INDEPENDENCE RESULTS IN

COMPUTER SCIENCE

J. Hartmanis and J.E. Hopcroft

TR 76-296

Department of Computer Science
Cornell University

Ithaca, N.Y. 14853

INDEPENDENCE RESULTS IN

COMPUTER SCIENCE*
J. Hartmanis and J.E. Hopcroft

Department of Computer Science
Cornell University

Ithaca, N.Y. 14853

Abstract

In this note we show that instances of problems which
appear naturally in computer science cannot be answered in
formalized set theory. We show, for example, that some
relativized versions of the famous P = NP problem cannot be
answered in formalized set theory, that explicit algorithms
cén be given whose running time is independent of the axioms
of set theory, and that one can exhibit a specific context-free
gramaar G for which it cannot be proven in set theory that

L(G) = I* or L(G) # t*.

1. Introduction

During the last few years research in theoretical com-
puter science has identified several problems whose solution
seems to be important for the further development of the field

and on vwhich a considerable amount of research cffort has been

*This research has been supported in bart by National Science
Foundation Research Grant DCR 75-09433 and the Office of Naval
Research under Grant N00014-76-C-0018.

expended [1,5). In spite of all this effort these problems
remain unsolved and, though we understand them much better
now, no real progress seems to have been made toward their
‘solution. Nevertheless, there remains real optimism that
they will be solved and a deeply ingrained conviction that
they can be solved. As a matter of fact, for the famous

P = NP problem, bets have been placed whether P = NP or P # NP
with strong conviction that they will eventually be collected.
Similarly, there is a strong conviction that with sufficient
effort and cleverness the running time of any specific algo-
rithm can be determined.

In this note we point out that many of these problems
may not have a solution in formalized.mathematical systems;
more specifically, we prove that the solutions of many in-
stances of these problems are independent of the axioms of
set theory [3). 1Indeed, we show that there exist relativized
versions of the P = NP problem which cannot be answered in
formalized set theory, that explicit algorithms can be given
whose running time is independent of the axioms of set theory
and show in general that many other instances of problems in
computer science cannot be answered in formalized set theory.

More precisely, for a set A, A ¢ L*, let PA be the class
of languages accepted in polynomial-time by deterministic
Turing machines with the oracle set A and let NPA be the
corresponding class of languages accepted in polynomial-time

by nondeterministic Turing machines with the oracle set A.

RRICRS

le know [2] that there exist recursive sets B and C such that
PB = NPB and Pc # NPC. Using this result we explicitly con-
struct a recursive set A and show that it is independent of

A or PA # NPA.

*the axioms of set theory whether PA = NP
Unfortunately, this result shows only that there exist
relativized instances of this problem which carnot be solved
in the framework of formal set theory, it does not say anything
directly about the classic P = NP problem. On the other hand,
we can show that there are other specific algorithms whose
running time is independent of the axioms of set theory. We
explicitly construct an algorithm such that it is consistant
with the axioms of set theory to assume that it runs in time
n2 or 2. The algorithm can be seen (outside of formal set
theory) to run in time n2 but there is no proof in formalized
set theory that this is the case, no bound lower than 2" can
be formally proven.

The same reasoning shows that many instances of questions
about context-free languages and automata are independent of
the axioms of set theory. For example, we construct a context=
free grammar G such that there is no proof in set theory that
L(G) = L* or L(G) # L*.

Looking at problems in computer science, with these re-
sults in mind, we have to conclude that many different problems
which appear naturally in computer science will have specific

instances which cannot be answered by standard mathematical

rethods since they are independent of the axioms and formal

FN

reasoning used in most of mathematics. It seems particularly
surprising that this already happens in the analyses of
running times of algorithms.

It should be pointed out that similar results are known
in some parts of pure mathematics but they do not seem to be
as prevalent as in computer science problems. This is caused
by the difference in the problem areas: in computer science
we deal with computations, with devices which perform these
computations and with properties of computations. In all
these cases we can embed "universal" computations and "self=
referencing” in these problems and thus reach instances of
problems which cannot be answered in formal mathematical sys-
tems. On the other hand, in many par&s of mathematics either
such embeddings and self-references do not exist or are ex-
tremely hard to find. For example, the solution of Hilbert's
tenth problem [7] is recognized as a great achievement mainly
because the embedding of universal computations in diophantine
equations was exceedingly difficult. Once this embedding is
known, one can easily show that there exist diophantine
equations for which there exist (integer) solutions but that
their existence is independent of the axioms of set theory.

