ d = α(G).

Definition 4.56 Let f = (f0, f1, f2, . . . , fd) be the f -vector of ∆. The h− vector of

∆ (also known as the Hilbert-vector) is h = (h0, h1, h2, . . . , hd), where

hk(∆) =

k∑

j=0

(−1)k−j

(
d − j

d − k

)

fj(∆), 0 ≤ k ≤ d.

Consider the polynomials F (x) =
d∑

i=0

fix
i and H(x) =

d∑

i=0

hix
i. Note that F (x) =

I(G, x). These two polynomials are related by the identity

H(x) = (1 − x)dF

(
x

1 − x

)

.

Later in this section, we introduce Stanley’s Theorem, from which it will follow

that the h-vector of a shellable complex has no negative terms (see Corollary 4.60).

Thus, in a shellable complex ∆(G), the real roots of H(x) must all be negative. For

such graphs G, this result implies a simple bound on the real roots of I(G, x).

Corollary 4.57 Let G be a graph for which ∆(G) is shellable. Then every real root

of I(G, x) lies in the interval (−1, 0).

Proof: Let r < 0 be a root of H(x). From above, each root of I(G, x) = F (x) is of

the form r
1−r

, for some r < 0. The desired conclusion follows.

In the following chapter, we provide an extensive analysis of the roots of I(G, x),

where G = Cn,S is an arbitrary circulant graph. We will find that these independence

roots are not necessarily restricted to the interval (−1, 0); in fact, the set of roots of

I(Cn,S, x) is dense in the entire complex plane!

Definition 4.58 ([13, 163]) For each pair of positive integers (n, k), there is a

unique way of writing

n =

(
ak

k

)

+

(
ak−1

k − 1

)

+ . . . +

(
ai

i

)
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so that ak > ak−1 > . . . > ai ≥ i ≥ 1. Then define

δk(n) =

(
ak − 1

k − 1

)

+

(
ak−1 − 1

k − 2

)

+ . . . +

(
ai − 1

i − 1

)

.

Also, let δk(0) = 0.

Then, a sequence of non-negative integers (n0, n1, n2, . . . , nd) is an M-sequence

if n0 = 1 and δk(nk) ≤ nk−1 for each 2 ≤ k ≤ d.

The following result is Stanley’s Theorem.

Theorem 4.59 ([164]) Let h = (h0, h1, h2, . . . , hd) be a (d + 1)-tuple of integers.

Then, h is the h-vector of a shellable complex of dimension d iff h is an M-sequence.

Let us briefly explain Theorem 4.59. In any shelling F1, F2, . . . , Ft of ∆(G), define

the restriction Res(Fj) of facet Fj to be the set of vertices v such that Fj − {v} is

contained in one of the earlier facets. When we build ∆(G) according to this shelling,

the new faces at the jth step are exactly the faces {T : Res(Fj) ⊆ T ⊆ Fj}. This

information corresponds to the h-vector of ∆(G); namely, if we count the number of

indices 1 ≤ j ≤ t for which |Res(Fj)| = i, then we will find exactly hi of them. Thus,

hi is non-negative if ∆(G) is shellable.

Any M-sequence must necessarily be a sequence of non-negative integers. Thus,

if the h-vector has a negative term, then h is not an M-sequence. By Theorem 4.59,

h cannot be the h-vector of a shellable complex. Therefore, we have the following

corollary.

Corollary 4.60 If the h-vector of a simplicial complex has a negative term, then the

complex is not shellable.

We note that the converse to Corollary 4.60 does not hold. As a counterexam-

ple, consider the independence complex ∆(C12,{1,3,5,6}). There are 16 facets, all of

dimension 3. Eight of these facets contain only even vertices (e.g. {0, 2, 4} and

{0, 4, 8}), while the other eight contain only odd vertices. Hence, the complex cannot

be shellable, since half the facets are completely disjoint from the other half. However,

the f -vector is f = (1, 12, 24, 16), from which we derive h = (1, 9, 3, 3). Therefore,
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a non-shellable independence complex can have an h-vector with all positive terms.

By Stanley’s Theorem, h = (1, 9, 3, 3) is the h-vector of some shellable simplicial

complex, not necessarily the independence complex!

Another counterexample is the independence complex of the lexicographic product

G[H ] = C5[C5]. By Theorem 4.52, ∆(G[H ]) is not shellable. On the other hand,

I(G[H ], x) = 1 + 25x + 150x2 + 250x3 + 125x4 by Theorem 2.33, which implies that

f = (1, 25, 150, 250, 125) and h = (1, 21, 81, 21, 1).

We now present our shellability theorem for pure independence complexes of 3-

regular circulants. As shown in Theorem 4.26, there are only five pure complexes

∆(G) for which G is a connected 3-regular circulant. We now determine which of

these complexes are shellable.

Proposition 4.61 The pure complex ∆(G) is shellable when G is C4,{1,2} or C6,{2,3},

but not when G is C6,{1,3}, C8,{1,4}, or C10,{2,5}.

Proof: If G = C4,{1,2} = K4, then ∆(G) is trivially shellable. If G = C6,{2,3}, the

desired result follows immediately from Lemma 4.53. Now consider the other three

cases.

If G = C6,{1,3}, then the facets are {0, 2, 4} and {1, 3, 5}, which are disjoint. This

implies that ∆(G) is not shellable. If G = C8,{1,4}, then I(G, x) = 1+8x+16x2 +8x3,

which gives us f(∆) = (1, 8, 16, 8) and h(∆) = (1, 5, 3,−1). If G = C10,{2,5}, then

I(G, x) = 1 + 10x + 30x2 + 30x3 + 10x4, which gives us f(∆) = (1, 10, 30, 30, 10)

and h(∆) = (1, 6, 6,−4, 1). In both cases, the h-vector has a negative term. By

Corollary 4.60, we conclude that ∆(G) is not shellable.

Corollary 4.60 is also the key technique required to prove our next result, on the

shellability of ∆(G) = ∆(Bn), where G = Bn = Cn,{d+1,d+2,...,⌊n
2
⌋}.

In Theorem 4.20, we proved that G = Bn is pure iff n > 3d. For each ordered

pair (n, d) with n > 3d, we now determine whether ∆(G) = ∆(Bn) is shellable.

We first show that ∆(G) is shellable for d ≤ 1. If d = 0, then G = Kn, and so

the result is obvious. If d = 1, then G = Cn, and α(G) = 2. The facets of ∆(G) are
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precisely the edges of G = Cn. Since G and G are connected and α(G) = 2, ∆(G) is

shellable by Lemma 4.53.

The interesting case occurs when d ≥ 2. We now prove that ∆(Bn) is never

shellable, for any (n, d) with d ≥ 2. To establish this result, we require the following

lemma.

Lemma 4.62 Let 1 ≤ k ≤ d + 1. Then

k∑

j=1

(
d + 1 − j

d + 1 − k

)(
d

j − 1

)

xk−j =

(
d

k − 1

)

(1 + x)k−1.

Proof: We have

k∑

j=1

(
d + 1 − j

d + 1 − k

)(
d

j − 1

)

xk−j

=

k∑

j=1

(d + 1 − j)!

(d + 1 − k)!(k − j)!
· d!

(j − 1)!(d − j + 1)!
xk−j

=

k∑

j=1

d!

(d + 1 − k)!(k − j)!(j − 1)!
xk−j

=

k∑

j=1

d!

(k − 1)!(d + 1 − k)!
· (k − 1)!

(k − j)!(j − 1)!
xk−j

=
k∑

j=1

(
d

k − 1

)(
k − 1

k − j

)

xk−j

=

(
d

k − 1

) k∑

j=1

(
k − 1

k − j

)

xk−j

=

(
d

k − 1

) k−1∑

t=0

(
k − 1

t

)

xt

=

(
d

k − 1

)

(1 + x)k−1.

This concludes the proof.

By substituting x = −1 into the above lemma, we have the following.
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Corollary 4.63 Let 1 ≤ k ≤ d + 1. Then

k∑

j=1

(
d + 1 − j

d + 1 − k

)(
d

j − 1

)

(−1)k−j = 0.

Now we prove that ∆(Bn) is not shellable, for any d ≥ 2.

Theorem 4.64 Let Bn = Cn,{d+1,d+2,...,⌊n
2
⌋}, where n > 3d and d ≥ 2. Then, ∆(Bn)

is not shellable.

Proof: By Corollary 4.60, it suffices to prove that the h-vector of ∆(Bn) has a

negative term. By Proposition 2.9, I(Bn, x) = 1 + nx(1 + x)d. Therefore, f0 = 1 and

fj = n ·
(

d
j−1

)
, for each 1 ≤ j ≤ d + 1.

It is straightforward to verify that h0 = f0 = 1 and h1 = f1−(d+1)f0 = n−d−1.

For 2 ≤ k ≤ d + 1, we have

hk =

k∑

j=0

(−1)k−j

(
d + 1 − j

d + 1 − k

)

fj

= (−1)k

(
d + 1

d + 1 − k

)

+

k∑

j=1

(−1)k−j

(
d + 1 − j

d + 1 − k

)

· n ·
(

d

j − 1

)

= (−1)k

(
d + 1

k

)

+ n

k∑

j=1

(
d + 1 − j

d + 1 − k

)(
d

j − 1

)

(−1)k−j

= (−1)k

(
d + 1

k

)

, by Corollary 4.63.

We have established an explicit formula for the h-vector of ∆(Bn). Since h3 is

negative, we conclude that ∆(Bn) is not shellable, for any ordered pair (n, d) with

d ≥ 2.

To conclude our analysis, we now attempt to determine the shellability of ∆(An),

where An = Cn,{1,2,...,d}. By Theorem 4.19, this complex is pure iff n ≤ 3d + 2 or

n = 4d + 3.

Proposition 4.65 Let d ≥ 1 be fixed, and set An = Cn,{1,2,...,d} for all n ≥ 2d. Then

∆(An) is not shellable for n = 2d + 2, but is shellable for n = 2d, n = 2d + 1, and all

2d + 3 ≤ n ≤ 3d + 2.
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Proof: If n = 2d or n = 2d+1, then An = Kn, and so ∆(An) is trivially shellable. If

n = 2d+2, then An = C2d+2,{d+1}, which consists of d+1 disjoint copies of K2. Since

An is not connected and α(An) = 2, Lemma 4.53 shows that ∆(An) is not shellable.

Finally, consider the case 2d + 3 ≤ n ≤ 3d + 2. By Theorem 2.3, α(An) =

α(Cn,{1,2,...,d}) = ⌊ n
d+1

⌋ = 2. By Lemma 4.53, it suffices to show that An is connected.

If n = 2d + 3, then gcd(d, n) = 1. Hence, An = C2d+3,{d+1} is isomorphic to C2d+3, by

Lemma 2.24. And clearly C2d+3 is connected.

For n > 2d + 3, An connects every pair of vertices that are distance d + 1 or d + 2

apart (as well as possibly other pairs of vertices). To prove that An is connected, it

suffices to prove that for each vertex v, there is a path from v to v + 1. But this is

trivial, since v + d + 2 (reduced modulo n if necessary) is adjacent to both of these

vertices. Therefore, An must be connected. We conclude that ∆(An) is shellable for

all 2d ≤ n ≤ 3d + 2 except in the one case n = 2d + 2.

We now consider the most difficult case n = 4d + 3. For d = 1 and d = 2, the

h-vectors of ∆(An) are (1, 4, 3,−1) and (1, 8, 14,−1). Thus, ∆(An) is not shellable for

either of these two cases, by Corollary 4.60. Unfortunately the h-vectors are positive

for all d ≥ 3, and so we cannot apply Corollary 4.60.

A comprehensive study of the shellability of pure 3-dimensional complexes is found

in [89], and further work has been done to build upon these results [138, 139]. Unfor-

tunately, all of the known results are either small complexes (less than 7 vertices and

20 facets), pseudomanifolds (where each edge of ∆ appears in at most two facets),

or complexes where the h-vector satisfies h3 = 0. In each of these three scenarios,

much is known, and important results are developed. However, outside of these three

scenarios, the analysis becomes extremely complicated, and virtually no techniques

have been developed to determine the shellability of these complexes. Unfortunately,

our complex ∆(G) = ∆(A4d+3) is not a pseudomanifold for any d ≥ 2. Also, h3 > 0

in each case. Finally, the number of facets is too large for us to employ a computer

search to find a shellable ordering. Even for the d = 3 case, ∆(G) consists of 50

facets.

Nevertheless, we provide a partial result to the shellability problem. While we

cannot verify if ∆(G) is shellable for d ≥ 3, we now prove that ∆(G) is not extendably
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shellable. Before stating our result, we require the following definitions.

Definition 4.66 ([53]) A partial shelling of a complex ∆ is an ordering of a subset

of facets of ∆ so that it satisfies the conditions for shellability. The complex ∆ is

extendably shellable if every partial shelling of ∆ can be extended to a complete

shelling.

Hence, an extendably shellable complex has the property that a shelling can be

found using the greedy algorithm; this is analogous to the problem of finding a max-

imum independent set in a well-covered graph. Clearly, if a complex is extendably

shellable, then it is shellable. As shown in [89], the converse holds for particular

families of complexes (e.g. 3-dimensional pseudomanifolds), but does not hold in

general.

Theorem 4.67 Let G = C4d+3,{1,2,...,d}. Then, ∆(G) is not extendably shellable for

any d ≥ 1.

Proof: By Theorem 2.3, α(G) = α(C4d+3,{1,2,...,d}) = ⌊4d+3
d+1

⌋ = 3. Thus, every facet

has dimension 3. For each 1 ≤ i ≤ 4d + 3, define

Ti = {(i − 1)(d + 1), i(d + 1), (i + 1)(d + 1)},

where the elements are reduced modulo 4d + 3.

We now claim that each element 0 ≤ x ≤ 4d+2 appears exactly three times among

the Ti’s. Note that i(d + 1) ≡ j(d + 1) (mod 4d + 3) implies that (i − j)(d + 1) ≡ 0

(mod 4d+3). Since gcd(d+1, 4d+3) = 1 by the Euclidean algorithm, this implies that

i ≡ j (mod 4d + 3). By the above analysis, for each 0 ≤ x ≤ 4d + 2, the congruence

equation m(d + 1) ≡ x (mod 4d + 3) must have a unique solution m. Furthermore,

for this choice of m and x, we have x ∈ Tm−1, x ∈ Tm, and x ∈ Tm+1, and x 6∈ Ti for

any other i satisfying 1 ≤ i ≤ 4d + 3. It follows that each x appears exactly three

times among the Ti’s. Each Ti has a difference sequence of (d+1, d+1, 2d+1), which

implies that Ti is a (maximum) independent set in G. In other words, each Ti is a

facet of ∆(G).

Let Fi = Ti for 1 ≤ i ≤ 4d + 1. Then {F1, F2, . . . , F4d+1} is a partial shelling of

∆(G), and satisfies Lemma 4.49. Note that the Fi’s are defined only when 1 ≤ i ≤
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4d+1, and not for i = 4d+2 or i = 4d+3. These extra two indices are what distinguish

the Ti’s from the Fi’s. We will show that our partial shelling {F1, F2, . . . , F4d+1}
cannot be extended by even one more facet F4d+2. We will prove that this facet

F4d+2 cannot be T4d+2, T4d+3, or any other facet of ∆(G). All cases will lead to a

contradiction.

Since each x satisfying 0 ≤ x ≤ 4d + 2 appears in three of the Ti’s (where

1 ≤ i ≤ 4d + 3), it follows that each of these indices x appears in at least one of

the Fi’s, where 1 ≤ i ≤ 4d + 1.

We now prove that there does not exist a facet F4d+2 that can be added to this

ordering to preserve the conditions for shellability. Suppose on the contrary that such

a facet does exist. By Lemma 4.49, for every 1 ≤ i ≤ 4d + 1, there must exist an

index j with 1 ≤ j ≤ 4d + 1 such that Fi ∩ F4d+2 ⊆ Fj ∩ F4d+2 = F4d+2 − {x}, for

some x ∈ F4d+2. Suppose that Fj ∩ F4d+2 = F4d+2 − {x} = {y, z}, for some vertices

y and z. For each 1 ≤ j ≤ 4d + 1, the facet Fj has a difference sequence that is a

permutation of (d + 1, d + 1, 2d + 1). Hence, the circular distance |y − z|4d+3 must

equal d+1 or 2d+1. Thus, the difference sequence of our candidate facet F4d+2 must

include d + 1, or 2d + 1, or possibly both.

We consider two cases: either 2d + 1 appears as a difference sequence in our

candidate facet F4d+2, or it does not.

Case 1: The difference sequence of F4d+2 contains the element 2d + 1.

Since G connects every pair of vertices with distance at most d, every pair of

non-adjacent vertices has distance at least d + 1. In other words, every term of the

difference sequence must be at least d + 1, since G has 4d + 3 total vertices. Hence,

if the difference sequence of F4d+2 contains the element 2d + 1, then this difference

sequence must be a (cyclic) permutation of (d + 1, d + 1, 2d + 1).

Note that all of the Ti’s have the difference sequence (d+1, d+1, 2d+1). Further-

more, the set of Ti’s (where 1 ≤ i ≤ 4d+3) represent all of the independent sets with

this specific difference sequence. This can be seen by noting that an independent set

with this difference sequence must be of the form {v, v + d+1, v +2d+2}, where the

elements are reduced modulo 4d + 3. There are 4d + 3 choices for this initial vertex
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v: this gives us the set of Ti’s.

Thus, there are only two possibilities for this candidate facet F4d+2: as it must

be chosen from the remaining two Ti’s not already in our partial shelling, either the

facet is T4d+2 = {0, 2d + 1, 3d + 2} or it is T4d+3 = {0, d + 1, 3d + 2}. Note that the

other 4d + 1 possibilities have already appeared in our partial shelling.

If F4d+2 = T4d+2 = {0, 2d + 1, 3d + 2}, let i = 1. Then F1 = {0, d + 1, 2d + 2},
and F1 ∩ F4d+2 = {0}. Hence, there must be some index 1 ≤ j ≤ 4d + 1 satisfying

Fj ∩F4d+2 = {0, 2d+1} or {0, 3d+2}. Note that the only Ti’s containing the element

0 are T1 = F1 = {0, d + 1, 2d + 2}, as well as T4d+2 and T4d+3. Therefore, the only

possible candidate for j is j = 1, but then we have F1 ∩F4d+2 = {0}, a contradiction.

If F4d+2 = T4d+3 = {0, d+1, 3d+2}, let i = 4d+1. Then F4d+1 = {d, 2d+1, 3d+2},
and F4d+1 ∩ F4d+2 = {3d + 2}. Hence, there must be some index 1 ≤ j ≤ 4d + 1

satisfying Fj ∩ F4d+2 = {0, 3d + 2} or {d + 1, 3d + 2}. Note that the only Ti’s

containing the element 3d+2 are T4d+1 = F4d+1 = {d, 2d+1, 3d+2}, as well as T4d+2

and T4d+3. Therefore, the only possible candidate for j is j = 4d + 1, but then we

have F4d+1 ∩ F4d+2 = {3d + 2}, a contradiction.

Case 2: The difference sequence of F4d+2 contains the element d+1, but not 2d+1.

If F4d+2 contains a pair of vertices with distance d + 1, then it must be of the

form {x, x + d +1, y} for some pair of integers (x, y), where addition is taken modulo

4d + 3. Recall that every vertex of G is included at least once in our partial shelling

F1, F2, . . . , F4d+1. Therefore, there exists at least one index i for which y ∈ Fi. Pick

any such i for which this is the case. Hence, there must be some index 1 ≤ j ≤ 4d+1

satisfying Fj ∩F4d+2 = {x, y} or {x + d + 1, y}, since y ∈ Fi ∩F4d+2 ⊆ Fj ∩F4d+2 and

|Fj ∩ F4d+2| = 2.

By definition, every facet Fj (with 1 ≤ j ≤ 4d + 1) has a difference sequence of

(d + 1, d + 1, 2d + 1). So these two vertices of F4d+2 must be separated by a distance

of d+1, since we are assuming that 2d+1 does not appear in the difference sequence.

If {x, y} ⊂ F4d+2, then |y − x|4d+3 = d + 1, which implies that y = x + d + 1 or

y = x − d − 1. The former case is impossible, as then F4d+2 would only have two

distinct elements. The latter case leads to a contradiction since {x, x + d + 1, y} has
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a difference sequence of (d + 1, 2d + 1, d + 1).

If {x + d + 1, y} ⊂ F4d+2, then |y − (x + d + 1)|4d+3 = d + 1, which implies that

y = x or y = x+2d+2. The former case is impossible, as then F4d+2 would only have

two distinct elements. The latter case leads to a contradiction since {x, x + d + 1, y}
has a difference sequence of (d + 1, d + 1, 2d + 1).

This clears all of the cases, and so the theorem has been proved.

In summary, we have taken all of the families of well-covered circulants from

Section 4.4, and determined whether their independence complexes are shellable. We

have answered the shellability decision problem for every family of circulants except

for G = C4d+3,{1,2,...,d}, which we showed was not extendably shellable. We make the

following conjecture.

Conjecture 4.68 Let G = C4d+3,{1,2,...,d}. Then, ∆(G) is not shellable, for any d ≥ 1.

In our results, we found that the majority of independence complexes are not

shellable. The only exceptions appeared to be some trivial cases, where ∆(G) =

∆(Cn,S) is a 2-dimensional complex. On the surface, it appears that ∆(G) = ∆(Cn,S)

is not shellable for any G satisfying α(G) ≥ 3. One may conjecture that there exists

no circulant for which ∆(Cn,S) is a shellable complex of dimension d ≥ 3. Such is not

the case.

Proposition 4.69 Let G = C12,{1,3,6}. Then ∆(G) is pure, and is a shellable inde-

pendence complex of dimension 3. Moreover, there is no graph on less than 12 vertices

with this property.

Proof: Table 4.2 listed all connected non-isomorphic well-covered circulants on

at most 12 vertices. Table 4.3 lists all of the connected well-covered circulants (on

at most 12 vertices) with α(G) ≥ 3. In each case, we compute its independence

polynomial, which enables us to compute the h-vector of ∆(G).
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By Corollary 4.60, we can immediately conclude that at most four of these com-

plexes are shellable. The only candidates are ∆(G), where G = C12,{1,2,6}, C12,{2,3,6},

C12,{1,3,6}, or C12,{1,3,5,6},

Using a C-program written by Hachimori [90] based on an algorithm given in

[138], ∆(G) is shown to be non-shellable for G = C12,{1,2,6}, C12,{2,3,6}, or C12,{1,3,5,6}.

However, the Hachimori C-program shows that ∆(C12,{1,3,6}) is indeed shellable.

While this C-program does not give an actual shelling, we know that at least one

shellable ordering of the 28 facets must exist. Table 4.4 presents such an ordering.

By inspection, we can verify that this ordering satisfies the conditions for shellability.

Thus, we conclude that G = C12,{1,3,6} is the only connected circulant on at most

12 vertices for which ∆(G) is a pure shellable complex with dimension d ≥ 3.

The shellability of pure independence complexes is a fascinating area of study.

In terms of studying the shellability of ∆(Cn,S), we have only scratched the surface.

Nevertheless, we did succeed in determining a 3-dimensional shellable independence

complex with 28 facets. It remains open to determine the existence of another such

independence complex.
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n S h-vector Shellablity
6 {1, 3} (1, 3,−3, 1) No
7 {1} (1, 4, 3,−1) No
8 {1, 3} (1, 4,−6, 4,−1) No
8 {1, 4} (1, 5, 3,−1) No
9 {1, 3} (1, 6, 3,−1) No
9 {1, 2, 4} (1, 6,−6, 2) No
10 {1, 4} (1, 6, 1,−4, 1) No
10 {2, 5} (1, 6, 6,−4, 1) No
10 {1, 2, 5} (1, 7, 3,−1) No
10 {1, 3, 5} (1, 5,−10, 10,−5, 1) No
11 {1, 2} (1, 8, 14,−1) No
11 {1, 3} (1, 7, 6,−4, 1) No
11 {1, 2, 4} (1, 8, 3,−1) No
12 {1, 4} (1, 8, 12,−4,−2) No
12 {3, 4} (1, 8, 12,−4, 1) No
12 {1, 2, 6} (1, 9, 15, 3) No
12 {1, 3, 5} (1, 6,−15, 20,−15, 6,−1) No
12 {1, 3, 6} (1, 9, 15, 3) YES
12 {2, 3, 4} (1, 8, 0,−4, 1) No
12 {2, 3, 6} (1, 9, 15, 3) No
12 {1, 4, 6} (1, 8, 6,−4,−1) No
12 {3, 4, 6} (1, 9, 15,−1) No
12 {1, 2, 4, 5} (1, 8,−12, 8,−2) No
12 {1, 3, 4, 6} (1, 9, 3,−1) No
12 {1, 3, 5, 6} (1, 9, 3, 3) No
12 {1, 2, 3, 5, 6} (1, 9,−9, 3) No

Table 4.3: Connected well-covered circulants with |G| ≤ 12 and α(G) ≥ 3.

F1 = {1, 3, 5} F8 = {0, 5, 7} F15 = {3, 7, 11} F22 = {1, 6, 8}
F2 = {1, 3, 8} F9 = {0, 2, 7} F16 = {0, 5, 10} F23 = {1, 6, 11}
F3 = {3, 5, 10} F10 = {0, 2, 4} F17 = {2, 4, 9} F24 = {4, 6, 11}
F4 = {3, 8, 10} F11 = {5, 7, 9} F18 = {0, 8, 10} F25 = {4, 9, 11}
F5 = {1, 5, 9} F12 = {2, 7, 9} F19 = {0, 4, 8} F26 = {0, 2, 10}
F6 = {1, 9, 11} F13 = {6, 8, 10} F20 = {4, 6, 8} F27 = {2, 6, 10}
F7 = {3, 5, 7} F14 = {7, 9, 11} F21 = {1, 3, 11} F28 = {2, 4, 6}

Table 4.4: Shelling of the pure complex ∆(C12,{1,3,6}).



Chapter 5

Roots of Independence Polynomials

A great deal of information is represented by the roots of a graph polynomial. To

give one example stated in [120], the roots of the characteristic polynomial of a

molecular graph are interpreted as energies of the electronic levels of the corresponding

molecules. For other graph polynomials, there may not be a direct application to other

scientific fields; however, it is natural to investigate the nature and location of the

roots of these graph polynomials. As in the case with other graph polynomials, the

roots of independence polynomials have been studied extensively [22, 23, 25, 26, 42,

74, 97, 118, 119], and important theories have been developed. In this chapter, we

extend the known results and develop new theorems on the roots of I(G, x), when G

is a circulant.

We investigate the complete family of circulants on n vertices, i.e., all circulants

Cn,S where S is an arbitrary subset of {1, 2, . . . , ⌊n
2
⌋}. For this general family of

graphs, we study the roots of I(Cn,S, x). We provide conditions for when these roots

are real, and in the case when the roots are complex, we determine some requirements

for stability. We determine approximations and bounds for the roots of minimum and

maximum moduli, and find a new proof that the closure of independence roots is the

entire complex plane C. We then characterize circulants for which I(Cn,S, x) has at

least one rational root, and find conditions for when a rational number r is a root of

some independence polynomial I(Cn,S, x). We conclude the chapter by determining

the closure of the real roots of independence polynomials, answering an open problem

from [23]. This result will be applied to determine the closures of the roots of matching

polynomials and rook polynomials.

Before we begin our analysis, we briefly describe the special case G = Cn, since

the roots of I(Cn, x) can actually be determined explicitly.

In [81], Godsil applies Chebyshev polynomials to determine formulas for various

220
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matching polynomials. While the exact identity for the roots of I(Cn, x) do not

formally appear in [81], it can be inferred from his work on matching polynomials.

Here we provide the details.

Since L(Cn) ≃ Cn, Proposition 1.9 tells us that

M(Cn, x) = xn · I
(

L(Cn),− 1

x2

)

= xn · I
(

Cn,−
1

x2

)

.

Therefore, r is a root of M(Cn, x) iff − 1
r2 is a root of I(Cn, x). In [81], it is shown

that M(Cn, x) = 2Tn

(
x
2

)
, where Tn(x) is the nth Chebyshev polynomial. The roots

of Tn(x) can be immediately derived from the following well-known formula.

Lemma 5.1 ([155]) Tn(x) = 2n−1
n∏

k=1

(

x − cos

(
(2k − 1)π

2n

))

.

As a direct consequence of these observations, we have our formula for the roots

of I(Cn, x).

Theorem 5.2 For each 1 ≤ k ≤ ⌊n
2
⌋, define rn,k = − 1

4
[

cos
(

(2k−1)π
2n

)]2 . Then

{rn,1, rn,2, . . . , rn,⌊n
2
⌋} is the set of roots of I(Cn, x).

By making a connection to Chebyshev polynomials, we are able to determine an

explicit formula for the roots of I(Cn, x). Ignoring trivial families of circulants (e.g.

G = Kn), this is the only known family of circulants whose independence roots can

be computed explicitly. Since there is no apparent connection between Chebyshev

polynomials (or any other type of orthogonal polynomial) with other families of cir-

culants, it appears unlikely that an explicit formula can be determined for I(Cn,S, x),

even for the generating sets S = {1, 2, . . . , d} and S = {d + 1, d + 2, . . . , ⌊n
2
⌋}.

Let S be an arbitrary subset of {1, 2, . . . , ⌊n
2
⌋}. We know that there cannot exist

a simple formula for the roots of I(Cn,S, x), as otherwise we can immediately produce

the independence polynomial, contradicting the result that determining I(Cn,S, x) is

NP -hard [46]. For an arbitrary generating set S ⊆ {1, 2, . . . , ⌊n
2
⌋}, it is very difficult

to investigate the roots of I(Cn,S, x), especially as we only know the formula for

I(Cn,S, x) in a handful of cases.
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Nevertheless, we make partial progress in answering some of the most important

questions on the roots of these polynomials. Specifically, we determine conditions for

when I(Cn,S, x) has all real roots; we find (as a function of n) bounds for the roots

of maximum and minimum moduli; we calculate the closure of these roots for certain

generating sets S; we provide conditions for when I(Cn,S, x) has at least one rational

root; and finally, we show that the closure of independence roots of circulants is the

entire complex plane.

In our analysis, we carefully examine the two families of circulants that have fea-

tured prominently throughout the thesis; the families Cn,{1,2,...,d} and Cn,{d+1,d+2,...,⌊n
2
⌋}.

In the following section, we determine conditions for when I(Cn,S, x) has only real

roots.

5.1 The Real Roots of I(Cn,S, x)

We first mention the following result by Chudnovsky and Seymour [42].

Theorem 5.3 ([42]) Let G be a claw-free graph, i.e., a graph with no induced K1,3

subgraph. Then the roots of I(G, x) are all negative real numbers.

For any pair (n, d) with n ≥ 2d, the graph An = Cn,{1,2,...,d} is claw-free. Thus, we

have the following corollary.

Corollary 5.4 Let d ≥ 1 be a fixed integer, and let An = Cn,{1,2,...,d}, where n ≥ 2d.

Then the roots of I(An, x) are all negative real numbers.

Therefore, if I(Cn,S, x) has a complex root, Cn,S must contain a claw. A natural

question would be to determine all necessary and sufficient conditions on n and S

so that I(Cn,S, x) has all real roots. It would be ideal if this claw-free condition

is also sufficient, i.e., I(Cn,S, x) has a complex root iff Cn,S has a claw. However,

we can easily find counterexamples to this claw-free condition. For example, the

circulant G = C8,{1,4} ∼ C8,{3,4} has a claw, yet I(G, x) = 1 + 8x + 16x2 + 8x3 =

(1 + 2x)(1 + 6x + 4x2) has all real roots.

Recall that I(Bn, x) = I(Cn,{d+1,d+2,...,⌊n
2
⌋}, x), since Bn is defined to be the comple-

ment of An. When we plot the (complex) roots of I(Bn, x), it appears that in almost



223

all cases, each root lies in the left-hand plane, i.e., Re(r) < 0 for all roots r. However,

in some cases, there exists a pair of roots r = x ± yi for which Re(r) = x > 0. For

example, the I(C38,{16,17,18,19}, x) includes the roots 0.0001743207895 + 1.732218466i.

This motivates the following well-known definition of polynomial stability.

Definition 5.5 ([8]) A polynomial is stable if every root has a negative real part.

An independence polynomial with all real roots is stable, since every real root

of I(G, x) is negative. But there are stable independence polynomials with complex

roots, such as I(C10,{4,5}, x) = 1 + 10x(1 + x)3. Also, some circulants yield non-stable

independence polynomials, such as I(C38,{16,17,18,19}, x). We would like to determine a

precise necessary and sufficient condition on n and S so that I(Cn,S, x) is stable, but

this problem also appears to be intractable. Nevertheless, we can prove polynomial

stability in some cases. First, we require a definition and a theorem.

Definition 5.6 ([62]) Let v ≥ 2 be an integer. The complex symmetric Newton

polynomial of order v is

(v − 1)zv − vz0z
v−1 + 1,

where z0 ∈ C.

Theorem 5.7 ([62]) For any value of z0, the complex symmetric Newton polynomial

(v − 1)zv − vz0z
v−1 + 1 has at least v − 1 roots inside the unit circle |z| = 1.

As an example, we establish the following result on the family of circulants {Bn}.

Proposition 5.8 Fix d ≥ 1 and let n > 3d. Then the polynomial I(Bn, x) =

I(Cn,{d+1,d+2,...,⌊n
2
⌋}, x) is stable.

Proof: We prove a stronger result by establishing that all roots of I(Bn, x) lie in the

disk |x + 1| < 1. This implies that every root x of I(Bn, x) has real part in (−2, 0),

thus establishing the stability of I(Bn, x).

Since n > 3d, I(Bn, x) = 1+nx(1+x)d, by Theorem 2.10. Making the substitution

y = x + 1, we have f(y) = I(Bn, y − 1) = 1 + nyd(y − 1). We now prove that each

solution to the equation yd(y − 1) + 1
n

= 0 lies in the disk |y| = |x + 1| < 1.
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By Theorem 5.7, (v − 1)zv − vz0z
v−1 + 1 has at least v − 1 roots inside the unit

circle |z| = 1, regardless of the value of z0. Now make the substitutions v = d + 1,

z = cy, and z0 = dc
d+1

, where c is some positive constant to be determined. Then, our

equation becomes

yd+1 − yd +
1

dcd+1
= 0.

Now select the unique c so that dcd+1 = n. Since n > 3d, c is some positive

constant satisfying cd+1 > 3, which shows that c > 1. By Theorem 5.7, our trans-

formed polynomial must have at least d roots inside the disk |cy| = 1, i.e., the disk

|y| = 1
c

< 1. This proves that, with at most one exception, every root of yd(y−1)+ 1
n

must satisfy |y| < 1
c
.

Consider this possible exception, y∗, and suppose that |y∗| > 1
c
. We know that

y∗ must be real, since all complex roots occur as conjugate pairs. Therefore, we only

need to concern ourselves with the case when y∗ is real.

If y∗ ≥ 1, then 0 = (y∗)d(y∗−1)+ 1
n
≥ 0+ 1

n
> 0, which is a contradiction. And if

y∗ ≤ −1, then |(y∗)d(y∗ − 1)| ≥ |y∗− 1| ≥ 2, and so (y∗)d(y∗− 1) + 1
n
6= 0. Therefore,

y∗ must satisfy 1
c

< |y∗| < 1, i.e., |y∗| < 1.

We conclude that all d + 1 roots of yd(y − 1) + 1
n

satisfy |y| < 1. Hence, all d + 1

roots of I(Bn, x) satisfy |x + 1| < 1, implying that the real part of each root lies in

(−2, 0). This establishes the stability of I(Bn, x).

As we see from Corollary 2.11, the simplified formula for I(Bn, x) depends on

the value of n
d
. For n

d
> 3, we just established the stability of I(Bn, x). However,

in all other cases, there is at least one ordered pair (n, d) for which I(Bn, x) =

I(Cn,{d+1,d+2,...,⌊n
2
⌋}, x) is not stable. From some computations on Maple, it appears

that the polynomial I(C10k+5,{5k+1,5k+2}, x) is not stable for any k ≥ 4. Table 5.1 lists

some ordered pairs (n, d) for which I(Bn, x) is not stable.

Let f(x) =
∑

aix
i and g(x) =

∑
bix

i. Then the Hadamard product is defined to

be f · g(x) =
∑

aibix
i. In [80], it is shown that f · g(x) is stable whenever f(x) and

g(x) are both stable. Naturally, we may ask if stability is also preserved under other

products.
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Value of n
d

Example of Pair (n, d)
5
2

< n
d
≤ 3 (48, 19)

7
3

< n
d
≤ 5

2
(38, 16)

9
4

< n
d
≤ 7

3
(50, 22)

11
5

< n
d
≤ 9

4
(45, 20)

13
6

< n
d
≤ 11

5
(55, 25)

15
7

< n
d
≤ 13

6
(65, 30)

17
8

< n
d
≤ 15

7
(75, 35)

19
9

< n
d
≤ 17

8
(85, 40)

21
10

< n
d
≤ 19

9
(95, 45)

Table 5.1: Examples of graphs for which I(Bn, x) is not stable.

In Chapter 2, we examined the lexicographic product G[H ], and showed that G[H ]

is a circulant whenever G and H are. Based on the result for Hadamard products, we

may conjecture that I(G[H ], x) is stable whenever I(G, x) and I(H, x) are. However,

we find that there are infinitely many counterexamples to this conjecture.

Proposition 5.9 Let G = Cn and H = K3. Then I(G[H ], x) is not stable for any

n ≥ 18.

Proof: Clearly, I(H, x) = (1 + x)3 is stable. Also, by Theorem 5.2, the roots of

I(Cn, x) are all negative real numbers, and so I(Cn, x) is stable for all n. We now

prove that I(G[H ], x) is not stable, for any n ≥ 18. By Theorem 2.33, I(G[H ], x) =

I(Cn, (1 + x)3 − 1).

Let u be any root of I(Cn, x). Then three of the roots of I(G[H ], x) are given by

the solutions to (1 + r)3 − 1 = u. Let v = 3
√
−u − 1. If u < −1, these three roots of

I(G[H ], x) are −1 + v · cisπ
3
, −1 + v · cis 3π

3
, and −1 + v · cis 5π

3
. Specifically, two of

these three roots have a real part of −1 + v cos π
3

= −1 + v
2
.

In other words, if v > 2 (i.e., u < −9), then I(G[H ], x) is not stable. To conclude

the proof, it suffices to show that I(Cn, x) has a root u with u < −9 for each n ≥ 18.

This will complete the proof. By Theorem 5.2, r2n,n = − 1

4[cos( (2n−1)π
4n )]

2 and r2n+1,n =

− 1

4[cos( (2n−1)π
4n+2 )]

2 . Both sequences r2n,n and r2n+1,n are decreasing.

Since r10,5 < −9 and r19,9 < −9, this implies that r2n,n < −9 for n ≥ 5 and

r2n+1,n < −9 for n ≥ 9. Therefore, it follows that I(G[H ], x) = I(Cn[K3], x) is not
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stable for any n ≥ 18, as well as for n = 10, 12, 14, and 16.

Later in this chapter, we prove the surprising result that the roots of I(Cn[Km], x)

are dense in the entire complex plane C. In other words, these roots don’t just

sporadically appear on the right-half of the plane, they actually fill out the entire

complex plane.

5.2 The Root of Minimum Modulus of I(Cn,S, x)

Now we examine the roots of maximum and minimum moduli in I(Cn,S, x), and

determine bounds for these roots as a function of n. We first establish our bound

for the root rmin of minimum modulus. In [22], it is shown that for every well-

covered graph G, the root of minimum modulus of I(G, x) satisfies |rmin| ≥ 1
n
, with

equality occurring iff G is the complete graph Kn. In [119], it is shown that in a

general independence polynomial I(G, x), |rmin| > 1
2n−1

for an arbitrary graph G.

While Levit and Mandrescu [119] mention that “it is pretty amusing that one cannot

improve this bound using only simple algebraic transformations”, we now show that

this bound indeed can be improved using a very simple pairing argument. We prove

that the optimal bound for well-covered graphs [22] is also the optimal bound for an

arbitrary graph G. First we cite an important result from Fisher [74].

Theorem 5.10 ([74]) Let D(G, x) be the dependence polynomial of G, as defined

in Chapter 1. For any polynomial D(G, x), the root of minimum modulus is real.

Since I(G, x) = D(G, x) for all graphs G, we have the following corollary.

Corollary 5.11 Let rmin be the root of minimum modulus of I(G, x). Then, rmin is

real.

Theorem 5.12 Let G be any graph of order n. Then the root rmin of minimum

modulus of I(G, x) satisfies |rmin| ≥ 1
n
, with equality occurring iff G is the complete

graph Kn.

Proof: Let I(G, x) = i0 + i1x+ i2x
2 + . . .+ ikx

k, where k = α(G). By Corollary 5.11,

rmin is always real, and so we only need to focus our attention on the real roots
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of I(G, x). We will show that for all integers 0 ≤ l ≤ k
2
, the function gl(x) =

i2lx
2l + i2l+1x

2l+1 is non-negative at x = − 1
n
, and positive for all x > − 1

n
.

Consider the i2l+1 independent sets of cardinality 2l + 1. Each of these sets is

formed by taking an independent set of cardinality 2l and adding one of the other

(n − 2l) vertices so that the resulting set remains independent. Thus, the number of

independent sets of cardinality 2l + 1 is at most i2l(n−2l)
2l+1

. (This bound is known as

Sperner’s Lemma [47]). Note that we must divide this product by 2l + 1 since each

of our independent sets will appear 2l + 1 times by our construction.

It follows that i2l+1 ≤ i2l(n−2l)
2l+1

, which implies that i2l+1

i2l
≤ n−2l

1+2l
≤ n, with equality

iff l = 0. Therefore, if gl(x) = x2l(i2l + i2l+1x), then gl(− 1
n
) ≥ 0. Also, for x > − 1

n
,

gl(x) > 0 since i2l + i2l+1x > i2l − i2l+1

n
≥ 0. Since I(G, x) =

∑

l≥0 gl(x), we have

I(G, x) ≥ 0 for all x ≥ − 1
n
, with equality iff x = − 1

n
and α(G) = k = 1. In

other words, equality occurs iff I(G, x) = 1 + nx, i.e., G = Kn. In all other cases,

I(G, x) > 0 for x ≥ − 1
n
, implying that |rmin| > 1

n
.

As an immediate corollary, we have answered the minimum modulus problem for

circulants.

Corollary 5.13 Let n be fixed, and let S be an arbitrary subset of {1, 2, . . . , ⌊n
2
⌋}.

Then the root rmin of minimum modulus of I(Cn,S, x) satisfies |rmin| ≥ 1
n
, with equality

iff S = {1, 2, . . . , ⌊n
2
⌋} (i.e., the circulant is the complete graph).

For some specific families of circulants G = Cn,S, we can improve this bound

considerably. As an example, consider the easiest case G = Cn. Since | cos(θ)| ≤ 1 for

any θ, Theorem 5.2 shows that the roots of I(Cn, x) are bounded below by |rmin| ≥ 1
4
,

a constant independent of n.

We now generalize this bound by proving that for the family G = An = Cn,{1,2,...,d},

the roots of I(G, x) are bounded below by |rmin| ≥ dd

(d+1)d+1 . To prove this, we establish

a stronger result that the closure of roots of I(An, x) is the interval (−∞,− dd

(d+1)d+1 ].

To prove this, we state some analytical results on recursive families of graphs. This

collection of definitions and theorems is taken from [23].

Definition 5.14 If {fn(x)} is a family of (complex) polynomials, a number z ∈ C is

a limit of roots of {fn(x)} if either fn(z) = 0 for all sufficiently large n, or z is a
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limit point of the set R({fn(x)}), where R({fn(x)}) is the union of the roots of the

fn(x).

By Corollary 5.4, each root of fn(x) = I(An, x) is a negative real number. We will

show that z ∈ C is a limit of roots of {fn(x)} iff z ≤ − dd

(d+1)d+1 . By definition, this

will imply that the closure of roots of I(An, x) is (−∞,− dd

(d+1)d+1 ].

Definition 5.15 A family {fn(x)} of polynomials is a recursive family of poly-

nomials if the polynomials satisfy a homogeneous linear recurrence relation

fn(x) =
k∑

i=1

gi(x)fn−i(x),

where the gi(x) are fixed polynomials with gk(x) 6≡ 0. The index k is the order of the

recurrence.

Specifically, if fn(x) = I(An, x) = I(Cn,{1,2,...,d}, x), then {fn(x)} is a recursive

family of polynomials of order d + 1 since

fn(x) = fn−1(x) + xfn−d−1(x),

by Lemma 2.2.

We now form the characteristic equation of this recurrence relation, namely

λd+1 − λd − x = 0,

whose roots λi(x) are algebraic functions. There are (d + 1) such roots, counting

multiplicity.

If these roots are distinct, the general solution to this recurrence [8] is

fn(x) =
d+1∑

i=1

αi(x)λi(x)n, (*)

where the αi(x)’s are determined uniquely from the given initial conditions.

The following result of Beraha, Kahane, and Weiss is the key theorem we need to

prove our formula on the closure of the roots of I(An, x).
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Theorem 5.16 ([23]) Consider the identity for fn(x) given in (*). Under the non-

degeneracy requirements that no αi(x) is identically zero and that for no pair i 6= j

is λi(x) ≡ ωλj(x) for some ω ∈ C of unit modulus, then z ∈ C is a limit of roots of

{fn(x)} if and only if either

1. two or more of the λi(z) are of equal modulus, and strictly greater (in modulus)

than the others; or

2. for some j, λj(z) has modulus strictly greater than all the other λi(z)’s, and

αj(z) = 0.

To apply Theorem 5.16, we first need to verify the non-degeneracy requirements.

In the following proposition and two lemmas, we establish non-degeneracy.

Proposition 5.17 Let r1, r2, . . . , rk ∈ C be a set of distinct non-zero numbers, and

a1, a2, . . . , ak ∈ R satisfy
∑k

i=1 ai · rn
i = 0 for each 1 ≤ n ≤ k. Then ai = 0, for all

1 ≤ i ≤ k.

Proof: We have k equations and k unknowns. This system has a unique solution

(a1, a2, . . . , ak) iff the matrix

M =










r1 r2 · · · rn

r2
1 r2

2 · · · r2
n

...
...

. . .
...

rn
1 rn

2 · · · rn
n










has a non-zero determinant.

By elementary operations, det(M) = r1r2 · · · rn · det(M ′), where

M ′ =










1 1 · · · 1

r1 r2 · · · rn

...
...

. . .
...

rn−1
1 rn−1

2 · · · rn−1
n










.

Since all the ri’s are distinct, M ′ is a Vandermonde matrix with det(M ′) 6= 0.

Therefore, det(M) 6= 0 and the system has a unique solution. Since a1 = a2 = . . . =

ak = 0 satisfies the system, the proof is complete.
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Lemma 5.18 Consider the identity for fn(x) given in (*), where fn(x) = I(An, x).

Then αi(x) ≡ 1 for all i. In other words, no αi(x) is identically zero, and we have

fn(x) =

d+1∑

i=1

λi(x)n, for all x.

Proof: Fix x, and let g(λ) = λd+1 − λd − x. First, we find all values of x for

which g(λ) has a root r of multiplicity greater than 1. Clearly, such an r must satisfy

g(r) = g′(r) = 0. Since g′(λ) = (d + 1)λd − dλd−1, r must be 0 or d
d+1

, from which

g(r) = 0 implies that r = 0 or r = − dd

(d+1)d+1 , respectively. For now, let us assume

that x does not take either of these values, and we will consider these two exceptional

cases at the end.

Since x 6= 0 and x 6= − dd

(d+1)d+1 , g(λ) has d+1 distinct roots. The general solution

to fn(x) is given in (*). We know that

fn(x) =

d+1∑

i=1

αi(x)λi(x)n,

for some constants αi(x). We now prove that each αi(x) = 1. Since x is assumed to be

some fixed number, let us define αi(x) = ci and λi(x) = ri, for notational simplicity.

Let σk denote the kth elementary symmetric polynomial on {r1, r2, . . . , rd+1}. For

example, σ2 =
∑

1≤i<j≤d+1

rirj and σ3 =
∑

1≤i<j<k≤d+1

rirjrk.

A symmetric polynomial is any polynomial that is invariant under any permutation

of its variables. Each of the power sums Sn =
∑d+1

i=1 rn
i is symmetric, and hence, can

be expressed as a polynomial function of the σk’s (c.f. [8]). For example,

S1 = σ1

S2 = σ2
1 − 2σ2

S3 = σ3
1 − 3σ1σ2 + 3σ3

S4 = σ4
1 − 4σ2

1σ2 + 4σ1σ3 + 2σ2
2 − 4σ4

Since {r1, r2, . . . , rd+1} are the roots of the equation λd+1−λd−x = 0, the sequence

Sn =
∑d+1

i=1 rn
i must satisfy a recurrence relation, whose characteristic equation is

precisely λd+1 − λd − x = 0. This unique recurrence relation is Sn(x) = Sn−1(x) +

xSn−d−1(x), for all n ≥ d + 1. Observe that this recurrence relation has the exact

same form as the recurrence for f(x) = I(An, x).
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There is a well-known relationship between the roots of a given polynomial. Since

{r1, r2, . . . , rd+1} are the roots of λd+1 − λd − x = 0, we have σ1 = 1, σd+1 = (−1)dx,

and σi = 0 for all 2 ≤ i ≤ d. For each 1 ≤ i ≤ d, when Si is written as a polynomial

function of the σk’s, the first term is (σ1)
i, and every other term must be 0 since it

contains at least one factor from the set {σ2, σ3, . . . , σi}. Therefore, Si = (σ1)
i = 1

for each 1 ≤ i ≤ d. The function Sn =
∑d+1

i=1 rn
i satisfies S0 = d + 1 and Si = 1 for all

1 ≤ i ≤ d.

In our proof to Theorem 2.3, we proved that fn(x) = I(An, x) satisfies the re-

currence relation fn(x) = fn−1(x) + xfn−d−1(x), with initial values f0(x) = d + 1

and fi(x) = 1 for all 1 ≤ i ≤ d. Since Sn and fn(x) are defined by the exact same

recurrence relation of order d + 1, it follows that Sn = fn(x) since their initial d + 1

values are identical.

Therefore
∑d+1

i=1 rn
i = Sn = fn(x) =

∑d+1
i=1 cir

n
i for some constants c1, c2, . . . , cd+1.

We can rewrite this as
∑d+1

i=1 (ci − 1)rn
i = 0, and this identity holds for all n, but

specifically for 1 ≤ n ≤ d + 1. By Proposition 5.17, we must have αi(x) = ci = 1 for

each i.

To conclude the proof, we examine the exceptional cases x = 0 and x = − dd

(d+1)d+1 ,

and show that αi(x) = 1 for each of these cases too. For x = 0, the roots of g(λ) are

0 and 1, with the root r = 0 having multiplicity d. Since each fn(0) = I(An, 0) = 1,

we have

fn(0) =
d+1∑

i=1

λi(0)n = 1n + 0n + 0n + . . . + 0n = 1.

Finally, let us consider the case x = − dd

(d+1)d+1 . Let r1 = r2 = d
d+1

. Then in the

case of a double root, our function fn(x) must be of the form

fn(x) = (c1 + c2n)rn
1 +

d+1∑

i=3

cir
n
i .

This is a standard result (c.f. [8]). From the same analysis as before, fn(x) = Sn

for all n ≥ 1, from which we quickly conclude that c1 = 2, c2 = 0, and ci = 1 for all

3 ≤ i ≤ d + 1. Therefore,

fn(x) = 2rn
1 +

d+1∑

i=3

rn
i =

d+1∑

i=1

rn
i ,
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and the conclusion follows.

For all x, we have shown that fn(x) =

d+1∑

i=1

λi(x)n, where {λ1(x), . . . , λd+1(x)} are

the roots of λd+1 − λd − x = 0. Therefore, αi(x) ≡ 1 for all 1 ≤ i ≤ d + 1, and hence,

no αi(x) is identically zero.

Lemma 5.19 Consider the identity for fn(x) given in (*). There do not exist indices

i and j for which λi(x) ≡ ωλj(x) for some |ω| = 1.

Proof: Let x 6= 0 be a fixed real number, and let {λ1(x), λ2(x), . . . , λd+1(x)} be the

roots of the characteristic equation λd+1 − λd − x = 0. Suppose there exist i and j

so that λi(x) = ωλj(x) for some |ω| = 1. Then, λi(x) = a + bi for some a and b, and

|λi(x)| = |λj(x)| for some i 6= j.

We prove that λj(x) = a − bi. Earlier, we showed that g(λ) = λd+1 − λd − x can

only have a multiple root at r = 0 or r = d
d+1

. In other words, λi(x) = λj(x) implies

that (a, b) = (0, 0) or ( d
d+1

, 0).

Let λj(x) = p+qi. Then by our assumption, a2+b2 = p2+q2. Since λd+1−λd = x,

we have x = |x| = |λd(λ − 1)| = |λ|d · |λ − 1|. Therefore,

|λi(x)|d · |λi(x) − 1| = |λj(x)|d · |λj(x) − 1|
|λi(x) − 1| = |λj(x) − 1|

|(a − 1) + bi| = |(p − 1) + qi|
(a − 1)2 + b2 = (p − 1)2 + q2

(a2 + b2) − 2a + 1 = (p2 + q2) − 2p + 1

−2a + 1 = −2p + 1

p = a.

We have shown that p = a. Since a2 + b2 = p2 + q2, it follows that q = ±b. If

q = −b, then λj(x) = a − bi. If q = b, then λi(x) = λj(x), implying that b = q = 0.

Hence, λj(x) = a + bi = a − bi in this case as well.

Therefore, if |λi(x)| = |λj(x)|, then λi(x) and λj(x) must be complex conjugates,

with the exception of the cases when the roots are 0 or d
d+1

. We now prove that
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there does not exist ω with |ω| = 1 such that λi(x) ≡ ωλj(x), i.e., we show that this

identity cannot hold for all x.

Suppose on the contrary that such a ω does exist. Then for any constants c1 and

c2,
λi(c1)

λj(c1)
=

λi(c2)

λj(c2)
= ω.

Since this identity holds for all pairs of constants (c1, c2), let us assume that neither

c1 nor c2 equals 0 or − dd

(d+1)d+1 , and that c1 6= c2. Thus, λi(ct) and λj(ct) must be

distinct complex conjugates for t = 1, 2.

So if λi(c1) = a + bi and λi(c2) = c + di, then a+bi
a−bi

= c+di
c−di

, implying that ad = bc,

or λi(c2) = c
a
(a + bi) = kλi(c1) for the real constant k = c

a
. In other words, a + bi is

a root of λd+1 − λd = c1 and k(a + bi) is a root of λd+1 − λd = c2. Hence, we have

(a + bi)d((a + bi) − 1) = c1

kd(a + bi)d(k(a + bi) − 1) = c2.

Therefore, k(a+bi)−1
(a+bi)−1

= c2
c1kd . Comparing the complex parts of both sides, we have

b(1−k)
(a−1)2+b2

= 0, implying that b(1 − k) = 0. Thus, we must have b = 0 or k = 1. The

former implies that λi(c1) = λj(c1) = a, contradicting the fact that λi(c1) and λj(c1)

are distinct complex numbers that are pairwise conjugate. The latter implies that

c1 = c2, which contradicts the given assumption.

We conclude that no such ω exists, and we are done.

Now we prove our theorem on the closure of roots of I(An, x).

Theorem 5.20 Let d ≥ 1 be fixed, and set fn(x) = I(An, x) = I(Cn,{1,2,...,d}, x).

Then, the roots of fn(x) are real, and the closure of roots is

(

−∞,− dd

(d + 1)d+1

]

.

Proof: By Lemmas 5.18 and 5.19, the family {fn(x)} satisfies the non-degeneracy

requirements that enables us to apply Theorem 5.16.

Since each root of fn(x) = I(An, x) is real and negative by Corollary 5.4, the

closure of roots of {fn(x)} is some subset of (−∞, 0]. In particular, if z ∈ C is a limit

of roots of {fn(x)}, then z is a non-positive real number. We consider three separate

cases.
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Case 1: − dd

(d + 1)d+1
< z ≤ 0.

The characteristic equation of fn(z) = I(An, z) is g(λ) = λd+1 −λd −z = 0, which

has d + 1 roots, namely {λ1(z), λ2(z), . . . , λd+1(z)}.

By Theorem 5.7, the equation (v− 1)xv − vx0x
v−1 +1 = 0 has at least v− 1 roots

inside the unit circle |x| = 1 regardless of the value of x0. Let c be the unique positive

(real) constant satisfying 1
dcd+1 = −z.

Substituting v = d + 1, x = cλ and x0 = cd
d+1

into the above equation, we see that

the resulting equation λd+1 −λd + 1
dcd+1 = 0 must have at least d roots inside the disk

|cλ| = 1, or |λ| = 1
c
.

Since 1
dcd+1 = −z, we have

(
1
c

)d+1
= −zd < dd+1

(d+1)d+1 , implying that 1
c

< d
d+1

.

Therefore, λd+1 − λd − z = 0 has at least d roots on or inside the disk |λ| = 1
c

< d
d+1

.

We now show that there must exist a real root in ( d
d+1

, 1), i.e., there is exactly one

root outside of this disk.

We have g( d
d+1

) = − dd

(d+1)d+1 − z < 0 and g(1) = −z ≥ 0. By the Intermediate

Value Theorem, there is a real root in ( d
d+1

, 1]. Hence, if {λ1(z), λ2(z), . . . , λd+1(z)}
is the set of roots of g(λ) arranged in order of increasing magnitude, then |λd+1(z)| >

d
d+1

, while |λi(z)| ≤ d
d+1

for all 1 ≤ i ≤ d. By Theorem 5.16, z cannot be a limit of

roots since there is only one root of maximum modulus.

Case 2: z = − dd

(d + 1)d+1
.

We apply Theorem 5.7 as in the previous case, and let 1
dcd+1 = −z = dd

(d+1)d+1 .

Then c = d+1
d

, and so g(λ) = λd+1 − λd − z = 0 has at least d roots on or inside the

disk |λ| = 1
c

= d
d+1

. In other words, there is at most one root outside this disk. This

one root must be real, as complex roots occur as conjugate pairs.

However, g(λ) = 0 has a double root at λ = d
d+1

, and no other positive real roots.

It follows that g(λ) = 0 has all of its roots inside |λ| = d
d+1

, with the exception of the

two roots on the boundary. Therefore, the roots λd(z) = λd+1(z) = d
d+1

are the roots

of maximum modulus. By Theorem 5.16, z = − dd

(d+1)d+1 is a limit of roots of {fn(x)}.
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Case 3: z < − dd

(d + 1)d+1
.

If g(λ) = λd+1 − λd − z, then g′(λ) = 0 has solutions λ = 0 and λ = d
d+1

. So

these are the only two critical points of g(λ). Since g(0) = −z > 0 and g( d
d+1

) =

− dd

(d+1)d+1 − z > 0, the equation g(λ) = 0 has at most one real root c, depending on

the parity of d.

If d is odd, then g(λ) has no real roots and so all of its roots must occur as

conjugate pairs. Thus, if λi(z) = a + bi is a root of maximum modulus, then there

exists a root λj(z) = a− bi, so that two (or more) of the λi(z)’s are of equal modulus

and strictly greater than the others. By Theorem 5.16, z is a limit of roots.

If d is even, then g(λ) has a real root c < 0. We claim that c must be the root of

minimum modulus, and that the other d roots occur as conjugate pairs. To prove this,

suppose there exists a root r ∈ C such that |r| < |c| = −c. Then g(r) = g(c) = 0,

implying that rd(r − 1) = cd(c− 1), or |r|d(|r − 1|) = |c|d(|c− 1|) = cd(1− c). Hence,

1−c
|r−1| =

(
|r|
−c

)d

< 1d = 1. It follows that 1 − c < |r − 1| ≤ |r| + 1, by the Triangle

Inequality. This simplifies to |r| ≥ −c, which establishes our desired contradiction.

Therefore, all complex roots λi(z) must satisfy |λi(z)| ≥ −c, proving that the root of

largest modulus cannot be real. Hence, the maximum roots are complex and appear

as conjugate pairs, establishing the desired conclusion that z is a limit of roots.

We conclude that z ∈ C is a limit of roots iff z is a real number satisfying z ≤
− dd

(d+1)d+1 . This completes the proof.

We have shown that the closure of roots of fn(x) = I(An, x) is (−∞,− dd

(d+1)d+1 ].

We proved this by considering limit points, and showing that z is a limit point iff z

lies in the aforementioned interval. Thus, we conclude that |rmin| ≥ dd

(d+1)d+1 .

In Theorem 2.3, we proved that

I(An, x) = I(Cn,{1,2,...,d}, x) =

⌊ n
d+1

⌋
∑

k=0

n

n − dk

(
n − dk

k

)

xk.

We have proven that this independence polynomial I(Cn,{1,2,...,d}, x) has all nega-

tive real roots, and that the root rmin of minimum modulus satisfies |rmin| ≥ dd

(d+1)d+1 .
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Furthermore, our analysis proves that this lower bound is optimal.

5.3 The Root of Maximum Modulus of I(Cn,S, x)

Having determined the optimal bound for the root rmin of minimum modulus of

I(Cn,S, x), we now turn our attention to the root rmax of maximum modulus. We

derive an optimal bound on |rmax| when G is a circulant. In [25], it is shown that for

any graph G, the root rmax of I(G, x) satisfies

|rmax| ≤
(

n

α(G) − 1

)α(G)−1

+ O(nα(G)−2).

In other words, |rmax| is at most O(nα(G)−1), and in [25], Brown and Nowakowski

construct graphs for which this upper bound is attained. We now answer the equiv-

alent problem where G is restricted to circulants. We prove that |rmax| is bounded

above by Θ(nα(G)−2), i.e., the exponent reduces by 1. Furthermore, we prove the ex-

istence of infinitely many circulants achieving this upper bound. To prove our result,

we introduce the Enestrom-Kakeya Theorem.

Theorem 5.21 ([22, 25]) Let f(x) = i0 + i1x + . . . + ikx
k be a polynomial with

positive real coefficients. Then the roots of f(x) lie in the annulus

min

{
it−1

it
, t = 1, . . . , k

}

≤ |z| ≤ max

{
it−1

it
, t = 1, . . . , k

}

.

Using Theorem 5.21, we prove our bound for |rmax|. Before we prove our bound,

we require several results. Our first result is a theorem of Newton, which produces

an important corollary.

Theorem 5.22 ([49]) Let P (x) =
∑

akx
k be a polynomial with each ak > 0. If the

roots of P (x) are all (negative) real numbers, then P (x) is log-concave. In other

words,
a0

a1

≤ a1

a2

≤ a2

a3

≤ . . . ≤ an−1

an

.

The following corollary is an immediate consequence of Corollary 5.4.

Corollary 5.23 For a fixed d ≥ 1, define An = Cn,{1,2,...,d}, for each n. Then I(An, x)

is log-concave.
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We present another key result. While this lemma appears contrived, this is a key

inequality that will enable us to prove our desired bound for |rmax|.

Lemma 5.24 For any pair of integers (n, k) with n ≡ 0 (mod k) and n > k ≥ 2,

define ik = n
k
, ik−1 = n

n
k
+k−1

(n
k
+k−1

k−1

)
= n

k−1

(n
k
+k−2

k−2

)
, and ik−2 = n

2n
k

+k−2

( 2n
k

+k−2

k−2

)
.

Then, i2k−1 > 4ikik−2.

Proof: Let d = n
k

and f(d, k) =
i2
k−1

ikik−2
. Then the inequality i2k−1 > 4ikik−2 is

equivalent to f(d, k) > 4, where f(d, k) simplifies to

f(d, k) =

(
2d

d

)

· k

k − 1
· ((d + k − 2)!)2

(k − 1)!(2d + k − 3)!
.

We have f(d+1,k)
f(d,k)

= 2(2d+1)(d+k−1)2

(d+1)(2d+k−1)(2d+k−2)
. Then the condition f(d + 1, k) > f(d, k)

is equivalent to d2(4k−4)+d(3k2−5k+4)+(k2−k) > 0, which is true since d, k ≥ 1.

Therefore, f(d + 1, k) > f(d, k). Also, f(2, k) = 6k2

k2−1
> 4 for all k ≥ 2. Therefore,

f(d, k) > 4 for all d, k ≥ 2.

We are now ready to prove our bound on rmax.

Theorem 5.25 Let G = Cn,S be a circulant graph with k = α(G). Consider the roots

of I(Cn,S, x). Then the root rmax of maximum modulus satisfies

|rmax| <
k

(k − 1)!
nk−2.

Furthermore, the optimal upper bound must be some Θ(nk−2) function, as there are in-

finitely many independence polynomials I(Cn,{1,2,...,d}, x) satisfying |rmax| = Θ(nk−2).

Proof: Let I(G, x) = 1 + nx + i2x
2 + . . . + ik−1x

k−1 + ikx
k, where k = α(G) =

α(Cn,S). Consider the ratio ik−1

ik
. By definition, ik−1 ≤

(
n

k−1

)
. Now consider ik.

Since ik > 0, there exists at least one independent set I with k vertices. We prove

that in a circulant, ik ≥ 1 implies that ik ≥ n
k
. Letting D = (d1, d2, . . . , dk) be

the difference sequence corresponding to I, we can form n independent sets with a

difference sequence of D. Specifically, each set will be of the form

Vj = {j, j + d1, j + d1 + d2, . . . , j + d1 + d2 + . . . + dk−1},



238

where 0 ≤ j ≤ n − 1, and the indices are reduced mod n, and arranged in increasing

order.

Note that each Vj is an independent set of cardinality k in Cn,S. However, it is

possible that some of the k-sets overlap, i.e., Vj ≡ Vj′ for some j 6= j ′. For any given

Vj, we can have at most k overlaps, one for each cyclic permutation of Vj. Therefore,

ik ≥ n
k
. Equality occurs iff n ≡ 0 (mod k), and D =

(
n
k
, n

k
, . . . , n

k

)
. We have

ik−1

ik
≤
(

n
k−1

)

n
k

<
k

n

(
n

k − 1

)

<
k

(k − 1)!
nk−2.

Let 1 ≤ t ≤ k − 1. Since n ≥ k ≥ t, the exact same analysis shows that
it−1

it
≤ ( n

t−1)
n
t

< t
(t−1)!

nt−2.

To justify why t
(t−1)!

nt−2 < k
(k−1)!

nk−2 for t < k, note that this inequality is

equivalent to nk−t > (k−1)!
(t−1)!

· t
k

= t
k
· (k − 1)(k − 2) · · · (k − (k − t)). This latter

inequality is true, since t < k and the right side has k− t factors, all of which are less

than k ≤ n. Therefore, by Theorem 5.21, we have

|rmax| ≤ max

{
it−1

it
, t = 1, . . . , k

}

<
k

(k − 1)!
nk−2.

To conclude our proof, we now prove the existence of infinitely many circulants

for which |rmax| = Θ(nk−2) = Θ(nα(G)−2), for each possible value of α(G). This

establishes that the optimal upper bound is a polynomial function of order nα(G)−2.

If α(G) = 1, then G = Kn, and so I(Kn, x) = 1 + nx, which implies that |rmax| =

1
n

= O(n−1).

Consider the case α(G) ≥ 2. For each (n, k) with α(G) = k and k|n (with n ≥ 2k),

define Hn,k = Cn,{1,2,..., n
k
−1}. By Theorem 2.3, α(Gk) =

⌊
n
n
k

⌋

= k, and

I(Hn,k, x) =

k∑

i=0

n

n − i
(

n
k
− 1
)

(
n − i

(
n
k
− 1
)

i

)

xi.

By Corollary 5.4, the roots of I(Hn,k, x) are all real. Letting it = [xt]I(Hn,k, x),

we have ik = n
k
, ik−1 = n

n
k
+k−1

(n
k
+k−1

k−1

)
= n

k−1

(n
k
+k−2

k−2

)
, and ik−2 = n

2n
k

+k−2

( 2n
k

+k−2

k−2

)
.

This enables us to apply Lemma 5.24.
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We now prove that for this polynomial,

− k

k − 1

(n
k

+ k − 2

k − 2

)

≤ rmax ≤ − k

2(k − 1)

(n
k

+ k − 2

k − 2

)

,

which will imply that |rmax| is Θ(nk−2) since

k

(k − 1)

(
n
k

+ k − 2

k − 2

)

=
1

(k − 1)!kk−3
nk−2 + O(nk−3)

k

2(k − 1)

(
n
k

+ k − 2

k − 2

)

=
1

2(k − 1)!kk−3
nk−2 + O(nk−3)

For each 0 ≤ l ≤ k
2
, let gl(x) = ik−2lx

k−2l + ik−2l−1x
k−2l−1. Then, I(G, x) =

∑

l≥0 gl(x). By Corollary 5.23, I(G, x) is log-concave. Therefore,

ik−2l−1

ik−2l

≤ ik−2l

ik−2l+1

≤ . . . ≤ ik−3

ik−2

≤ ik−2

ik−1

.

Specifically, ik−2l−1

ik−2l
≤ ik−2

ik−1
. By Lemma 5.24, ik−2

ik−1
< ik−1

ik
. It follows that ik−2l−1 <

ik−2l · ik−1

ik
, which is equivalent to ik−2lr + ik−2l−1 < 0, where r = − ik−1

ik
.

For this r, we have g0(r) = 0, and for l ≥ 1, gl(r) = rk−2l−1(ik−2lr+ ik−2l−1), which

has the same sign as (−1)k−2l−1 · (−1) = (−1)k. Therefore, sign(I(Hn,k, r)) = (−1)k.

The same argument shows that sign(I(Hn,k, x)) = (−1)k, for all x < r = − ik−1

ik
.

Now we prove that for r′ = r
2
, sign(I(Hn,k, r

′)) = (−1)k−1. This enables us to

apply the Intermediate Value Theorem, and conclude the existence of a root in (r, r ′).

For each 1 ≤ l < k
2
, let hl(x) = ik−2l−1x

k−2l−1 + ik−2l−2x
k−2l−2. Then,

I(Hn,k, x) = ikx
k + ik−1x

k−1 + ik−2x
k−2 +

∑

l≥1

hl(x).

Let r′ = r
2

= − ik−1

2ik
. By Lemma 5.24,

ikr
′ + ik−1 +

ik−2

r′
= −ik−1

2
+ ik−1 −

2ikik−2

ik−1

=
i2k−1 − 4ikik−2

2ik−1

> 0.

Therefore, ik(r
′)k + ik−1(r

′)k−1 + ik−2(r
′)k−2 = (r′)k−1(ikr

′ + ik−1 + ik−2

r′
) has the

same sign as (−1)k−1. Now we prove that sign(hl(r
′)) = (−1)k−1 for each l ≥ 1.

Since hl(r
′) = (r′)k−2l−1(ik−2l−1+

ik−2l−2

r′
), it suffices to prove that ik−2l−1+

ik−2l−2

r′
>

0. By Corollary 5.23, ik−2l−2

ik−2l−1
≤ ik−2

ik−1
, which implies that ik−2l−2

ik−2l−1
+ r′ ≤ ik−2

ik−1
+ r′ =
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ik−2

ik−1
− ik−1

2ik
< 0, by Lemma 5.24. It follows that

ik−2l−2

ik−2l−1
+ r′ < 0, implying that

ik−2l−1 +
ik−2l−2

r′
> 0, as required. Thus, sign(I(Hn,k, r

′)) = (−1)k−1.

Therefore, we have proven that sign(I(Hn,k, r)) · sign(I(Hn,k, r
′)) = −1, where

r = − ik−1

ik
and r′ = r

2
= − ik−1

2ik
. By the Intermediate Value Theorem, there must exist

a root r∗ in the interval (r, r′). Furthermore, I(Hn,k, x) has the same sign as (−1)k

for all x < − ik−1

ik
, and so it follows that this root r∗ is the root of maximum modulus.

Therefore, the root rmax of I(Hn,k, x) satisfies

|rmax| ≥
ik−1

2ik
=

k

2(k − 1)

(n
k

+ k − 2

k − 2

)

=
1

2(k − 1)! · kk−3
nk−2 + O(nk−3).

We have proven that for any fixed k ≥ 1, the largest root of I(Hn,k, x) has a

modulus of order Θ(nk−2), for all n ≡ 0 (mod k). We have thus established the

desired optimal bound.

Therefore, we have proven that among all circulant graphs with α(G) = k, the

root rmax of maximum modulus satisfies

1

2(k − 1)! · kk−3
nk−2 < |rmax| <

k

k − 1
nk−2.

It would be interesting to find the optimal constant c (as a function of k) for

which |rmax| ≤ cnk−2 + O(nk−3) for all independence polynomials I(Cn,S, x) with

α(Cn,S) = k. We leave this as an open problem.

5.4 The Rational Roots of I(Cn,S, x)

For certain circulant graphs, the roots of I(Cn,S, x) can take rational values. An

example of this is I(C6, x), since the independence polynomial I(C6, x) = 1 + 6x +

9x2 + 2x3 = (1 + 2x)(1 + 4x + x2) has the root r = −1
2
.

Let us begin our analysis by considering the simplest case I(Cn, x). We determine

all values of n for which I(Cn, x) has a rational root r. Let g0 = 2, g1 = 1, g2 = 1+2x,

and gn = I(Cn, x) for all n ≥ 3. So each gn is a polynomial in x. By Corollary 2.4,

gn =

⌊n
2
⌋

∑

k=0

n

n − k

(
n − k

k

)

xk,
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for all n ≥ 2.

We obtain a simple recurrence relation for gn, and use this to derive properties of

the roots of gn = I(Cn, x).

Lemma 5.26 Let 0 ≤ a ≤ ⌊n
2
⌋. Then,

gn = gagn−a + (−1)a+1xagn−2a.

Proof: We proceed by strong induction on n. By inspection, the lemma is verified

for n ≤ 2, so assume n ≥ 3. By the induction hypothesis and two applications of

Lemma 2.2, we have

gn = gn−1 + xgn−2

= [ga−1gn−a + (−1)axa−1gn−2a+1] + x[ga−2gn−a + (−1)a−1xa−2gn−2a+2]

= gn−a[ga−1 + xga−2] + (−1)axa−1[gn−2a+1 − gn−2a+2]

= gn−aga + (−1)axa−1(−xgn−2a)

= gagn−a + (−1)a+1xagn−2a.

This completes the induction, and we are done.

Corollary 5.27 Let I(Cn, x) be the independence polynomial of Cn. Then,

(a) r = −1
2

is a root of I(Cn, x) iff n ≡ 2 (mod 4).

(b) r = −1
3

is a root of I(Cn, x) iff n ≡ 3 (mod 6).

Proof: From Lemma 5.26, gn = g2gn−2−x2gn−4 = (1+2x)gn−2−x2gn−4. Therefore,

r = −1
2

is a root of gn iff it is also a root of gn−4. Since r = −1
2

is a root of g2 = 1+2x,

but not g1, g3, or g4, the result follows. Similarly, r = −1
3

is a root of gn iff it is also

a root of gn−6. One can quickly verify that r = − 1
3

is a root of g3 = 1 + 3x, but not

a root of g1, g2, g4, g5, or g6. This completes the proof.

Lemma 5.26 also yields the following result.

Proposition 5.28 Let (m, n) be an ordered pair of positive integers. If m
n

is an odd

number, then gn divides gm.
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Proof: Let m
n

= p. We proceed by induction on p, and prove that the result holds

for all pairs of positive integers (m, n) satisfying m = pn, where p is odd.

The claim is trivial for p = 1. Suppose the result is true for p = 2k − 1, where

k ≥ 1. Then for p = 2k +1, Lemma 5.26 gives us g2kn+n = gng2kn +(−1)n+1xng2kn−n.

By the induction hypothesis, gn divides g2kn−n, and so

gm = gpn = g2kn+n ≡ 0 (mod gn).

This completes the induction, and so we conclude that gn divides gm whenever m
n

is odd.

By the Rational Root Theorem, any rational root of I(G, x) must be of the form

r = −1
d
, where d is a divisor of n. For the specific case G = Cn, we now prove that

the only possible rational roots of I(G, x) are r = − 1
2

and r = −1
3
.

Theorem 5.29 Let n ≥ 2. Then r is a rational root of I(Cn, x) iff r = −1
2

or

r = −1
3
.

Proof: From Theorem 5.2, rn,k = − 1

4[cos( (2k−1)π
2n )]

2 is a root of I(Cn, x) for each 1 ≤
k ≤ ⌊n

2
⌋. Moreover, this is the set of roots of I(Cn, x). Suppose rn,k = −1

d
, for some

integers d, n, and k. Then by Theorem 5.2, un,k = ±
√

d
2

, where un,k = cos( (2k−1)π
2n

).

If d = 4, then |un,k| = 1, which can only occur if 2n divides 2k − 1. Clearly this

is impossible. If d > 4, then |un,k| > 1, which is also a contradiction. If d = 1,

then |un,k| = 1
2
, which can only occur if (2k−1)

2n
= 2π ± π

3
. But (2k−1)

2n
has an odd

numerator, while the denominator is even. Thus, when this fraction is reduced to

lowest terms, the denominator must remain even. Specifically, this fraction cannot

have a denominator of 3, and so this case also leads to a contradiction.

Therefore, we require d = 2 or d = 3. Now the conclusion follows immediately

from Corollary 5.27.

From Corollary 5.27 and Theorem 5.29, we have determined our necessary and

sufficient condition for I(Cn, x) to have a rational root.

Corollary 5.30 The polynomial I(Cn, x) has a rational root iff n is congruent to 2,

3, 6, 9, or 10 (mod 12).
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Proof: By Corollary 5.27, I(Cn, x) has a rational root iff n ≡ 2 (mod 4) or n ≡ 3

(mod 6). Considering each equivalence class of Z12 separately, we obtain the desired

conclusion.

We now examine the possible rational roots of I(Cn,S, x), when S is an arbitrary

subset of {1, 2, . . . , ⌊n
2
⌋}. The problem of determining rational roots of independence

polynomials is investigated in [119], where it is shown that for any rational number

r = −1
d
, there exists a well-covered tree T so that r is a root of I(T, x). Let us

investigate the equivalent problem for circulants.

By the Rational Root Theorem, every rational root of I(G, x) must be of the form

r = −1
d
, for some integer d ≥ 1. If G is not required to be connected, then there

are infinitely many circulants for which r = − 1
d

is a root of its independence polyno-

mial. This is easily seen by taking the disjoint union of k isomorphic copies of Kd,

which corresponds to the circulant Cdk,{k,2k,...,⌊ dk
2
⌋} and has independence polynomial

I(G, x) = (1 + dx)k.

So we will phrase the problem as follows: for which integers d ≥ 1 is r = − 1
d

a root of infinitely many connected circulant graphs G? While this is a tantalizing

problem, we will only make partial progress in answering this question. Nevertheless,

we include our results in this section, and conclude by providing various conjectures

and ideas for further research. For notational convenience, we introduce the following

definition.

Definition 5.31 A rational number r is CC-infinite if there exist infinitely many

connected circulant graphs G = Cn,S for which I(Cn,S, r) = 0.

For example, Corollary 5.27 shows that r = − 1
2

and r = −1
3

are CC-infinite, since

every cycle is a connected circulant. To prove our partial result, we first require the

following lemma.

Lemma 5.32 If p is a positive integer such that r = − 1
p

is CC-infinite, then r = − 1
mp

is CC-infinite for all m ≥ 1.
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Proof: Fix m ≥ 1. Suppose that there exist graphs G1, G2, G3, . . . for which

I(Gi,−1
p
) = 0 for all i ≥ 1. Now define Hi = Gi[Km] for each i. By Theorem 2.31,

each Hi is a connected circulant. Then I(Hi, x) = I(Gi[Km], x) = I(Gi, I(Km, x) −
1) = I(Gi, mx), by Theorem 2.33. Therefore, I(Hi,− 1

mp
) = I(Gi,−1

p
) = 0, for all

i ≥ 1. We conclude that r = − 1
mp

is CC-infinite, for all m ≥ 1.

We state the following simple result.

Proposition 5.33 If gcd(d, 6) > 1, then r = − 1
d

is CC-infinite.

Proof: By Corollary 5.27, r = − 1
2

and r = −1
3

appear as roots of infinitely many

circulants. By Lemma 5.32, the same is true for all rational numbers of the form

r = − 1
2m

or r = − 1
3m

, for any m ≥ 1. The conclusion follows.

We conjecture that r = −1
p

is CC-infinite for every prime p. This will imply that

r = −1
d

is CC-infinite for all d ≥ 2. While we believe that each r = − 1
p

is CC-infinite,

we have only been able to find several instances where r = − 1
p

is a root of some

I(Cn,S, x) for primes p ≥ 5. Of course, the difficulty lies in not knowing a formula for

I(Cn,S, x), except for a handful of families.

Let us consider one of these known families. Set (n, d) = (p3, (p2−1)(p−1)
3

), where

G = An = Cn,{1,2,...,d}. By Theorem 2.3,

I(G, x) =

⌊ n
d+1

⌋
∑

k=0

n

n − dk

(
n − dk

k

)

xk

= 1 + nx +
n(n − 2d − 1)

2
x2 +

n(n − 3d − 1)(n − 3d − 2)

6
x3

= 1 + p3x +
p3(p3 + 2p2 + 2p − 5)

6
x2 +

p3(p2 + p − 2)(p2 + p − 3)

6
x3

= (1 + px)

(

1 + (p3 − p)x +
p2(p2 + p − 2)(p2 + p − 3)

6
x2

)

.

Therefore, r = −1
p

is a root of this circulant on p3 vertices. Naturally we may

conjecture that for some d ≥ 1, r = − 1
p

is also a root of I(An, x) = I(Cn,{1,2,...,d}, x)

for n = p4. However, a Maple analysis shows that this is not the case. The same

appears to be true for any n = pd, with d ≥ 4. Thus, if I(Cp4,S,−1
p
) = 0, then S
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cannot be of the form {1, 2, . . . , d}. In order to find such a set S, we will need to

develop new formulas for I(Cn,S, x) for other families of generating sets.

Let p be a prime. If x = −1
p

is a root of I(Cn,S, x), then what are all possible

values of n, expressed as a function of p? By answering this question, we can simplify

the task of determining circulants Cn,S for which x = −1
p

is a root of its independence

polynomial. While the general problem is extremely difficult, we now give a complete

answer to this problem for the case α(G) ≤ 2.

Proposition 5.34 Let G = Cn,S be a connected circulant with α(G) ≤ 2. Let p ≥ 3

be prime. If r = −1
p

is a root of I(G, x), then n equals p, p2, or 2p2.

Proof: Let G be a circulant with I(G,− 1
p
) = 0. Trivially, if α(G) = 1, then G = Kp.

So assume α(G) = 2.

Let Cn,S be k-regular. Then I(G, x) = 1 + nx + mx2, where m =
(

n
2

)
− nk

2
is

the number of non-edges in G. If r = −1
p

is a root of I(G, x), then we require that

I(G, x) = (1+px)(1+(n−p)x), implying that m = p(n−p). From p(n−p) =
(

n
2

)
− nk

2
,

we simplify and find that k = n − 1 − 2p + 2p2

n
.

Since p is prime, n must be one of: 1, 2, p, 2p, p2, or 2p2. We can trivially reject

the first two cases, and note that the n = p case corresponds to G = Kp above (i.e.,

α(G) = 1). Thus, we have three cases to consider.

If n = 2p, then k = n − 1 − 2p + p = p − 1, and I(G, x) = 1 + 2px + p2x2 =

(1 + px)2. We require our S to be chosen so that C2p,S has degree p− 1, and satisfies

α(C2p,S) = 2. Using the Pigeonhole Principle, a detailed case analysis shows that S

must be {2, 4, . . . , p− 1}, i.e., G is the disjoint union of two Kp’s. Since G is required

to be connected, we may disregard this case.

If n = p2, then k = n−1−2p+2 = (p−1)2, and so I(G, x) = 1+p2x+p(p2−p)x2 =

(1 + px)(1 + (p2 − p)x). There exist graphs G satisfying the required conditions,

depending on the value of p. For example, if G is of the form An = Cn,{1,2,...,d}, then

(n, d) = (p2, (p−1)2

2
) satisfies I(G, x) = (1 + px)(1 + (p2 − p)x).

If n = 2p2, then k = n−1−2p+1 = 2p2−2p, and so I(G, x) = 1+2p2x+p(2p2−
p)x2 = (1+px)(1+(2p2−p)x). There exist graphs G satisfying the required conditions,
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depending on the value of p. For example, if G is of the form An = Cn,{1,2,...,d}, then

(n, d) = (2p2, p2 − p) satisfies I(G, x) = (1 + px)(1 + (2p2 − p)x).

Therefore, if I(Cn,S,−1
p
) = 0, then n must equal p, p2, or 2p2.

If α(Cn,S) = 2, then clearly I(Cn,S, x) has either none or both of its roots being

rational. However, this is usually not the case when α(Cn,S) ≥ 3, as often only one

root is rational. A fascinating question is to classify the circulants Cn,S for which its

independence polynomial has all rational roots.

The proof of Proposition 5.34 describes infinitely many circulants satisfying this

property for α(Cn,S) = 2. For α(Cn,S) ≥ 3, we have found two such circulants using

Maple. Both circulants have independence number 3.

I(C1681,{1,2,...,464}, x) = (1 − 41x)(1 − 492x)(1 − 1148x).

I(C6859,{1,2,...,2160}, x) = (1 − 19x)(1 − 1653x)(1 − 5187x).

Note that in our above examples for α(Cn,S) = 3, n is either a perfect square

(1681 = 412) or a perfect cube (6859 = 193). If I(Cn,S, x) is a degree 3 polynomial

with all rational roots, must n be a perfect square or a perfect cube? Of course, we

can further the analysis for α(Cn,S) = 4 and beyond. Here is the broad formulation

of our general question.

Problem 5.35 Determine all necessary and sufficient conditions on n and S such

that every root of I(Cn,S, x) is rational.

When examining the roots of graph polynomials, it is often interesting to verify

whether r = −1 can be a root. For example, we defined the Alon-Tarsi polyno-

mial AT (
−→
G, x) in Chapter 4. By Corollary 4.16, the number of even Eulerian sub-

graphs differs from the number of odd Eulerian subgraphs iff r = −1 is not a root

of AT (
−→
G, x). For independence polynomials, I(G,−1) = 0 iff the number of inde-

pendent sets with odd cardinality equals the number of independent sets with even

cardinality.
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We do not know whether r = −1 is a root of infinitely many circulants I(G, x); in

fact, we could not even find one circulant for which I(Cn,S,−1) = 0, despite extensive

computations on Maple. This leads us to conjecture the following theorem.

Conjecture 5.36 There does not exist a circulant G = Cn,S for which I(G,−1) = 0.

Definition 5.37 The Euler characteristic of a simplicial complex ∆ is the alter-

nating sum

EC(∆) = f1 − f2 + f3 − . . . ,

where fk represents the number of faces of dimension k in ∆.

In Chapter 4, we introduced the f-vector of the independence complex ∆(G). By

definition, I(G, x) =
∑

k≥0 fkx
k, and so the Euler characteristic of G is simply the

value of 1 − I(G,−1), since f0 = 1. Therefore, we restate the conjecture as follows.

Conjecture 5.38 There does not exist a circulant G = Cn,S for which the Euler

characteristic of its independence complex is 1.

If G is an arbitrary graph, then there are infinitely many instances where r = −1 is

a root of I(G, x), i.e., EC(∆(G)) = 1. For example, consider the complement of any

tree T of order n. Then I(T , x) = 1+nx+(n−1)x2 = (1+x)(1+(n−1)x). However,

when the graphs are restricted to being circulants, it appears that I(G,−1) 6= 0.

If Conjecture 5.36 holds, then this implies that for every circulant graph G, the

total number of independent sets with odd cardinality differs from the total number

of independent sets with even cardinality. That would be a surprising result.

5.5 The Roots of Independence Polynomials and their Closures

Earlier in this chapter, we investigated the closure of the roots of a family of polyno-

mials. By applying Theorem 5.16, we proved that the closure of roots of I(An, x) is

(−∞,− dd

(d+1)d+1 ]. To do this, we considered the set of limit points, and showed that

the roots are fully dense in this interval. Let us explore the concept of closure further

in this section.
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We first prove that the closure of roots of I(Cn,S, x) is the entire complex plane

C, even when G is restricted to one family of circulants. In other words, given any

z ∈ C and ε > 0, there is a circulant graph Cn,S such that |r − z| < ε, where r is a

root of I(Cn,S, x).

In Corollary 2.32, we showed that Cn[Km] is a circulant for all ordered pairs (n, m).

We now determine an explicit formula for these roots.

Lemma 5.39 There are m⌊n
2
⌋ roots of I(Cn[Km], x), where each root z satisfies the

equation (z + 1)m = 1 + rn,k, for some root rn,k of I(Cn, x), where 1 ≤ k ≤ ⌊n
2
⌋.

Proof: By Theorem 5.2, the roots of I(Cn, x) are rn,k = − 1
4u2

n,k

, where un,k =

cos( (2k−1)π
2n

) for 1 ≤ k ≤ ⌊n
2
⌋. Since I(Km, x) − 1 = (1 + x)m − 1, Theorem 2.33

implies that the roots of I(Cn[Km], x) = I(Cn, I(Km, x) − 1) are the m⌊n
2
⌋ values of

z for which z = m
√

1 + rn,k − 1. This completes the proof.

The roots of I(G, x) are known to be dense in C. Brown and Hickman [23] proved

this by showing that the independence roots are dense in C when G is restricted to the

family of well-covered graphs, or when G is restricted to the family of comparability

graphs. In the following theorem, we go even further and show that the closure of

independence roots is C, even when G is restricted to this one specific family of

circulant graphs.

Theorem 5.40 The closure of roots of I(Cn[Km], x) is the entire complex plane C.

Proof: Our analysis follows the same lines as a proof given in [23]. We select any

z ∈ C, and show that for any ε > 0, there exists a root r of some I(Cn[Km], x) such

that |z − r| < ε.

We may assume that z 6= −1, so |z +1| > 0. Select an odd integer m large enough

so that some mth root of −|z+1|m lies within an ε
2
-ball of z+1. In other words, select

m (and the corresponding k) such that |w − (z + 1)| < ε
2
, where w = |z + 1|e (2k−1)πi

m .

Since (z + 1)m is continuous and the roots of I(Cn, x) are dense in the interval

(−∞,−1
4
], there must exist a positive integer n and a constant 0 ≤ δ < ε

2
such that

r′ = (−|z +1|+ δ)m−1, for some root r′ of I(Cn, x). Let w′ be the corresponding mth
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root of r′ + 1, i.e., w′ = (|z + 1| − δ)e
(2k−1)πi

m . Then, w′ − 1 is a root of I(Cn[Km], x),

from Lemma 5.39.

Then |(w′−1)−z| ≤ |w′−w|+ |w− (z +1)| < |δe (2k−1)πi

m |+ ε
2

= δ + ε
2

< ε. Letting

r = w′ − 1, we have proven that |z − r| < ε.

In [23], Brown and Hickman examine the roots of I(L(G), x), where L(G) is

the line graph of G. They prove that the roots of I(L(G), x) are dense in at least

(−∞,−1
4
], and it is left as an open problem to determine if the closure of these roots

is the entire negative real axis. In this section, we resolve the question by showing

that this is indeed the case. Our proof will involve an analysis of I(L(G), x), where

G is the family of complete bipartite graphs Ka,b.

There is a natural connection between I(L(G), x) and the matching polynomial

M(G, x), which was defined in Chapter 1. By Proposition 1.9, M(G, x) = xn ·
I(L(G),− 1

x2 ), and so r is a root of M(G, x) iff − 1
r2 is a root of I(L(G), x). It is known

[96] that each root of M(G, x) must be a positive real number, hence each root of

I(L(G), x) must be a negative real number. Based on our proof that I(L(G), x) has

its roots being dense in (−∞, 0], it will immediately follow that the closure of roots

of M(G, x) is the entire positive real axis. This answers another open problem posed

in [23]. Also in this section, we study the roots of rook polynomials, and show that

the closure of its roots is (−∞, 0]. This generalizes some theorems given in [145].

We now prove that the closure of roots of I(L(Kn,n), x) is (−∞, 0], which imme-

diately implies that the closure of roots of I(L(G), x) is also (−∞, 0]. First, we quote

a result that relates I(L(Kn,n), x) to Legendre polynomials.

Definition 5.41 For each integer k ≥ 1, the kth Legendre polynomial is

Pk(x) =

k∑

j=0

(−1)j

(
k

j

)
xj

j!
.

Lemma 5.42 ([22]) I(L(Kn,n), x) = n!xnPn(− 1
x
), for all n ≥ 1.

By Lemma 5.42, r is a root of I(L(Kn,n), x) iff −1
r

is a root of Pn(x). This

motivates us to look at the roots of Pn(x). If we can prove that the roots of Pn(x)
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are dense in [0,∞), then this will immediately imply that the roots of I(L(Kn,n), x)

are dense in (−∞, 0]. Note that I(L(Kn,n), x) =
n∑

k=0

k!

(
n

k

)2

xk, by Theorem 4.4.

Like the Chebyshev polynomials earlier in this chapter, the Legendre polynomials

(Pn(x))n≥0 are orthogonal. Much is known about the roots of orthogonal polynomials.

Here we quote two results by Chihara that establishes our closure result.

Theorem 5.43 ([39]) Consider a sequence of monic polynomials (Pn(x))n≥0 defined

by a recurrence relation of the form

Pn(x) = (x − cn)Pn−1(x) − λnPn−2(x),

where P−1(x) = 0 and P0(x) = 1. Then (Pn(x))n≥0 is an orthogonal sequence iff each

cn is real and λn+1 > 0 for all n ≥ 1.

Theorem 5.44 ([39]) In an orthogonal sequence (Pn(x))n≥0 with

Pn(x) = (x − cn)Pn−1(x) − λnPn−2(x),

suppose that

cn = an + b (where a > 0)

and

λn = dn2 + fn + g > 0 for all n > 1.

Let X be the union of roots of (Pn(x))n≥0. If 4d = a2, then X is dense in [σ,∞),

where

σ = b −
√

d − f√
d
.

As discussed earlier, (Pn(x))n≥0 is orthogonal, after we normalize each polynomial

so that it is monic. Thus, we know that there exist functions cn and λn satisfying

the conditions of the recurrence relation. The following lemma establishes these two

functions.

Lemma 5.45 For each n ≥ 0, define Qn(x) = (−1)nn!Pn(x), which makes each

Qn(x) monic. Then, {Qn(x)} satisfies the recurrence relation

Qn(x) = (x − cn)Qn−1(x) − λnQn−2(x),

where cn = 2n − 1 and λn = (n − 1)2.



251

Proof: By the definition of Pn(x), we have

Qn(x) =
n∑

j=0

(−1)n+j

(
n

j

)2

(n − j)!xj .

Now we compare the xk coefficients in our desired identity, and show that for all

k ≥ 0, both sides are equal. This will prove that

Qn(x) = (x − 2n + 1)Qn−1(x) − (n − 1)2Qn−2(x).

Since [xk]Qn(x) = (−1)n+k
(

n
k

)2
(n − k)!, we have

[xk]Qn(x)

= (−1)n+k

(
n

k

)2

(n − k)!

= (−1)n+k n2

k2

(
n − 1

k − 1

)2

(n − k)!

= (−1)n+k

(
n − 1

k − 1

)2

(n − k)!

[

1 +
n2 − k2

k2

]

= (−1)n+k

(
n − 1

k − 1

)2

(n − k)!

[

1 +
(2n − 1)(n − k)

k2
− (n − k)(n − k − 1)

k2

]

= (−1)n+k

(
n − 1

k − 1

)2

(n − k)!

− (2n − 1)(−1)n−1+k

(
n − 1

k

)2

(n − k − 1)!

− (n − 1)2(−1)n+k−2

(
n − 2

k

)2

(n − k − 2)!

= [xk−1]Pn−1(x) − [xk](2n − 1)Pn−1(x) − [xk](n − 1)2Pn−2(x)

= [xk](x − 2n + 1)Pn−1(x) − (n − 1)2Pn−2(x).

Therefore, Qn(x) = (x − 2n + 1)Qn−1(x) − (n − 1)2Qn−2(x), and our proof is

complete.

We now have all of the necessary results to prove our theorem on the roots of

I(L(Kn,n), x).

Theorem 5.46 The closure of roots of I(L(Kn,n), x) is (−∞, 0].
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Proof: Let {Pn(x)} be the sequence of Legendre polynomials. We defined the

normalized sequence {Qn(x)}, which clearly has the same roots as {Pn(x)}. By

Lemma 5.45, this sequence is orthogonal, and satisfies the recurrence relation Qn(x) =

(x− cn)Qn−1(x)−λnQn−2(x), with cn = 2n−1 and λn = (n−1)2. By Theorem 5.44,

the roots of {Qn(x)} (equivalently the roots of {Pn(x)}) are dense in [σ,∞), where

σ = −1 −
√

1 + 2√
1

= 0.

By Lemma 5.42, r is a root of I(L(Kn,n), x) iff −1
r

is a root of the Legendre

polynomial Pn(x). Since the closure of roots of {Pn(x)} is [0,∞), we conclude that

the closure of roots of I(L(Kn,n), x) is (−∞, 0].

Corollary 5.47 The closure of roots of I(L(G), x) is (−∞, 0].

As discussed earlier, r > 0 is a root of M(G, x) iff − 1
r2 is a root of I(L(G), x). As

a result, the next corollary follows immediately from the observation that every root

of M(G, x) is a positive real number.

Corollary 5.48 The closure of roots of the matching polynomial M(G, x) is [0,∞).

We now define the rook polynomial Rn(x), and determine the closure of its roots.

Definition 5.49 Let Bn denote the chessboard with n rows and n columns. Then,

the rook polynomial is Rn(x) =
n∑

k=0

rkx
k, where rk is the number of ways that k

rooks can be placed on Bn so that no two rooks lie on the same row or column.

The rook polynomial was first introduced in [106] with applications to card-

matching problems. Since then, various researchers have applied rook polynomials

to make important connections to Fibonacci theory [70], group theory [129], hyper-

geometric series summation [93], and the computation of the permanents of various

matrices [36, 91, 92]. A comprehensive analysis of rook polynomials can be found in

[154]. There are several papers [96, 142, 145] on the roots of rook polynomials. It

was shown in [142] that each root of Rn(x) is a negative real number, but there has

been no result describing the closure of its roots. Based on the work in this section,

we can now answer this problem.
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Theorem 5.50 The roots of the rook polynomial Rn(x) are real and the closure of

its roots is (−∞, 0].

Proof: It is well-known [81, 154] and straightforward to show that in an n by n

chessboard, there are mk = k!
(

n
k

)2
ways of placing k rooks so that they are non-

attacking, for each 1 ≤ k ≤ n. This can also be seen by observing the bijection

between the set of k-matchings of Kn,n and placements of k non-attacking rooks on

the n by n chessboard. In other words,

Rn(x) =

n∑

k=0

k!

(
n

k

)2

xk = I(L(Kn,n), x).

Our result now follows immediately from Theorem 5.46.

We summarize these results by displaying a table of the closures of the roots of

various graph polynomials. We separate our analysis into two categories: the closure

of the real roots, and the closure of the complex roots. In addition to our theorems

in this section, we also mention that the equivalent problem has been solved for

chromatic polynomials [101, 162, 166] and partially solved for reliability polynomials

[21]. Thus, we include these results as well. The results in bold highlight our results.

Polynomial Real Closure Complex Closure
Independence (−∞, 0] C

Matching [0, ∞) [0, ∞)
Rook (−∞, 0] (−∞, 0]

Chromatic {0} ∪ {1} ∪ [ 32
27

,∞) C

Reliability {0} ∪ (1, 2] some unknown superset of |z − 1| ≤ 1

Table 5.2: The closures of the roots of graph polynomials.
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Conclusion

We conclude the thesis by providing a hodgepodge of interesting open problems.

Many of these problems ask for a full generalization of our results. For some of these

questions, we ask if a full characterization theorem can be found, knowing that a

simple characterization theorem will not exist if the decision problem is NP-complete.

Chapter 2:

1. We determined an explicit formula for I(Cn,S, x), for an arbitrary circulant of

degree r ≤ 3. Is it possible to determine a general formula for the independence

polynomials of circulants of degree r = 4?

2. It is NP -hard to determine α(G) for an arbitrary graph G [79]. Even when

G is restricted to the family of K1,4-free graphs, the problem is still NP -hard

[29]. Thus, it is NP -hard to compute I(G, x) when G is restricted to K1,4-free

graphs. It is known [135] that if G is restricted to claw-free graphs, there is

a polynomial-time algorithm to compute α(G). This motivates the following

question: determine the complexity of determining the independence polyno-

mial I(G, x), when G is restricted to the family of claw-free graphs.

3. In [3], the following (still open) conjecture is made: if F is a forest, then I(F, x)

is unimodal. Motivated by this, let us ask the same question for circulants: if

G = Cn,S is a circulant, prove or disprove that I(G, x) must be unimodal. Must

I(G, x) also be log-concave?

4. We gave a full characterization theorem of circulant graphs that are indepen-

dence unique. Generalize this theorem to all graphs: determine a simple char-

acterization theorem for the set of all independence unique graphs.

254
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Chapter 3:

5. There are infinitely many star extremal graphs, and infinitely many non star

extremal graphs. For a given n, are there more star extremal circulant graphs

on n vertices than non star extremal circulant graphs?

Let c(n) be the number of non-isomorphic circulants on n vertices, and let s(n)

be the number of distinct circulants on n vertices that are star extremal. As an

example, s(10)
c(10)

= 19
20

, with the lone exception being C10,{1,3,4,5}.

Define X =

{
s(n)

c(n)
: n ∈ N

}

. Determine the values of lim sup X and lim inf X.

6. We determined a formula for the fractional Ramsey number and the circular

chromatic Ramsey number. However, these formulas are only defined in the

case where all the ai’s are positive integers. If each ai ≥ 2 is an arbitrary real

number, determine a formula for rωf
(a1, a2, . . . , ak) and rχc

(a1, a2, . . . , ak).

7. We determined the optimal Nordhaus-Gaddum inequalities for the fractional

and circular chromatic numbers. To establish optimality, we constructed an

extremal graph for each of our four bounds. Characterize the set of all extremal

graphs for these Nordhaus-Gaddum inequalities.

Chapter 4:

8. We introduced the Alon-Tarsi polynomial AP (G, x), and applied our formula

for I(Cn, x) to provide a proof that χl(C3n,{1,2}) = 3. Determine other families

of circulants for which χl(G) can be easily calculated by relating independence

polynomials to the Alon-Tarsi polynomial.

9. We determined the existence of a connected circulant G = Cn,S for which ∆(G)

is a pure 3-dimensional shellable complex. For each k > 3, determine whether

there exists a connected circulant G = Cn,S so that ∆(G) is a pure k-dimensional

shellable complex.
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Chapter 5:

10. Determine all necessary and sufficient conditions on n and S so that I(Cn,S, x)

has all real roots.

11. Recall that a polynomial is stable if every root has a negative real part. De-

termine all necessary and sufficient conditions on n and S so that I(Cn,S, x) is

stable.

12. Among all circulant graphs with α(G) = k, we proved that the root rmax of

maximum modulus satisfies

1

2(k − 1)! · kk−3
nk−2 < |rmax| <

k

k − 1
nk−2.

For each k, determine the optimal constant c(k) for which |rmax| ≤ c(k)nk−2 +

O(nk−3) for all independence polynomials I(Cn,S, x) with α(Cn,S) = k.

13. We note that r = −1 is a root of infinitely many independence polynomials.

For example, consider the complement of any tree T of order n. As discussed

in Chapter 5, we have I(T , x) = 1 + nx + (n − 1)x2 = (1 + x)(1 + (n − 1)x).

Motivated by this, we ask whether r = −1 can be a root of an independence

polynomial I(Cn,S, x). Also, do there exist circulants for which r = −1 is the

only rational root of I(Cn,S, x)?

14. Let r ≥ 1 be a fixed integer. As a function of n, determine bounds for the roots

of I(Cn,S, x), where Cn,S is an r-regular circulant. If r = 2, our analysis from

Chapter 5 proves that n2

4π2 ≤ |r| ≤ 1
4
. Determine bounds for each r ≥ 3.

Additional Problems:

15. Determine all necessary and sufficient conditions on the ik’s so that
∑

k=0 ikx
k

is the independence polynomial of some circulant graph.

16. For each n, define c(n) to be the number of non-isomorphic circulants on n

vertices. Define d(n) to be the sum of the independence numbers of each of
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these c(n) circulants. Then, the ratio d(n)
c(n)

is the average independence number

of a circulant on n vertices. To give some small examples, d(6)
c(6)

= 22
8
, d(7)

c(7)
= 14

4
,

and d(8)
c(8)

= 38
12

. Determine a formula for c(n) and d(n).

Define X =

{
d(n)

c(n)
: n ∈ N

}

. Determine the values of lim sup X and lim inf X.
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