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Abstract. Graphical structures such as Bayesian networks or M arkov networks are

very useful tools for representing irrelevance or independency relationships, and they

may be used to e� ciently perform reasoning tasks. Singly connected networks are

important speci ® c cases where there is no more than one undirected path connecting

each pair of variables. The aim of this paper is to investigate the kind of properties that

a dependency model must verify in order to be equivalent to a singly connected graph

structure, as a way of driving automated discovery and construction of singly

connected networks in data. The main results are the characterizations of those

dependency models which are isomorphic to singly connected graphs (either via the

d-separation criterion for directed acyclic graphs or via the separation criterion for

undirected graphs), as well as the development of e� cient algorithms for learning

singly connected graph representations of dependency models.
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1. Introduction

Graphical models have become common knowledge representation tools capable of

e� ciently representing and handling independency relationships as well as uncertainty

in our knowledge. They comprise a qualitative and a quantitative component. The

qualitative component is a graph displaying dependency } independency relationships:

the absence of some links means the existence of certain conditional independency

relationships between variables, and the presence of links may represent the existence

of direct dependency relationships (if a causal interpretation is given, then the

(directed) links signify the existence of direct causal in¯ uences between the linked

variables). This is important because an appropriate use of independency or

irrelevance relationships is crucial for the management of information, since

independency can modularize knowledge in such a way that we only need to consult

the pieces of information relevant to the speci® c question in which we are interested,

instead of having to explore a whole knowledge base. The quantitative component is

a collection of numerical parameters, usually conditional probabilities, which give

idea of the strength of the dependencies and measure our uncertainty. Therefore,
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graphical models provide an intuitive graphical visualization of the available

knowledge, including the interactions among the diŒerent knowledge components and

the various sources of uncertainty. On the other hand, graphical models also encode

probabilistic information in an economical way : the storage requirements of a joint

probability distribution are usually excessive, whereas the memory requirements of a

suitable factorization of this distribution, taking into account the independency

relationships displayed by the graph, may be much smaller.

However, when the graphs representing the independency statements corresponding

to a given domain of knowledge are very dense or contain a great number of variables,

the processes needed to estimate them from empirical data (learning) (Chickering et al.

1994, Cooper and Herskovits 1992, Lam and Bacchus 1994, Pearl and Verma 1991,

Spirtes 1991, 1993) and to use them for inference tasks (propagation) (Lauritzen and

Spiegelhalter 1988, Pearl 1986, 1988, Shachter 1988) may still be time-consuming.

Some simpli ® ed models, such as singly connected networks (SCNs) may alleviate these

problems at the expense of losing some representation capabilities: these are graphs

where no more than one (undirected) path connects every two nodes or variables.

Using SCNs, we gain in e� ciency and simplicity in the procedures for learning the

networks as well as for propagating information through them (Pearl 1988). Therefore,

SCNs and similar structures have received considerable attention within the arti ® cial

intelligence and statistical communities, from diŒerent points of view : learning and

causality (Geiger et al. 1990, Huete and de Campos 1993, Rebane and Pearl 1989),

classi ® cation (Friedman and Golszmidt 1996, Geiger 1992), propagation (Cano et al.

1993, Ng and Levitt 1994), data compression (Chow and Liu 1968), approximate

models (Acid et al. 1991, Acid and de Campos 1995, Sarkar 1993). The price we have

to pay for using SCNs is a less expressive power, because the kind of independency

relationships that may be represented is more restricted for SCNs than for general

multiply connected networks (MCNs).

So, the study of the kind of independency relationships which are associated to

SCNs is interesting, not only from a purely theoretical point of view but also for

practical reasons : if SCNs, such as forests, trees or polytrees, are to be used as

approximations of more complex models, it is necessary to know the assumptions

about independency that SCNs require. M oreover, some propagation methods

(Lauritzen and Spiegelhalter 1988) are based on a clustering of variables that

transforms the graph into a tree of cliques. Another method (Becker and Geiger 1994,

Pearl 1986) is based on the ability to change the connectivity of the network and turns

it into a singly connected one by instantiating a selected subset of variables. In those

cases, our study could be applied to these SCNs. Furthermore, a theoretical study may

create desiderata that could drive the automated construction of singly connected

networks from data.

This paper’ s aim is twofold : ® rst, to study the class of dependency models which are

isomorphic to SCNs either via the d-separation criterion (Verma and Pearl 1990) for

directed acyclic graphs (polytrees) or via the separation criterion for undirected graphs

(forests and trees). This study should reveal some basic properties that could guide us

in the design of algorithms for learning SCNs. So, the second objective is to develop

e� cient, exact and approximate algorithms for learning singly connected networks

from data, by testing independency relationships between variables.

The paper is organized as follows : in Section 2, we brie¯ y describe several concepts

which are essential for subsequent development. Sections 3 and 4 are devoted to the

undirected case : in Section 3 we prove characterizations of dependency models
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isomorph to forests and trees ; Section 4 uses the previous results to develop new

algorithms for building undirected SCNs ; comparisons with other algorithms and

experimental results are also provided. The directed case is considered in Sections 5

and 6, where a study analogous to the previous one is carried out : ® rst, in Section 5,

we show a characterization of dependency models isomorph to polytrees ; next, in

Section 6, we develop e� cient, exact and approximate algorithms for learning directed

SCN representations of dependency model. Section 7 contains the concluding remarks

and some proposals for future work. Finally, the Appendix contains the proofs of

several technical lemmas which are necessary to establish the main results of the paper.

2. Preliminaries

In this section, we are going to describe the notation and some basic concepts used

throughout the paper, although we shall omit the description of basic terminology for

graphs.

A Dependency M odel (Pearl 1988) is a pair M = (U , I ), where U is a ® nite set of

elements or variables, and I(., . r .) is a rule that assigns truth values to a three place

predicate whose arguments are disjoint subsets of U . Single elements of U will be

denoted by standard or Greek lowercase letters, such as q, s, t, a , b ¼ , whereas subsets

of U will be represented by capital letters, such as X , Y , Z ¼ . The intended

interpretation of I(X , Y r Z ) (read X is independent of Y given Z ) is that having

observed Z , no additional information about X could be obtained by also observing

Y . For example, in a probabilistic model (Dawid 1979, Geiger et al. 1991, Lauritzen

et al. 1990, Spohn 1980, Studeny! 1989, 1990), I(X, Y r Z ) holds if and only if

P(x r z, y) = P(x r z) whenever P(z, y) " 0,

for every instantiation x, y and z of the sets of variables X , Y and Z . However,

dependency models are applicable to many situations far beyond probabilistic models

(de Campos 1995, de Campos and Huete 1993a, b, Hunter 1991, Pearl 1988, 1989,

Shenoy 1992, Smith 1989, Studeny! 1993, Verma and Pearl 1990b, Wilson 1994). In any

case, the study of the concept of conditional independency in probability theory and

that of embedded multivalued dependency in database theory (Fagin 1977) has

resulted in the identi ® cation of several properties that may be reasonable to demand

of any relationship which attempts to capture the intuitive notion of independency.

These properties are the following:

(A1) Symmetry :

(I(X , Y r Z ) 3 I(Y, X r Z )) c X , Y , Z X U .

(A2) Decomposition :

(I(X , Y e W r Z ) 3 I(X , Y r Z )) c X , Y , W , Z X U .

(A3) Weak union :

(I(X , Y e W r Z ) 3 I(X , W r Z e Y )) c X , Y , W , Z X U .

(A4) Contraction :

(I(X , Y r Z ) and I(X , W r Z e Y ) 3 I(X, Y e W r Z )) c X , Y , W , Z X U .

(A5) Intersection :

(I(X , Y r Z e W ) and I(X , W r Z e Y ) 3 I(X , Y e W r Z )) c X , Y , W , Z X U .
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The intuitive interpretation of these axioms is as follows: symmetry asserts that in

any state of knowledge Z , if Y tells us nothing new about X , then X tells us nothing new

about Y . Decomposition establishes that if two combined pieces of information Y and

W are considered irrelevant to X , then each separate piece of information is also

irrelevant. W eak union asserts that learning the irrelevant information Y cannot help

the irrelevant information W to become relevant to X . Contraction states that if two

pieces of information, X and W , are irrelevant to each other after knowing irrelevant

information Y , then they were irrelevant before knowing Y too. Together, weak union

and contraction mean that irrelevant information should not modify the nature of

being relevant or irrelevant of other propositions in the system. Finally, intersection

asserts that if two combined items of information, Y and W , are relevant to X , then at

least one of them is also relevant to X , when the other is added to our previous state

of knowledge, Z . Dependency models are called semi-graphoids if they verify the

axioms A1± A4, and graphoids if they satisfy the axioms A1± A5 (Pearl 1988).

A graphical representation of a dependency model M is a direct correspondence

between the elements in M and the set of nodes or vertices in a given graph, G , such

that the topology of G re¯ ects some properties of M . For simplicity in the notation, a

node in the graph G will be referred to by the element in M associated with it. The way

we relate independency assertions in M with some topological property of a graph

depends on the kind of graph we use ; this property is separation for the case of

undirected graphs (Lauritzen 1982, Pearl 1988) and d-separation for directed acyclic

ones (dags) (Lauritzen and Spiegelhalter 1988, Pearl 1988, Shachter, 1988, Verma and

Pearl 1990b) :

E Separation : Given an undirected graph G , two subsets of nodes, X and Y , are

said to be separated by the set of nodes Z , and this is denoted by © X , Y r Z ª
G
, if

Z intercepts all chains between the nodes in X and those in Y , or, in other words,

if the removal of the set of nodes Z from the graph together with their associated

edges, disconnects the nodes in X from those in Y .

E d-separation : Given a dag G , a chain C (a chain in a directed graph is a sequence

of adjacent nodes, the direction of the arrows does not matter) from node a to

node b is said to be blocked by the set of nodes Z , if there is a vertex c ` C such

that, either

Ð c ` Z and arrows of C do not meet head to head at c , or

Ð c a Z , nor has c any descendants in Z , and the arrows of C do meet head to

head at c .

A chain that is not blocked by Z is said to be active. Two subsets of nodes, X and

Y , are said to be d-separated by Z , and this is denoted by © X , Y r Z ª
G
, if all

chains between the nodes in X and the nodes in Y are blocked by Z (separation

and d-separation are denoted in the same way, because the context will avoid

confusing them). In (Lauritzen et al. 1990), a criterion equivalent to d-separation

was proposed (in terms of the separation of X from Y by Z in the moral graph

of the smallest ancestral set containing X e Y e Z ).

Given a dependency model, M , we say that an undirected graph (a dag, respectively),

G , is an Independency map or I-map (Pearl 1988) if every separation (d-separation

respectively) in G implies an independency in M :

© X , Y r Z ª
G

3 I(X , Y r Z ).
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On the other hand, an undirected graph (a dag, respectively), G , is called a Dependency

map or D-map (Pearl 1988) if every independency relation in the model implies a

separation (d-separation respectively) in the graph :

I(X , Y r Z ) 3 © X , Y r Z ª
G
.

A graph, G , is a Perfect map of M (Pearl 1988) if it is both an I-map and a D-map. M

is said to be graph-isomorphic if a graph exists which is a perfect map of M .

3. Undirected graphs : independency relationships in forests and trees

In this section, we are going to show two axiomatic characterizations of dependency

models isomorphic to forests and trees. These results will be applied in the next section

to develop algorithms for learning the exact graphical representation of the previous

models, as well as algorithms for learning forest or tree approximations of more

general dependency models.

Let us consider the following axioms :

(F1) Symmetry :

(I(X , Y r Z ) 3 I(Y, X r Z )) c X , Y , Z X U .

(F2) Decomposition :

(I(X , Y e W r Z ) 3 I(X , Y r Z )) c X , Y , W , Z X U .

(F3) Strong union :

(I(X , Y r Z ) 3 I(X, Y r Z e W )) c X , Y , W , Z X U .

(F4) Intersection :

(I(X , Y r Z e W ) and I(X , W r Z e Y ) 3 I(X , Y e W r Z )) c X , Y , W , Z X U .

(F5) Transitivity :

(I(X , Y r Z ) 3 I(X, c r Z ) or I( c , Y r Z ) c c ` U c (X e Y e Z )) c X , Y , Z X U .

(F6) Atriangularity :

( | I( a , c r Z ) c Z X U c {a , c } and

| I( c , b r Z ) c Z X U c {c , b } 3 I( a , b r c )) c a , b , c ` U .

Axioms F1± F5 are well known, and they have been proposed as the basic properties

governing the separation relationships in undirected graphs. Axioms F1, F2 and F4

have already been commented upon. F3 is stronger than weak union, stating that the

separating set Z can be unconditionally increased by additional variables without

destroying the independence. In graph terms, if Z is a set separating X from Y , then

when removing additional nodes W from the graph, X and Y are still separated.