It is to be expected that results of this type will be
found in other parts of mathematics. In general though, we
have to expect that this will not permiate mathematical re-
search areas. The situation in computer science is quite

different, as stated before, the central object of study in

-5-

this science is computation which unavoidably brings with it
instances of problems which cannot be solved by traditional

mathematical methods.

2. The P = NP Problem

We now turn to the problem of exhibiting a recursive set
A such that PA = NPA is independent of the axioms of set theory.
Let F be any formal mathematical system for proving
theorems. We assume that F is axiomatizable (i.e. that the set
of provable theorems is recursively enumerable), that F is
consistant, that the provable. theorems are intuitively true
and that F is of sufficient power to prove the basic theorems
of set theory. Let (¢1, ¢2, ...} be an acceptable enumeration

of all one-tape Turing machines. Thus we know that the Smn

and recursion theorems hold for this enumeration [8]. Further-
¢.

1

81
and NP ~, re-

more, for the sake of brevity, we will write P
spectively, for PA and NPA provided N accepts the set A. Let
I . :

d denote convergence andlﬂ divergence of algorithms.

Theorem: For every F we can effectively construct an i such

¢,

' ¢ N
that % is recursive and the relativized P * = NP *

is inde-
1 b5
pendent of F. That is P = NP can neither be proved nor

disproved in F.

Proof: Let B and C be recursive sets such that PB = NPB and

Pc # NPC. From [2] we know that such sets exist and are

effectively constructable. Define

.

-6-

(lLif there exists a proof among
the first x proofs in F that
é. 'R
PJ=nNpJ and x ¢ C or if there
¢(x,3) = J exists a proof among the first
[N ¢.
x proofs in F that P J # Np J

and x ¢ B

\ 1} otherwise

Now by the Smn theorem there exists a recursive ¢ such that
oa(j)(x) = ¢(x,j).

By the recursion theorem there exists ip such that

¢ (x)

0 = ¢0(i0) (x).

Thus

¢, (x) = ¢(x,ip).

ip
¢ $.
If there is a proof in F that P 10 = yp 10, then the set
accepted by ¢io differs at most finitely from C and hence we
know P 10 ¥ jp 10, Similarly if there is a proof in F that
. 4.
P 10 # NP 20, then the set accepted by 43, differs at most
finitely from B and hence P %0 = NP 10, Since F is such that
any theorem proved in F is intuitively true we conclude that
Af1 4 % 5
there can be no proof of either P "0 = NP 0 or p 10 z pp 10

(R ¢,
in F. Thus whether or not P 10 = Np 10 jg independent of the

formal mathematical system F. 0

Intuitively we know that ¢i in the above construction ac-

¢ ¢
cepts the empty set and P i, Ne ' s true if and only if

P = NP in the classical version. Still it does not follow from

-7-

this proof that the unrelativizéd version is not provable in
set theory. What we have just proven suggests the possibility
that the unrelativized P = NP problem could be independent of
“the axioms of set theory. It may be possible to have two com-
pletely consistent theories of computation, one in which P =

NP is an axiom and the other in which P # NP is an axiom.

3. Analysis of Algorithms and Other Problems

Next we exhibit an algorithm which cannot be analyzed
in the sense that its running time is independent of the
axioms of F. Blum's speed up-theorem [4] shows that there
are functions with no best algorithm. What we are saying is
something entirely different. There are algorithms with
definite running times which are not provable in set theory.
In particular we will exhibit an algorithm which runs in time
nz, but for which there is no proof in F of an upper bound
less than 2" nor is there a proof in F of a lower bound greater
than nz. Consequently formal mathematics is not powerful
enough to analyze all algorithms.

To do this we first prove a lemma.

Lemma: Given the formal system F we can exhibit an i such that
the halting of the iEﬁ Turing machine when started on blank

tape cannot be proved or disproved in F.

Proof: Let ¢i(-) denote the iEE Turing machine with blank in-

put tape. Define

lLif there exists a proof in F

+(x,3) = enat o5 11!

1Totherwise

Again by the Smn and recursion theorems there exist ¢ and i
such that

o(x,3) = ¢u(j)(x)
and

Oio(X) = bo(io)(x)'
By a meta argument we conclude that oio(—) does not halt, since
if oio(-) halts then there cannot be a proof in F that °i01T’
which is the only way ¢io(—) can halt. Thus there is no proof
in F that 0io(~) does not halt nor can there be a proof in F

that it does halt. @

Clearly we already knew of the existence of the i satis-
fying the last theorem. A proof in F for each i that ¢ did
or did not halt would imply that {i|¢i(-)4}] was recursive.
What the lemma shows is that we can effectively exhibit a
specific Turing machine which does not halt on.blank tape but
for which there is no proof of this fact in F.

