
Florida State University Libraries

Electronic Theses, Treatises and Dissertations The Graduate School

2012

Independent Component Analysis
Algorithm FPGA Design to Perform Real-
Time Blind Source Separation
Crispin Odom

Follow this and additional works at the FSU Digital Library. For more information, please contact lib-ir@fsu.edu

http://fsu.digital.flvc.org/
mailto:lib-ir@fsu.edu

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ENGINEERING

INDEPENDENT COMPONENT ANALYSIS ALGORITHM FPGA DESIGN TO PERFORM

REAL-TIME BLIND SOURCE SEPARATION

By

CRISPIN ODOM

A Thesis submitted to the

Department of Electrical And Computer Engineering

in partial fulfillment of the

requirements for the degree of

Master of Science

Degree Awarded:

Spring Semester, 2012

ii

Crispin Odom defended this thesis on April 2, 2012.

The members of the supervisory committee were:

 Uwe Meyer-Baese

 Professor Directing Thesis

 Simon Foo

 Committee Member

 Rodney Roberts

 Committee Member

The Graduate School has verified and approved the above-named committee members, and

certifies that the thesis has been approved in accordance with university requirements.

iii

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Dr. Meyer-Baese, and the members of my thesis

committee, Dr. Simon Foo and Dr. Rodney Roberts for their encouragement and support

throughout this endeavor. This document is dedicated to my mother, Rosaline Odom. Thank you

for believing in me.