Contraction can easily be deduced from F3 and F4. So, the kind of dependency models

that we consider here are graphoids. F5 establishes that if X is connected to some node

c and c is connected to Y , then X must also be connected to Y . Axiom F6 intends to

restrict the kind of graphs that we consider, by establishing that the graph cannot

contain any triangle (a complete subgraph of three nodes), because the central node,

c , separates a from b .
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In order to build a graph that represents the dependency model M , the idea is to

introduce an edge into the graph for each pair of variables which are not independent

in M , given any subset of U . Using strong union, it is immediately shown that

| I( a , b r Z ) c Z X U c {a , b } 5 | I( a , b r U c {a , b }). (1)

Therefore, in order to assert that two variables are not independent given any subset

of U it is su� ce to show that they are not independent given all the other variables. So,

taking into account (1), the graph associated with a dependency model M is de® ned as

follows:

De® nition 1. Given a dependency model M = (U , I ) verifying the axioms F1 ± F6, the

(undirected ) graph associated with M is G
M

= (U , E
M

), where the set of edges E
M

is

E
M

= {( a , b ) r a , b ` U , | I( a , b r U c {a , b })}. (2)

Note that, using (1), axiom F6 can be reformulated in the following way :

(F6) Atriangularity :

( | I( a , c r U c {a , c }) and | I( c , b r U c {b , c }) 3 I( a , b r c )) c a , b , c ` U .

It has been shown (Pearl and Paz 1985) that any dependency model verifying

F1± F5 is isomorphic to its associated graph (using the usual separation criterion

for undirected graphs). For example, the dependency model M , de® ned on U =

{a , b , c , d }, where I = {I( a , b r c e d ), I( c , d r a e b )}veri ® es F1± F5 ; however, it does not

satisfy F6. So, M is isomorphic to its associated graph G
M

, which is depicted in ® gure 1,

but G
M

is not a forest. W e are going to demonstrate that by adding the axiom F6,

the associated graph necessarily becomes a forest. The next proposition proves a

basic result in this direction.

Proposition 1. If a dependency model M satis® es the axioms F1 ± F6, then its associated

graph G
M

is a forest, i.e. G
M

has no cycle.

Proof. First, let us prove that if t
"

t
#
I tn is a chain in G

M
, i.e. if (t i , t i + "

) ` E
M

, c i = 1,

¼ , n –1, then I(t
"
, tn r t

#
). We will use induction.

For n = 3, as (t
"
, t

#
), (t

#
, t

$
) ` E

M
then | I(t

"
, t

#
r U c {t

"
, t

#
}) and | I(t

#
, t

$
r U c {t

#
, t

$
}), and

using atriangularity we obtain I(t
"
, t

$
r t

#
). Suppose that the result is true for n –1, i.e.

I(t
"
, tn

Õ "
r t

#
) ; then, by applying transitivity to this statement, we obtain I(t

"
, tn r t

#
) or

I(tn
Õ "

, tn r t
#
). But (tn

Õ "
, tn ) ` E

M
and we can deduce | I(tn

Õ "
, tn r t

#
) from (1) ; so, we have

I(t
"
, tn r t

#
).

Now, let us suppose that t
"

t
#
I tn t

"
is a cycle in G

M
. Then t

"
t
#
I tn is a chain in G

M
,

c

d

a b

Figure 1. Graph G
M

associated with the dependency model M .
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and from the previous result we have I(t
"
, tn r t

#
). But (t

"
, tn ) is an edge of G

M
and

therefore we also have | I(t
"
, tn r U c {t

"
, tn }). As from (1) both results are contradictory,

the conclusion is that G
M

cannot have any cycle. *

Now, using the result in (Pearl and Paz 1985), we can easily prove the following

characterization of forest-isomorphic dependency models.

Theorem 1. A dependency model M is forest-isomorphic if, and only if, it veri® es the

axioms F1 ± F6.

Proof. The necessary condition follows immediately from the fact that axioms F1± F5

are true for the separation relation in undirected graphs, and axiom F6 is also

obviously true for the separation relation in forests.

The su� cient condition follows from proposition 1 and the result in (Pearl and Paz

1985), which establishes that a dependency model verifying the axioms F1± F5 is

isomorphic to its associated undirected graph. *
The next result shows which is the additional axiom necessary to ensure that the

graph (forest) G
M

associated to M is connected, that is to say, to force G
M

to be a tree.

Theorem 2. A dependency model M is tree-isomorphic if, and only if, it veri ® es F1 ± F6 and

the following additional axiom F7 :

(F7) Connection : | I( a , b r J ) c a , b ` U .

Proof. W e already know that the axioms F1± F6 characterize forest-isomorphic

models. So, to characterize tree-isomorphic models, we only have to ® nd an axiom

which guarantees that the forest G
M

is connected : G
M

is connected if and only if

there is a chain linking every two nodes, or, in other words, if no pair of nodes are

separated by the empty set : | © a , b r J ª , c a , b ` U . But from theorem 1, this is equivalent

to F7. *

To ® nish oŒthis section, let us see why the characterization theorems of forest-

isomorphic and tree-isomorphic dependency models cannot be re ® ned.

Theorem 3. The set of axioms F1 ± F6 (respectively F1 ± F6 and F7) constitutes a minimal

set of axioms that characterize dependency models which are forest-isomorphic

(respectively tree-isomorphic).

Proof. We shall only prove the result for forest-isomorphic models ; the proof for tree-

isomorphic models is similar. According to theorem 1, in order to prove the result it

is su� ce to ® nd dependency models which verify all the axioms except one.

(1) M = (U , I ), where U = {a , b }, and I = {( a , b r J )}veri ® es F2 ± F6, but it does not

verify symmetry (I( a , b r J ) but | I( b , a r J )).

(2) M = (U , I ), where U = {a , b , c }, and I = {( a , b r c ), ( a , b e c r J ), symmetrical

images}satis ® es F1 and F3± F6, but it does not satisfy decomposition (I( a , b e
c r J ) but | I( a , b r J ) and | I( a , c r J )).

(3) M = (U , I ), where U = {a , b , c }, and I = {( a , b r J ), ( a , c r J ), ( a , c r b ), sym-

metrical images}veri ® es F1, F2 and F4± F6, but it does not verify strong union

(I( a , b r J ) but | I( a , b r c )).

(4) M = (U , I ), where U = {a , b , c , d }, and I = {( a , b r c ), ( a , d r c ), ( a , b r c e d ),

( a , c r b e d ), ( a , d r b e c ), ( b , c r a e d ), ( b , d r a e c ), ( c , d r a e b ), symmetrical

images}satis® es F1 ± F3, F5 and F6, but it does not satisfy intersection (because

we have I( b , c r a e d ) and I( b , d r a e c ) but | I( b , c e d r a )).
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(5) M = (U , I ), where U = {a , b , c }, and I = {( a , b r J ), ( a , b r c ), symmetrical

images}satis ® es F1± F4 and F6, but it does not satisfy transitivity (I( a , b r J ) but

| I( a , c r J ) and | I( c , b r J )).

(6) M = (U , I ), where U = {a , b , c }, and I = J veri® es F1 ± F5, but it does not verify

atriangularity ( | I( a , c r b ) and | I( c , b r a ) but | I( a , b r c )). *

4. Undirected graphs : learning algorithms

In this section, we apply the results from the previous section to obtain e� cient

algorithms for learning undirected SCNs. If the underlying dependency model is

isomorphic to an SCN, then the algorithms will recover the corresponding graph.

Otherwise, if the dependency model is not isomorphic to an SCN but it is isomorphic

to an MCN, the algorithms may either output a `fail ’ signal, meaning that the model

is not isomorphic to an SCN, or produce a graph that is a (non-minimal) I-map of the

model. In addition, the algorithms can be modi® ed to always build an SCN which is

intended as an approximation of the given dependency model.

4.1. Algorithms for learning forests or trees

As we have shown in Section 3, a dependency model is forest-isomorphic if, and only

if, it veri ® es the axioms F1± F6. Observe that intersection (F4) and strong union (F3)

imply the converse of decomposition (called composition). So, it is clear that any

dependency model satisfying F1± F6 is completely de® ned by the set of independency

type statements like I( a , b r Z ), because I(X , Y r Z ) 5 I( a , b r Z ), c a ` X , c b ` Y . Further-

more, we are going to prove that only the set of statements I( a , b r c ) are necessary and

su� cient to characterize this kind of dependency models.

Proposition 2. Let M be a dependency model verifying the axioms F1 ± F6. Then, for all

a , b ` U , Z X U c {a , b }, Z 1 J .

I( a , b r Z ) 5 d c ` Z such that I( a , b r c ). (3)

Proof. The su� cient condition follows immediately from strong union. Let us prove

the necessary condition: from Theorem 1 we know that independency statements in

the model are equivalent to separation statements in a forest. As in a forest there is

at most one chain linking every two nodes a and b , if a and b are separated by Z , then

Z must contain at least one node c in this chain, and this single node still separates

a and b ; if there is no chain linking a and b , then any single node in Z separates a

and b . *

The previous proposition, together with the composition property, allows us to say

that the dependency models considered are completely de® ned by independency

statements with the form I( a , b r c ) (except in the trivial case where the model contains

only two variables, i.e. r U r = 2). This fact is important for designing e� cient

algorithms for learning undirected SCNs, because from Proposition 2 we can easily

deduce that, for the undirected graph G
M

associated to M , and for every pair a , b ` U ,

the edge a ± b is in G
M

5 | I( a , b r c ) c c ` U c {a , b }. (4)

Equation (4) provides the basis for designing a simple and e� cient algorithm to ® nd

the graph (forest or tree) associated with a dependency model which veri ® es F1± F6. It

simply tests, for every pair of variables, the conditional independency of these two
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variables given any other third variable ; as soon as the algorithm ® nds a true

conditional independency relationship, it removes the corresponding edge from the

graph. This Exact Tree (ET) algorithm is depicted in ® gure 2.

It is clear that the complexity of the ET algorithm is O(n $ ) by the number of

independence veri ® cations, where n is the number of variables, n = r U r . Because of the

equivalence | I( a , b r U c {a , b }) 5 | I( a , b r c ) c c ` U c {a , b }, we could replace the set of

tests I( a , b r c ) by the single test I( a , b r U c {a , b }), and we would obtain an O(n # )

algorithm. If we do so, we obtain Pearl and Paz’ s algorithm (Pearl 1988, Pearl and Paz

1985). But the latter type of independency test is much more di� cult to apply if we do

not know in advance the truth values of the independency statements, but we are going

to estimate them from a data set : for computing the truth value of the statement

I( a , b r U c {a , b }), which involves all the variables in U , we need an exponential number

of calculations, even in the case of binary variables. So, Pearl and Paz’ s algorithm

quickly becomes unsuitable for constructing SCNs from data sets, even for a moderate

number of variables. On the other hand, the truth value of the statement I( a , b r c ) can

be computed in a time proportional to the size, m , of the data set, so that the complete

process can be done in O(n $ m). An additional advantage of the ET algorithm is not

related to e� ciency, but to reliability: the truth value of I( a , b r c ) can be computed

much more reliably than that of I( a , b r U c {a , b }) ; this fact allows us to use smaller data

sets as the inputs for the learning algorithms.

If the dependency model is not isomorphic to an SCN, but it is still isomorphic to

an M CN, then the output of the previous algorithm is an MCN, which is a (non-

minimal) I-map of the model. The next proposition proves this assertion :

Proposition 3. Let M be a dependency model verifying the axioms F1 ± F5. Then the graph

G , obtained by applying the ET algorithm, is an I-map of M . M oreover, if M does not

satisfy F6, then G contains at least one triangle.

Proof. The ET algorithm is exactly Pearl and Paz’ s (PP) algorithm except the condition

of testing when to remove an edge, i.e. ET may remove less edges than PP. So, the ET

algorithm outputs a graph that is a super graph of what Pearl and Paz output and so

it must be an I-map because their output is an I-map.

Suppose now that M does not verify F6. This means that we can ® nd nodes a , b ,

c ` U such that | I( a , c r U c {a , c }), | I( c , b r U c {b , c }) and | I( a , b r c ). Using F3, from the

Figure 2. Algorithm for learning trees or forests.
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® rst two statements we can deduce | I( a , c r d ) c d ` U c {a , c }and | I( c , b r d ) c d ` U c {c , b }.
Therefore G contains the edges a ± c and c ± b . If I( a , b r d

!
) for some d

!
, then by using F5,

we obtain I( a , c r d
!
) or I( c , b r d

!
), which is a contradiction with the previous statements.

So, we have | I( a , b r d ) c d ` U c {a , b }, and this means that G also contains the edge a ± b ;

hence G contains a triangle. *

For example, a graph-isomorphic but not tree-isomorphic dependency model,

together with the I-map constructed by the ET algorithm are depicted in ® gure 3.

In view of the result in Proposition 3, the ET algorithm may be easily modi® ed to

output either a singly connected network isomorph to the model, if such a one exists,

or acknowledgment that no such a network exists (under the assumption that M is

graph-isomorphic) : it is only necessary to replace step 3 in the algorithm by a check for

triangular structures, returning graph G when atriangularity holds or if not, a `fail ’

sign appears. As this check can be made in polynomial time (cubic, in the worst case),

the complexity of the modi® ed algorithm is still O(n $ ). So, if we are interested in

knowing whether a dependency model (or a data set) can be exactly represented by

means of a tree, this modi® ed algorithm oŒers an e� cient way for ® nding it out.

Another interesting task consists in constructing an SCN which is an approximation

of the dependency model being considered. In practice, an algorithm for doing so may

be more useful than the previous algorithms, because we shall seldom ® nd real

problems that exactly ® t a tree structure ; however, it may be quite interesting to ® nd

a reasonable tree approximation, that is easy to build and use. To carry out this task,

we need to replace the idea of an independency relation being true or false by a graded

dependency relation which measures the degree of dependency between two variables :

we can use any dependency function Dep(X , Y r Z ), whose value is zero if I(X , Y r Z )

and such that the more dependent X and Y are, given Z , the greater Dep(X , Y r Z ) is.

For example, in a probabilistic dependency model we could use the well-known

Kullback ± Leibler cross entropy measure (Kullback and Leibler 1951), or any other of

the Dep functions used in Acid et al. 1991 (such as the L
"

or L
#

norms). The basic idea

is to preserve those edges representing the strongest dependency relations, but with the

restriction that the resultant structure must be singly connected (this idea was also

considered by Chow and Liu 1968). For each pair of nodes a , b ` U , we can calculate

several degrees of conditional dependency, one for each other node in the model,

Dep( a , b r c ), c c ` U c {a , b }. In order to have a single measure of dependency, we could

aggregate them in some way ; any triangular norm C (Schweizer and Sklar 1983), such

as, for example, the minimum or the product, could be an appropriate conjunctive

operator. So, we de® ne the global degree of dependency Dep
t
( a , b ) by means of

Dep
t
( a , b ) = C

c ` U c {a , b }

Dep( a , b r c ) (5)

To preserve the strongest dependencies compatible with a singly connected structure,

we can use any Maximum W eight Spanning Tree (MWST) algorithm (Aho et al.

1987). Taking into account these ideas, the Tree Approximation (TA) algorithm is

Figure 3. Graph-isomorphic dependency model and I-map constructed by the ET

algorithm.
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depicted in ® gure 4. In this algorithm C is a triangular norm and e is a small non-

negative real number (that may be zero) representing a threshold used to detect

independency. The speci® c M WST algorithm used in Kruskal’ s (Christo ® des 1975).

Since the M WST algorithm (steps 3 and 4 of the algorithm in ® gure 4) takes, at most

O(n # log (n)), the complexity of the TA algorithm is O(n $ ) (or O(n $ m), if we include the

cost of calculating the values of the dependency functions Dep( a , b r c ) from a data set

of size m). The next proposition proves that this algorithm also ® nds the SCN

isomorphic to a dependency model verifying F1± F6. Its advantage with respect to the

ET algorithm is that the algorithm in ® gure 4 is also able to ® nd a tree or forest

approximation of any dependency model.

Proposition 4. If M is a dependency model verifying the axioms F1 ± F6, then the graph

G obtained by means of the TA algorithm is isomorphic to M .

Proof. Taking into account that for any triangular norm C , the equality a C 0 = 0 is

true for every non-negative real number a, it is clear that Dep
t
( a , b ) = 0 if, and only if,

Dep( a , b r c ) = 0 (and consequently I( a , b r c )) for some node c . Therefore the edges

linking pairs of nodes a , b such that I( a , b r c ) will never appear in G . Thus, only the

edges linking pairs of conditionally dependent nodes given any other node will appear

in G (n –1 edges for the case of a tree, and less than n –1 for a forest). *

The TA algorithm, for the case of a probabilistic dependency model, is similar to

Chow± Liu’ s algorithm (Chow and Liu 1968) : both use an M WST algorithm where the

weight of an edge, Dep
t
( a , b ), is a measure of the dependency degree between the linked

variables (particularly the Kullback ± Leibler cross entropy measure, for the case of

Chow± Liu’ s algorithm). However, the algorithm by Chow and Liu (1968) computes

the weight Dep
t
( a , b ) directly, it does not use a conjunction of conditional weights

Dep( a , b r c ) but the single marginal weight Dep( a , b r J ) (and this fact gives rise to less

complexity, O(n # log (n))). Should the probabilistic dependency model be tree-

isomorphic or forest-isomorphic, both algorithms return the same output, but this is

not necessarily true in the general case. It would be interesting to compare these two

algorithms by evaluating their performance from several points of view (e.g. success

rates obtained in classi ® cation problems, as in Acid and de Campos (1995), or the

Figure 4. Algorithm building an SCN approximation of a dependency model.
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Table 1. Average Hamming distances between the true and

learnt trees.

Sample size 50 100 250 500 1000 2000

CL 7 ± 6 4 ± 2 3 ± 1 1 ± 5 0 ± 5 0 ± 0

TA 8 ± 0 4 ± 2 3 ± 7 1 ± 5 0 ± 4 0 ± 0

robustness of the two algorithms, for diŒerent sizes of the data sets, measured as the

degree of similarity between the topologies of the SCNs obtained by the algorithms

and that of the underlying SCN). In the next subsection, the results of several

experiments carried out with both algorithms are reported.

4.2. Experimental results

W e have designed two diŒerent kinds of experiments to evaluate the performance of

the previous approximate learning algorithms, the TA and CL (Chow± Liu) algo-

rithms : the ® rst one tries to give an idea of how robust the two algorithms are with

respect to the size of the database used to learn the tree, i.e. how well can the two

algorithms recover a true tree structure, depending on the sample size. The second

experiment uses several real databases (training sets), relating to some classi ® cation

problems, to learn bayesian trees (using both algorithms, TA and CL), and use them

to estimate the success rates of classi ® cation on a diŒerent test set.

Now, let us describe the ® rst experiment more precisely : we have randomly

generated 10 bayesian trees (random topology and random probability tables), with

each one having 10 binary variables. Next, we have obtained databases of diŒerent

sizes, generated from each one of these trees using the probabilistic logic sampling

technique (Henrion 1988) (the speci® c sizes we have used are 50, 100, 250, 500, 1000

and 2000). Then we applied the two learning algorithms to each data set to generate

a learnt tree. For the TA algorithm, we used the minimum as the conjunctive operator

C , and we chose the Kullback± Leibler cross entropy as the dependency measure in

both cases, i.e.

Dep( a , b r J ) = 3
a i , b j

P( a i , b
j
) ln 0 P( a i , b

j
)

P( a i) P( b
j
) 1

and

Dep( a , b r c ) = 3
a i , b j,

c
k

P( a i , b
j
, c

k
) ln 0 P( a i , b

j
, c

k
) P( c

k
)

P( a i , c
k
) P( b

j
, c

k
) 1 .

Later we compared these learnt trees with the original ones by examining any

structural diŒerences. The method for comparing graph structures was by using the

Hamming distance, i.e. the number of diŒerent edges in the learnt tree with respect to

the original (either missing or added edges). The average results of the ten experiments

for each sample size are summarized in table 1.

Several conclusions may be drawn from these experiments (although, given the

small number of trees used for each sample size, 10, the results may be not statistically

signi® cant) : ® rst, both algorithms exhibit a very similar performance ; in most cases

(52 from a total of 60 experiments), CL and TA gave the same Hamming distance (in

40 of these 52 cases the outputs of the two algorithms were exactly the same), and in

a few cases the Hamming distances were diŒerent (2 times TA was better than CL, and
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6 times CL obtained trees having smaller Hamming distance than these generated by

TA) ; anyway, the CL algorithm seems slightly more robust for small sample sizes. The

reason may be that the CL algorithm computes the dependency degrees Dep( a , b r J ) by

estimating the bidimensional probability distributions P( a , b ) from the data set,

whereas the TA algorithm computes the dependency degrees Dep( a , b r c ) by estimating

the tri-dimensional distributions P( a , b , c ), which are less reliably estimated for small

sample sizes. Second, from the results in table 1, we can see that both algorithms

perform quite well, even for relatively small sample sizes (bear in mind that the number

of distinct trees of n vertices is n
n

Õ # (Christo® des 1975), i.e. 10 ) in our case, so that the

size of the search space is rather large).

For the other kind of experiment, which tries to evaluate the performance of the TA

and CL algorithms as automatic classi ® ers, we selected two diŒerent classi ® cation

problems : the First M ONK problem (Thrun et al. 1991) and the Heart Disease

problem (King et al. 1995). The two databases used are public ones, and are part of the

collection of databases at the University of California, Irvine, collated by David Aha.

MONK problems rely on an arti ® cial robot domain, in which robots are described

by six diŒerent attributes (attributes A1, A2 and A4 all have 3 values, attributes A3

and A6 are binary, and attribute A5 has 4 values). The learning task is a binary

classi ® cation task. Each problem is given by a logical description of a class. Robots

either belong to this class or not, but instead of providing a complete class description

for the learning problem, only a subset of all 432 possible robots with its classi ® cation

is given. W e used the First M ONK problem, whose class description is : `the values of

attributes A1 and A2 are equal, or attribute A5 takes its ® rst value ’ . From 432 possible

examples, 124 were randomly selected for the training set. The test set consisted of all

432 examples. The trees learnt by TA and CL from the training set are depicted in

® gure 5, and the corresponding confusion matrices are shown in table 2. The row of

each entry represents the actual classi ® cation and the column represents the predicted

classi ® cation.

Figure 5. Trees obtained for the M ONK problem by (a) TA and (b) CL.

Table 2. Confusion matrices for TA and CL on the MONK

problem.

TA Class 0 Class 1 CL Class 0 Class 1

Class 1 144 72 Class 0 156 60

Class 1 72 144 Class 1 78 138
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Table 3. Confusion matrix for TA and CL,

for the Heart test set.

TA & CL Class 1 Class 2

Class 1 15 1

Class 2 5 9

Table 4. Confusion matrices for TA and CL, for the Heart

complete set.

CL Class 1 Class 2 TA Class 1 Class 2

Class 1 132 18 Class 1 133 17

Class 2 21 99 Class 2 22 98

It may be observed that the results obtained by the two algorithms are rather poor

(although CL performs slightly better than TA). The overall success rates for the test

set are 66 ± 66 % and 68 ± 05 % for TA and CL, respectively. It is clear that this problem

cannot be appropriately approximated by a dependency tree.

In the other classi ® cation problem, Heart Disease, the purpose is to predict the

presence or absence of heart disease given the results of various medical tests carried

out on a patient. The original database comes from the Cleveland Clinic Foundation

and was supplied by Robert Detrano, M D PhD of the V. A. M edical Center, Long

Beach, CA. W e used the same database employed within the Statlog Project (King et

al. 1995, M ichie et al. 1994), which contains 13 attributes (and the class variable) and

270 examples. There are 5 continuous attributes, that were discretized in four

categories using quartiles. W e used the ® rst 240 cases in the database as the training

set, and the last 30 cases as the test set.

The trees induced by CL and TA from the training set were not the same (they

diŒered in 3 edges), but the success rates were identical: 80 ± 00 % for the test set and

85 ± 60 % for the complete set (training plus test). The confusion matrices are displayed

in tables 3 and 4. The columns represent the predicted class, and the rows the true class.

In this case, the performance of both algorithms is quite good. The only noticeable

diŒerence between CL and TA in this problem is the number of attributes adjacent to

the class variable (which are the only relevant attributes for the classi® cation): in the

tree created by TA the class variable has three adjacent nodes (Chest pain type, Number

of major vessels coloured by ¯ uoroscopy, and Thal ), whereas there are four nodes

adjacent to class in the tree induced by CL (the above three, plus Maximum heart rate

achieved ). So, TA achieves the same success rates using less information than CL.

5. Directed graphs : independency relationships in polytrees

In this section, we try to characterize dependency models isomorphic to polytrees

(singly connected dags). This task is harder than its equivalent in undirected graphs,

because d-separation is more di� cult to manage than separation, and also because for

the directed case there is no analogue to Pearl and Paz’ s characterization theorem

(Pearl and Paz 1985). So, we shall need more axioms and more intermediate results.
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Let us consider the following set of axioms :

(P1) Symmetry :

(I(X , Y r Z ) 3 I(Y, X r Z )) c X , Y , Z X U .

(P2) Decomposition } composition :

(I(X , Y e W r Z ) 5 I(X , Y r Z ) and I(X, W r Z )) c X , Y , W , Z X U .

(P3) Intersection :

I(X , Y r Z e W ) and I(X , W r Z e Y ) 3 I(X, Y e W r Z )) c X , Y , W , Z X U .

(P4) Weak union :

(I(X , Y e W r Z ) 3 I(X , W r Z e Y )) c X , Y , W , Z X U .

(P5) Contraction :

(I(X , W r Z e Y ) and I(X , Y r Z ) 3 I(X , Y e W r Z )) c X , Y , W , Z X U .

(P6) Weak transitivity :

(I(X , Y r Z ) and I(X , Y r Z e c ) 3 I(X , c r Z ) or

I( c , Y r Z )) c X , Y , Z X U c c ` U c (X e Y e Z ).

(P7) Semi-strong union :

(I( a , b r Z ) and | I( a , b r J ) 3 I( a , b r Z e W )) c a , b ` U c W , Z X U c {a , b }.

(P8) Semi-strong atriangularity :

( | I( a , c r Z ) c Z X U c {a , c } and | I( c , b r Z ) c Z X U c {c , b } 3 I( a , b r c ) or

I( a , b r J )) c a , b , c ` U .

(P9) Shrinkage :

(I( a , b r Z ) 3 I( a , b r Z
"
) or I( a , b r Z

#
) c Z

"
, Z

#
such that

Z = Z
"

e Z
#
) c a , b ` U , c Z X U c {a , b }.

(P10) Blocking :

( | ( a , c r Z ) c Z X U c {a , c } and | I( c , b r Z ) c Z X U c {c , b }

3 I( a , d r c e b ) or I( d , b r c e a ) or I( a e b , d r J ) c d ` U c {a , b , c }) c a , b , c ` U .

(P11) M arginal chordality :

(I( a , b r J ) and I( c , d r J ) 3 I( a , b r c ) or I( a , b r d )) c a , b , c , d ` U .

It is simple to check that any polytree, together with the d-separation criterion,

de® nes a dependency model that satis ® es P1± P11. The di� cult task will be to prove

the converse, namely, that every dependency model verifying P1± P11 is polytree-

isomorphic.

An important property that can immediately be deduced from P6 and P7 is the

following:

(P12) Semi-strong transitivity :

(I( a , b r Z ) and | I( a , b r J ) 3 I( a , c r Z ) or

I( c , b r Z ) c c ` U c (Z e {a , b })) c a , b ` U c Z X U c {a , b }.
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Another useful property that can easily be deduced from P9 (using induction) is

the following:

(P13) Singularity :

(I( a , b r Z ), Z 1 J 3 d c ` Z such that I( a , b r c )) c a , b ` U c Z ` U c {a , b }.

Axioms P1± P6 are well-known, and it has been shown (Pearl 1988) that they

constitute a necessary condition for a dependency model to be dag-isomorphic. The

meaning of axiom P6 is the following : if X and Y are each dependent on c , then they

must also be dependent on each other, either marginally or conditionally, given c . In

(Pearl 1988), another axiom was also considered, namely chordality :

(P14) Chordality :

(I( a , b r c e d ) and I( c , d r a e b ) 3 I( a , b r c ) or I( a , b r d )) c a , b , d ` U .

In our case this axiom will not be necessary, because it is clearly implies by singularity.

Although P1± P6 are needed in order to obtain a dag-isomorphic dependency model,

they are not su� cient. Moreover, it has been reported (Geiger 1987) that dag-

isomorphic models are non-axiomatizable by a bounded set of Horn clauses, which

suggests that the number of axioms required for a complete characterization of the d-

separation in dags is probably unbounded (Pearl 1988). However, we are going to

prove that some more restricted models, namely polytree-isomorphic models, can be

fully characterized by a ® nite number of axioms : only ® ve additional axioms, P7± P11,

are needed (although, as occurs with P6, P7± P11 are not Horn clauses). Axiom P7 is

similar to strong union (F3) but a bit weaker : P7 demands marginal dependency as a

premise to increase the conditioning set without destroying independency. Axioms P8

is similar to atriangularity (F6) but it weakens the conclusion to allow the two possible

independency patterns among three variables which do not form a triangle : marginal

independency of two variables or conditional independency of two variables, given the

third one. Axiom P9 establishes another way to reduce the size of the separating set,

which is diŒerent from contraction : given any covering of the separating set Z , then at

least one of the subsets in the covering is still a separating set. P13 represents an

extreme case of this property, where the subsets in the covering are all singletons. Note

that this property of singularity was deduced from the other axioms in the undirected

case (Proposition 2). In the directed case this is no longer true, and it is even necessary

to impose a stronger condition. Note also that singularity, together with composition }
decomposition, asserts that single variables are su� cient to describe all the

independency statements. It is di� cult to explain in a few words the meaning of axiom

P10 ; it is related to the following idea : in a dag, two adjacent nodes in a chain always

block the chain, regardless of the direction of the arrows. Finally, P11 is quite similar

to chordality (P14), but it substitutes the conditioning sets in the antecedents of P14 by

the empty set, hence the name of marginal chordality.

As we did for the undirected case, we are going to build a graph (a dag) that

represents a dependency model verifying, in this case, the axioms P1± P11. The idea is

similar : ® rst, we construct an undirected graph whose edges connect every pair of

variables which are not independent in M , given any subset of U ; second, we give

direction to the edges.

Using semi-strong union, it is easy to show that

| I( a , b r Z ) c Z X U c {a , b } 5 | I( a , b r U c {a , b }) and | I( a , b r J ). (6)
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Therefore, the axioms P8 and P10 can be reformulated in the following way :

(P8) Semi-strong atriangularity :

( | I( a , c r U c {a , c }), | I( a , c r J ), | I( c , b r U c {b , c }) and

| I( c , b r J ) 3 I( a , b r c ) or I( a , b r J )) c a , b , c ` U .

(P10) Blocking :

( | I( a , c r U c {a , c }), | I( a , c r J ), | ( c , b r U c {b , c }) and

| I( c , b r J ) 3 I( a , d r c e b ) or I( d , b r c e a ) or

I( a e b , d r J ) c d ` U c {a , b , c }) c a , b , c ` U .

Taking into account equation (6), we de® ne the skeleton of a dependency model as

follows:

De® nition 2. Given a dependency model M = (U , I ) verifying the axioms P1 ± P11, the

skeleton of M is the undirected graph G
M

= (U , E
M

), where the set of edges E
M

is

E
M

= {( a , b ) r a , b ` U , | I( a , b r U c {a , b }), | I( a , b r J )}. (7)

In order to give direction to the skeleton, we proceed as follows: given any pair of

adjacent edges ( a , c ), ( c , b ) ` E
M

, a U c and b U c are arrows in the dag if, and only if,

I( a , b r J ) (we say that c is a head to head node) ; next, the rest of the edges must be

directed, with the restriction of not creating more head to head nodes. W e may have

some degree of freedom to complete the process of giving direction to the remaining

edges : some of these edges will be unambiguously directed, but some others may have

any direction. In the following de® nition, we describe this process more formally :

De® nition 3. Let M = (U , I ) be a dependency model verifying the axioms P1 ± P11, and

let G
M

= (U , E
M

) be its skeleton. Let us de® ne :

E The set B
M

of basic arrows of G
M

as

B
M

= {a U c r ( a , c ) ` E
M

, d b ` U c {a , c } such that ( c , b ) ` E
M

and I( a , b r J )}
E The set R

M
of remaining edges of G

M
as

R
M

= {( a , c ) ` E
M

r a U c a B
M

and c U a a B
M

}
E A set of arrows C

M
is said to be a set of arrows compatible with B

M
if, and only if,

(i) c ( a , c ) ` R
M

, either a U c ` C
M

and c U a a C
M

, or a U c a C
M

and c U a ` C
M

,

(ii) If a U c ` C
M

then ( a , c ) ` R
M

,

(iii) If a U c ` C
M

then c d ` U c {a , c }, d U c a (C
M

e B
M

).

E A (directed) graph D
M

= (U , A
M

), where A
M

= B
M

e C
M

is any set of arrows

compatible with B
M

, is said to be a dag associated with M .

B
M

is the set of arrows that de® ne head to head nodes ; the edges in R
M

must be directed

taking into account that no more head to head nodes can be formed ; each set C
M

represents a choice that completes the assignment of directions in a way consistent

with this restriction : the condition (i) ensures that all the edges in R
M

are directed one-

way ; the condition (ii) guarantees that only the edges in R
M

are directed ; and ® nally,

the condition (iii) guarantees that we do not create more head to head nodes. Any dag

containing all the basic arrows and a set of compatible arrows is a dag associated with

M . All the diŒerent dags associated with a dependency model are equivalent (Verma

and Pearl 1990a).
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Figure 6. Dag D including a dependency model M .

Figure 7. Dags associated with (a) C "
M

and (b) C #
M

.

For example, consider the dependency model M induced by the dag D in ® gure 6

through the d-separation criterion. In this case we have :

E
M

= {( a , e ), ( a , c ), ( b , c ), ( b , g ), ( b , h ), ( c , d ), ( d , j )}

B
M

= {a U c , b U c }

R
M

= {( a , e ), ( b , g ), ( b , h ), ( c , d ), ( d , j )}

Observe that the edges ( c , d ) and ( d , j ) have to be necessarily directed as c U d and

d U j . However, the other edges in R
M

may have more than one direction. There

are six diŒerent sets of compatible arrows ; so, there are six diŒerent dags associated

with M (including D). Figure 7 shows two of them, corresponding to the sets C "
M

=

{c U d , d U j , a U e , b U g , h U b } and C #
M

= {c U d , d U j , e U a , b U g , b U h }.
Now, we have to prove three main results : ® rst, that the concept of dag D

M
associated to a dependency model M verifying the axioms P1± P11 is well-de® ned (i.e.

that de® nition 3 actually de® nes a dag) ; second, that the independency relationships

in M are equivalent to d-separation relationships in D
M

, and third that D
M

is in fact

a polytree. The rest of this section is devoted to showing the truth of these assertions.

The next two lemmas establish some basic properties which are necessary for

subsequent development.

Lemma 1. Given a dependency model, M , verifying P1 ± P11, and its skeleton G
M

, if a c b

is a chain in G
M

, then it is either I( a , b r c ) or I( a , b r h ) but the two statements cannot both

be true.

Lemma 1 states that if a node c in a chain a c b is not head to head (i.e. | I( a , b r J )), then

its instantiation makes a and b independent. This creates a clear distinction between

head to head nodes (that allow us to de® ne the basic arrows) and not head to head

nodes, in terms of the diŒerent independency relationships they represent : marginal

independency or conditional independency, respectively.

Lemma 2. Given a dependency model, M , verifying P1 ± P11, and its skeleton G
M

, if

t
"

t
#
I tn

Õ "
tn is a chain in G

M
such that I(t i

Õ "
, ti + "

r t i ) c i = 2, ¼ , n –1, then

(a) I(t
"
, tn r t i), c i = 2, ¼ , n –1.

(b) | I(t
"
, tn r Z ), c Z X U c {t

"
, ¼ , tn }.
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Lemma 2 states that whenever a chain does not contain head to head nodes, the

extreme nodes of the chain are independent, given any intermediate node. It also

asserts that the instantiation of elements outside a chain without head to head nodes

does not make the chain’ s two extreme nodes independent; in particular, the extreme

nodes are not marginally independent ( | I(t
"
, tn r J )).

Now, we are in a position to prove that de ® nition 3 is consistent, i.e. it always de® nes

a dag :

Proposition 5. Let M = (U , I ) be a dependency model verifying the axioms P1 ± P11, and

let G
M

be its skeleton. Then the graph D
M

= (U , A
M

), where A
M

= B
M

e C
M

, B
M

is the

set of basic arrows of G
M

, and C
M

is any set of arrows compatible with B
M

, is a directed

acyclic graph .

Proof. If we examine De® nition 3, we may observe that there are only three situations

that could prevent D
M

from being a dag : ® rst, some basic arrows could be bidirected,

i.e. a U c ` B
M

and c U a ` B
M

(however, observe that none of the arrows in C
M

can be

bidirected). Second, if G
M

has a cycle and no edge in this cycle is found to be a basic

arrow, then this would lead to a directed cycle in D
M

, because of the restriction of not

creating any other head to head nodes than those de® ned by the basic arrows. Third,

we could ® nd no set C
M

verifying the restriction above. W e will prove that none of

these three cases appears.

Let us start with the ® rst case : the only way to get a basic arrow bidirected is to have

a chain d a c b in G
M

such that I( a , b r J ) and I( d , c r J ). In that case we would direct the

edges as a U c , b U c , d U a and c U a . Let us show that this situation is not possible : by

applying (P10) to the chain a c b we know that I( a , d r c e b ) or I( d , b r c e a ) or I( a e
b , d r J ). The ® rst and third possibilities are false because a and d are adjacent.

Therefore we have I( d , b r c e a ), and using singularity we achieve I( d , b r c ) or I( d , b r a ).

On the other hand, since a and d are adjacent we have | I( a , d r c ), and as we also have

I( a , b r J ), from Lemma 1 we deduce | I( a , b r c ). Now, by using weak transitivity, we

obtain | I( d , b r c ) or | I( d , b r c e a ). So, we have | I( d , b r c ) and therefore I( d , b r a ).

Now, from I( d , b r a ) and I( d , b r c e a ) we obtain I( d , c r a ) or I( c , b r a ), using weak

transitivity. Finally, as c and b are adjacent, we have | I( c , b r a ) and thus I( d , c r a ).

Now, from Lemma 1 we get | I( d , c r J ), which contradicts the hypothesis. W hat we

have proven is that a node adjacent to a head to head node cannot be head to head as

well.

Now, let us look at the second case : suppose that the skeleton G
M

contains a cycle

t
"

t
#
I tn

Õ "
tn t

"
and that there is no head to head node in the cycle, i.e. | I(t i

Õ "
, t i + "

r J ),

c i = 2, ¼ , n –1, | I(tn
Õ "

, t
"
r J ) and | I(tn , t

#
r J ). Then, by using Lemma 1, we obtain

I(t i
Õ "

, t i + "
r t i ), c i = 2, ¼ , n –1, I(tn

Õ "
, t

"
r tn ) and I(tn , t

#
r t

"
). So, we can apply Lemma

2 (a) to the chain t
"

t
#
I tn

Õ "
tn , and we get I(t

"
, tn r t i ). But this means that the nodes t

"
and tn cannot be adjacent in G

M
, which contradicts the hypothesis.

Finally, let us study the third case : the only situation in which is not possible to

complete the assignment of directions to the edges in R
M

without introducing more

head to head nodes is the following: we have a chain without head to head nodes,

a t
"

t
#
I tn c , in G

M
(i.e. | I(t i

Õ "
, t i + "

r J ), c i = 2, ¼ , n –1, | I( a , t
#
r J ), | I(tn

Õ "
, c r J )), and

the extreme edges in this chain have been directed as a U t
"

and c U tn . But in this

case, these arrows must have been directed because there are nodes b and d such that

the chains a t
"
b and c tn d are in G

M
, and moreover I( a , b r J ) and I( c , d r J ). In these

circumstances, by using marginal chordality (P11), we obtain I( a , b r c ) or I( a , b r d ).
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If I( a , b r c ) (the other case is completely analogous), this statement, together with

I( a , b r J ), produces I( a , c r J ) or I( c , b r J ) by using weak transitivity ; in either case,

between a and c (or between b and c ) there is a chain without head to head nodes,

and then Lemma 2 (b) asserts | I( a , c r J ) ( | I( c , b r J ), respectively) ; hence we obtain

a contradiction in every case. *

In the light of the result above, we can rightly speak about a dag D
M

associated to

a dependency model M verifying P1± P11. The next task will be to show that M is

isomorphic to D
M

. To do so, we still need a previous result, which is stated in the

following lemma :

Lemma 3. Given a dependency model, M , verifying P1 ± P11, and an associated dag D
M

,

if I( a , b r c ) and | I( a , b r J ), then there is a chain in D
M

linking a and b which does not have

head to head nodes and does contain c .

The previous lemma allows us to directly prove a partial result about the

isomorphism between the model M and its associated dag D
M

, that we could call

marginal isomorphy. M oreover, this result will make it possible to prove the full

isomorphism between M and D
M

in a relatively simple way.

Lemma 4. Let M be a dependency model verifying P1 ± P11, and let D
M

be an associated

dag. Then

c a , b ` U (I( a , b r J ) 5 © a , b r J ª
DM

).

Now, we are ready to prove the equivalence between independence statements in the

model and d-separation statements in the graph.

Theorem 4. Let M be a dependency model verifying P1 ± P11, and let D
M

be an associated

dag. Then

c X , Y , Z X U , (I(X , Y r Z ) 5 © X , Y r Z ª
DM

).

Proof. First, it is clear that this is enough to prove

I( a , b r Z ) 5 © a , b r Z ª
DM

, c Z ` U c {a , b } c a , b ` U

because of the composition } decomposition property (P2).

From the previous lemma, we know that I( a , b r J ) 5 © a , b r J ª
DM

. The proof

considers two diŒerent cases : the two variables a and b are marginally independent

(I( a , b r J )) or they are not ( | I( a , b r J )). In the ® rst case, the result is proven by

ascending induction, whereas in the second case it is proven using descending

induction, on the size of the separating set Z .

Suppose that | I( a , b r J ) (and therefore we also have | © a , b r J ª
DM

) : we are going to

prove that © a , b r Z ª
DM

3 I( a , b r Z ), by using descending induction.

If r Z r = n –2, i.e. Z = U c {a , b }, we have © a , b r U c {a , b }ª
DM

. If | I( a , b r U c {a , b }), as

we also have | I( a , b r J ), then a and b are adjacent in D
M

, and therefore | © a , b r U c
{a , b }ª

DM
, which contradicts the hypothesis.

Now, let us suppose that the result is true for every set S of size k 1 1 % r S r % n –2,

and let Z be a set such that r Z r = k and © a , b r Z ª
DM

. Let c be any element that does not

belong to Z . From © a , b r Z ª
DM

and | © a , b r J ª
DM

, and using semi-strong union, we

obtain © a , b r Z e c ª
DM

. By using semi-strong transitivity we also get © a , c r Z ª
DM

or

© c , b r Z ª
DM

, and using composition we have © a , b e c r Z ª
DM

or © a e c , b r Z ª
DM

.

Now, using weak union we deduce © a , c r Z e b ª
DM

or © c , b r Z e a ª
DM

. As the size of

the set Z e c is k 1 1, we can apply the induction hypothesis and obtain I( a , b r Z e c ).
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The size of the sets Z e a and Z e b is also k 1 1. So, if it should be | © a , c r J ª
DM

and | © c , b r J ª
DM

, we could also apply the induction hypothesis and obtain either

I( a , c r Z e b ) or I( c , b r Z e a ). Now, using intersection, we get I( a , b e c r Z ) or

I( a e c , b r Z ) ; in any case, from decomposition we obtain I( a , b r Z ).

Should we have either © a , c r J ª
DM

or © c , b r J ª
DM

, we could not apply the induction

hypothesis. But we can follow the following reasoning : from I( a , b r Z e c ), we obtain

I( a , b r Z ) or I( a , b r c ) by using shrinkage ; in the ® rst case we get the desired result

directly ; in the second case, from I( a , b r c ) and either © a , c r J ª
DM

or © c , b r J ª
DM

(which

imply either I( a , c r J ) or I( c , b r J )), we obtain, by using contraction and decomposition,

I( a , b r J ), which contradicts the hypothesis. So, this second case cannot occur.

Therefore, we have proven that © a , b r Z ª
DM

3 I( a , b r Z ). The converse implication

may be proven in a completely similar way.

Suppose that I( a , b r J ) (and therefore we also have © a , b r J ª
DM

) : we are going to

prove that I( a , b r Z ) 3 © a , b r Z ª
DM

, by using ascending induction.

If r Z r = 1, i.e. Z = {c }, we have I( a , b r c ) and I( a , b r J ). By using weak transitivity we

obtain I( a , c r J ) or I( c , b r J ). But in this case we also have © a , c r J ª
DM

or © c , b r J ª
DM

.

Now, by using composition we obtain © a , b e c r J ª
DM

or © a e c , b r J ª
DM

; in any case,

from weak union, we obtain © a , b r c ª
DM

.

Now, let us suppose that the result is true for every set S of size 1 % r S r % k, and let

Z be a set such that r Z r = k 1 1 and I( a , b r Z ). Let z
"
, z

#
be any two elements in Z , and

Z
"
= Z c {z

"
}, Z

#
= Z c {z

#
}. It is clear that Z = Z

"
e Z

#
. Therefore, by using shrinkage

we get I( a , b r Z
"
) or I( a , b r Z

#
). Let us suppose that it is I( a , b r Z

"
) (the other case is

completely analogous). So, by using the induction hypothesis, we deduce © a , b r Z
"
ª

DM
.

On the other hand, from I( a , b r Z ), I( a , b r Z
"
) and weak transitivity, we obtain

I( a , z
"
r Z

"
) or I(z

"
, b r Z

"
). Suppose that I( a , z

"
r Z

"
) (once again, the other case is

analogous). If I( a , z
"
r J ), using the induction hypothesis, we deduce © a , z

"
r Z

"
ª

DM
;

otherwise, if | I( a , z
"
r J ), then the ® rst part of this proof also ensures the same result

© a , z
"
r Z

"
ª

DM
. Now, from © a , b r Z

"
ª

DM
and © a , z

"
r Z

"
ª

DM
we obtain © a , b e z

"
r Z

"
ª

DM
by composition, and © a , b r Z

"
e z

"
ª

DM
3 © a , b r Z ª

DM
by weak union.

So, we have proven that I( a , b r Z ) 3 © a , b r Z ª
DM

. The proof for the opposite result,

namely © a , b r Z ª
DM

3 I( a , b r Z ), is completely similar. *

The only remaining task is to prove that the dags associated to dependency models

verifying P1± P11 are always singly connected.

Theorem 5. Let M be a dependency model verifying P1 ± P11, and let D
M

be an associated

dag. Then D
M

is a polytree (D
M

has no undirected cycle).

Proof. From Proposition 5 we know that D
M

is a dag, and from Theorem 4 we know

that the independency statements in M are equivalent to the d-separation statements

in D
M

. Let us suppose that D
M

is not a polytree. Then D
M

has at least one undirected

cycle, and this cycle must have at least one head to head node, c ; let a and b be the

parents of c in the cycle, and let d be the other node adjacent to a in the cycle. If d =

b , then we would have a triangle in D
M

, and this is not possible because of semi-strong

atriangularity. So, we deduce that d 1 b . As we have the chain d a c b in D
M

and c is a

head to head node, we know that a cannot be head to head (this was stated in the proof

for Proposition 5) ; so, we deduce | I( d , c r J ) and I( d , c r a ).

Now, we distinguish two cases : if in the chain linking d and c (that does not pass

through a but passes through b ) there is no head to head node, then we have a chain

linking d and c which is not blocked by a , and this implies | © d , c r a ª
DM

and | I( d , c r a ),
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which is a contradiction. Otherwise, in the chain linking d and c there are head to head

nodes. Let W be the set containing all these head to head nodes. Then we have

| © d , c r W e a ª
DM

and | I( d , c r W e a ). However, from I( d , c r a ) and | I( d , c r J ) we

deduce I( d , c r W e a ) by using semi-strong union, and once again we get a contra-

diction. Therefore D
M

cannot contain any cycle. *

Theorem 6. A dependency model is polytree-isomorphic if, and only if, it veri® es P1 ± P11.

The proof follows directly from Theorems 4 and 5.

With respect to the minimality of the set of axioms characterizing polytree-

isomorphic dependency models, in order to prove that P1± P11 constitute such a

minimal set, and bearing in mind the result of theorem 6, it would be su� ce to ® nd, for

each axiom Pk, a dependency model verifying all the axioms P1± P11, except Pk.

Alternatively, to show that the set P1± P11 is not minimal, we could try to prove that

one of these axioms may be deduced from the others. So far, neither of these two

approaches has been successful, hence we can only ponder on the minimality of the set

P1± P11, but no proof is in sight.

6. Directed graphs : learning algorithms

In this section, we are going to follow, for directed graphs, a development similar to

that carried out in Section 4 for undirected graphs : ® rst, we develop exact and

approximate algorithms for learning singly connected dags, and second, the results of

several experiments carried out with these algorithms are reported.

6.1. Algorithms for learning polytrees

Starting out from the results obtained in Section 5, the next proposition will establish

the basic property needed to develop an e� cient algorithm for learning polytrees :

Proposition 6. Let M be a dependency model verifying the axioms P1 ± P11. Let D
M

be

a directed graph associated with M , and G
M

its skeleton. Then , for every pair a , b ` U ,

the edge a ± b is in G
M

5 | I( a , b r c ) c c ` U c {a , b }, and | I( a , b r J ).

Proof. The edge a ± b is in G
M

if, and only if, | I( a , b r U c {a , b }) and | I( a , b r J ). But we

also have

| I( a , b r U c {a , b }) and | I( a , b r J ) 5 | I( a , b r c ) c c and | I( a , b r J ),

the necessary condition being deduced from semi-strong union (P7) and the su� cient

condition from singularity (P13) (which is a consequence of (P9)). *

This result allows us to design an e� cient Exact Polytree (EP) algorithm to recover

a directed graph associated with a dependency model verifying P1± P11, which is

shown in ® gure 8. The algorithm ® rst ® nds the skeleton of the graph by removing edges

from an initially complete undirected graph G : for each pair of variables, it iteratively

checks the marginal independency and the conditional independency of these two

variables, given any other single variable, and removes the corresponding edge from

G if at least one of these relationships is found to be true. Next, the algorithm ® nds the

head to head patterns by testing for marginal independency of any pair of variables

having a common adjacent variable. Finally, the remaining edges are directed without

introducing directed cycles or new head to head connections.
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Figure 8. Algorithm for learning polytrees.

Proposition 7. If M is a dependency model verifying the axioms P1 ± P11, then the

graph G obtained by means of the EP algorithm is a polytree isomorphic to M .

Proof. Taking into account the results in Theorems 4 and 5, it is su� cient to prove that

the graph G obtained by the algorithm is a dag D
M

associated with M . From

Proposition 6 we deduce that the algorithm (steps 1 and 2) correctly recover the

skeleton, G
M

, of any associated dag, D
M

. Moreover, step 3 of the algorithm produces

the set B
M

of basic arrows of G
M

. Finally, in step 4, a set, C
M

, of arrows compatible with

B
M

is identi ® ed. From Proposition 5, the algorithm never fails, and outputs a polytree

which is one of the dags, D
M

, associated with M . *

The previous proposition proves that the EP algorithm produces a polytree which

is isomorphic to the dependency model if such a one exists. With respect to complexity,

it is clear that the algorithm is e� cient, it takes, at most, O(n $ ) ; even if we have to

estimate the truth values of the independence statements from a data set, the complete

process can be done in O(n $ m), where m is the size of the data set. Moreover, to reliably

test independency statements like I( a , b r J ) and I( a , b r c ), we do not need an enormous

amount of data, so that the value of m may be feasible for practical situations.

The next proposition asserts that, for dag-isomorphic dependency models which are

not polytree-isomorphic, the EP algorithm either returns `fail ’ (meaning that the

model is not polytree-isomorphic) or produces a dag (not necessarily singly connected)

as output, which is at least an I-map of the model.

Proposition 8. If M is a dependency model which is isomorphic to a dag, then the EP

algorithm returns either `fail ’ or a dag which is at least an I-map of M .
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Proof. If the model M is polytree-isomorphic, then Proposition 7 asserts that the

algorithm does not fail and builds a dag isomorphic to M . So, let us consider a model

isomorphic to a dag, D , which is not polytree-isomorphic. This means that the dag D

has at least one (undirected) cycle. W e shall prove that if the algorithm does not fail,

then it constructs a dag, G , which contains all the edges in D (and possibly some

additional edges) ; moreover, the head to head patterns in D will also be head to head

patterns in G , and the patterns which are not head to head in D will be non-head to

head in G as well. In these circumstances, G is clearly an I-map of D . First, as the

algorithm only removes from G those edges a ± b such that I( a , b r J ) or I( a , b r c ) for

some node c , then all the edges which are in the graph D remain in G .

Second, let us see that if a chain a c b in D is not head to head at c , then this chain is

not head to head at c in G : suppose that a c b is head to head at c in G . Then it is either

I( a , b r J ) (but this is not possible because there is at least one chain without head to

head nodes in D linking a and b ) or there are nodes d
"

and d
#
, which are adjacent to

c in G , and verifying I( d
"
, a r J ) and I( d

#
, b r J ). But in this case, we have | I( d

"
, c r J ) and

| I( d
#
, c r J ) (because of the adjacency of d

"
and c , and d

#
and c in G) and this means that

in D there are chains without head to head nodes linking d
"

and c , and d
#

and c . On the

other hand, as c is not head to head in the chain a c b in D , then at least one of the edges

a ± c or c ± b must be directed as a V c or c U b ; suppose that c U b (the other case is

analogous). Then by composing the chain without head to head nodes from d
#

to c

with the arrow c U b we ® nd a chain in D without head to head nodes linking d
#

to b ,

and this implies | I( d
#
b r J ), which is a contradiction.

Third, suppose that we have one head to head pattern a U c V b in D . We shall see

that the algorithm either produces this head to head pattern in G too, or fails : if

I( a , b r J ), then the algorithm clearly directs the edges a ± c and c ± b in G towards c . If

| I( a , b r J ), then in D there is at least one chain without head to head nodes linking

a and b . If this chain contains only one arrow, i.e. a and b are adjacent in D , then the

chains c a b and c b a are in D and are not head to head. Then, using the result stated in

the second part of this proof, we can deduce that the algorithm does not create head

to head connections at a and b . So, the algorithm either has to direct the edges creating

the head connection at c or has to direct in another way, thus creating a directed cycle,

and returning `fail ’ . If the chain linking a and b contains more than one arrow, the

same reasoning may be applied : the algorithm will never create head to head connec-

tions at the nodes in this chain, and then again there are two options: creating the head

to head connection at c , or creating a directed cycle. The proof is complete. *

The previous proposition shows that, in some cases, the EP algorithm is capable of

constructing a non-singly connected network which is at least an I-map of the model,

even if the model is not polytree-isomorphic but it is dag-isomorphic. An example of

this is shown in ® gure 9, which depicts a dag and the corresponding I-map constructed

by the EP algorithm. It is worth noting the case of any dependency model isomorphic

to a dag that contains only cycles having three or more head to head nodes (a special

type of the so-called simple graphs (Geiger et al. 1993)). In this case, it is easy to see

that any two non-adjacent nodes in the graph are either independent given the empty

set or independent given some other single node. So, steps 1 and 2 of the algorithm will

recover the skeleton of the graph, step 3 will correctly direct the set of basic arrows,

and step 4 will orient the remaining edges without introducing new head to head

connections. Therefore, the resultant graph, G , is not only an I-map, but it is also

isomorphic to the model. Should we want to modify the EP algorithm, in order to
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Figure 9. (a) Dag-isomorphic model and (b) I-map constructed by EP.

know whether a dependency model can be exactly represented by a polytree, we could

not add a simple check for triangular structures, as we did in the undirected case : we

need to add a more complex check for general undirected cycles, although the overall

complexity of the modi® ed algorithm is still O(n $ ).

There is another algorithm, developed by Geiger et al. (1990), which recovers a

polytree I-map of a dependency model, if such a one exists. It is quite similar to the EP

algorithm, the main practical diŒerence being that the algorithm in Geiger et al. (1990)

constructs the skeleton of the dag by using the independency tests I( a , b r J ) and

I( a , b r U c {a , b }) (this last test replaces the set of tests I( a , b r c ) c c in the EP algorithm).

As we commented in Section 4, using tests like I( a , b r U c {a , b }) entails exponential

complexity and very low reliability, if we have to estimate their true values from a data

set. So, the EP algorithm may be more appropriate in these circumstances.

In order to complete the parallelism with the undirected case, we now consider the

task of constructing a polytree approximation of any dependency model. As we have

already said, this kind of algorithm may be more interesting in practice than the

previous ones, because it can quickly ® nd an approximate model, which is useful, at

least as a ® rst approach to the problem. We start out from the same idea of using a

dependency function which measures the degree of dependency between variables.

However, in this case, in the light of Proposition 6, we should employ not only the

degree of conditional dependency between two variables, given a third variable,

Dep( a , b r c ), but also the marginal degree of dependency Dep( a , b r J ), and then

aggregate them using a triangular norm. In other words, the global degree of

dependency between two variables a and b is de® ned in this case as

Dep
p
( a , b ) = Dep( a , b r J ) C 0 C

c ` U c {a , b }

Dep( a , b r c ) 1
The proposed algorithm uses a MW ST algorithm to obtain the skeleton of the

polytree, like the TA algorithm does, the only diŒerence being the diŒerent measure of

global dependency used. Next the algorithm tries to direct the edges of the skeleton by

using the following scheme : in a head to head pattern a U c V b , the instantiation of the

head to head node c should normally increase the degree of dependency between the

variables a and b , whereas in a non-head to head pattern such as a V c U b , the

instantiation of the middle node c should produce the opposite eŒect, decreasing the

degree of dependency between a and b . So, the idea is to compare the degree of
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dependency between a and b after the instantiation of c , Dep( a , b r c ), with the degree

of dependency between a and b before the instantiation of c , Dep( a , b r J ), and directing

the edges towards c if the former is greater than the latter. The proposed algorithm,

called the Polytree Approximation (PA) algorithm, is depicted in ® gure 10.

Bearing in mind the de ® nition of the dependency degree Dep
p
(., .) that the algorithm

uses, the properties of any triangular norm C , and the result of Proposition 6, it is

clear that for polytree-isomorphic dependency models the PA algorithm recovers the

correct polytree (up to isomorphism). Anyway, the PA algorithm ® nds a polytree

approximation of any dependency model. It is also obvious that the complexity of the

PA algorithm is O(n $ ).

In order to ® nish this subsection, let us look at an example in which a dag-isomorph

probabilistic dependency model is approximated by a polytree, using the PA

algorithm. The dag representing the model (which has four binary variables) is

depicted in ® gure 11, and the description of the quantitative part of the model (the

probability distributions) is shown in table 5.

Figure 10. Algorithm building a polytree approximation of a dependency model.

da

b

c

Figure 11. Dag-isomorphic dependency model D .
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Table 5. Probability distributions for dag

D .

P( a
"
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#
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r a
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) = 0 ± 4 P( b

#
r a

"
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#
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#
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#
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) = 0 ± 1 P( c

#
r a

"
) = 0 ± 9

P( c
"
r a

#
) = 0 ± 9 P( c

#
r a

#
) = 0 ± 1

P( d
"
r b

"
, c

"
) = 0 ± 3 P( d

#
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"
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"
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#
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#
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"
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"
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#
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#
r b
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) = 0 ± 8

The dependency measure Dep we use in this example is the L
"

norm de® ned by

means of

Dep( a , b r J ) = 3
a i , b

j

r P( a i , b
j
) –P( a i ) P( b

j
) r

and

Dep( a , b r c ) = 3
c
k

P( c
k
) 3

a i , b
j

r P( a i , b
j
r c

k
) –P( a i r c

k
) P( b

j
r c

k
) r

The values obtained for Dep(., . r J ), Dep(., . r .) and Dep
p
(., .) are displayed in table 6,

where we use the minimum operator as the triangular norm.

Therefore steps 1± 4 of the PA algorithm produce a skeleton, which has the edges

a ± c , b ± d and c ± d . Since step 5 does not ® nd any head to head pattern, step 6 directs all

the edges without introducing head to head connections. There are several options for

doing this ; one of them is depicted in ® gure 12 (a). Figure 12 (b) shows another possible

polytree approximation that has not been considered by the PA algorithm.

In order to estimate the quality of the resultant polytree as an approximation of the

dag in ® gure 11, we have measured the distance between the joint probability

distributions P and P
a
, associated with the original dag and its polytree approximation

given by the PA algorithm, respectively. The same procedure was carried out for P and

the distribution P
b

associated with the other approximation being considered. The

distance measure used has also been the L
"

norm :

dip(P , P´) = 3
a i , b j,

c
k, d l

r P( a i , b
j
, c

k
, d

l
) –P´( a i , b

j
, c

k
, d

l
) r

The results are the following: dist(P , P
a
) = 0 ± 095, and dist(P , P

b
) = 0 ± 192, so it is clear

that the polytree obtained by the PA algorithm is better although it modi® es the

topology of the original dag more than the polytree in ® gure 12 (b).

There is another algorithm, developed by Rebane and Pearl (1989), that constructs

polytree approximations for probabilistic dependency models and also guarantees

® nding a polytree isomorphic to the model if such a one exists. It uses Chow± Liu’ s

algorithm for building the skeleton, and next directs it by using tests of marginal

independency. For the model of the previous example, the algorithm in Rebane and

Pearl (1989) produces the same result as the PA algorithm, although this is not always

the case. In the next subsection, we compare the performance of both algorithms from

an empirical point of view.
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Table 6. Dependency degrees between variables.

Dep(., . r J ) Dep(., . r a ) Dep(., . r b ) Dep(., . r c ) Dep(., . r d ) Dep
p
(., .)

a , b 0 ± 192 0 ± 071 0 ± 064 0 ± 064

a , c 0.768 0.734 0.537 0.537

a , d 0 ± 426 0 ± 364 0 ± 024 0 ± 024

b , c 0 ± 154 0 ± 0 0 ± 079 0 ± 0

b , c 0 ± 284 0 ± 198 0 ± 203 0 ± 198

c , d 0 ± 511 0 ± 170 0 ± 461 0 ± 170

6.2. Experimental results

W e have designed three types of experiments, aiming to evaluate the behaviour of the

PA and RP (Rebane± Pearl) algorithms from diŒerent points of view. The ® rst two

experiments are similar to the ones designed for the undirected case in Section 4.2 : the

® rst experiment intends to assess the robustness of the algorithms, depending on the

size of the data set used for learning the polytree. The second experiment uses the

polytrees learnt from a given training set to calculate the success rates for classifying

instances from a diŒerent test set. The third experiment compares a multiply connected

network with the singly connected approximations obtained by PA and RP.

For the ® rst experiment, we have randomly generated 10 polytrees (random

skeleton, random directions, and random probability tables), each one having 10

binary variables. Then we simulated data sets with sizes of 50, 100, 250, 500, 1000 and

2000, from each one of these polytrees, once again using probabilistic log sampling.

After applying the RP and PA algorithms to each data set to obtain the learnt

polytrees, we compared the resultant structures with the original ones : we measured

the Hamming distances between the true and the learnt polytrees, as well as the

da

b

c

da

b

c

(a) (b)

Figure 12. (a) Result of the PA algorithm on dag D . (b) Another polytree

approximation of D .

Table 7. Average Hamming distances between the skeletons of

the true and learnt polytrees.

Sample size 50 100 250 500 1000 2000

RP 8 ± 4 6 ± 5 4 ± 7 3 ± 7 2 ± 7 1 ± 3

PA 8 ± 4 7 ± 1 5 ± 1 3 ± 9 3 ± 1 1 ± 5
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Table 8. Average Hamming distances between the true and

learnt polytrees.

Sample size 50 100 250 500 1000 2000

RP 11 ± 6 9 ± 9 8 ± 7 7 ± 5 5 ± 6 5 ± 1

PA 10 ± 4 9 ± 8 7 ± 5 6 ± 7 5 ± 9 2 ± 9

Hamming distances between their skeletons (without considering the directions of the

arrows). The mean values of the Hamming distances are displayed in tables 7 and 8.

As in the undirected case, the dependency measure selected was the Kullback± Leibler

entropy, and the conjunctive operator C used by the PA algorithm was the minimum.

After comparing the results displayed in tables 1 and 7, it is clear that it is easier to

estimate a tree than the skeleton of a polytree (which is a tree) : we obtain worse results

for polytrees than for trees, using the same sample sizes (or, in other words, in order

to reliably estimate the skeleton of a polytree, the number of data required is greater

than for the case of trees). If we examine tables 7 and 8, we can also see that the task

of directing the edges of the skeleton, in order to obtain the complete polytree, is

complicated : the Hamming distances between the learnt and the original polytrees are

much greater than the distances between the corresponding skeletons. These facts are

not surprising, because polytrees represent models that are more complex than those

represented by trees. Moreover, the erroneous estimation of some edges of the

skeleton may frequently produce a cascaded erroneous estimation of the directions of

other (correct) edges, which explains the higher values in table 8, with respect to those

in table 7.

We can also conclude that, although the two algorithms, RP and PA, perform quite

similarly, RP is slightly more robust than PA for estimating the skeleton of the

polytree, the reason being, once again, that RP only needs to estimate bidimensional

distributions, and PA also needs to estimate three-dimensional distributions (in 49 of

the 60 experiments, the Hamming distances between skeletons were the same for both

algorithms). However, with respect to the polytree itself, i.e. taking into account the

direction of the arrows, the converse situation arises : the PA algorithm produces

values of the Hamming distance lower than the corresponding values for the RP

algorithm (and, in this case, the algorithms reveal more diŒerences : only in 12 of the

60 cases the Hamming distances between polytrees were the same for the two

algorithms, and only in 1 case were the polytrees identical).

We have also used the First MONK problem (same training and test sets used in the

undirected case) for testing the performance of the PA and RP algorithms on

classi ® cation problems. The polytrees obtained after running PA and RP on the

training set are displayed in ® gure 13.

In this case the confusion matrices display a markedly diŒerent behavior. Table 9

shows these matrices. The row of each entry represents the actual classi ® cation and the

column represents the predicted classi ® cation. We may note that PA behaves

considerably better than RP : PA reaches a success rate of 94 ± 44 %, whereas RP only

achieves 68 ± 05 %.

It is also interesting to note that by removing the weakest arcs (i.e. those arcs

representing the weakest dependencies) from the polytree obtained by PA, we can

improve the results : if we eliminate the weakest arc (the arc A3 U C ), we obtain a
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success rate of 95 ± 83 %, and if we remove the two weakest arcs (A3 U C and A6 U A1)

we get a 100 % success rate. This may be comparable to the common practice

employed by many classi® cation tree based learning algorithms for pruning the trees

obtained initially.

The results obtained by PA and RP for the Heart Disease database are identical to

those reported for TA and CL, respectively, in Section 4.2 (i.e. although the learnt

networks were diŒerent, the success rates and confusion matrices were the same).

Finally, to test the PA and RP algorithms in more realistic and complex domains,

we selected the Alarm Monitoring System (Beinlich et al. 1989) for the third

Figure 13. Polytrees obtained for the MONK problem by (a) PA and (b) RP.

Table 9. Confusion matrices for PA and RP on the MONK

problem.

PA Class 0 Class 1 RP Class 0 Class 1

Class 0 192 24 Class 0 156 60

Class 1 0 216 Class 1 78 138

Figure 14. The Alarm network structure.
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experiment. This is a diagnostic application for patient monitoring, based on belief

networks. The Alarm network, which displays the relevant variables and relationships

in this domain, is depicted in ® gure 14.

The performance of any data-driven learning algorithm on the Alarm network has

become one of the standard ad hoc procedures for testing the capabilities of the

algorithm. The input data commonly used are subsets of the Alarm database

(Herskovits 1991), which contains 20 000 cases that were stochastically generated

using the Alarm network.

Given the nature of the PA and RP algorithms, we cannot expect to recover the

Alarm network exactly (because it is not singly connected), but it is interesting to

compare the learnt polytrees with the original network. In our experiment, we used the

® rst 2000 cases from the Alarm database. The results obtained by PA and RP when

applied to this data set are depicted in ® gures 15 and 16, respectively.

When comparing ® gures 15 and 16 with the Alarm network, we can see that the two

algorithms perform well, but in this case the PA algorithm performs much better than

RP : both algorithms introduce 32 correct edges and 4 incorrect edges (edges 12± 14,

24± 10, 9± 8 and 34± 15) in the skeleton ; however, PA reverses only 1 arc (8 U 30) with

respect to the Alarm network, whereas RP reverses the directions of 12 arcs. Taking

into account that the algorithms do not use any information relating to ordering

variables, the number of incorrect directions is surprisingly small (especially for PA).

In order to assess the performance of the algorithms, not only from the perspective

of how much of the target network is reconstructed, but also of how closely the

probability distribution learnt approximates the empirical frequency distribution, we

would like to compute the cross-entropy (CE ) between the empirical frequency

distribution, P, and each of the distributions associated to the true Alarm network (P
T

)

and to the networks generated by PA (P
PA

) and RP (P
RP

). Unfortunately, this

computation is unfeasible (because it involves summing over the exponentially many

atomic events). However, there is a formula (Lam and Bacchus 1994), which takes

Figure 15. The Alarm polytree obtained using PA.
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advantage of the fact that a distribution speci® ed by a bayesian network has a special

form, which allows us to calculate e� ciently the diŒerence of cross-entropy between

two diŒerent networks : If P
G

is the joint probability distribution associated to a

network G whose set of nodes is U = {x
"
, ¼ , xn }, then the cross-entropy CE(P, P

G
) can

be written in the following way :

CE (P , P
G
) = – H

P
(U ) 1 3

n

i = "

H
P
(x i ) – 3

n

i= " , p G(i ) 1 J

Dep(x i , p
G
(i) r J )

where H
P

denotes Shannon entropy with respect to the distribution P , p
G
(i) is the

parent set of x i in the graph G , and Dep(x i , p
G
(i) r J ) is the Kullback ± Leibler cross-

entropy between x i and p
G
(i). As the ® rst two terms of the expression above do not

depend on the graph G , then the diŒerence of cross-entropy between two networks G
"

and G
#

can be calculated as follows:

CE(P, P
G "

) –CE(P , P
G #

) = 3
n

i= " , p G
#
(i ) 1 J

Dep(x i , p
G #

(i) r J ) – 3
n

i= " , p G
"
(i ) 1 J

Dep(x i , p
G "

(i) r J )

For the Alarm network, the results are displayed in table 10. W e have also included

for comparative purposes, the diŒerence of cross-entropy between the distribution

associated to the true Alarm network and the one corresponding to the empty

network, PJ (which represents marginal independency among all the variables).

From these results we can see that the distributions associated to the polytrees

Figure 16. The Alarm polytree obtained using RP.

Table 10. DiŒerences of cross-entropy.

CE(P , P
PA

) –CE(P , P
T

) 0 ± 96

CE(P , P
RP

) –CE(P , P
T

) 1 ± 40

CE(P , PJ ) –CE(P , P
T

) 9 ± 04
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generated by PA and RP, P
PA

and P
RP

, respectively, represent good approximations of

the target distribution P . It can also be observed that, from a cross-entropy point of

view, PA still performs better than RP.

There are several algorithms for learning bayesian networks which are quite reliable

and reasonably e� cient on sparse networks (Cooper and Herskovits 1992, Lam and

Bacchus 1994, Spirtes et al. 1993). Obviously, these algorithms perform better than PA

or RP on the Alarm network. However, in general, learning bayesian networks is NP-

Hard (Chickering et al. 1994). The purpose of this example is only to show that PA and

RP can extract a lot of useful and reliable information from data at low cost. For

managing domains with a large number of variables (for example, in Information

Retrieval applications (Ghazfan et al. 1996, Savoy 1991), we have to deal with

thousands of terms or concepts, and each one represents a variable) or very large

databases (where the number of times the data set needs to be read is very important

(Ezawa and Schuermann 1995)), singly connected networks and other kinds of

simpli ® ed models could represent an interesting alternative.

7. Concluding remarks

W e have studied in detail the classes of dependency models which are associated with

singly connected networks. The main results we obtained are the identi ® cation of ® nite

sets of axioms that characterize dependency models isomorphic to undirected SCNs

(forests and trees) through the separation criterion, and to directed SCNs (polytrees)

through the d-separation criterion. In more practical terms, our theoretical study has

been the basis for the development of simple and e� cient learning algorithms for

SCNs : we have developed algorithms that recover in polynomial (cubic) time the

graphs associated with dependency models isomorphic to SCNs, as well as algorithms

that ® nd SCN approximations of any dependency model, also in polynomial time. We

have also tested the performance of the approximate learning algorithms from

diŒerent points of view, obtaining good results in general. Our experiments on

classi ® cation problems also reveal that belief networks, and particularly polytrees,

may represent a good technique for the construction of automatic classi ® ers, although

the learning algorithms should probably be modi® ed in some way to give them a more

classi ® cation oriented perspective.

With respect to future research work, we are interested in studying the independency

properties that characterize other kinds of graphical structures, such as chordal graphs

and simple graphs. Chordal graphs are undirected graphs in which every cycle of

length four or more has a chord, and they are the kind of graphs associated with the

so-called decomposable models (which have the property of being representable by

means of both undirected and directed graphs). W e have already proven (de Campos

1996) that dependency models isomorphic to chordal graphs may be characterized by

the axioms F1± F5 and one additional axiom similar to P14 (chordality).

On the other hand, simple graphs (Geiger et al. 1993) are directed acyclic graphs

where every pair of nodes with a common direct child have no common ancestor nor

is one an ancestor of the other. The additional axioms we have introduced to

characterize polytree-isomorphic dependency models, P7± P11, are no longer valid for

simple graphs. However, a weaker version of P7 is valid for simple graphs :

Weak semi-strong union :

I( a , b r Z ) and | I( a , b r J ) 3 I( a , b r U c {a , b }).

A weaker version of P8 is also valid for simple graphs :
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Weak atriangularity :

| I( a , c r Z ) c Z X U c {a , c } and | I( c , b r Z ) c Z X U c {c , b } 3 I( a , b r J ) or d Z
!

X U c
{a , b , c } such that I( a , b r Z

!
e c ).

So, we should look for the additional axioms needed to characterize dependency

models isomorphic to simple graphs. The detailed study of these topics, as well as their

possible consequences which are relevant for the design of learning algorithms, will be

the object of future research.
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Appendix : proof of lemmas

In this appendix, we prove all the lemmas stated in the main body of the paper, as well

as some other intermediate results.

Lemma 1. Given a dependency model, M , verifying P1 ± P11, and its skeleton G
M

, if a c b

is a chain in G
M

, then it is either I( a , b r c ) of I( a , b r J ) but the two statements cannot both

be true.

Proof. Since a c b is a chain in G
M

we have | I( a , c r U c {a , c }), | I( a , c r J ), | I( c , b r U c
{b , c }) and | I( c , b r J ). Then using semi-strong atriangularity we obtain I( a , b r c ) or

I( a , b r J ). On the other hand, from | I( a , c r J ), | I( c , b r J ) and weak transitivity (in

contrapositive form) we obtain | I( a , b r c ) or | I( a , b r J ). Therefore we have I( a , b r c )

and | I( a , b r J ), or I( a , b r J ) and | I( a , b r c ). *

Lemma 2. Given a dependency model, M , verifying P1 ± P11, and its skeleton G
M

, if

t
"

t
#
I tn

Õ "
tn is a chain in G

M
such that I(t i

Õ "
, ti + "

r t i ) c i = 2, ¼ , n –1, then

(a) I(t
"
, tn r t i), c i = 2, ¼ , n –1.

(b) | I(t
"
, tn r Z ) c Z X U c {t

"
, ¼ , tn }.

Proof. First, we are going to prove that I(t
"
, tn r tn

Õ "
) and | I(t

"
, tn r J ) by using

induction. For n = 3 the result is true because of Lemma 1. Suppose that the result is

true for n –1, that is to say, I(t
"
, tn

Õ "
r tn

Õ #
) and | I(t

"
, tn

Õ "
r J ). As I(tn

Õ #
, tn r tn

Õ "
), then

| I(tn
Õ #

, tn r J ), again using Lemma 1. By applying semi-strong transitivity to these two

statements, we obtain I(t
"
, tn r tn

Õ "
) or I(t

"
, tn

Õ #
r tn

Õ "
). If I(t

"
, tn

Õ #
r tn

Õ "
) is true, as we

have I(t
"
, tn

Õ "
r tn

Õ #
), then intersection and decomposition produce I(t

"
, tn

Õ "
r J ), which

contradicts the induction hypothesis; hence we have I(t
"
, tn r tn

Õ "
). Moreover, if
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I(t
"
, tn r J ) then we can apply weak transitivity, which gives I(t

"
, tn

Õ "
r J ) or I(tn

Õ "
, tn r J ),

and both statements are false, the ® rst one according to the induction hypothesis and

the second one because tn
Õ "

and tn are adjacent in G
M

. Therefore | I(t
"
, tn r J ).

Now, let us prove the part (a) of the lemma : from the previous result, applied to the

(sub)chain t
"
I t i t i + "

, we obtain as a result I(t
"
, t i+ "

r t i ) and | I(t
"
, t i+ "

r J ). Now, by using

semi-strong transitivity we obtain I(t
"
, tn r t i) or I(t i+ "

, tn r t i). If we again apply the

previous result to the (sub)chain tn I t i + "
ti we obtain I(t i , tn r t i+ "

) and | I(ti , tn r J ). In

the case that I(ti + "
, tn r t i ) is true, then from I(t i+ "

, tn r t i ) and I(t i , tn r t i+ "
), by using

intersection and decomposition, we obtain I(ti , tn r J ), which is a contradiction. So, we

have | I(t i + "
, tn r t i ) and therefore I(t

"
, tn r t i ).

Finally, let us prove the part (b) of the lemma : we are going to prove ® rst

| I(t
"
, tn r c ) c c ` U c {t

"
, ¼ , tn }, using induction. For n = 3, since t

#
is adjacent to t

"
and t

$
, we have | I(t

"
, t

#
r c ) and | I(t

#
, t

$
r c ), c c ` U c {t

"
, t

#
, t

$
}. M oreover, from Lemma 1

we deduce | I(t
"
, t

$
r J ). Therefore, from semi-strong transitivity we obtain | I(t

"
, t

$
r c ).

Now, let us suppose that the result is true for n –1, i.e. | I(t
"
, tn

Õ "
r c ). If I(t

"
, tn r c ), as

we already know that | I(t
"
, tn r J ), then we can apply semi-strong transitivity, and

we obtain I(t
"
, tn

Õ "
r c ) or I(tn

Õ "
, tn r c ), and both statements are false (the ® rst one

according to the induction hypothesis and the second one because of the adjacency

of tn
Õ "

and tn ). Therefore we have | I(t
"
, tn r c ) c c ` U c {t

"
, ¼ , tn }. Now, using singularity

we obtain | I(t
"
, tn r Z ) c Z X U c {t

"
, ¼ , tn }. *

To prove Lemma 3, we need the following auxiliary result :

Auxiliary Lemma. Given a dependency model, M , verifying P1 ± P11, and an associated

dag D
M

, if tn I t
"
c s

"
I s

m
is a chain in D

M
such that I(t i

Õ "
, t i + "

r t i) c i = 2, ¼ , n –1,

I(s
j Õ "

, s
j+ "

r s
j
) c j = 2, ¼ , m –1, and I(t

"
, s

"
r J ), then I(tn , s

m
r J ).

Proof. W e have already proven (in Proposition 5) that a node adjacent to a head to

head node cannot be head to head as well. In our case, this implies | I(t
#
, c r J ) because

t
"

is adjacent to the head to head node c ; then from Lemma 1 we deduce I(t
#
, c r t

"
).

From the hypothesis and the previous result we see that the chain tn I t
#

t
"
c satis ® es

the conditions in Lemma 2. Therefore we deduce I(tn , c r t
"
) and | I(tn , c r J ). By applying

semi-strong transitivity, we obtain either I(tn , s
"
r t

"
) or I( c , s

"
r t

"
). As c and s

"
are

adjacent nodes, then we have | I( c , s
"
r t

"
) and therefore we have I(tn , s

"
r t

"
) ; this

statement, together with I(t
"
, s

"
r J ), gives I(tn , s

"
r J ) by using contradiction and

decomposition.

On the other hand, the chain s
m

I s
#

s
"
c also veri® es the conditions of Lemma 2.

Then we obtain I(s
m

, c r s
"
) and | I(s

m
, c r J ). Once again using semi-strong transitivity,

we obtain I(tn , s
m

r s
"
) or I(tn , c r s

"
). However, I(tn , c r s

"
) is false because of Lemma 2(b),

since s
"

is not in the chain without head to head nodes linking tn and c . So, we

have I(tn , s
m

r s
"
), that together with I(tn , s

"
r J ) gives I(tn , s

m
r J ) by contraction and

decomposition. *

This auxiliary lemma states that, in a chain of D
M

having only one head to head node,

the extreme nodes are marginally independent.

Lemma 3. Given a dependency model, M , verifying P1 ± P11, and an associated dag D
M

,

if I( a , b r c ) and | I( a , b r J ), then there is a chain in D
M

linking a and b which does not have

head to head nodes and does contain c .

Proof. The proof is constructive. Let us de® ne the set S, as follows

S = {t ` U c {a } r | I( a , t r U c {a , b })}.
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Firstly, we are going to prove that S 1 J .

If S = J then c t ` U c {a } is I( a , t r U c {a , t}). Let t
"
, t

#
` U c {a }; using intersection, from

I( a , t
"
r U c {a , t

"
}) and I( a , t

#
r U c {a , t

#
}) we can deduce I( a , t

"
e t

#
r U c {a , t

"
, t

#
}). By

repeating this process for the rest of variables in U c {a }, we obtain I( a , U c {a } r J ) in a

® nite number of steps. In particular, we have (by using decomposition) I( a , b r J ) which

contradicts the hypothesis. Hence S 1 J . The same reasoning used before allows us to

prove I( a , U c (S e {a }) r S).

On the other hand, from I( a , b r c ) and | I( a , b r J ), we obtain I( a , b r U c {a , b }) using

semi-strong union, and therefore b a S. So, we also deduce I( a , b r S ) by using

decomposition.

Now, from I( a , b r S ) and singularity we deduce that d t
!
` S such that I( a , b r t

!
). If

I( a , t
!
r J ), then using contraction we obtain I( a , b r J ) which contradicts the hypothesis;

hence | I( a , t
!
r J ). In graph terms this means that the set T = {t ` U c {a } r | I( a , t r U c

{a , t}), | I( a , t r J )} of nodes adjacent to a in the graph D
M

is not empty, because t
!

is adjacent to a . If I(t
!
, b r J ), then from I( a , b r t

!
) and contraction we obtain I( a , b r J ) ;

therefore | I(t
!
, b r J ). On the other hand, from | I( a , b r J ) and I( a , b r c ), using semi-

strong transitivity, we obtain I( a , t
!
r c ) or I(t

!
, b r c ) (we suppose that t

!
1 c ). Since a

and t
!

are adjacent nodes, the statement I( a , t
!
r c ) is false and then we have I(t

!
, b r c ).

Once again, by using semi-strong transitivity, from | I( a , b r J ) and I( a , b r t
!
) we obtain

I( a , c r t
!
) or I( c , b r t

!
). But I( c , b r t

!
), together with I(t

!
b r c ) gives, using intersection and

decomposition, I(t
!
, b r J ), which is false ; therefore we have I( a , c r t

!
). At the moment,

we have found a node t
!

such that | I( a , t
!
r U c {a , t

!
}), | I( a , t

!
r J ), | I(t

!
, b r J ), I( a , b r t

!
),

I( a , c r t
!
) and I(t

!
, b r c ) (in fact, t

!
is the single node having these properties, but this is

not important for our purposes).

Now, we can apply the previous development to the nodes t
!

and b (because

| I(t
!
, b r J ) and I(t

!
, b r c )). So, we ® nd a single node t

"
such that | I(t

!
, t

"
r U c {t

!
, t

"
}),

| I(t
!
, t

"
r J ), | I(t

"
, b r J ), I(t

!
, b r t

"
), I(t

!
. c r t

"
) and I(t

"
, b r c ). M oreover, from | I( a , b r J )

and I( a , b r t
!
) we obtain I( a , t

"
r t

!
) or I(t

"
, b r t

!
) by using semi-strong transitivity. If

I(t
"
, b r t

!
), since we also have I(t

!
, b r t

"
), intersection and decomposition give I(t

!
, b r J ),

which is a contradiction. Therefore, we have I( a , t
"
r t

!
).

By repeating this process we can ® nd nodes t
#
, t

$
¼ until some ti coincides with c (as

the number of nodes is ® nite, this process must stop within a ® nite number of steps,

provided that all the variables t
j

are always diŒerent from each other). These nodes

verify | I(t
j Õ "

, t
j
r U c {t

j Õ "
, t

j
}), | I(t

j Õ "
, t

j
r J ), | I(t

j
, b r J ), I(t

j Õ "
, b r t

j
), I(t

j Õ "
, c r t

j
) and

I(t
j
, b r c ), c j = 1, ¼ , i –1 and | I(t i

Õ "
, c r U c {t i

Õ "
, c }), | I(ti

Õ "
, c r J ), I(ti

Õ "
, b r c ). So, we

have built a chain a t
!
t
"
I t i

Õ "
c in D

M
. Let us see that this chain does not have head

to head nodes : from | I(t
j Õ "

, b r J ) and I(t
j Õ "

, b r t
j
) we deduce either I(t

j Õ "
, t

j+ "
r t

j
) or

I(t
j+ "

, b r t
j
) by using semi-strong transitivity. If I(t

j+ "
, b r t

j
), as it is also I(t

j
, b r t

j+ "
), we

obtain I(t
j
, b r J ) by intersection and decomposition, and this statement is false. Hence

I(t
j Õ "

, t
j+ "

r t
j
) and from Lemma 1, | I(t

j Õ "
, t

j+ "
r J ), which means that there are no head

to head nodes.

To prove that we never ® nd a variable t
r

which coincides with some other previous

t
k
, we use the following reasoning : if t

r
= t

k
with k ! r –1, then from I(t

r Õ #
, b r t

r Õ "
) and

| I(t
r Õ #

, b r J ) we ® nd I(t
r Õ $

, t
r Õ #

r t
r Õ "

) (which is not possible) or I(t
r Õ $

, b r t
r Õ "

) by using

semi-strong transitivity. By repeating this process, we obtain I(t
k
, b r t

r Õ "
) 3 I(t

r
, b r t

r Õ "
),

which, together with I(t
r Õ "

, b r t
r
), gives (using intersection and decomposition)

I(t
r
, b r J ), which is a false statement. Therefore the variables t

j
are all diŒerent.

If we apply exactly the same process as before, but starting from b instead of a , we

obtain another chain c s
h Õ "

I s
!
b without head to head nodes. If for some k and l
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it is t
k
= s

l
, then we have I( a , c r t

k
) (from Lemma 2(a)) and I( a , s

l
r c ) 3 I( a , t

k
r c ),

which produce by intersection and decomposition the false statement I( a , c r J ). So,

t
k

1 s
l
c k, l, and we have a chain a t

!
t
"
I t i

Õ "
c s

h Õ "
I s

!
b where all the nodes (except

perhaps c ) are not head to head. But c cannot be the single head to head node in the

chain because in that case we could obtain I( a , b r J ) from the auxiliary lemma. The

proof is complete. *

Lemma 4. Let M be a dependency model verifying P1 ± P11, and let D
M

be an associated

dag. Then

c a , b ` U (I( a , b r J ) 5 © a , b r J ª
DM

).

Proof. Let us suppose that | © a , b r J ª
DM

. Then there is a chain in D
M

without head to

head nodes, and by using Lemma 2(b), we obtain | I( a , b r J ). This proves the necessary

condition.

Now let us suppose that | I( a , b r J ). If | I( a , b r U c {a , b }) is also true, then a and b

are adjacent nodes in D
M

and therefore | © a , b r J ª
DM

. The other possibility is that

I( a , b r U c {a , b }). In this case, from singularity we can ® nd a node c such that I( a , b r c ),

and from Lemma 3 we deduce that there is a chain linking a and b which does not

contain head to head nodes ; thus we have | © a , b r J ª
DM

. This proves the su� cient

condition. *