We now show that some algorithms with well defined running
times cannot be analyzed in F.

To reveal the simplicity of this proof we make an addi-
tional assumption about the formal system F, as described below;
This assumption is not essential for the next result, but with-

out it our proofs become considerable longer, since we have to

-9~

show that the application of the Smn and recursion theorems
in this proof do not change the running times of algorithms
drastically. This can be done, but for the sake of brevity,
*we are omitting this longer proof.

For any j let ¢o(j) be a Turing machine which for input
n simulates oj(-) for n steps and if ¢j(-) has not halted in
n steps ¢p(j)(n) halts in exactly n2 steps; if ¢j(—) does halt
in n steps then ¢p(j)(n) halts in exactly 2" steps.

We assume that there is a construction p, as described
above, such that we can prove in F for all j that:

N . n ..
¢p(j) runs in time < 2= iff ¢j(—) does not halt.

Theorem: There exists an algorithm (which can be explicitly
given) whose running time is n2, but there is no proof in F

that it runs in time < 2".

Prcof: Let ig be an index such that ¢i°(—) does not halt and
for which there is no proof in F that ¢io(-) does not halt; our
previous corollary guarantees that we can effectively obtain
such ig. Then, from our assumptions about F, it follows that
there is no proof in F that ¢9(io) runs in time < 2" since

this would prove in F that ¢i°(—) does not halt. Thus ¢p(i)
is an algorithm running in time n2 for which there is no proof

in F that it runs in time less than 2". O
A similar proof yields the following result.

Corollary: There exists an algorithm ¢jo which runs in time

-10-
n2 but for which there is no proof in F that it is a total
function, thus no running time bound can be proven for ojo
in F.

Next we show that simple problems about context-free

languages are independent of the axioms of F, provided we can

prove in F elementary facts about context-free languages.

Theorem: One can exhibit a context-free grammar G such that
L(G) = I* but for which there is no proof in F that L(G) = IL*

or L(G) # L*.

Proof: Using standard techniques [6] given i one can construct
G; such that L(G;) = t* iff ¢ (-){}. Purthermore, if F is
sufficiently rich, a proof in F that L(Gi) does or does not
equal I* can be extended to a proof in F that LN does or does
not converge. But then using an iy for which there is no

proof that oio(-)4T, we get a Gio = L[* but there is no proof

in F that L(Gj) = t*or L(G,) # t*. H
0 1p

Corollary: One can exhibit a specific recursive function t
such that the equality of the time complexity classes Cy and

Ctz is independent of F.
Proof: Similar to the previous proof. @&

4. Conclusion
These results are presented not as something new or pro-

found but only as a caution to computer scientists working in

-11-

complexity, lower bounds, analysis of algorithms, and related
topics. One should recognize that due to the self-referencing
ability of our formalisms we can reformulate Godel's incom-
.pleteness theorem in computer science problems. Thus given
set theory or any other formal theory there are many specific
instances of problems with which we are concerned but which
are independent of the theory. What this suggests is that our
inability to settle questions like the P = NP problem or prove
lower bounds may be a consequence of the power (or weakness)

of formal systems such as set theory. Clearly an exciting re-

sult would be to discover a natural instance of such a problem.

-12-

References

1. Aho, A.V., J.E. Hopcroft and J.D. Ullman, The Design and
Analysis of Computer Algorithms," Addison-Wesley
Publishing Co., Reading, Mass., 1974.

2. Baker, T., J. Gill and R. Solovay, "Relativizations of
the P = ?NP Question," SIAM J. on Comp. 4:4 (1975),
pp. 431-442.

3. Bernays, P., and A.A. Fraenkel, "Axiomatic Set Theory,"
North Holland Publ., Amsterdam, 1958.

4., Blum, M., "A machine-independent theory of recursive func-
tions," JACM 14:2 (1964), pp. 322-336.

5. Hartmanis, J. and J. Simon, "On the structure of feasible
computations" in Advances in Computers Vol. 14
(Edits. Morris Rubinoff and Marshall C. Yovits),
Academic Press, New York, N.Y., 1976. pp. 1-43.

6. Hopcroft, J. and J. Ullman, Formal lanquages and their

relation to automata, Addison-Wesley, Reading, Mass.,
1969.

7. Matijasevic, Y. “Enumerable sets are Diophantine" (Russian),
Dokl. Acad. Nank. SSSR 191 (1970), pp. 279-282.

8. Rogers, Hartly, Jr., "Theory of Recursive Functions and
Effective Computability,” McGraw-Hill, New York, N.Y.,
1976.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif

