
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

Independent Checkpointing and Concurrent Rollback for Recovery Independent Checkpointing and Concurrent Rollback for Recovery

in Distributed System—An Optimistic Approach in Distributed System—An Optimistic Approach

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Shy-Renn Lian

Report Number:
87-701

Bhargava, Bharat and Lian, Shy-Renn, "Independent Checkpointing and Concurrent Rollback for Recovery
in Distributed System—An Optimistic Approach" (1987). Department of Computer Science Technical
Reports. Paper 607.
https://docs.lib.purdue.edu/cstech/607

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

INDEPENDENT CHECKPOINTING AND CONCURRENT
ROLLBACK FOR RECOVERY IN DISTRIBUrED

SYSTEMS - AN OPTIMISTIC APPROACH

Bharat Bhargava
Shy-Renn Lian

CSD-TR-701
August 1987

Revised April 1988

. .

Independent Checkpointing and Concurrent Rollback for Recovery
in Distributed Systems. An Optimistic Approach·

BharaJ Bhargava and Shy-Renn Lian

Computer Science Department
Purdue University

West Lafayette, Indiana-47907

ABSTRACT

Checkpointing in a distributed system is essential for recovery to a

globally consistent state after failure. In this paper, we propose a solu

tion that benifits from the research in concurrency control, commit proto

cols, and site recovery algorithms. A number of checkpointing

processes, a number of rollback processes, and computations on opera

tional processes can proceed concurrently while tolerating the failure of

an arbitrary number of processes. In our approach, each process takes

checkpoints independently. During recovery after a failure, a process

invokes a two phase rollback algorithm. In the first phase, it collects

information about relevent message exchanges in the system. In the

second phase, this information is used to determine both the set of

processes that must roll back and the set of checkpoints upto which roll

back must occur. Concurrent rollbacks are completed in the order of the

priorities of the recovering processes. The proposed. solution is optimis

tic in the sense, it does well if failures are infrequent by minimizing

overheads during normal processing.

• This rese.arch 15 mpponcd by NASA and AIRMIcs unde.r granl Dumber NAS 5'20-0392

-2-

1. Introduction

In this section, we briefly introduce the approaches to the distributed checkpoint

ing problem and summarize previous work.

1.1. Background

In a distributed system, there is no shared memory and processes communicate by

exchanging messages. A local state of a process p is defined by p's initial state and the

sequence of events that occurred at p. An event is the sending or receipt of a message,

or a spontaneous state transition of a process. A checkpoint is a snapshot of a local

state of a process. A set of checkpoints, one for each process in the system. called a

global checkpoint. is consistent if all snapshots fann a consistent global state. The

definition of consistency requires that every message recorded as "received" In a

checkpoint should also be recorded as "sent" in another checkpoint; not vice versa.

Checkpointing and rollback/recovery techniques are used for consistent state restoration

of all processes in the system[12].

There are two approaches to checkpointing and recovery[9.l2]. One requires that

the processes coordinate their checkpointing actions such that the current instance of the

global checkpoint in the system is guaranteed to be consistent. When a failure occurs,

the system restarts from these checkpoints. In the other approach, each process takes

checkpoints independently and saves them on its stable storage. When a failure occurs.

processes must coordinate to determine a consistent set of checkpoints. The disadvan

tages of the first approach are that it requires a number of communication messages

between processes for each checkpoint and introduces synchronization delays during

normal opera:tion. Moreover, a process failure may block the synchronization of global

checkpointing or the rollback. The main disadvantage of the second approach is the

domino effect[13.l4] while delennining the global checkpoint.

- 3 -

1.2. Summary of previous work

The approaches to independent checkpointing have been proposed in [5,7,8,15].

The scheme in [5] is limited to a centralized database system and the crash recovery

mechanism is based on the concept of transaction commitment. The concurrency con

troller keeps the interdependency relationship among operations issued by different tran

sactions. The system periodically takes transaction checkpoints. After a crash, the sys

tem finds the optimal set of checkpoints to which uncommitted transactions must be

rolled back according to the interdependency of operations. By rolling back to the

optimal set of checkpoints the recovery cost is minimized. Transaction processing

involves shared memories rather than exchange of messages. Thus it does not consider

the problem of recognizing and discarding undone messages as other independent

checkpointing schemes must do. The scheme proposed in [7,8] avoids domino effect by

a so-called coordination-by-machine approach. It relies on an "intelligent" underlying

processor system (or a virtual machine) to automatically establish appropriate check

points of interacting processes. The execution of a process is structured by recovery

block[13] to provide it with error detection and recovery capabilities. This scheme

allows independent and uncoordinated design of error detection and recovery capabili

ties for each process. The recovery mechanism [15], avoids domino effect by discard

ing old checkpoints and bounding the rollback by the earliest undiscarded checkpoint.

It is quite possible that there are consistent global checkpoints between the earliest

undiscarded checkpoint and the failure occurrence. The overhead caused by rolling

back to the earliest undiscarded checkpoint is a drawback that we attempt to eliminate.

The mechanism used in [15] requires processes to be deterministic. Since a recovering

process always reexecutes logged input messages to restore a consistent state, the ordi

nal position of a message in the input message stream has to be always recoverable.

This can cause unnecessary rollbacks. Another limitation of this mechanism is that it

can only handle processor failures.

- 4-

Several distributed checkpointing and rollback recovery mechanism requiring

coordination among processes have been proposed in [I,9,ll.16]. The common

features among them are: processes that participate in checkpointing follow the two

phase commit approach to ensure the atomicity of an instance of global checkpointing;

after rolling back, a process does not send or receive any normal system messages until

other rollback. processes have finished their rollbacks. The mechanism in [16] requires

that all the processes in the system take checkpoints or roll back together. The mechan

isms in [1,9,11] require that processes that have a exchanged message since their last

checkpoints take checkpoints or roll back together. In [1,16]. a process can not resume

its normal execution between the instances that it makes an uncommitted checkpoint

and the checkpoint is committed or aborted. In [9]. a process after making an uncom

mitted checkpoint is not allowed to send out normal system messages until the check

point is either committed or aborted. In [11]. concurrent execution of checkpointing

and rollback initiated by multiple processes is allowed. Also, messages except those

for coordination can be transmitted in any order. The mechanisms in [1,9,16] have

none or limited resiliency to a process failure in the system. The requirement of coor

dinating the processes in checkpointing and recovery increases the response time and

results in a lower system throughput When the failures occur infrequently, the over

head in coordinating the checkpointing actions is undesirable.

We propose an algorithm that avoids the disadvantages resulting from creating

globally consistent checkpoints during normal operations. It is for a distributed system,

and is not restricted to a database system as in [5]. Unlike the scheme in [7.8], it is not

a coordination-by-machine approach. It does not rely on an "intelligent" underlying

system to. take appropriate checkpoints. Instead of rolling back to an earlier global

checkpoint as in [15], in our approach a recovering process computes the set of latest

globally consistent checkpoints. Our algorithm does not rely on reexecuting logged

input messages and causes rollback only when failure occurs in the system. Moreover,

- 5-

besides processor failures, our algorithm can handle any process failures assuming there

exist error detection algorithms for the failures.

1.3. Paper Organization

This paper is organized as follows. Section 2 contains the terminology and system

model. In section 3 we present our algorithms for independent checkpointing and roll

back recovery. In section 4, the rollback recovery algorithm is extended so that multi

ple failures and concurrent rollbacks are handled. The discussions and conclusions are

stated in section 5 and 6, respectively. Appendix A contains two examples which are

used in explaining the algorithm. The correc01ess proof of our algorithms is in Appen-

dixB.

2. Terminology and Syslem Model

2.1. Checkpoint Number and Checkpoint Interval

The checkpoints taken by a process are ordered by a sequence called "checkpoint"

numbers. Each process p maintains a variable cnp to indicate the sequence number of

the last checkpoint taken by p.

A checkpoint with sequence number cnp taken by process p is denoted by p cnp.

Checkpoint pi is smaller than pj if i is smaller than j. The period between pCrJp-l and

pCflp is called the checkpoint interval pCTlP. We introduce a virtual checkpoint pI

"taken" at the current instant The period between the instant when process p takes the

last checkpoint and the current time is considered to be the checkpoint interval pI.

-6-

2.2. A Consistent Set of Checkpoints and a Consistent Glohal State

In the literature[3.4.1l], consistent sets of checkpoints and consistent global states

have been defined. We briefly present the necessary definitions.

Let S={pl.P2,...• Pn.} be a system ofn processes and C={ PICl.P2c2 •...'Pnc"'} be

the set of checkpoints, one from each of these processes. C is globally consistent if and
I

only if for any message M sent from Pi to Pj, if the receipt of M is recorded in the

checkpoint P/' of process Pi> the sending ofM is also recorded in the checkpointp/ of

process Pi. where p/ S p{; and P/, s: p/i. The initial state of a system is assumed to

be consistent. A global state of a system reachable from the initial state or from a set

of consistent checkpoints before any failure occurred is also consistent.

2.3. Session Number I

A process may roll back and then resume execution either as a result of its own

failure or in response to failure of another process. Operational session[2] is the inter

val between the start of normal processing of a proctss and the instance of failure and

resumption of rollback. Operational sessions are ordered by sequence numbers. Each

process p maintains a session number snp for the current operational session. snp is ini

tialized to 1. Each time p resumes execution after rolling back to an earlier checkpoint.

p increments snp by one.

2.4. System Message

When process p sends a message M to process q. p attaches its cunent values of

session number snp and checkpoint number cnp to M. M is represented as

<p.q,snp,cnp,B>, where B is the message body.

M can be either a nomwl system message or a control message.

-7 -

A normal system message is any message related to computation at hand sent by a

process during its normal execution.

the third type is sent by a nonfaulty process during failure recovery of the system.

Control messages are used for failure recovery. We have three types of control

input information messages. The first two types are sent by a recovering process and

messages: rollback initiating messages. rollback_request messages, and

i
I
j
I,
,,
j

p sends a rollback_initiating message to every other process q when p starts to

recover from a failure. As q receives the rollback_initiating message from p, q sends

an inpucinformation to p. The inpucinformation message contains the incremental

message flow infOImation that q records in its input information table (defined in sec

tion 2.5) since last such message was sent to p. After the recovering process p executes

the rollback recovery algorithm, it includes the execution results in a rollback_request

message and sends it to every other process q. The rollback_request message contains

a set RS(P) of processes that need to rollback due to the failure of p, and a set of check-

points, called recovery points, to which these processes should rollback.

2.5. Input Information Table

Each process p maintains an input infonnation table (lIT). The usage and

maintenance of input infonnation table is further explained in section 3.3. The columns

of the table are indexed by process identifiers of all processes in the system and the

rows are indexed by p's checkpoint intervals. Each entry Irrpfpc, q] of lIT contains the

set of checkpoint intervals of q, and during these intervals q sent some messages

received by p in checkpoint interval pC. For every q, p maintains an "already sent to q"

mark indicating the last row of the table whose input infonnation has been sent to q by

p. The mark is initialized to O. The purpose of maintaining this mark is to eliminate

sending duplicated input infonnation to the same process. lIT is maintained in stable

storage except the entries of the current checkpoint interval. The latter will be

},.
;'

,,

- 8-

,,,

incorporated to fiT when it takes a new checkpoint. Figure 1 gives an example for a

ITT. With a global state shown in Figure La, the IUp maintained by p is shown in Fig

ure Lb.

1 ql

2 ql ,q2

,
T2

p:

pO
pl p2 p'

p

7'
p

qO
q 4' 4" p

TO
r

r' r" p

(a)

q

(b)

r

,
•) ,

Figure 1. (a) A global state in a system. (b) Input information table maintained by p

in the system in (a).

2.6. Local System Graph

A process p needs to construct a local system graph Gp when it is recovering from

a failure. Gp contains the global message flow information of the system before the

failure occurs. We present in this section the formulation and construction of G
p

•

which is used in the rollback recovery algorithm Let the system graph constructed by

process p be represented by Gp=(V.E" £2)' V is the set of nodes of Gpo A node qi is

in V if and only if qi is a checkpoint perceived by p. A checkpoint qi is perceived by p

if the input information recorded during checkpoint interval q i is sent to p under a

request by p. To make the graph connected, we introduce a source node labeled s and a

starting node qO for each process q. There is an edge from s to checkpoint qO for any

·! !
,~ I,

~ ,,

; .

· ,,

- 9-

process q. E 1 is the set of internal edges which connects nodes representing check

points belonging to the same process to each other. E 1 is defined as {(s,qO)} u

{(q',qj)1 q' "qj "qrn"" qrn", is the maximum checkpoint of q perceived by p and q is

any process of the system}. E 2 is the set of interaction edges showing the message

flow information perceived by p. and is defined as {(qi.ri)1 there is a message per

ceived by p sent in qi and received in r i • q and r are processes of the system}. Once

created, it is not necessary for p to always keep Gp "up-to-date". Gp will be dumped

into stable storage after p is fully recovered. For subsequent failures of p, Gp will be

updated and not created again and again.

2.7. System Model

The system consists of a finite collection of sites. Application processes assigned

to particular sites may be created or destroyed dynamically. We use the terms site and

process alternately. The processes do not share memory, but communicate by sending

messages through communication channels. There is a channel between each pair of

sites. We assume that the channels are FIFO[17](Le.• messages are delivered in the

order of their arrival) and that whenever a process fails, all other processes are informed

of the failure in a finite time. We assume that if an intended recipient of a

rollback_request message fails, it is able to retrieve the rollback_request message after

it recovers. This can be implemented by using multiple message spoolers[6]. We

assume nothing about the arrival order of messages sent to a site from two different

sources.

Each process p maintains an input information table IlI'p. and current checkpoint

number Cllp and operational session number snp ' Besides. for every other process q.

process p maintains an expected session number esn/. and a perceived checkpoint

number pcnl. esnl is the largest session number of q known by p and is initialized

to 1. Whenever p receives a rollback_request message from another process r and q is

'..,

- 10-

in RS(r). p increments esnl by 1. pcnl is the starting checkpoint number of q's

current operational session known by p and is initialized to o. Whenever p receives a

rollback_request message from any r and q is in RS(r), p updates pcnl to q's recovery

point. If process p has failed in the past, a local system graph- Gp is created. In subse

quent recoveries, this graph is updated and not created again and again.

3. Details of our Algorithms

We present the independent checkpointing and concurrent rollback scheme for

recovery in distributed systems. In the scheme, a number of checkpointing processes, a

number of rollback processes and normal execution are all executed concurrently. First

we present a simple independent checkpointing algorithm in section 3.1. Since there is

no synchronization among process execution, we have to prevent any action from

resulting in an inconsistent stale. The system will be in an inconsistent state if any pro

cess accepts a message and is not aware that the message has been actually undone by

the sender. A message is undone by the sender if the sender, after sending out the mes

sage, rolls back to a checkpoint taken before the message is sent. A process must be

able to recognize and discard incoming messages that have been undone by the sender.

We present an algorithm for a process to recognize an undone message and discard it

when it arrives in section 3.2. Section 3.3 gives a rollback recovery algorithm for sin

gle failure.

3.1. A Simple Independent Checkpointing Algorithm

Each process takes checkpoints independently according to its own needs. For

example, a process may take a new checkpoint after, t local clock ticks elapsed, or after

sending out k messages. However, in order to have better performance of the system,

the strategy of taking checkpoints by each process should be governed by a common

principle. For example, if in a system, the checkpoint interval of process p is

- 11 -

significantly larger than that of process q. p could receive a message from q near the

end of its long checkpoint interval. If the message is later undone by q. process p

would be requested to restore a snapshot taken unreasonably long time ago.

The pseudo-code in Figure 2 proposes a mechanism for a simple checkpointing

algorithm.

For each process p in the system:
initialize cnp = 0;
Loop

~eset and start counting local clock tp ;
mcrement cnp;
while tp < tchec1qJoinJing do .

execute normal operaoons;
take a checkpoint p clip;

endloop

Fi·re 2 A "imnl" ,.h.."lrnoinhn.... ",I.,.nrithm

3.2. AcceptingIRejecting Input Messages During Normal Execution

When process q receives a normal system message M = <p.q,snp.cnp.B> from p, it

compares snp • cnp with esnp
q andpcnp

q, respectively, to determine whether M is an

undone message. q accepts M if it is not an undone message and discards it otherwise.

There are three cases to consider:

~ ill cnp ;;::: pcnpq and snp < esnpq.

In this case, M is an undone message, hence q should discard M. Because M was sent

by p in an earlier operational session after p cnp was taken, and p has rolled back or will

roll back to the checkpoint with number pcnpq smaller than cnp' Example 1 shows how

such a situation can occur and how a process can recognize an undone message.

Example 1: In Figure 3, suppose that r is a rollback initiator. In response to a

rollback_initiating message(not shown in Figure 3) from process r, process p(q) sends

an input_information message mpr (mqr) to process r. After executing the rollback

recovery algorithm, process r determines that RS(r) contains process p and the recovery

.
j,
I

~:

;,

- 12-

point of P is pl. Process r then sends a rollback_ request message m,p (mrq) to process

p(q). Suppose that process p sent a normal system message mpq to process q in its

operational session sp before it receives m rp and that mpq was received after m rq • When

q receives mpq• it has already updated penpq to 1 and incremented esnpq to sp+1. Since

the checkpoint number associated with mpq is greater than the perceived one (2 > 1),

and the session number associated with mpq is smaller than the expected one (sp <

sp+l), process q determines that mpq is an undone message and is to be discarded.D

pO p'
p

qO
ql

q

TO
r recovenng

Figure 3. Example showing how a process can recognize an undone message.

In this case, q should accept M since M is not an undone message. If sn
p

= esn
p

q, M is

sent in p's current operational session. If snp > esnp
q , M is sent after p rolled back and

restarted. We now give an example for case (ii) by referring to Figure 3 again. Sup-

pose that process q updates pcnp
q to 1 and esnp

q to sp+l after receiving a

rollback_request message Tnrq from r (Figure 3). Further, suppose that p sends a mes

sage mpq to q after it has rolled back and restarted, i.e. mpq=<p,q,sp+1, 2,B>. When q

receives mpq• since p2 > P 1 and sp+l is equal to esnp
q• q will accept the message mpq'

~ (iii) bnp < pcnp q.

In this case, M is not undone by p, and hence q can safely accept M. IT snp < esnpq,

the sender p has rolled back or will roll back to a checkpoint taken after M was sent.

There is no possibility that snp equals esnpq. If snp > esnpq> M is sent after p rolled

-13 -

back and restarted while q has not updated its knowledge about p's status. In any case,

M is not an undone message. Example 2 illustrates a situation when en
p

< pen
p
q

occurs.

Example 2: In Figure 4, suppose that r is a rollback initiator. Process p sends a

message mpq to process q after taking checkpoint pl. In response to a

rOllback_initiating message(not shown in Figure 4) from r, process p(q) sends an inpuC

information message mpr(mqr) to process I. Mter r executes procedure

rollback_compute(r). it detennines that RS(r) contains process p and the recovery point

of p is P2. Suppose that the rollback_request message m rq anives at process q before

message mpq does. When q receives mpq • it has already updated pen
p q to 2. Since p 1

< P 2, q is sure that mpq would not be undone by p and mpq can bt: safely processed.D

pO
pI p2 p3

P
pq mp,

qO ql
q

TO m q, m,q

r
T

Figure 4. An example showing the case when enp < penp q can occur.

The pseudo-code for the algorithm for a process to accept or reject a message is

shown in Figure 5.

q accepts M;

- 14-

When receiving a message M=<p,q.snp,cnp.B>, process q does:
if (en~ ? pen,") then

If (snp < esnp q) then
q discaids M;

else

else
q accepts M;

endif;

Figure 5. Algorithm for a process to recognize an undone message during its nor-
~;,-.v;;ni;~;'

Mter process q decides to accept M. it first checks if pC1Ip+l is in IITq[current

checkpoint interval of q, p] and adds pcnp+l to it if it is not already in the set. This is

to updateIJTq so that q always maintains correct information in IlTq• IlTq will be used

to help a recovering process build up a global view of message flow in the system.

3.3. Rollback Recovery after Single Failure

In this section, we consider the rollback recovery for a single-failure in the system.

Single-failure means that there is at most one process fails at a time. Before the failed

process fully recovers, no other process fails. An extension of the algorithm for recover-

ing from multiple-failures is given in the next section. The algorithm for rollback

recovery contains two pans: the first pan is for a rollback initiator to recover from a

failure; the second pan is for other nonfaulty processes to coorporate in the failure

recovery.

3.3.1. Algorithm for Rollback Initiator

When a process p just recovers from a failure, it executes a two-phase rollback

recovery ~gorithm as presented in Figure 6.

- 15-

'n·fnr ~ r

For the recovering process p:
increment the session number snit
restore to the last checkpoint number p clJp;
send a rollback•.Jnitiating message to every process q in the system;
collect inpuCinformation messages from all other processes;
augment(p);
restan_poincdetermination(p);
for any process q do

send a rollback_request message from p to q;
restore recovery point of p;
resume execution;

endfar

,A Rnllh'el.- TPenvp~ ,j

In the first phase, p increments its session number snp • restores to its last check- 1

-
point number pcn,.. and sends a rollback_initiating message to every other process q.

After collecting responses(inpucinformation messages) from all the processes, p begins

the second phase of recovery. It executes procedure augment(p) and procedure

restanyoint_determination{p). These two procedures are shown in Figure 7 and 8,

respectively. At the end of phase two, p includes the execution results of procedure

restarcpoincdetermination(p) in the rollback_request message and sends such a mes-

sage to every 'q. p then restores itself to its recovery point and continues its execution.

During recovery. p queues all nonnal system messages.

Procedure augmenr(p) presents the algorithm for augmenting the local system

graph. For each entry lITq[qi, r] contained in the input_infonnation message sent from

q, p creates an edge (r C
, qi) in Gp to indicate that r sent a message in r C and the mes

sage was received by q in qi, if r C is in IITq[qi, r].

end

- 16-

procedure augment(p);
begin

for any q do .
for any entry I(I'q[q',r] in the.inpuUnfoonation message sent by q do

let Ilrq[ql, r] contain {r'l , r l2
•...• r Jj

};

for any 1';; k ,;; j d.o
if nodes r't i q' ¥e not already in Gp then create these nodes;
add edge (r " q') to the local system graph Gp ;

for any q do
mark the last node of q "q/II;

end augment;

Fi~'- 7 AI"ori"m'~ 'u=en"n'; •]~'l . -.h r.

Procedure restarCpoinCdetermination{p) computes the set of processes that must

roll back-due to the failure of p. This set is called the rollback set of p and is denoted

by RS(P). In addition, this procedure determines the respective recovery points for

processes in this set.

procedure restart_poinCdetermination{p)
RS(p) = (p);
mark pI "visited";
for any q do

initialize the recovery point of q determined by p to qf;
dfsearch(p, pI); .

end restarLpoint_determination;

procedure dfsearch~, r C
)

for any edge (r ,qd) where r '1:- q and qd is not "visited" do
if (recovery point of q determined by p) > qd-l then

recovery point of q determined by p := qd-l;
if (recovery point of r determined by p) > r c- 1 then

recovery point of r determined by p := rc- 1;
RS(p)= RS(p) u (q); .
for any eilcisting node qt= qf•...• qd+l.qd do .

if q' has no out edge that belongs to E 2 of Gp then discard ql;
else

mark qi "visited";
dfsearch(p,q');
if

end for
discird r C

;

end dfsearch

Fim're Q. Alaorithm to n"'ermine re'tart nnints of a]nhal rollback.

-j

,,
;

- !

- 17-

To compute RS(P) and the set of recovery points, procedure

restarcpoinCdetermination(p) uses a depth-first search algorithm to traverse Gp starting

from the node pl. pi is the checkpoint interval indicating the period between the

instants when p takes the last checkpoint and it fails. Any node that is reachable from

pi is "contaminated" by the failure since a message sent in pI bas been recorded in the

node. During the traversal of Gp • whenever a node qd is visited, q,is insened to RS(P)

if it is not already present. The recovery point of q is set to the node previous to q d.

An example showing how procedure rollbaclccompute(p) works is given in Appendix

A.

3.3.2. Algorithm for Rollback Participants

Now we present the algorithm for a nonfaulty process q to cooperate in the failure

recovery. Upon receiving a rollback_initiating message from p, q sends an

inpucinformation message to p containing the entries of lII'q from the mark "already

sent to p" to the current checkpoint interval. and sets the"mark to the current checkpoint

interval in the table. q then invokes an interrupt handler presented in Figure 9.

procedure back_up(q);
let qpC be the checkpoint last taken ~
IP =0;
Jhile not (receiving rollback_request message from p) do

execute normal operations;
if acce~tinga message from any process r then

I q =I{ U (T);
endwhile;
process rollback_request message sent from p~

if q is not in RS(P) then
ifI{ "RS(P) '" 0 then

restore qpc;
resume normal execution;

- end back_up

Figure 9. Interrupt handler of a nonfaulty process for the arrival of a
rollback_initiating message.

,,,,

- 18 -

Between the instants when q sends out the inpucinformation message to and

receives a rollback_request message from p, q continues its normal execution without

blocking. During that period. q receives messages as usual, but does not send any mes

sage. Also, during that period, q creates the set Il of sites from which it receives nor

mal system messages. When q receives the rollback_request message from p, q

processes the message by the steps shown in Figure 10. q then compares set 1/ with

RS(P). If the intersection is not empty, q has to return to the point when it sent out the

inpucinformation message and continues its execution from then. This is because that
-

the message q has received during that period would be undone by the sender. H the

intersection of Il and RSCp) is empty, q continues its execution from the instant it

receives the rollback_request message.

When processing a rollback_request message M=<p,q,snp, enp.B>, q does:
begin (queues normal system messages until end)

for each r in RS(P) do
esnrq =esnT

q + 1;
penTq = recovery point of r;
set in lIT the "aheady sent to r" mark to qCl where IrTq [qCI,r] con
tains the largest checkpoint of r that is not greater than the recovery
point ofr;

endfor
if q is in RS(P) then

if cnq ~ recovery point of q then
roll back to the recovery point;
discard IITq [q

C
2 ,t] from lIT for all qC2 > recovery point of q;

else
discaId M;

end

Figure 10. Steps that a process takes in processing a rollback_request message

4. Concurrent Rollback Recovery from Multiple Failures

In this section, the algorithm for rollback recovery is modified to tolerate

multiple-failures and to allow concurrent rollbacks initiated by multiple processes. In

Appendix A, we illustrate an example of multiple-failures in which the rollback

recovery algorithm is not sufficient to handle the problem properly.

j

- 19-

The approach to handle multiple failures in a system is described as follows: We

assign a distinct priority to each process. This can be done, for example, by process

identifiers. If there is no concurrent rollback, a process that recovers later executes roll-

back recovery algorithm based on the information obtained from the earlier recovered

processes and the local information stored in its last checkpoint IT there are occurrences

of k-concurrent rollbacks for k > I, the concurrent rollback initiators finish execution of

the rollback recovery algorithm sequentially according to their priorities. This strategy

is used to avoid the inconsistency of message flow information obtained by a recover-

ing process in a multiple-failed system.

4.1. Additional Terms and Definitions

We introduce a few terms (shown in italics) which are essential in describing the

recovery algorithm for multiple-failures and in proving the correctness of the algorithm.

When a process recovers from a failure, it restores its state to the last checkpoint.