iv

TABLE OF CONTENTS

List of Tables ... vi

List of Figures .. viii

Abstract ... xii

1. INTRODUCTION ...1

1.1 Brief Overview...1

1.2 Motivation ..3

1.3 Problem Scope ...3

1.2 Organization of Thesis ...3

2. INDEPENDENT COMPONENT ANALYSIS ...5

2.1 Background of ICA ..5

2.2 Algebraic ICA ..8

2.3 Fast ICA ...9

2.4 EASI ICA ...10

2.5 ICA Implementation with FPGAs ...11

3. ICA ALGORITHM COMPARISON AND SELECTION ..13

3.1 Comparison Criteria for ICA Data ...13

3.2 Algebraic ICA Data ...13

3.3 Fast ICA Data ..18

3.4 EASI ICA Data ..22

3.5 Comparisons of ICA Algorithms ...25

3.5.1 ICA Algorithm Comparison Data ...25

3.5.2 ICA Algorithm Comparison Discussion ..27

3.6 Conclusion ...27

4. EASI ANALYSIS ...28

4.1 Mixing Matrix Analysis ...28

4.1.1 Mixing Matrix One Data ..28

4.1.2 Mixing Matrix Two Data ...32

4.1.3 Mixing Matrix Three Data ...35

4.1.4 Mixing Matrix Four Data ...38

4.1.5 Mixing Matrix Data Selection ...41

4.2 Nonlinearity Testing ..41

4.2.1 Nonlinearities ...41

4.2.2 Nonlinearity Data Analysis ..46

4.2.3 Resource Requirements for Nonlinearities ..60

4.2.4 Nonlinearity Comparison and Selection ..63

4.3. Additional Analysis ...64

4.3.1 Multiple Sources ..64

4.3.2 Comparison of the EASI general algorithm and the EASI variation65

4.3.3 The Use of Independent Audio Sources ..69

4.4 Conclusion ...70

v

5. EASI IMPLEMENTATION WITH A FPGA ...71

5.1 The EASI Algorithm Hardware Implementation ...71

5.2 Source and Mixed Signals Test Bench ..74

5.3 Nonlinear Function Test Bench ...75

5.4 EASI Full Implementation Test Bench ..77

5.4.1 EASI Full Implementation Overview ..77

5.4.2 Finite State Machine Addition ...77

5.5 Results of the EASI Full Implementation Test Bench ...80

5.6 Conclusion ...81

6. CONCLUSION ...82

6.1 Summary of Thesis ..82

6.2 Future Work ...82

7. BIBLIOGRAPHY ...83

8. BIOGRAPHICAL SKETCH ...85

vi

LIST OF TABLES

3.2.1 A-ICA simulation data analysis results ...15

3.2.2 The total required resources needed to implement the A-ICA ..16

3.3.1 Fast ICA simulation data analysis results ..20

3.3.2 The total required resources needed to implement the Fast ICA ..21

3.4.1 EASI ICA simulation data analysis results ...24

3.4.2 The total required resources needed to implement the EASI ICA25

3.5.1.1 Comparison of convergence speed and visible qualifications for each ICA26

3.5.1.2 Comparison of the FFT spectrum error and frequency location for each ICA .…………,26

3.5.1.3 Comparison of the mixing and separation matrices product error for each ICA………...26

3.5.1.4 Comparison of the difference of mixing and separation matrices for each ICA27

4.1.1.1 EASI ICA data for analysis for mixing matrix one ...31

4.1.2.1 EASI ICA data for analysis for mixing matrix two ...34

4.1.3.1 EASI ICA data for analysis for mixing matrix three ...37

4.1.4.1 EASI ICA data for analysis for mixing matrix four ..40

4.1.5.1 Comparison of EASI ICA data for analysis for all mixing matrices………..…………...42

4.2.2.1 Nonlinearity one data for analysis…...…………….……..…………………..………….48

4.2.2.2 Nonlinearity two data for analysis…...……………..….……………………..………….49

4.2.2.3 Nonlinearity three data for analysis..…..……………………………….......……………51

4.2.2.4 Nonlinearity four data for analysis…...……………………….…………………...….…52

4.2.2.5 Nonlinearity five data for analysis…...……………………….……….………..………..54

4.2.2.6 Nonlinearity six data for analysis…...…..……….………………….…………………...55

vii

4.2.2.7 Nonlinearity seven data for analysis…...….………..……...……….……………………57

4.2.2.8 Nonlinearity eight data for analysis…...………..……………...….……………………..58

4.2.2.9 Nonlinearity nine data for analysis….....……….…………………..…...……………….60

4.2.3.1 Resources required for nonlinearities one, two, and four……………..…………………60

4.2.3.2 Resources required for nonlinearity nine………………………...………………………61

4.2.3.3 Resources required for nonlinearities three, five, six, and eight……...…………………62

4.2.4: Comparison of nonlinearity data results………..……………………...…………………63

4.3.1 EASI –ICA Resources for Three to Five Sources………………………...………………64

4.3.2 Comparison of the general EASI algorithm and the two function variation…………...…65

4.3.3 EASI ICA data for analysis for audio signals…………………………………………..…69

5.1 EASI ICA Matrix Multiplication Requirements………………………….………...………..72

5.2 Components of the Source and Mixed Signals Test Bench……………………...…...……...74

5.3 Components of the Nonlinearity Implementation Test Bench…………………………...….76

5.4.2 Components of the Full EASI Implementation…………...……………….………………78

5.5.1 Comparison of Matlab and VHDL simulation values for the source signals…….………..80

5.5.2 Comparison of Matlab and VHDL simulation values for the mixed signals ……………...80

5.5.3 Comparison of Matlab and VHDL simulation values for the separated signals…………...81

viii

LIST OF FIGURES

1.1 A general model of blind source separation..…………………………………………………2

2.1 Basic diagram of the ideology of ICA………………………………………..………….……5

3.2.1 Independent source signals used for A-ICA simulation …………………………………..13

3.2.2 Mixed signals used for A-ICA simulation.…...…………………………...………………14

3.2.3 Separated signals used for A-ICA simulation ……………………………………………..14

3.2.4 Source and separated signals comparison of the A-ICA simulation…………...…………..15

3.3.1 Independent source signals used for Fast ICA simulation.………………………………...18

3.3.2 Mixed signals used for Fast ICA simulation…………………………………………….…18

3.3.3 Separated signals used for Fast ICA simulation …...……………………………………...19

3.3.4 Source signals and separated signal comparison of the Fast ICA simulation…………..….19

 3.4.1 Independent source signals used for EASI ICA simulation ………………………..……..22

3.4.2 Mixed signals used for EASI ICA simulation …...………………………………………..23

3.4.3 Separated signals used for EASI ICA simulation …...…………………………………….23

3.4.4 Source and separated signals comparison of the EASI ICA simulation …………..………24

4.1.1.1 Mixed signal created with mixing matrix one ……………………….…………………29

4.1.1.2 Separated signals created with mixing matrix one.……………………………………...29

4.1.1.3 Comparison of source and separated signals created with mixing matrix one……..……30

4.1.1.4 Convergence of separation matrix using mixing matrix one………………………….…30

4.1.1.5 Errors of separation matrix using mixing matrix one………………..……………….….31

ix

4.1.2.1 Mixed signal created with mixing matrix two………………….…………………..……32

4.1.2.2 Separated signals created with mixing matrix two………………….……………..…….32

4.1.2.3 Comparison of source and separated signals created with mixing matrix two…...….…..33

4.1.2.4 Convergence of separation matrix using mixing matrix two……………….……………33

4.1.2.5 Errors of separation matrix using mixing matrix two………………………………..…..34

4.1.3.1 Mixed signal created with mixing matrix three………………………………….………35

4.1.3.2 Separated signals created with mixing matrix three…………………………………….35

4.1.3.3 Comparison of source and separated signals created with mixing matrix three……..….36

4.1.3.4 Convergence of separation matrix using mixing matrix three……………………….….36

4.1.3.5 Errors of separation matrix using mixing matrix three……………………………….….37

4.1.4.1 Mixed signal created with mixing matrix four…………………………………….…….38

4.1.4.2 Separated signals created with mixing matrix four…………………………...……….…38

4.1.4.3 Comparison of source and separated signals created with mixing matrix four………….39

4.1.4.4 Convergence of separation matrix using mixing matrix four……….…………….……..39

4.1.4.5 Errors of separation matrix using mixing matrix four…………………………….……..40

4.2.1.1 Nonlinearity one: Signum……………………..…………………………………………42

4.2.1.2 Nonlinearity two: Function of y…………………...…………………………………..…42

4.2.1.3 Nonlinearity three: Cubic function………..……………………………………………..43

4.2.1.4 Nonlinearity four: Piecewise function one………..……………………………………..43

4.2.1.5 Nonlinearity five: Inverse tangent function……………………………..…………….…44

x

4.2.1.6 Nonlinearity six: Hyperbolic tangent function……………..……………………………44

4.2.1.7 Nonlinearity seven: Exponential function……………..………………………………...45

4.2.1.8 Nonlinearity eight: Difference between Function of y and hyperbolic tangent……...…..45

4.2.1.9 Nonlinearity nine: Piecewise function two……………………….….………………..…46

4.2.2.1.1 Separated signals using nonlinearity one……………………….……………….……..47

4.2.2.1.2 Comparison of source and separated signals for nonlinearity one………....……….....47

4.2.2.2.1 Separated signals using nonlinearity two…………………………...………….……....48

4.2.2.2.2 Comparison of source and separated signals for nonlinearity two……………….……49

4.2.2.3.1 Separated signals using nonlinearity three…………………………………….……….50

4.2.2.3.2 Comparison of source and separated signals for nonlinearity three…………………...50

4.2.2.4.1 Separated signals using nonlinearity four……………………………………………...51

4.2.2.4.2 Comparison of source and separated signals for nonlinearity four…………………….52

4.2.2.5.1 Separated signals using nonlinearity five……………………………………………...53

4.2.2.5.2 Comparison of source and separated signals for nonlinearity five…………………….53

4.2.2.6.1 Separated signals using nonlinearity six……………………………………………….54

4.2.2.6.2 Comparison of source and separated signals for nonlinearity six……………………...55

4.2.2.7.1 Separated signals using nonlinearity seven…………………………………………….56

4.2.2.7.2 Comparison of source and separated signals for nonlinearity seven…………………..56

4.2.2.8.1 Separated signals using nonlinearity eight……………………………………………..57

4.2.2.8.2 Comparison of source and separated signals for nonlinearity eight…………………...58

xi

4.2.2.9.1 Separated signals using nonlinearity nine……………………………………………..59

4.2.2.9.2 Comparison of source and separated signals for nonlinearity nine……………………59

4.3.3.1 Independent audio signals used for EASI ICA analysis…………………………...……66

4.3.3.2 Mixed audio signals created for EASI ICA analysis……………………………………67

4.3.3.3 Separated audio signals using the EASI ICA algorithm………………………………...67

4.3.3.4 Comparison of source and separated audio signals………………………………….…..68

4.3.3.5 Convergence of separation matrix for the audio signals using EASI ICA …………..….68

4.3.3.6 Errors of separation matrix for the audio signals using EASI ICA ……….…………….69

5.1.1 The stages of the EASI algorithm………………………………………………………….71

5.1.2 The stages of the EASI algorithm in hardware…………………………………………….73

5.2.1 Diagram of the source and mixed signals test bench……………………………...……….74

5.2.2 Simulation results of the Source and Mixed Signals Test Bench…….……………………75

5.3.1 Diagram of the nonlinear test bench……………………………………………………….75

5.3.2 Simulation results of the Nonlinearity Implementation Test Bench……………………….76

5.4.1 Diagram of the Full Implementation EASI Test Bench……………………………………77

5.4.2.1 Diagram of the finite state machine used to implement EASI ICA……………………...77

5.4.2.2 Diagram of complete EASI ICA Test Bench………………...…………...……………...78

5.4.2.3 Simulation of the EASI Full Implementation Test Bench ………………...………..…...79

xii

ABSTRACT

The conditions that arise in the Cocktail Party Problem prevail across many fields

creating a need for of Blind Source Separation. The need for BSS has become prevalent in

several fields of work. These fields include array processing, communications, medical signal

processing, and speech processing, wireless communication, audio, acoustics and biomedical

engineering. The concept of the cocktail party problem and BSS led to the development of

Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing

real time signal processing. The goal of this thesis was to perform an extensive study on ability

and efficiency of Independent Component Analysis algorithms to perform blind source

separation on mixed signals in software and implementation in hardware with a Field

Programmable Gate Array (FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant

Adaptive Separation via Independence (EASI) ICA were examined and compared. The best

algorithm required the least complexity and fewest resources while effectively separating mixed

sources. The best algorithm was the EASI algorithm. The EASI ICA was implemented on

hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance

in real time.

1

CHAPTER ONE

INTRODUCTION

1.1 Brief Overview

The Cocktail Party Problem is a classic Digital Signal Processing problem focused on

trying to separate voices or music mixed simultaneously based only on their mixtures. [1] The

problem arises when using a microphone or antenna a signal is received by a sensor signal. This

signal is a mixture of elements that are called sources. The signal received is a superimposition

of signals emitted by the source which are in its area of reception. [2] In the cocktail party

scenario, two people are talking at the same time on two microphones in different locations. The

recorded signal would then consist of a mixture of two speech signals. [3] The microphones

provide two recorded time signals, which can be denoted by ሺ ሻ and ሺ ሻ. The amplitudes are

represented and and the variable t, represents the time index. [4] The recorded signal is a

weighted sum of the speech signals emitted by the two speakers. The signals are denoted by ሺ ሻ and ሺ ሻ which can be expressed as a linear equation:

 ሺ ሻ

 ሺ ሻ [4]

The parameters, , depend on the distances of the microphones from the

speakers. The two original speech signals ሺ ሻ and ሺ ሻ can be estimated using only the

recorded signals ሺ ሻ and ሺ ሻ. The sources and mixtures are unknown. A method for solving

the cocktail party problem is to use some information on the statistical properties of the signals ሺ ሻ to estimate the , and assume ሺ ሻ and ሺ ሻ are statistically independent. [4]

 The aforementioned solution is Blind Source Separation (BSS). As can be seen in

Figure 1.1, BSS is able to estimate the coefficients that characterize this linear combination, and

estimate the original signals. [1]

2

Figure 1.1: A general model of blind source separation. [5]

BSS is performed by analyzing mixtures of independent sources and using their components

only to recover the original signals. [6] There is an existence of n statistically independent

signals, s(t) = [s1(t), …, sn(t)] and observed n-mixes that are linear combinations to create x(t) =

[x1(t), …, xn(t)]. The mixtures are generated from the following model: [1]

The simplified version of this equation is: ሺ ሻ ሺ ሻ [6].

A is a square n x n mixing matrix with mixing components Where x(t) is the observed

vectors of mixture, which usually ignores noise. [6] Sources are separated by using the matrix

W. W is used in the following equation:

WA = PD [6]

Where P is a permutation matrix and D is a Diagonal matrix. The resulting recovered sources

are then made available in y(t) in the following calculation:

 y(t) = W*x(t) = P*D*s(t) [6].

The recovered sources are permutated and scaled versions of the original signals. The result is

ultimately the separation of the two original source signals ሺ ሻ and ሺ ሻ from their mixtures ሺ ሻ and ሺ ሻ. [4] [7] [8] [5]

3

1.2 Motivation

The conditions that arise in the Cocktail Party Problem prevail across many fields

creating a need for of Blind Source Separation. [2] The need for BSS has become prevalent in

several fields of work. These fields include array processing, communications, medical signal

processing, and speech processing, wireless communication, audio, acoustics and biomedical

engineering. [9] All of the mentioned fields use several source signals without exact knowledge

of their transmission channel, or extraction, which makes it difficult to analyze signals when

necessary. Solving this problem allows many applications such as mobile multiuser

telecommunication systems to eliminate redundancy and sparse coding in noise cancellation. [7]

Additionally, BSS helped to create voice reinforcement in noisy environments, such as urban

ecology where noise pollution caused by high sound levels [1] . The concept of the cocktail party

problem and BSS led to the development of Independent Component Analysis (ICA) algorithms.

[4] ICA proves useful for applications needing real time signal processing such a speech signal

enhancement noise canceling and ECG signal analysis.[10] ICA is being used in various signal

processing applications such as audio signal processing, watermarking, and financial signal

analysis. [11]

1.3 Problem Scope

The goal of this thesis was to perform an extensive study on ability and efficiency of

Independent Component Analysis algorithms to perform blind source separation on mixed

signals in software and implementation in hardware with a Field Programmable Gate Array

(FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via

Independence (EASI) ICA were examined and compared. The best algorithm required the least

complexity and fewest resources while effectively separating mixed sources. The best algorithm

was the EASI algorithm. The EASI ICA was implemented on hardware with Field

Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.

1.4 Organization of Thesis

In this thesis the framework of the thesis is presented as follows:

 Chapter 2 provides a literary review of the Independent Component Analysis, three

algorithms, and use of ICA with FPGA for real time implementation.

4

 Chapter 3 provides the analysis and comparison of the each of the Algebraic ICA, Fast

ICA and EASI ICA effectiveness and resources required for hardware implementation

that ultimately led to the EASI ICA selection.

 Chapter 4 provides a further analysis of the EASI ICA and methods for setting the best

parameter for the implementation of the algorithm on hardware.

 Chapter 5 provides the methodology and details for creating the EASI ICA system on

hardware. This chapter also provides an analysis of the EASI ICA hardware

implementation and compares it to the software simulations.

 Chapter 6 provides a summary and conclusion of the findings from the research.

5

CHAPTER TWO

INDEPENDENT COMPONENT ANALYSIS

2.1 Background Information on ICA

Principal Component Analysis (PCA) is defined by the eigenvectors of the covariance

matrix of the input data. ICA is an extension of PCA that has been developed to utilize blind

separation of independent sources from their linear mixtures. [9] Standard PCA is optimal in

approximating the input data in the mean-square error sense. However, a problem arises

because PCA does not provide the most meaningful representation for describing fundamental

characteristics of data. ICA provides important analytic representations of the data than PCA.

[12] Independent component analysis, or simply ICA, was introduced in 1986 by Jeanny Herault

and Christian Jutte as a neural network based on Hebb learning law capable of performing blind

signal separation. [1] ICA is used to recover independent sources from given sensor signals that

have been mixed through unknown channels. [13] ICA recovers the source signals by finding a

linear transformation that can maximize the mutual independence of the mixture. [10]

Specifically, these algorithms try to separate a number of statistically independent signals from

the same number of input signals are the linear sum of the first. [14] As can be seen in Figure

2.1, The ICA algorithms can be used to estimate the based on the information of their

independence. [4] [5] [14]

Figure 2.1: Basic diagram of the ideology of ICA.

6

A basic ICA algorithm begins with assuming n linear mixtures , . These

mixture are made from independent component such that for all j.

The mixtures and the components of the sources are assumed to be statistically

independent and random. [4] The mixed signals in , are a product of the mixing matrix A, and

the independent source signals, s. [11]. The mixing matrix A, contains elements . The

observed values in are similar to the microphone x(t) signals in the cocktail party problem,

but are random instead of a proper time signal. It is assumed that both the mixture variables and

the independent components have zero mean. If this is not true, then the observable variables
can always be centered by subtracting the sample mean, which makes the model zero-mean. The

starting point for ICA is the assumption that the components in s are statistically independent and

have non-Gaussian distributions. The unknown mixing matrix, A is assumed to be square. After

estimating the matrix A, it is possible to compute its inverse W or B to obtain the separated

source signals. This can be done in the following equation: y =Bx [4]. Consider the global

system denoted which is obtained by chaining the mixing matrix A and the separating

matrix , that is

Ideally, an adaptive source separator should converge to a matrix B, such that , or

equivalently, the global system Ct should converge to the n x n identity matrix I. [12]

The key to estimating the ICA model is non-gaussainity and statistical independence. [11]

The method of ICA has specific characteristics that should be considered. ICA allows the

separation of the signals whenever these are statistically independent by maximizing non-

Gaussianity. Therefore Gaussian sources cannot be separated. In addition, there are two

uncertainties in the method of ICA. The first is ICA cannot get the original amplitude of the

mixed sources. The second is the outputs can be exchanged. [1] Consider two scalar valued

random variable and . These variables are said to be independent if information on the

value of does not give any information on the value y2 and vice versa. This should always be

the case for but not with the mixture variables . Independence can be defined

by the probability densities. The joint probability density of and is p(,). [4]

The marginal densities for and is denoted by the following equation: ሺ ሻ ∫ ሺ ሻ

7

 ሺ ሻ ∫ ሺ ሻ [4]

Hence and are independent if and only if the joint probability density is factorable in the

following equation: ሺ ሻ ሺ ሻ ሺ ሻ [4]

The matrix A is not identifiable for Gaussian independent components. If just one of the

independent components is Gaussian the ICA model can be estimated. The classical measure of

non-gaussianity is kurtosis. The kurtosis of y is defined by { } { { }}

Its assumed that y is of unit variance the right hand side simplifies to { } . This shows

that kurtosis is simply a normalized version of the fourth moment { }. For a gaussian y, the

fourth moment equals { { }} . Kurtosis is zero for a Gaussian random variable. [4]

 Kurtosis is not zero for most nongaussian random variables. Kurtosis can be both

positive and negative. Random variables that have a negative kurtosis are called subgaussian

and those with positive kurtosis are called supergaussian. Nongaussianity is measured by the

absolute value of kurtosis. These are zero for a gaussian variable and greater than zero for most

nongaussian random variables. Kurtosis or its absolute value has been widely used as a measure

of nongaussity in ICA and related fields. The main reason is its simplicity. Computationally

kurtosis can be estimated simply by using the fourth moment of the sample data. [4]

The statistical robustness achieved from the ICA and methods used depend on the choice

of the objective function and the algorithm implementation. [11] The performance of a good

algorithm is determined based on factors including the following:

 Convergence speed

 Memory requirements

 Numerical stability. [11]

ICA falls into basic methods adaptive or algebraic. The framework of most algebraic method

can be expressed as whitening rotating. [15] After centering of the observed signal a linear

transformation is performed on them using principal component analysis such as that the

transformed variables are uncorrelated. ICA algorithms revolve around the orthogonal matrix

rotating problem. The more the independent component could be separated completely the more

powerful the ICA algorithm is. Most ICA algorithms focus on separating mixtures of multiple

sources. [5]

8

2.2 Algebraic ICA

The Algebraic ICA (A-ICA) algorithm is based on the algebraic dot product between two

n-d data vectors as a distance measure. The dot product between two vectors ̅ ̅ in same

basis
 is defined as ̅ ̅ ̅ ̅ | ̅|| ̅| where n-d angle between the

vectors ̅ ̅. If the two vectors are lying along the same n-d direction, the absolute value of

the cosine of the n-d angle is maximum or one. If they are orthogonal to each other, the

cosine of the angle becomes zero. After projection onto a unit hyper-sphere, the notion of

minimum distance is equivalent to the notion of maximizing the absolute dot-product between

the projected vectors. Using the absolute value of the dot product produces a sign ambiguity that

is inherent in any ICA algorithm i.e. | ̅ ̅| | ̅ ̅| where ̅ = - ̅. Another useful property for the

dot-product is its insensitivity to the order of the product, i.e | ̅ ̅| | ̅ ̅| [16]. [17]

The A-ICA algorithm is fast stable and does not use the whitening rotating framework. The A-

ICA algorithm is for two sources and based on non-whitening preprocessing. [12]

Assume there are two source signals. If and are a random

source vector and mixed signal vector. This system is represented by x = As where A is a 2x2

mixing matrix in the form ቀ ቁ [15]

According the ICA principle, and are mutually independent with unit variance and zero

mean. [] [] [] [18]

The symbols α and β are unknown mixing rates given by ሺ ሻሺ ሻ [18] ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ [18] [] { } [] { } [] []

9

 [] [] [] [] [] [] [] [] [] [] [] [] [] []
 Where E[] denotes expectation or the mean of the random x vectors. [18] [17]

2.3 Fast ICA

Fast ICA is a fixed point iterative algorithm uses a nonlinear function f (y) = tanh (y),

which is applied to the separation matrix, W. W is continuously recalculated at every iteration

of the algorithm. The input to the Fast ICA algorithm must be whitened by three steps. The first

step is centering the data over the average. The second is to normalize the variance. The third is

to make the data orthogonal. Multiple steps are necessary to implement the Fast ICA algorithm.

The first step is to center the data to make its mean zero. The next to step is to whiten the data to

give z. The third step is to choose an initial random vector w of unit norm. The next step is to let

w=E{zg(wTz)}- E{g’(wTz)}w. In the next step let w=w/║w║. The last step of the Fast ICA

check for convergence of the algorithm. If there isn’t any convergence the algorithm repeats the

third and four steps. If there is convergence then the w is used in y = w*x to obtain the separated

signal. The Fast ICA are show in detail below: [1]

1. Center the data to be zero mean { }
2. Recreate the mixed signals
3. Whiten the data

4. Choose and initial w
5. Compute w

10

 { ሺ ሻ} ሺ ሺ ሻ}

6. Find the norm of w √‖ ‖

See if there is convergence. If there isn’t repeat steps five and six.
7. Compute w

8. Perform separation

2.4 EASI ICA

The EASI algorithm was initially created by Cardoso. The theory behind its approach

revolves around the use of batch estimators that are equivariant. The key property shared by

equivariant batch estimators for source separation is that they offer uniform performance [12]

The Equivariant Adaptive Separation via Independence (EASI) algorithm is simple in parallel

structure. The algorithm is performed using the following equations:

1. Create yk vectors , B initially is an identity matrix ሺ ሻ ሺ ሻ ሺ ሻ

2. Create the H matrix using the yk and a nonlinearity function ሺ ሻ ሺ ሻ ሺ ሻ (ሺ ሻ൯ ሺ ሻ ሺ ሻ ሺ ሺ ሻሻ

3. Create the B matrix with H , current B and the learning rate ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ

4. Repeat steps 1 through 3 until convergence

5. Generate separated signals ሺ ሻ ሺ ሻ ሺ ሻ

The B matrix updates itself each cycle of the algorithm. The matrix initially is an identity

matrix. The f(y) represents the nonlinearity used that will shape the convergence and separation

of the mixed signals. Upon convergence of the algorithm the final updated matrix if multiplied

11

with the mixed signals to produce vectors of separated signals. The nonlinearity f(y) = -tanh(y)

and a learning rate of are typically used with this algorithm. [19] [7] [8]

2.5 ICA Implementation With Field Programmable Gate Arrays (FPGA)

FPGA technology can implement the digital signal processing algorithm and quickly

verify the result in hardware. Most FPGAs have on chip hardware multipliers and memory

blocks which make them fit in the implementation of ICA which require high volumes of

mathematical operations. VHDL used to the design the hardware. Floating point arithmetic with

high accuracy is necessary in calculation and large dynamic range of numbers is necessary for

such signal processing techniques. Floating point is difficult to implement on an FPGA because

of the arithmetic complexity and large number of logic elements needed to implement it. [10]

The complicated arithmetic, the iterative computation, slow convergence rate, and the

generally large volumes of raw and processed data make ICA algorithms time-consuming for

software implementation. Hardware implementation provides potentially fast and real-time

solutions. Software implementation is useful for investigating the capabilities of ICA algorithms.

Hardware implementation is essential to benefit from the parallel architecture and to facilitate

high-speed processing. The major difference between hardware and software implementations is

hardware subroutines are executed by integrated circuits (ICs) instead of a series of

microinstructions. Hardware implementation also solves the insufficient memory problem

encountered by software for large data sets and high dimensionality. [20]

The FPGA based on the reconfiguration technology are the most economic and efficient

solutions to ICA. The complicated arithmetic of ICA is one of the main barricades in ICA

hardware implementation. The hierarchy involves dividing an ICA process into sub processing

modules until the complexity of the bottom level sub modules becomes manageable. These sub

modules are independently developed, integrated put into a design and development

environments. FPGAs provide the most economic and efficient solutions to comparatively

simple ICA algorithms. FPGAs are standard and general-purpose products fabricated by

hardware companies. FPGAs are developed based on reconfigurable technologies that allow end

users to modify their designs for multiple times and program the interconnections instead of

waiting several weeks for the final fabrication. These savings in the development expense and

turnaround time of prototyping directly lead to time-to-market reduction and profit increase.

12

Typical FPGAs are composed of a two-dimensional array of input/output blocks, interconnects,

and configurable logic blocks (CLBs) that can be customized to implement logic functions. The

programmable interconnects between these CLBs allow end users to implement the multilevel

logic functions [20]

13

CHAPTER THREE

ICA ALGORITHM COMPARISON AND SELECTION

3.1 Comparison Criteria for ICA Data

The Algebraic ICA (A-ICA), Fast ICA, and EASI ICA were implemented in Matlab to analyze

each algorithms ability to separate the mixed signals. The independent sources used were cosine

signals of varying frequencies.

Each algorithm’s effectiveness was accessed on the following criteria:

 Convergence speed

 Visible separation:

 Separated signal FFT spectrum energy error

 Mixing matrix and separated matrix product error

(Mixing Matrix * Separation Matrix = Identity Matrix)

 Separated matrix and mixing matrix difference error

(Separation Matrix – Inverse of Mixing = 0)

 Number of resources required for implementation

3.2 Algebraic ICA Data

The first algorithm analyzed was the A-ICA. The A- ICA was simulated with cosine signals of 2

kHz and 7 kHz frequencies as shown in Figure 3.2.1.

Figure 3.2.1: Independent source signals used for A-ICA simulation.

14

 The following mixing matrix was used to create the mixed signals of the sources: ቀ ቁ

The mixed signals generated from the product of mixing matrix and the source signals can be

seen in Figure 3.2.2.

Figure 3.2.2: Mixed signals used for A-ICA simulation.

The A-ICA algorithm execution created the following separated signals as shown in

Figure 3.2.3.

Figure 3.2.3: Separated signals used for A-ICA simulation.

15

The signals plotted in Figure 3.2.1 are clearly distorted replicas of the original source signals.

Figure 3.2.4 clearly outlines differences between the source and separated signals. Despite the

fast convergence speed A-ICA visibly does not effectively separate the signals mixed signals.

Figure 3.2.4: Source and separated signals comparison of the A-ICA simulation.

As shown in Table 3.2.1 , the maximum FFT spectrum energies were detected to be

approximately 2 kHz and 7 kHz for signal one and signal two respectively. The excess energies

detected in the FFT spectrum plots for signals one and two created spectrum energy errors of

0.374% and 2.3741% respectively. The product of the mixing matrix and separation matrix had

an error of 10.43%. The difference of the separation matrix and the inversion of the mixing

matrix had an error of 1.98%.

Table 3.2.1: A-ICA simulation data analysis results.

Table 3.2.1: A-ICA Data Analysis Results

Performance Aspect Quantitative Values

Convergence Speed 1 iteration

FFT Measurements

Signal 1 – Max Freq (%Error) 2 kHz (03.741%)

Signal 2 – Max Freq (%Error) 7 kHz (2.3741%)

Mixing Separation Product Error 10.43%

Mixing Separation Difference Error 1.98%

16

The A-ICA requires a large number of resources for implementation as see in Table 3.2.2.

Although the ICA requires only an iteration to converge, the algorithm requires over well over

100 multiplier and adders of resources for hardware implementation. The finite number of

resources is not known because several elements of the algorithm depend on the length of the

signal.

Table 3.2.2: The total required resources needed to implement the A-ICA.

Table: 3.2.2 A-ICA Required Resources

Equation Operation Breakdown

N = # of elements

Total Resources

 1 multipliers 1 mults 1 multipliers 2 multipliers 2 mults 2 multipliers 3 multipliers 3 mults 3 multipliers 1 multipliers 1 mults 1 multipliers 2 multipliers 2 mults 2 multipliers 3 multipliers 3 mults 3 multipliers 1 multipliers 1 mults 1 multipliers 3 multipliers 3 mults 3 multipliers 2 multipliers 2 mults 2 multipliers 3 multipliers 3 mults 3 multipliers 2 multipliers 2 mults 2 multipliers 3 multipliers 3 mults 3 multipliers

E[*] = Expectation Mean : (N-1)

adders

N dividers

E[*] = Expectation Mean : (N-1)

adders

N dividers

17

Table: 3.2.2 A-ICA Required Resources continued

Equation Operation Breakdown

N = # of elements

Total Resources

 [] { } [] { } [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []

11*1

Expectation

11*1

multipliers

11*1 adder

11*1

Expectation

Squared

11*(N-1) adders

11*N dividers

11*1 multiplier

11*1 adder

(subtraction)

11*(N-1)
2
 adders

11*N
2
 dividers

11 Expectation

(11N-11) adders

,11N dividers))

11 multipliers

11 adder

11 Expectation

Squared

(121N
2
+242N+11)

adders + 121N
2

dividers)

 ሺ ሻሺ ሻ
2 Multipliers

2 adders

2*(1 mults + 1

adder) (2 sub)

2 Multipliers

2 adders (൯ (൯
+ (൯ (൯

25 Multipliers

14 Adders

(8

Subtraction)

(2+7+8+6+2)

Mults

(1+1+1+1+1+1

+1+2+2+3+1)

Adders

(1+2+2+3+1) Sub

25 Multipliers

14 Adders

(8 Subtractions)

 Total Resources 64 multipliers

121N
2
 +

11Ndividers

121N
2
+253N+49

adders

(8 subtractions)

18

3.3 Fast ICA Data

The Fast ICA was simulated with cosine signals of 2 kHz, 7 kHz, and 10 kHz frequencies as

shown in Figure 3.3.1.

Figure 3.3.1: Independent source signals used for Fast ICA simulation.

The following mixing matrix was used to create the mixed signals of the sources: ()

The mixed signals created from the product of mixing matrix and the source signals can be seen

in Figure 3.3.2.

Figure 3.3.2: Mixed signals used for Fast ICA simulation.

19

The Fast ICA algorithm simulation produced the following separated signals as shown in

Figure 3.3.3.

Figure 3.3.3: Separated signals used for Fast ICA simulation.

The signals plotted in Figure 3.3.3 appear to be very similar to the source signals. Figure 3.3.4

highlights the similarities between the source and separated signals.

Figure 3.3.4: Source signals and separated signal comparison of the Fast ICA simulation.

As shown Table 3.3.1, the maximum FFT spectrum energies were detected at

approximately 2 kHz for signal one, 7 kHz for signal two and 10 kHz for signal three. The excess

energies detected in the FFT spectrum plot for signal one, two and three created a spectrum error

of 0.116%., 2.000% and 2.116% respectively. The product of the mixing matrix and separation

20

matrix had an error of 0.995%. The difference of the separation matrix and the inversion of the

mixing matrix had an error of 1.483%.

Table 3.3.1: Fast ICA simulation data analysis results.

The Fast ICA requires a large number of resources for implementation as can be seen in Table

3.3.2. The algorithm requires over well over 200 multipliers and adders of resources for

hardware implementation. The finite number of resources is not known because several

elements of the algorithm depend on the length of the signal.

Table 3.3.2: The total of required resources needed to implement Fast ICA.

Table 3.3.2: Fast ICA Required Resources

Equation Operation Breakdown

N = # of elements

Total Resources

Center data to make mean = 0

 { }

9 multipliers

7 + (N-1) adders

N dividers

(1 subtraction)

3 mults,2 adders

3 mults,2 adders

3 mults,2 adders

 (N-1) adders

N dividers

1adder(subtraction)

9 multipliers

7 + (N-1)

adders

N dividers

(1 subtraction)

Table 3.3.1: Fast ICA Analysis Data

Performance Aspect Quantitative Values

Convergence Speed 11 iterations

FFT Measurements

Signal 1 – Max Freq (%Error) 2 kHz (0.116%)

Signal 2 – Max Freq (%Error) 7 kHz (2.000%)

Signal 3 – Max Freq (%Error) 10 kHz (2.116%)

Mixing Separation Prod Error 0.995%

Mixing Separation Diff Error 1.483%

21

Table 3.3.2: Fast ICA Required Resources continued

Equation Operation Breakdown

N = # of elements

Total Resources

Multipliers = (n
2
)

Adders = (n-1)*n

9 multipliers

6 adders

3 mults,2 adders

3 mults,2 adders

3 mults,2 adders

9 multipliers

6 adders

Whiten Data to give z

Choose initial W

27 multipliers

27 adders

 (18 subtraction)

9*(3 multipliers

 + 3 adders)

 (9*2 subtraction)

27 multipliers

27 adders

 (18 subtraction)

 { ሺ ሻ} ሺ ሺ ሻ} 2*(9 multipliers

+6 adders)

2 multipliers

2* (N-1) adders

2*N dividers

2*(3 mults,2

adders

3 mults,2 adders

3 mults,2 adders)

2 multipliers

2* (N-1) adders

2*N dividers

N*(20

multipliers

12+2N-2 adders

2N dividers)

 √‖ ‖
2*(9 multipliers

6 adders)

 (divider)

6 adders(norm)

3 mults,2 adders

3 mults,2 adders

3 mults,2 adders

3 mults,2 adders

3 mults,2 adders

3 mults,2 adders

6 adders

N* (18

multipliers

+6 adders

 (divider)

+6

adders(norm))

Repeat n times until convergence : { ሺ ሻ} ሺ ሺ ሻ} √‖ ‖

22

Table 3.3.2: Fast ICA Required Resources continued

Equation Operation Breakdown

N = # of elements

Total Resources

29 multipliers

(2 multipliers)

19 adders

 (1subtraction)

27multipliers

2 multipliers

18 adders

1 adder

(1subtraction)

29 multipliers

19 adders

Multipliers = (n
2
)

 Adders = (n-1)*n

9 multipliers

6 adders

3 mults,2 adders

3 mults,2 adders

3 mults,2 adders

9 multipliers

6 adders

 Total Breakdown

For Finite

elements

83 multipliers

58 adders

(18 Subtraction)

 Complete Total 141 finite Total

Resources

3.4 EASI ICA Data

The EASI ICA was simulated with cosine signals of 2 kHz, 7 kHz, and 10 kHz frequencies as

shown in Figure 3.4.1

Figure 3.4.1: Independent source signals used for EASI ICA simulation.

23

The following mixing matrix was used to create the mixed signals of the sources: ()

The mixed signals created from the product of mixing matrix and the source signals can be seen

in Figure 3.4.2.

Figure 3.4.2: Mixed signals used for EASI ICA simulation.

The EASI ICA algorithm was simulated to generate the following separated signals as shown in

Figure 3.4.3.

Figure 3.4.3: Separated signals used for EASI ICA simulation.

24

The signals in Figure 3.4.3 appear to have similar to the appearance of the source signals. Figure

3.4.4 provides a visual comparison of the source and separated signals.

Figure 3.4.4: Source and separated signals comparison of the EASI ICA simulation.

As shown in Table 3.4.1, the maximum FFT spectrum energies were detected at

approximately 7 kHz for signal one, 2 kHz for signal two and 10 kHz for signal three. The excess

energies detected in the FFT spectrum plot for signal one created an spectrum error of 0.0049%.

Signals two and three experienced spectrum errors of 2.0555%and 2.0624% respectively. The

product of the mixing matrix and separation matrix had an error of 1.199%. The difference of the

separation matrix and the inversion of the mixing matrix had an error of 0.0823%.

Table 3.4.1 EASI ICA simulation data analysis results.

Table 3.4.1: EASI ICA Analysis Data

Performance Aspect Quantitative Values

Convergence Speed 10 iterations

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (0.0049%)

Signal 2 – Max Freq (%Error) 2 kHz (2.0555%)

Signal 3 – Max Freq (%Error) 10 kHz (2.0624%)

Mixing Separation Product Error 1.199%

Mixing Separation Difference Error 0.0823%

25

The EASI ICA requires a significant number of resources for implementation as shown in Table

3.4.2. The EASI ICA algorithm needs 63 multipliers, 48 adders, and 18 subtractions resources

implement this algorithm.

Table 3.4.2: The total required resources needed to implement the EASI ICA

Table 3.4.2: EASI ICA Required Resources

Equation Operation Breakdown

N = # of elements

Total Resources

Multipliers = (n
2
)

Adders = (n-1)*n

9 multipliers

6 adders

3 mults,2 adders

3 mults,2 adders

3 mults,2 adders

9 multipliers

6 adders

H = I – yk*yk’ + yk*f ‘ - f*yk’

Multipliers =n
3

Adders = n
3

27 multipliers

27 adders

 (18 subtraction)

9*(3 multipliers

 + 3 adders)

 (9*2 subtraction)

27 multipliers

27 adders

 (18 subtraction)

B = B + m*H*B

Multipliers = 2* n
2

Adders = n
2

18 multipliers

9 adders

9*(2 mults

+ 1 adders)

18 multipliers

9 adders

Multipliers = (n
2
)

 Adders = (n-1)*n

9 multipliers

6 adders

3 mults,2 adders

3 mults,2 adders

3 mults,2 adders

9 multipliers

6 adders

 Total Breakdown 63 multipliers

48 adders

(18 Subtraction)

111 Total Res.

3.5 Comparisons of ICA Algorithms

3.5.1 ICA Algorithm Comparison Data

The data in Table 3.5.1.1 shows the convergence speed, and visible characteristics of the

signals of the algorithms. The A-ICA had the fastest algorithm convergence speed, but was most

inaccurate. The Fast ICA and EASI ICA were the most accurate algorithms visibly.

26

Table 3.5.1.1: Comparison of convergence speed and visible qualifications for each ICA.

Table 3.5.1.1 Comparison of Convergence Speed & Visible Qualifications

Algorithm Iterations Speed Visibly Accurate

A-ICA 1 Fast No

Fast ICA 11 Medium Yes

EASI ICA 10 Medium Yes

As shown in table 3.5.1.2 the EASI algorithm had the smallest FFT spectrum error. The A-ICA

had the worst error of the three algorithms.

Table 3.5.1.2: Comparison of the FFT spectrum error and frequency location for each ICA.

Table 3.5.1.2 Comparison of FFT Spectrum Error

Algorithm – Signal # Percent Error Max Freq Location

A-ICA – Signal 1 0.374% 2 kHz

A-ICA – Signal 2 2.374% 7 kHz

Fast ICA - Signal 1 0.116% 2 kHz

Fast ICA - Signal 2 2.000% 7 kHz

Fast ICA - Signal 3 2.116% 10 kHz

EASI ICA - Signal 1 0.0049% 7 kHz

EASI ICA - Signal 2 2.0555% 2 kHz

EASI ICA - Signal 3 2.0624% 10 kHz

In Table 3.5.1.3 the EASI had the smallest mixing matrix and separation matrix product error.

The A-ICA had the worst percentage error of the three algorithms.

Table 3.5.1.3: Comparison of the mixing and separation matrices product error for each ICA.

Table 3.5.1.3 Comparison of the Product of Mixing and Separated Matrices Errors

Algorithm Percent Error

A-ICA 10.43%

Fast ICA 1.483

EASI ICA 0.0823%

27

In table 3.5.1.4 shows all of percent errors for the mixing and separation matrix for all the

algorithms. The A-ICA had the worst percentage error of the three algorithms.

Table 3.5.1.4: Comparison of the difference of mixing and separation matrices for each ICA.

Table 3.5.1.4 Comparison of the Difference of the Mixing and Separation Matrices Errors

Algorithm Percent Error

A-ICA 1.98%

Fast ICA 0.995%

EASI ICA 1.199%

3.5.2 ICA Algorithm Comparison Discussion

The A- ICA requires on one iteration to converge, and is relatively quick to execute. The

A-ICA algorithm does not require pre-whitening, which makes the algorithm easy to implement.

However the algorithm poorly separates the signals, and works best for two signals. The

algorithm requires a large number of resources for implementation. The Fast ICA has a relatively

fast convergence and effectively separates mixed signals. The Fast ICA separated several source

signals. The Fast ICA algorithm requires pre-whitening. The need for pre-whitening means the

Fast ICA is a complex algorithm to implement and needs a vast supply of resources for

implementation.The EASI algorithm has relatively fast convergence and effectively separates

mixed signals for multiple sources. The EASI algorithm does not need pre-whitening, and is very

simple to implement in hardware. The only drawback with this algorithm is a large number of

resources required for hardware implementation.

3.6 Conclusion

The Algebraic-ICA, Fast ICA and EASI ICA were implemented and their performance

was analyzed. The performance and the number of resources required for implementation of

each algorithm was compared and contrasted. The EASI algorithm was chosen as the algorithm

for further analysis and implementation on hardware. The convergence speed, simplicity of the

algorithm, and effectiveness made it the best algorithm in the end.

28

CHAPTER FOUR

EASI ANALYSIS

After selection for hardware implementation, the EASI algorithm performance was further

examined. The performance and other elements of the algorithm were analyzed to see what the

best conditions are necessary for the most accurate implementation in hardware.

4.1 Mixing Matrix Analysis

The mixing matrix was analyzed to see whether it was the best for the EASI ICA

implementation. The best mixing matrix need to meet the following criteria:

 The product of the mixing matrix and the separation matrix error needed to be minimal or

close to an identity matrix as possible.

(Mixing Matrix * Separation Matrix = Identity Matrix)

 The difference of the separation matrix and the inverse of the mixing matrix needed to be

minimal or close to 0 as possible.

(Separation Matrix – Inverse of Mixing = 0)

 The mixing matrix should contain values that require a low cost and are easy to design in

hardware.

Four mixing matrices were analyzed to see which would be the best for EASI ICA

implementation. The nonlinearity of hyperbolic tangent, and independent sources used in the

previous implementation of EASI ICA in chapter three.

4.1.1 Mixing Matrix One Data

Mixing matrix one and its inverse are given by the following values:

 () ()

The values represent the original mixing matrix chosen to test the algorithms. The values were

chosen because each value is easy to implement in hardware. The mixed signals created with the

mixing matrix are shown in Figure 4.1.1.1.

29

Figure 4.1.1.1 Mixed signal created with mixing matrix one.

The separations of the mixed signals are shown in Figure 4.1.1.2. The visual comparison of the

source and separated signals are shown in Figure 4.1.1.3.

Figure 4.1.1.2: Separated signals created with mixing matrix one.

30

Figure 4.1.1.3: Comparison of source and separated signals created with mixing matrix one.

The separation matrix through the EASI ICA convergence and the resulting errors are shown in

Figure 4.1.1.4 and Figure 4.1.1.5 respectively.

Figure 4.1.1.4: Convergence of separation matrix using mixing matrix one.

31

Figure 4.1.1.5: Errors of separation matrix using mixing matrix one.

In Table 4.1.1.1, the maximum FFT spectrum energies were detected at approximately 7

kHz for signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies

detected in the FFT spectrum for signal one created a FFT spectrum error of 0.0049% . Signal

two and signal three experienced FFT spectrum errors of 2.0555%and 2.0624% respectively.

The product of the mixing matrix and separation matrix had an error of 1.199%. The difference

of the separation matrix and the inversion of the mixing matrix had an error of 0.0823%.

Table 4.1.1.1: EASI ICA data for analysis for mixing matrix one

Table 4.1.1.1:EASI ICA Analysis Data for Mixing Matrix One

Performance Aspect Quantitative Values

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (0.0049%)

Signal 2 – Max Freq (%Error) 2 KHz (2.0555%)

Signal 3 – Max Freq (%Error) 10 kHz (2.0624%)

Mixing Separation Product Error 1.199%

Mixing Separation Difference Error 0.0823%

32

4.1.2 Mixing Matrix Two Data

Mixing matrix two is given by the following values:

 () ()

The values were chosen to represent a matrix with values easy and difficult to design in

hardware. The values were used in an earlier implementation of this algorithm.

The mixed signals created with the mixing matrix are shown in Figure 4.1.2.1 .

Figure 4.1.2.1: Mixed signals created from mixing matrix two.

The separation of the mixed signals is shown in Figure 4.1.2.2. The visual comparison of the

source and separated signals are shown in Figure 4.1.2.3.

Figure 4.1.2.2: Separated signals created with mixing matrix two.

33

Figure 4.1.2.3: Comparison of source and separation signals created with mixing matrix two.

The separation matrix through the EASI ICA convergence and the resulting errors are shown in

Figure 4.1.2.4 and Figure 4.1.2.5 respectively.

Figure 4.1.2.4: Convergence of separation matrix using mixing matrix two.

34

Figure 4.1.2.5: Errors of separation matrix using mixing matrix two.

In Table 4.1.2.1, the maximum FFT energies were detected at approximately 7 kHz for

signal one, 10 kHz for signal two and 2 kHz for signal three. The excess energies detected in the

FFT spectrum plot for signal one created an FFT spectrum error of 0.0049%. Signal two and

signal three experienced FFT spectrum errors of 2.0554% and 2.0634% respectively. The

product of the mixing matrix and separation matrix had an error of 2.889%. The difference of the

separation matrix and the inversion of the mixing matrix had an error of 2.359%.

Table 4.1.2.1 EASI ICA analysis data for mixing matrix two.

Table 4.1.2.1: EASI ICA Analysis Data for Mixing Matrix Two

Performance Aspect Quantitative Values

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (0.0049%)

Signal 2 – Max Freq (%Error) 10 kHz (2.0554%)

Signal 3 – Max Freq (%Error) 2 kHz (2.0634%)

Mixing Separation Product Error 2.889%

Mixing Separation Difference Error 2.359%

35

4.1.3 Mixing Matrix Three Data

Mixing matrix three is given by the following values:

 () ()

The values are from a mixing matrix used to implement another variation of EASI ICA in. The

values are that were randomly generated.

The mixed signals created with the mixing matrix are shown in Figure 4.1.3.1.

Figure 4.1.3.1: Mixed signals created from mixing matrix three.

The separation of the mixed signals is shown in Figure 4.1.3.2. The visual comparison of the

source and separated signals are shown in Figure 4.1.3.3.

Figure 4.1.3.2: Separated signals created with mixing matrix three.

36

Figure 4.1.3.3: Comparison of source and separation signals created mixing matrix three.

The separation matrix EASI ICA convergence and the resulting errors are shown in Figure

4.1.3.4 and Figure 4.1.3.5 respectively.

Figure 4.1.3.4: Convergence of separation matrix using mixing matrix three.

37

Figure 4.1.3.5: Errors of separation matrix using mixing matrix three.

In Table 4.1.3.1, the maximum energies were detected around approximately 2 KHz for

signal one, 10 kHz for signal two and 7 kHz for signal three. The excess energies detected in the

FFT spectrum plot for signal one created a FFT spectrum error of 0.0623% . Signal two and

signal three experienced FFT spectrum errors of 2.0550% and 2.005% respectively. The product

of the mixing matrix and separation matrix had an error of 3.839%. The difference of the

separation matrix and the inversion of the mixing matrix had an error of 26.401%.

Table 4.1.3.1EASI ICA analysis data for mixing matrix three

Table 4.1.3.1: EASI ICA Analysis Data for Mixing Matrix

Three

Performance Aspect Quantitative Values

FFT Measurements

Signal 1 – Max Freq (%Error) 2 kHz (0.0623%)

Signal 2 – Max Freq (%Error) 10 kHz (2.055%)

Signal 3 – Max Freq (%Error) 7 kHz (2.005%)

Mixing Separation Product Error 3.839%

Mixing Separation Difference Error 26.401%

38

4.1.4 Mixing Matrix Four Data

Mixing matrix four is given by the following values: () ()

The values are varied values of mixing matrix three. The values were modified to be values that

are easier to implement on hardware. The mixed signals created with the mixing matrix are

shown in Figure 4.1.4.1.

Figure 4.1.4.1: Mixed signals created from mixing matrix four.

The separation of the mixed signals is shown in Figure 4.1.4.2. The visual comparison of the

source and separated signals are shown in Figure 4.1.4.3

Figure 4.1.4.2: Separated signals created with mixing matrix four.

39

Figure 4.1.4.3: Comparison of source and separation signals created with mixing matrix four.

The separation matrix evolution through the EASI ICA convergence and the resulting errors are

shown in Figure 4.1.4.4 and Figure 4.1.4.5 respectively.

Figure 4.1.4.4: Convergence of separation matrix using mixing matrix four.

40

Figure 4.1.4.5: Errors of separation matrix using mixing matrix four.

In Table 4.1.4.1, the maximum energies were detected around approximately 2 KHz for

signal one, 10 kHz for signal two and 7 kHz for signal three. The excess energies detected in the

FFT spectrum plot for signal one created an FFT spectrum error of 0.0623% . Signal two and

signal three experienced FFT spectrum errors of 2.0557% and 2.0050% respectively. The

product of the mixing matrix and separation matrix had an error of 2.792%. The difference of the

separation matrix and the inversion of the mixing matrix had an error of 10.244%.

Table 4.1.4.1EASI ICA analysis data for mixing matrix four.

Table 4.1.4.1: EASI ICA Analysis Data for Mixing Matrix Four

Performance Aspect Quantitative Values

FFT Measurements

Signal 1 – Max Freq (%Error) 2 KHz (0.0623%)

Signal 2 – Max Freq (%Error) 10 kHz (2.0557%)

Signal 3 – Max Freq (%Error) 7 kHz (2.005%)

Mixing Separation Product Error 2.792%

Mixing Separation Difference Error 10.244%

41

4.1.5 Mixing Matrix Data Comparison and Selection

In Table 4.1.5.1 compares data and errors for each mixing matrix. All of the mixing matrices

had the similar FFT spectrum errors. Mixing matrix one has the smallest product error while

mixing matrix three had the worse. The worst difference error belonged to mixing matrix three

while the best belongs to mixing matrix. The best mixing matrix overall was mixing matrix one,

and is the easiest to implement in hardware. The matrix remained the matrix for EASI

implementation.

Table 4.1.5.1 Comparison of EASI ICA data for analysis for all mixing matrices

4.2 Nonlinearity Testing

4.2.1 Nonlinearities

The nonlinearity portion of the EASI algorithm is important because it impacts the ability of the

algorithm to separate the mixed signals. The tanh(y) nonlinearity was utilized because it has been

noted as the best nonlinearity. The tanh(y) nonlinearity and seven other nonlinearities were tested

with the EASI algorithm.

The eight nonlinearities are shown in the following plots:

Table 4.1.5.1: Comparison of EASI ICA Analysis Data for Each Mixing Matrices

Performance Aspect Mixing Matrix Quantitative Values

FFT Measurements MM 1 MM 2 MM3 MM4

Signal 1 – Max Freq

(%Error)

7 kHz

(0.0049%)

7 kHz

(0.0049%)

2 KHz

(0.0623%)

2 KHz

(0.0623%)

Signal 2 – Max Freq

(%Error)

2 KHz

(2.0555%)

10 kHz

(2.0554%)

10 kHz

(2.055%)

10 kHz

(2.0557%)

Signal 3 – Max Freq

(%Error)

10 kHz

(2.0624%)

2 KHz

(2.0634%)

7 kHz (2.005%) 7 kHz

(2.005%)

Mixing Separation

Product Error

1.199% 2.889% 3.839% 2.792%

Mixing Separation

Difference Error

0.0823% 2.359% 26.401% 10.244%

42

1. Signum Function as showing Figure 4.2.1.1

Figure 4.2.1.1: Nonlinearity one: Signum.

2. Function of Y (F(y) = y) as shown in Figure 4.2.1.2

Figure 4.2.1.2: Nonlinearity two: Function of y.

43

3. Cubic Function (F(y) = y
3
) as shown in Figure 4.2.1.3

Figure 4.2.1.3: Nonlinearity three: Cubic function

4. Piecewise function as shown in Figure 4.2.1.4 ሺ ሻ {

Figure 4.2.1.4: Nonlinearity four: Piecewise function one

44

5. Inverse Tangent Function as shown in Figure 4.2.1.5

 ሺ ሻ ሺ ሻ (
 ൮ ሺ ሻ ሺ ሻሻ))

Figure 4.2.1.5: Nonlinearity five: Inverse tangent function.

6. Hyperbolic Tangent Function as shown in Figure 4.2.1.6. ሺ ሻ ሺ ሻ ሺ ሻሺ ሻ

Figure 4.2.1.6: Nonlinearity six: Hyperbolic tangent function.

45

7. Exponential Function as shown in Figure 4.2.1.7 ሺ ሻ ሺ ሻ

Figure 4.2.1.7: Nonlinearity seven: Exponential function.

8. Difference between Function of Y and Hyperbolic Tangent Function as shown in Figure

4.2.1.8. ሺ ሻ ሺ ሻ

Figure 4.2.1.8: Nonlinearity eight: Difference between Function of y and hyperbolic tangent.

46

9. Piecewise Function as shown in Figure 4.2.1.9. ሺ ሻ {

Figure 4.2.1.9: Nonlinearity nine: Piecewise function two.

4.2.2 Nonlinearity Data Analysis

The nine nonlinearities were implemented with the EASI algorithm. Each of the nonlinearities

for analyzed for the following:

 Convergence speed

 Visible separation

 Separated signal FFT spectrum error

 Mixing matrix and separated matrix product error

(Mixing Matrix * Separation Matrix = Identity Matrix)

 Separated matrix and mixing matrix difference error

(Separation Matrix – Inverse of Mixing = 0)

 Number of resources required for implementation

4.2.2.1 Nonlinearity One: Signum

The EASI ICA algorithm was implemented using nonlinearity one to create the following

separated signals seen in Figure 4.2.2.1.1

47

Figure 4.2.2.1.1: Separated signals using nonlinearity one.

A comparison of the source and separated signals are shown in Figure 4.2.2.1.2.

 Figure 4.2.2.1.2: Comparison of source and separated signals for nonlinearity one.

In Table 4.2.2.1, the maximum energies were detected around approximately 7 kHz for

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the

FFT spectrum plot for signal one created of 0.0167% . Signal two and signal three experienced

FFT spectrum errors of 2.309%and 2.304% respectively. The product of the mixing matrix and

48

separation matrix had an error of 1.219%. The difference of the separation matrix and the

inversion of the mixing matrix had an error of 0.105%.

Table 4.2.2.1 Nonlinearity one data for analysis

4.2.2.2 Nonlinearity Two: Function of Y

The EASI ICA algorithm was implemented using nonlinearity two to create the following

separated signals seen in Figure 4.2.2.2.1.

Figure 4.2.2.2.1: Separated signals using nonlinearity two.

Table 4.2.2.1 NL 1 Analysis Data

Performance Aspect Quantitative Values

Visibly Correct Partially Yes

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (0.0167%)

Signal 2 – Max Freq (%Error) 2 kHz (2.309%)

Signal 3 – Max Freq (%Error) 10 kHz (2.303%)

Mixing Separation Product Error 1.218%

Mixing Separation Difference Error 0.105%

49

A comparison of the source and separated signals are shown in Figure 4.2.2.2.2.

 Figure 4.2.2.2.2: Comparison of source and separated signals for nonlinearity two.

In Table 4.2.2.2, the maximum energies were detected around approximately 7 kHz for

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the

FFT spectrum plot for signal one, two and three created a FFT spectrum error of 22.03%,

37.940% and 55.720% respectively. The product of the mixing matrix and separation matrix had

an error of 5.595%. The difference of the separation matrix and the inversion of the mixing

matrix had an error of 12.36%.

Table 4.2.2.2 Nonlinearity two data for analysis

Table 4.2.2.2 NL 2 Analysis Data

Performance Aspect Quantitative Values

Visibly Correct No

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (22.030%)

Signal 2 – Max Freq (%Error) 2 kHz (37.940%)

Signal 3 – Max Freq (%Error) 10 kHz (55.720%)

Mixing Separation Product Error 5.595%

Mixing Separation Difference Error 12.36%

50

4.2.2.3 Nonlinearity Three: Cubic function

The EASI ICA algorithm was implemented using nonlinearity three to create the following

separated signals seen in Figure 4.2.2.3.1.

Figure 4.2.2.3.1: Separated signals using nonlinearity three.

A comparison of the source and separated signals are shown in Figure 4.2.2.3.2.

 Figure 4.2.2.3.2: Comparison of source and separated signals for nonlinearity three.

51

In Table 4.2.2.3, the maximum energies were detected around approximately 7 kHz for

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the

FFT spectrum plot for signal one, two and three created a FFT spectrum error of 29.390%,

49.660% and 29.390% respectively. The product of the mixing matrix and separation matrix had

an error of 3.676%. The difference of the separation matrix and the inversion of the mixing

matrix had an error of 3.614%

Table 4.2.2.3 Nonlinearity three data for analysis

4.2.2.4 Nonlinearity Four: Piecewise function one

The EASI ICA algorithm was implemented using nonlinearity four to create the following

separated signals shown in Figure 4.2.2.4.1.

Figure 4.2.2.4.1: Separated signals using nonlinearity four.

Table 4.2.2.3 NL 3 Analysis Data

Performance Aspect Quantitative Values

Visibly Correct No

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (29.390%)

Signal 2 – Max Freq (%Error) 2 kHz (49.660%)

Signal 3 – Max Freq (%Error) 10 kHz (29.390%)

Mixing Separation Product Error 3.676%

Mixing Separation Difference Error 3.614%

52

A comparison of the source and separated signals are shown in Figure 4.2.2.4.2.

 Figure 4.2.2.4.2: Comparison of source and separated signals for nonlinearity four

In Table 4.2.2.4, the maximum energies were detected around approximately 7 kHz for

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the

FFT spectrum plot for signal one created a FFT spectrum error of 6.860%. Signal two and signal

three experienced FFT spectrum errors of 41.100% and 35.83% respectively. The product of the

mixing matrix and separation matrix had an error of 1.836%. The difference of the separation

matrix and the inversion of the mixing matrix had an error of 2.220%.

Table 4.2.2.4 Nonlinearity four data for analysis

Table 4.2.2.4 NL 4 Analysis Data

Performance Aspect Quantitative Values

Visibly Correct No

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (6.860%)

Signal 2 – Max Freq (%Error) 2 kHz (41.10%)

Signal 3 – Max Freq (%Error) 10 kHz (35.83%)

Mixing Separation Product Error 1.836%

Mixing Separation Difference Error 2.220%

53

4.2.2.5 Nonlinearity Five: Inverse tangent

The EASI ICA algorithm was implemented using nonlinearity one to create the following

separated signals seen in Figure 4.2.2.5.1.

Figure 4.2.2.5.1: Separated signals using nonlinearity five.

A comparison of the source and separated signals are shown in Figure 4.2.2.5.2.

 Figure 4.2.2.5.2: Comparison of source and separated signals for nonlinearity five.

In Table 4.2.2.5, the maximum energies were detected around approximately 7 kHz for

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the

54

FFT spectrum plot for signal one created a FFT spectrum error of 0.0049% . Signal two and

signal three experienced FFT spectrum errors of 2.0555%and 2.0624% respectively. The

product of the mixing matrix and separation matrix had an error of 1.199%. The difference of the

separation matrix and the inversion of the mixing matrix had an error of 0.0823%.

Table 4.2.2.5 Nonlinearity five data for analysis

4.2.2.6 Nonlinearity Six: Hyperbolic tangent

 The EASI ICA algorithm was implemented using nonlinearity six to create the following

separated signals seen in Figure 4.2.2.6.1.

Figure 4.2.2.6.1: Separated signals using nonlinearity six.

Table 4.2.2.5 NL 5 Analysis Data

Performance Aspect Quantitative Values

Visibly Correct No

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (2.043%)

Signal 2 – Max Freq (%Error) 2 kHz (5.096%)

Signal 3 – Max Freq (%Error) 10 kHz (4.656%)

Mixing Separation Product Error 1.2801%

Mixing Separation Difference Error 0.169%

55

The source and separated signals are shown in Figure 4.2.2.6.2.

 Figure 4.2.2.6.2: Comparison of source and separated signals for nonlinearity six.

In Table 4.2.2.6, the maximum energies were detected around approximately 7 kHz for

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the

FFT spectrum plot for signal one created a FFT spectrum error of 0.0049% . Signal two and

signal three experienced FFT spectrum errors of 2.0555%and 2.0624% respectively. The

product of the mixing matrix and separation matrix had an error of1.199%. The difference of the

separation matrix and the inversion of the mixing matrix had an error of 0.0823%.

Table 4.2.2.6 Nonlinearity six data for analysis

 Table 4.2.2.6 NL 6 Analysis Data

Performance Aspect Quantitative Values

Visibly Correct Yes

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (0.0049%)

Signal 2 – Max Freq (%Error) 2 kHz (2.0555%)

Signal 3 – Max Freq (%Error) 10 kHz (2.0624%)

Mixing Separation Product Error 1.199%

Mixing Separation Difference Error 0.0823%

56

4.2.2.7 Nonlinearity Seven: Exponential function

The EASI ICA algorithm was implemented using nonlinearity one to create the following

separated signals shown in Figure 4.2.2.7.1.

Figure 4.2.2.7.1: Separated signals using nonlinearity one.

A comparison of the source and separated signals are shown in Figure 4.2.2.7.2.

 Figure 4.2.2.7.2: Comparison of source and separated signals for nonlinearity seven

In Table 4.2.2.7, the maximum energies were detected around approximately 7 kHz for

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the

57

FFT spectrum plot for signal one created a FFT spectrum error of 0.129%. Signal two and signal

three experienced FFT spectrum errors of 2.0580% and 2.175% respectively. The product of the

mixing matrix and separation matrix had an error of 1.108%. The difference of the separation

matrix and the inversion of the mixing matrix had an error of 0.129%.

Table 4.2.2.7 Nonlinearity seven data for analysis

4.2.2.8 Nonlinearity Eight: Difference between Function of y and hyperbolic tangent

The EASI ICA algorithm was implemented using nonlinearity one to create the following

separated signals shown in Figure 4.2.2.8.1.

Figure 4.2.2.8.1: Separated signals using nonlinearity eight.

Table 4.2.2.7 NL 7 Analysis Data

Performance Aspect Quantitative Values

Visibly Correct Mostly Yes

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (0.129%)

Signal 2 – Max Freq (%Error) 2 kHz (2.0580%)

Signal 3 – Max Freq (%Error) 10 kHz (2.175%)

Mixing Separation Product Error 1.108%

Mixing Separation Difference Error 0.129%

58

A comparison of the source and separated signals are shown in Figure 4.2.2.8.2.

 Figure 4.2.2.8.2: Comparison of source and separated signals for nonlinearity eight.

In Table 4.2.2.8, the maximum energies were detected around approximately 7 kHz for

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the

FFT spectrum plot for signal one created a FFT spectrum error of 29.130%. Signal two and

signal three experienced FFT spectrum errors of 48.000%and 50.276% respectively. The

product of the mixing matrix and separation matrix had an error of 4.800%. The difference of the

separation matrix and the inversion of the mixing matrix had an error of 0.331%

Table 4.2.2.8 Nonlinearity eight data for analysis

Table 4.2.2.8 NL 8 Analysis Data

Performance Aspect Quantitative Values

Visibly Correct No

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (29.130%)

Signal 2 – Max Freq (%Error) 2 kHz (48.000%)

Signal 3 – Max Freq (%Error) 10 kHz (50.276%)

Mixing Separation Product Error 4.800%

Mixing Separation Difference Error 0.331%

59

4.2.2.9 Nonlinearity Nine: Piecewise function two

The EASI ICA algorithm was implemented using nonlinearity nine to create the following

separated signals seen in Figure 4.2.2.9.1.

Figure 4.2.2.9.1: Separated signals using nonlinearity nine.

A comparison of the source and separated signals are shown in Figure 4.2.2.9.2.

 Figure 4.2.2.9.2: Comparison of source and separated signals for nonlinearity nine.