This action may require other processes to back up to checkpoints that constitute a con-

sistent global state. So the recovering process initiates a global rollback. An instance

of global rollback is said to be complete if the rollback initiator finishes the execution

of the rollback recovery algorithm. In this case, the rollback initiator is considered as

fully recovered. A system is said to have k-concurrent rollbacks if a new global roll

back is initiated while the other k-l global rollbacks are not complete. A system is k

[ailed(has k-failures) if a process fails while there are k-1 failed processes, each of them

either recovering (but not fully recovered) or still failed. The /-resIan stale is a global

state S in a system that has k-failures after lout of the k failed processes fully recover

from failures. S consists of a state si from each live process Pi. IT Pi is in the rollback

set of any of the I global rollbacks, then Sj is the state of the recovery point ofPi in the

latest completed global rollback that requests Pi to rollback; otherwise, Si is the state

when Pi sends the inpuCinformation message to the I-th fully recovered rollback

},

- 20-

initiator.

4.2. Modification to the Algorithm of Rollback Recovery for Single Failure

We now give the informal description of the modifications to algorithms presented

in section 3.3. When a faulty process p recovers, it immediately retrieves the

rollback_request messages sent to but not received by it during its failure. We call this

set of rollback_request messages the set of orphan rollback_request messages, and

denote it by ORMp ' Let OS = { 01. 02, •••• Om} be the set of the senders of messages

in ORMp ' p increments snp by the number of times that it is in RS(oj). for any OJ in

OS. Then p executes the rollback recovery algorithm in the same way as described in

section 5. p includes its priority priop and esnl in the rollback_initiating message sent

to every process q. If q is in RS(oj), then p also includes qS in the rollback_initiating

message to q, where qS is the smallest recovery point of q among those computed by

all o/s in OS.

4.2.1. Modification to Algorithm for Rollback Participants

In this section, we describe the modification to the algorithm for rollback partici-

pant presented in section 3.3.2. The only modification is as follows: instead of sending

an inpucinformation message to P. q executes the procedure semCinput_in[orm(q) as

presented in Figure 11. The intrrupt handler shown in Figure 9 need not be modified.

When q receives the rollback_initiating message from p, it compares snq with

esnl contained in the message. If snq is equal to esnl (that is, q is in its normal

execution during p's failure) q sends the;: input_information message to p containing

lIT'q entries up to the current checkpoint interval cnq . Since p sends out a

rollback_initiating message to q right after p recovers from a failure, there is no possi

bility that snq is smaller than esn/. If snq is greater than esnl, q must have failed

during p's failure, and is now either fully recovered or still recovering from the failure.

i'

i
1,
J

- 21 -

We now consider these two cases:

~ ill q is fully recovered.

In this case, q has resumed its normal execution after a rollback. q sends an

inpucinformation message to p containing IlTq up to qS included in the

rollback_initiating message.

~ ill q is still recovering from a failure.

q compares prioq with prior There are two possibilities:

(2.1) priop > prioq : q stops its execution of the recovery algorithm, and sends an

inpucinformation message to p containing IITq up to cnq . q then waits for a

rollback_request message from p before it continues its recovering process.

(2.2) priop < prioq: q queues p's rollback_initiating message and, continues the execu

tion of its own rollback_recovery algorithm. When q finishes the execution of pro

cedure restarCpoinLdetermination(q). it sends together the rollback_request message

and an inpuLinformation message to p as the delayed reply to the rollback_initiating

message from p.

procedure send_inpuLinform(q);
if snq = esnl then

send an inpuLinformation message to p containing IITq up to cnq ;
else

if (q is in the normal execution) then
send an inpuLinformation message to p containing IITq up to qS;

else
if (priop > prioq) then

sends an inpuLinformation message to p containing IITq up to
cnq ;

else
q queues p's rollback_initiating message;

end send_inpuLinform

Fi"nre II A morlificoNnn tn the olcrnrithm fnr rnllback n,nicjnant<

i,
i,

,
r

- 22-

4.2.2. Modification to Algorithm for Rollhack Initiator

Now we describe the modification to the rollback recovery algorithm. for rollback

initiator presented in section 3.3.1.

After process p sends out the rollback_initiating messages to every other process

q, it collects reply from every q. A reply can be either an input_information message

or an inpucinformation message plus q's rollback_request message. The latter case

occurs when q and p have concurrent rollbacks and q has the higher priority than p.

Using all)npucinformation messages, p executes procedure augment(p) to update the

local system graph Gpo There are two cases to consider:

~ill

There is no rollback_request message in the replies to p.

This case occurs when p is the only rollback initiator or when there are k-concurrent

rollbacks and p is the initiator with the highest priority. Let C=(P 1cl • P2c2 ••••• Prc'} be

a set of checkpoint, one from each live process. PiCj , for 1 ~ ~ t, is the last checkpoint

in Pi's inpuLinformation message to P. if pj is in RS(oj) for any OJ in OS. Otherwise.

Pic; is the last checkpoint ofPi in Gp .

i::=ill.

There are rollback_request messages in the replies to p.

Let R = {r 1, r2 • ..., rl} be the set of senders of these messages. p increments esn,P for

every r by the number of times r is in RS(rj), where ri is in R. Let C={p 1C1 , P2c2 •••••

p/t
} be a set of checkpoint, one from each live process. p{i, for 1 Si. ::; t, is the

recovery point of Pi in the latest completed global rollback that requested Pi to rollback,

ifPi is in RS(rj) for any rj in R. Otherwise, PiCj is the last checkpoint of Pi in Gp •

e, defined above, is the set of checkpoints that constitute the most recent con

sistent state before p recovers. If, during checkpoint interval pI, p accepted any mes

sage from Pj sent after p/i, checkpoints taken after pI have recorded the receipt of an

undone message. Hence, p has to invoke procedure dfsearch from these points.

- 23-

For handling multiple failures, procedure restarcpoinCdetermination(p) is

modified to the version shown in Figure 12. Procedure augment and procedure dfsearch

need no modification. The complete concurrent rollback recovery algorithm is

presented in Figure 13.

We show the correctness of (concurrent) rollback recovery algorithms in Appendix

B.

procedure restarcpoinCdeterminatioll_mcpk);
rollback set(Pk)={p,};
let p/c,olfliacJc=PkC,I: ;

for any process Pi do
initialize the recovery poi,nt ofPi to p{i;
if there are any edges (P/. Pki) and p/ ;::: PiCj then

P rollback - 1Dln"(p rollIJaEk p I)"k - k .}:..
endfar
let Pklasr be the last existing checknoint of }?,,;
for any nodepk'=Pklast , ... , p{ollbQ.l:fC+l • p{oUJjack do

mark p "visited"·
k I'

dfsearch(pk, Pk);
endfar

end rest3rt_poinCdeterminatioD_m

Figure 12. Procedure restart_poinCdetermination.

- 24-

For the recovering process p:
(* 08= {o 1.· •••0m} is the set of senders of messages in ORM

p
*)

increment session number snp bXpm;
restore to the last checkpoint pC ;
for any process r in the system do

if (r is in RS(o,» then
let r

S
be the smallest recovery point in any message in ORM;

send rollback_initiating message to r containing prio
p

, esn/. and
r 5

;

else
send rollback_initiating message to r containing priop and esn/;

collect replies to p's rollback_initiating message from all other processes;
augmentCp);
restarcpoinCdetermination_m(p);
for any process q do

if Cp has queued a rollback_initiating message from q) then
p sends together a rollback_request message and an
inpuCinfonnation message to q;

else
p sends a rollback_request message to q;

restore recovery point of p;
resume execution;

endfar

Figure 13. Concurrent rollback recovery algorithm for a recovering process.

5. Discussions and Remarks

5.1. The Domino~FreeProperty

As in [8], the domino effect in this paper is given a narrow definition of a cyclic

chain of rollback propagation. That is, the phenomenon in which a failure of a process

causes any process to make two consecutive rollbacks without performing any useful

computation between the two.

Proposition 1: The scheme of independent checkpointing and (concurrent) rollback

recovery algorithms proposed in this paper is free of domino effect.

Proof· In the rollback recovery algorithm(Figure 6), when a process p is recover

ing from a failure, instead of just rolling back itself to the last checkpoint, p collects the

input_information messages to construct the local system graph G
p

, then invokes pro

cedure restarcpoint_determination(p) to determine the set of recovery points for

-25 -

processes that need to back up due to the interaction with p. By lemma B.2(shown in

Appendix B), this set of recovery points is globally consistent, since the processes that

need to rollback will back up to these consistent points in one step, there is no domino

effect.D

In the worse case, though no consecutive rollbacks will occur, a process may need

to roll back to the beginning of execution in one step. Since in most distributed sys

tems. failures are very rare, we expect that the chances for the worse case to occur are

especially slim. Moreover, we argue that even in the worse case, the performance of

independent checkpointing approach may still not be all that bad compared with the

coordinated checkpointing approach.

pO
pI p2 p3 failure

n \

qq
ql q2 q3

p

Figure 14. The worse case for independent checkpointing approach.

For example: Consider the exchange of messages as shown in Figure 14. Suppose

that this situation occurs in two systems running the same application. One system uses

the indepepdent checkpointing approach, the other uses the coordinated approach. In

independent checkpointing approach, p and q each takes three local checkpoints and

then p fails. However, in coordinated checkpointing approach[I,8,lO,15], p and q may

have to take six global checkpoints and then p fails. The reason that p and q may take

- 26-

six global checkpoints is the follows: when p takes pI, P initiates a global checkpoint, q

has to take a checkpoint in response to p's initiation since there is a message exchange

between p and q after q took q o. As q takes q 1, q also initiates a global checkpoint.

Since there is a message exchange between p and q after the last global checkpoint, p

has to take a checkpoint in response to q's initiation, etc. For each global checkpoint in

coordinated approach, the initiator has to invoke a two-phase commit protocol. In the

first phase, the initiator sends to other processes the request of taking a local check

point. Every other process response with the message if it could take a checkpoint or

not. In tlle second phase, the initiator collects all the replies, makes a decision whether

to take it or not, and sends the decision to other proce.sses. The two-phase protocol can

be blocked due to a failure. On the other hand, if we choose a nonblocking three-phase

commit protocol, very large delay and message traffic will be involved. It is possible

that, in the system using independent approach, when p and q restart from the begin-

ning and reach the execution point before failure, the system that uses the coordinated

approach has not reached the same point because of the synchronization delay in taking

six global checkpoints.

5.2. Recovery with Minimum-Distance Rollbacks

The set of recovery points computed by a recovering process is optimal. That is,

each process that needs to roll back will back up to the latest possible checkpoint so

that the rollback distance is minimized.

Proposition 2: The set of recovery points computed by procedure

restarCpoint_determination is optimal.

Proof: Let C = {PIC, P2c, ... , PtC) be the set of recovery points computed by

procedure restarCpoinCdetermination(Pk). Suppose C is not optimal, and C 1 = { PI ci ,

P2cz, ... , Pt c,) is the optimal set of recovery points. Then PiCj ~ p{ for each Pi and

there is at least one Pj such that p/i > p/. Since for each point p{ in C, there is a

i
;
1,

-27 -

path from p/ to p/+l in Gp,..• the effect of messages sent by Pi in p/ is propagated to

p{+l. Pi has to roll back at least to p{ in order to undo these messages. But since C 1

contains some point Pjc; > p/. c 1 can not be consistent, and thus can not be the

optimal set of recovery points. Therefore, C must be optimal.D

5.3. Discarding Dbs,olele Cbeckpoints

Old checkpoints whose states do not depend on the slate of ql for every process q

in the system can be discarded. Recall that q! is the virtual checkpoint indicating the

period between the last checkpoint and the current time of q. We can use an approach

similar to the algorithm for rollback recovery in Figure 8 for discarding obsolete check

points: any process can be an initiator to discard obsolete checkpoints whenever there is

no failure in the system. The initiator P. collects input_information messages from all

other processes and uses these messages to augment the local system graph G
p

• It

traverses Gp by a depth-first search from qf for every q, and marks the nodes visited by

the depth-first search. Mter all depth-first searches terminated, those nodes that are not

marked can be discarded since no process will be asked to roll back to any of the

unmarked nodes. The initiator p then notifies every process q of the least checkpoint

number qC that q should keep. Any checkpoint smaller than qC can be discarded from

its stable storage. Whenever a checkpoint is discarded, all the corresponding entries in

the input information table and the local system graph are discarded.

5.4. Overhead of Various Approaches

In discussing the perfonnance of the algorithm, we need. to compare our approach

with other- approaches in terms of the time and space overhead. We classify the over

head in two classes: (1) during normal execution. (2) during recovery after failure.

;

- 28-

5.4.1. Overhead in Normal Execution

The independent checkpointing approach requires every process to keep multiple

checkpoints in stable storage. Stable storage can be constructed by introducing some

abstraction on top of disk storage to eliminate errors[9]. Since disk storage is con

sidered inexpensive, we expect that the cost of this storage is not of a major concern.

The overhead in our approach is as-rollows:

(l) Each process maintains its own checkpoint number and session number.

(2) The_checkpoint number and the session number have to -be attached to each mes

sage sent between processes and checked upon message arrival.

(3) Each process maintains an input information table to record the checkpoint

numbers associated with input messages.

The input information table is kept in stable storage except the entry of current

checkpoint interval for efficiency purpose. The size of the entry is the total number of

different checkpoint numbers. associated with input messages received by the process in

its current checkpoint interval. In summary, during failure-free execution the overhead

is: updating a variable when taking a checkpoint, appending two numbers when sending

out a message, checking two variables, and inserting a number to a table entry if it is

not yet existent when receiving a message.

Our algorithm has less overhead than the optimistic approach proposed in [14]

where the overhead is listed as follows.

(1) A session number is appended to each message and checking it upon arrival.

(2) A dependency vector is maintained and appended to each message sent. Also, it is

updated. whenever a message is received. The size of a dependency vector is the

number of recovery units in the system, where a recovery unit is a basic unit of

the system for error recovery.

- 29-

(3) Input messages are logged.

(4) A log vector which records the status of logging progress of input messages in the

system is periodically transmitted and updates. The log vector is of the same size

as the dependency vector.

Note that in [14] more variables have to be appended to message sent and checked

on message arrival due to (1) and (2). In addition, extra costs are introduced due to the

delays caused by logging and communications.

In ~~ coordinated checkpointing approach. whenever a process ,initiates ,8 global

checkpoint. it invokes a tWo-phase commit protocol or a three-phase nonblocking proto

col. Compared with the communication delay resulted from invoking the commit pro

tocol, the time overhead of our independent checkpointing approach is negligible. This

is because that communication delay usually takes a few orders longer than operations

executed in local site.

5.4.2. Overhead During Recovery after Failure

After failures occur, the independent checkpointing approach recovers the system

somewhat more slowly than most coordinated checkpointing approaches do. In the

coordinated approaches, the initiator invokes a two-phase commit protocol to request

other processes to roll back to the previous checkpoints. In the independent approach,

the recovering process does more computation. It collects infonnation, constructs a

local system graph, and invokes procedure restarCpoinCdetermination which uses a

depth-first search algorithm to determine the optimal set of recovery points. The size of

the local system graph is the total number of local checkpoints that are not discarded.

The time of executing procedure restarcpoincdetennination is O(number of nodes

visited in the local system graph) as seen in the algorithm in Figure 9.

The independent checkpointing approach is designed to be an optimistic approach

with low overhead for nonnal execution. Since in most distributed systems, failures are

I

- 30-

very rare. we expect that overall the independent checkpointing approach would per

form significantly better than other recovery schemes.

6. Conclusion

We have proposed an independent checkpointing scheme which provides better

throughput and response time since it eliminates the synchronization overhead of-creat

ing globally consistent checkpoints. It is beneficial especially when failures are rare

because of the low checkpointing overhead. The scheme is free of domino effect.
-

Checkpointing operations. rollback operations, and normal computations on multiple

processes can proceed concurrently while tolerating the failure of an arbitrary number

of processes. In the failure recovery, processes are rolled back to an optimal set of

recovery points with minimum rollback distance. Obsolete checkpoints can be dis-

carded to save stable storage.

7. References

[1]. G. Barigazzi and L. Strigini, "Application·transparent setting of recovery points,"

in Proc_ 13th IEEE Symp_ Fault-Tolerant Computing, June 1983_

[2]. B. Bhargava and Z. Ruan, "Site recovery in replicated distributed database sys

tems", Sixth IEEE Ind. Conf- on Disnibuted Computing Systems, May 1986_

[3]. K. M. Chandy and L. Lamport, "Disnibuted snapshots: Determining global states

of disnibuted systems", ACM Trans. Comput Syst, voL 3, no. 1, pp.63-75, Feb.

1985.

[4]. M. Fischer, N_ Griffeth, and N_ Lynch, "Global states of a disnibuted system",

IEEE Trans. Software Eng., voLSE-8S, pp.198-202, May 1982.

[5]. V. Hadzilacos, "An algorithm for minimizing roll back cost,", ACM Symposium

ou Priuciples of Database Systems, pp.93-97, 1982.

,
[

\

- 31 -

[6]. M. M. Hammer and D. W. Shipman, "Reliability mechanism for SDD-1: A system

for disnibuted databases," ACM Trans. Database Syst., vol.5,no. 4,431-466, Dec.

1980.

[7]. K.H. Kim, "An approach to programmer-transparent coordination of recovering

parallel processes and its efficient implementation rules," Proc. 1978 Int. Conf. on

Parallel Processing, pp.58-68, Aug. 1978.

[8]. K.H. Kim, J.H. You and A. Ahouelnaga, "A scheme for coordinated execution of

independently designed recoverable distributed processes." Proceedings of the 16th

Annual Symposium on Fault Tolerant Computer Systems, pp.130-135, 1986.

[9]. R. Koo and S. Toueg, "Checkpointing and rollback-recovery for disnibuted sys

tems" in IEEE Trans. Software Eng., vol.SE-13, NO.1, Jan. 1987.

[10]. RW. Lampson, "Atomic transactions," In Distributed Systems - Architecture and

Implementation, ED.Springer-Verlag, Berlin and New York, pp.246-265.

[11]. P. Leu and B. Bhargava, "Concurrent Robust checkpointing and recovery in Distri~ .

buted systems," Proc. 4th IEEE Int. Conf. on Data Engineering, Feb., 1988.

[12]. B. Randell, P. A. Lee, and p.e. Treleaven, "Reliability issues in computing system

design," ACM Comput. Surveys, VoLlO, no.2, pp. 123-166, June 1978.

[13]. B. Randell, "System structures for software fault tolerance," IEEE Trans. on

Software Engineering, pp.220-232, June 1975.

[14]. D. L. Russell, "State restoration in systems of communicating processes," IEEE

Trans. Software Eng., SE-6, no.2, pp.183-194, Mar.1980.

[15].R. E. Strom and S. Yemini, "Optimistic recovery in disnibuted systems", ACM

Tran~. Comput. Syst., vol. 3, no. 3, pp.204-226, Aug. 1985.

[16]. Y. Tamir and C.H. Sequin, "Error recovery in multicomputers using global check

points," in Proc. 13th IEEE Int. Conf. Parallel Processing, Aug. 1984.

- 32-

[17]. A. S. Tannenbaum, Computer Networks, Prentice-Hall, Englewood Cliffs, N.J.,

1981.

- 33-

Appendix A

In this appendix, we present two examples: Example A.I shows how procedure

restarcpoinCdetermination{p) works and Example A,2 shows how problems may occur

due to multiple failures.

Example A.I.' Suppose process p failed and is now recovering(with the local sys

lem graph in Figure A.I). inltialIy, procedure dfsearch(p, pI) is invoked and RS(P) con

tains p only. There is an edge (pI, q2) and q2 is not visited yet, so it needs to execut~

the for-loop of procedure dfsearch(p, pi), Recovery points of q and p are set to ql and

p2. respectively. RS(P) now contains p and q. For the existing nodes ql and q2. it exe

cUles dfsearch(p, ql) and discards q2 since ql has an out edge that belongs to E2 of G
p

while q2 has not. Since there is an edge from ql to r 2, the invocation of dfsearch(p,

ql) sets the recovery point of r to r 1 and does not change the recovery point of q

because that q 1 < q 2. The rollback set of p now contains p,q, and T. The execution of

procedure restarcpoinCdetermination is then terminated since none of the rf and r2

has any out edge that belongs to E2 of Gpo 0

r 2 1-__-I

Figure A.!. The local system graph G
p

.

- 34-

Example A2: Process p sends a message M to q after taking checkpoint p I and

then fails(Figure A.2). Process q receives M and takes checkpoint q'. but then fails.

Suppose that p starts its recovery before q. Process p collects inpuCinformation mes

sages from all live processes and executes the rollback recovery algorithm. Since q is

failed. and Wlable to reply p's rollback....initiating message, p does not know that q has

recorded the receipt of M and will not request q to rollback. When q recovers, accord

ing to the rollback recovery algorithm in Figure 6, q first restores to its last checkpoint

q2 and does not know that M was undone by p.o

pO
pI failure

p

xs:~ :qO
qt

q X X

failure

Figure A.2. Example for the case of multiple failures.

Appendix B

In this appendix. the correctness proof of (concurrent) rollback recovery algo

rithms is given.

Lemma &ll The rollback set of p computed by procedure

restarcpoinCdetennination(p) contains exactly the set of processes that mllst rollback.

Proof" Suppose that process q should rollback but is not in the rollback set of p. Since

q should rollback, q must have violated the definition of a consistent global state, i.e., q

must have recorded the receipt of a message M from r in checkpoint qC but r does not

record the"-sending of M. There are two cases to consider:

case (i) r never sent M. This is not possible in our model.

case (ii) r sent M in checkpoint r Ct and will have to back up to r C2. according to the

rollback_compute algorithm. Then there is an edge (r Ct • qC) in Gp- Since r

- 35-

is in the rollback set of p, and rei > r ez , node rei is visited by procedure

dfsearch(p,pf). Hence qC will he visited by procedure dfsearch(p,pf) 100, i.e.,

q is in the rollback set of p. This contradicts the hypothesis that q should

rollback but is not in the rollback set of p.

Moreover, since the rollback set of p is initialized to empty, it is obvious that

only the processes that must roll back will be in the set at the end of execu

tion.D

Lemma l1...2... The set of recovery points computed by procedure

restarCpoinCdetermination(p) is globally consistent.

Proof: Let C={pC", qC, r e..... , te) be the set of recovery points computed by procedure

restarcpoincdetennination(r). Suppose that C is not globally consistent. Then accord

ing to the definition of the consistent global state, there is some message

M=<p.q,sp,p i-I ,B> recorded as received by q in checkpoint qi and not recorded as sent

by p in p j. where p i ~P C and qi ~ qC. There are two cases to consider:

case(i) p never sent M. This is not possible in our model.

case(ii) p has rolled back to a checkpoint pi preceding checkpoint pi. Then, the

recovery point pC of p would be set by the algorithm to be no greater than pl.

Hence p C~ P I < pi. Tbis contradicts the fact that p i ~ Pc.o

Theorem ILL. If a system is in a consistent global state, the effect of any undone mes

sage will not persist in the system after an invocation of the rollback recovery algo

rithm.

Proof: Suppose that process q is not a rollback initiator and it receives and accepts a

message sent but later undone by process p. Let the message be M=<P.q,sp,pCI,B>.

Process p Is rolled back to a checkpoint p C2, where p C2 < p CI. There are two possible

cases:

case (i) rollback_request message that has undone M in p arrived at q before M.

When q received the rollback_request message it updated the perceived

- 36-

checkpoint number of p to p C2 and the expected session number of p to sp +1.

When q receives M, according to the algorithm in Section 4.2., process q will

discard M since pCI >pC'). and sp < sp+l.

case (li) rollback_request message that has undone M arrived at q after M.

(a) M arrived before q sent inpuLinformation message to the

rollback_initiator r whose failure caused p to undo M. The receipt of M by q

is known to r when r computes its rollback set. By Lemmas 1 and 2, q will

be requested to undo the receipt of M.

(b) M arrived between the instants when q sent inpuLinforrnation message to

r and received the rollbackJeQ.uest message from T. Since p is recorded in

the set I qT of q. q will be forced to undo the receipt of M.

If process q was the rollback initiator, case(i) can be applied. 0

Theorem B.2. The I-restart state of a system that has a single failure is globally con-

sistent.

Proof: It immediately follows from Lemmas B.l and B.2. since the set of recovery

points for the rollback set of p computed by procedure resrarcpoinCdetennination{p) is

globally consistent.D

Lemma l13..... The i-reston state of a system that has k-failures and the k failed processes

invokes k-concurrent rollbacks is globally consistent. for any i. 1 $i :s:; k.

Proof: We prove this lemma by induction.

For i=1, the statement is true by Theorem B.2 since the recovery processing for the pro

cess with highest priority in a multiple-concurrent rollback is the same as for a faulty

process in a single failure.

Suppose the statement is true for I = m. i.e. m~restart state is globally consistent.

For i = m+l.letPm+l be the recovering process with (m+l)-th highest priority. and let

PI, P2.· ... Pm be the fully recovered rollback initiators in the order of the completion of

global rollbacks. We shall prove that the statement is true for l=m+l by contradiction.

,
"

- 37-

Let C={PI C
, •••• PtC

} be a set of checkpoints, one from each live process, where Pre. 1 S

f $ t, is the recovery point of Pr ifPr is in the rollback set ofPj' j 5, m+l, and Pj is the

latest completed rollback initiator that contains Pr in its rollback set; otherwise, Preis

the last checkpoint of Pr recorded in Gp"'+l' Suppose that the (m+I)-restart state is not

globally consistent, Le., C is not globally consistent. Then there exists some message

M=< Pi, Pj. sp;' cl-l, B> recorded as received by Pj in checkpoint p/2 and not

recorded as sent by Pi in p{l, where p/l 5, p{ and p/2 '5. pl. Since by the induction

hypothesis, before integrating Pm+l to the system the m-restart state is globally con-

sistent, the only possible cases are:

case(i) Pi is some process with i '5. m and Pj is the process Pm+l and Pm+l Cz is a

checkpoint'::;; the last existing checkpoint saved in stable storage of Pm+l.

Since C is not consistent, Pi must have rolled back to some checkpoint PiC3

preceding p{l. Then p{ must have been set to no greater than p/3. In the

execution of procedure roliback_compute_2(Pm+l) (Figure 13), since there is

an edge Cpt l
, Pm+l

C2
) and Pi

cl > p{. Pm+{ollback is set to a checkpoint $

" F h kp. I ~ Tollback ed elf h(pPm+l . or any c ec omt Pm+l .::. Pm+l • prce ure searc m+l>

Pm+l
1
) is invoked. Hence Pm+l c is set to some checkpoint < Pm +1 C2. This

contradicts the assumption that Pm+l C2 $ Pm+l c.

case(ii) Pi is the process Pm+l and Pm +1 cl-I is the last existing checkpoint of Pm+l

saved in stable storage and Pj is any live process.

In this case, Pm+ITollbo.ck is set to Pm+/ and procedure dfsearch(pm+l> Pm+/)

is invoked(Figure 13). Pm+l c is then set to be no greater than Pm+l C1-l. i.e.,

c cl-I d ," th
Pm+! $ Pm+l an so Pm+l < Pm+l . This contradicts e assumption

th t CI < Ca Pm+l -Pm+l.

From both case(l) and (2), we show that C is globally consistent, i.e., the

(m+I)·restart state is globally consistent.O

- 38-

Theorem ILL. The I-restart state of a system that has k-failures is globally consistent,

for any I ,; I ,; k.

Proof: It immediately follows from Theorem B.2 and Lemma B.3 since for multiple

failures there can be either a process recovers at a time or processes initiate· rollback

recovery concurrently.o

	Independent Checkpointing and Concurrent Rollback for Recovery in Distributed System—An Optimistic Approach
	Report Number:
	

	tmp.1307986960.pdf.a1PkY