60

In Table 4.2.2.9, the maximum energies were detected around approximately 7 kHz for

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the

FFT spectrum plot for signal one created a FFT spectrum error of 29.160%. Signal two and

signalthree experienced FFT spectrum errors of 40.570% and 47.570% respectively. The

product of the mixing matrix and separation matrix had an error of 0.154%. The difference of the

separation matrix and the inversion of the mixing matrix had an error of 0.725%.

Table 4.2.2.9 Nonlinearity nine data for analysis

4.2.3 Resource Requirements for Nonlinearities

The nonlinearity resource requirements were determined. The nonlinearities with the same

number of resource requirements were grouped together. Table 4.2.3.1 shows the resources

required to implement the EASI algorithm with nonlinearities one, two, and four in hardware.

The nonlinearities would not require any extra resources for implementation.

Table 4.2.3.1: Resources required for nonlinearities one, two, and four.

Table 4.2.3.1: Resources Required for Nonlinearities One, Two, and Four

Equation Operation resource Breakdown Total Resources

Yk = B * x 9 multipliers

6 adders

3 mults, 2adds

3 mults, 2adds

3 mults, 2adds

9 multipliers

6 adders

Table 4.2.2.9 NL 9 Analysis Data

Performance Aspect Quantitative Values

Visible Correct No

FFT Measurements

Signal 1 – Max Freq (%Error) 7 kHz (29.160%)

Signal 2 – Max Freq (%Error) 2 kHz (40.570%)

Signal 3 – Max Freq (%Error) 10kHz (47.570%)

Mixing Separation Product Error 0.154%

Mixing Separation Difference Error 0.725%

61

Table 4.2.3.1: Resources Required for Nonlinearities One, Two, and Four continued

Equation Operation resource Breakdown Total Resources

H = I – yk*yk’ +

f*yk’ - yk*f ‘,

f = f(y)

27 multipliers

27 adders

(18 subtraction)

9*(3 multipliers + 3

adders)

 (9*2 subtraction)

27 multipliers

27 adders

(18 subtraction)

B = B + m * H * B 18 multipliers

9 adders

9*(2 mults + 1

adders)

 18 multipliers

 9 adders

Yt = B * x 9 multipliers

6 adders

3 mults,2 adders

3 mults,2 adders

3 mults,2 adders

9 multipliers

6 adders

 Total Resources 111

Table 4.2.3.2 shows the resources required to implement the EASI algorithm with nonlinearity 9

in hardware. The nonlinearities would all require look up tables in the form of mif files for

implementation. The nonlinearities require two additional adders for implementation.

Table 4.2.3.2: Resources required for nonlinearity nine.

Table 4.2.3.2: Resources Required for Nonlinearity Nine

Equation Operation resource Breakdown Total Resources

Yk = B * x 9 multipliers

6 adders

3 mults, 2adds

3 mults, 2adds

3 mults, 2adds

9 multipliers

6 adders

H = I – yk*yk’ +

f*yk’ - yk*f ‘, f =

f(y)

27 multipliers

27 adders

(18 subtraction)

(2adders(subtraction))

9*(3 multipliers

 + 3 adders)

 (9*2 subtraction)

(1 adder(subtraction))

(1 adder subtraction)

27 multipliers

29 adders

(18 subtraction)

(2 function

adders(subtraction))

B = B + m * H * B 18 multipliers

9 adders

9*(2 mults + 1 adders) 18 multipliers

 9 adders

62

Table 4.2.3.2: Resources Required for Nonlinearity Nine continued

Equation Operation resource Breakdown Total Resources

Yt = B * x 9 multipliers

6 adders

3 mults, 2adds

3 mults, 2adds

3 mults, 2adds

9 multipliers

6 adders

 Total Resources 113

Table 4.2.3.3 shows the resources required to implement the EASI algorithm with nonlinearities

three, five, six ,and eight in hardware. The nonlinearities would all require look up tables in the

form of mif files for implementation. The nonlinearities require four additional multipliers and a

LUT for implementation.

Table 4.2.3.3: Resources required for nonlinearities three, five, six, and eight.

Table 4.3.4.3: Resources Required for nonlinearities three, five, six and eight

Equation Operation resource Breakdown Resource Total Resources

Yk = B * x 9 multipliers

6 adders

3 mults, 2adds

3 mults, 2adds

3 mults, 2adds

9 multipliers

6 adders

H =I – yk * yk’

+ f* yk’ – yk* f’

27 multipliers

27 adders

(18 subtraction)

(4 function

multipliers)

+LUT

9*(3 multipliers

 + 3 adders)

 (9*2 subtraction)

(2 function multipliers)

 (2 function multipliers)

31 multipliers

27 adders

(18 subtraction)

(4 function

multipliers)

+LUT

B = B + m * H * B 18 multipliers

9 adders

9*(2 mults + 1 adders) 18 multipliers

 9 adders

Yt = B * x 9 multipliers

6 adders

3 mults, 2adds

3 mults, 2adds

3 mults, 2adds

9 multipliers

6 adders

 Total Resources 115

63

4.2.4 Nonlinearity Comparison and Selection

Table 4.2.4 shows the comparison of the all the elements of each of the nonlinearities.

As can be seen by the table is the worse nonlinearity is nonlinearity two. The best nonlinearities

are nonlinearities six and seven. The best fit for hardware implementation of the EASI ICA

variation is nonlinearity six as it has the lowest error percentages across the board.

Table 4.2.4. Comparison of nonlinearity data results

Table 4.2.4 Comparison of Nonlinearity Data Results

Performance

Aspect

1 2 3 4 5

Visibly

Correct

Partially Yes No No No No

FFT

Measurements

Signal 1 –

Max Freq

(%Error)

7 kHz

0.0167%

7 kHz

22.030%

7 kHz

29.390%

7 kHz

6.860%

7 kHz

2.043%

Signal 2 –

Max Freq

(%Error)

2 kHz

2.309%

2 kHz

37.940%

2 kHz

49.660%

2 kHz

41.100%

2 kHz

5.096%

Signal 3 –

Max Freq

(%Error)

10kHz

2.303%

10kHz

55.720%

10kHz

29.390%

10kHz

35.830%

10 kHz

4.656%

Mixing

Separation

Product Error

1.218% 5.595% 3.676% 1.836% 1.280%

Mixing

Separation

Difference

Error

0.105% 12.36% 3.614% 2.220% 0.169%

64

Table 4.2.4 Comparison of Nonlinearity Data Results continued

Performance

Aspect

6 7 8 9

Visibly Correct Yes Mostly Yes No No

FFT

Measurements

Signal 1 – Max

Freq (%Error)

7 kHz

0.0049%

7 kHz

0.129%

7 kHz

29.130%

7 kHz

29.160%

Signal 2 – Max

Freq (%Error)

2 kHz

2.0555%

2 kHz

2.0580%

2 kHz

48.000%

2 kHz

40.570%

Signal 3 – Max

Freq (%Error)

10 kHz

2.0624%

10 kHz

2.175%

10 kHz

50.276%

10kHz

47.570%

Mixing

Separation

Product Error

1.199% 1.108% 4.800% 0.154%

Mixing

Separation

Difference Error

0.0823% 0.129% 0.331% 0.725%

4.3 Additional Analysis

4.3.1 Multiple Sources

The possibility of using more sources was analyzed. Table 4.3.1 shows the amount of resources

that are required for implementations of the EASI up to five sources.

Table 4.3.1: Resources required for EASI implementation using three to five resources.

Table 4.3.1: EASI –ICA Resources for Three to Five Sources

Equation 3 Sources 4 Sources 5 Sources

Multipliers = (n
2
)

Adders = (n-1)*n

9 multipliers

6 adders

16 multipliers

12 adders

25 multipliers

20 adders

65

Table 4.3.1: EASI –ICA Resources for Three to Five Sources continued

Equation 3 Sources 4 Sources 5 Sources

H = I -yk*yk’ +

f*yk’ - yk*f ‘

 f = f(y)

Multipliers =n
3

Adders = n
3

27 multipliers

27 adders

 (18 subtraction)

64 multipliers

64 adders

(32 subtraction)

125 multipliers

125 adders

(50 subtraction)

B = B + m*H*B

Multipliers = 2* n
2

Adders = n
2

18 multipliers

9 adders

18 multipliers

16 adders

100 multipliers

25 adders

Multipliers = (n
2
)

 Adders = (n-1)*n

9 multipliers

6 adders

16 multipliers

12 adders

25 multipliers

20 adders

Total Resources 63 multipliers

48 adders

(18 Subtraction)

114 multipliers

104 adders

(32 subtraction)

275 multipliers

190 adders

(50 subtraction)

4.3.2 Comparison of the EASI general algorithm the EASI variation

The general version of the EASI algorithm and the variation of the algorithm are very similar in

implementation. The difference in each algorithms implementation occurs during the H matrix

equation implementation. The variation uses two nonlinearities instead of one used by the

original as can be seen in Table 4.3.2. The variation would require twice as many resources to

efficiently implement it. The original algorithm remains the best approach.

Table 4.3.2: Comparison of the general EASI algorithm and the two function variation.

Table 4.3.2: Comparison of the General EASI and EASI Two Function Variation

Algorithm Version H Matrix Difference Resources Max Possible

EASI General H = I – yk*yk’ + f*yk’ - yk*f‘,

 f = f(y)

63 multipliers

48 adders

+ 4 multiplier + LUT

66

Table 4.3.2: Comparison of the General EASI and EASI Two Function Variation Continued

Algorithm Version H Matrix Difference Resources Max Possible

EASI Variation H = I – yk*yk’ + f1*f2’ –

f2*f1’,

f = f(y)

63 multipliers

48 adders

+8 multiplier + 2LUT

4.3.3 The Use of Independent Audio Sources

The EASI ICA was implemented with three audio files shown in Figure 4.3.3.1 to see if audio

files could be effectively separated with the EASI algorithm. The first signal was a clip of a flute

maximum FFT spectrum energy at 940 kHz. The second signal was of a clip of a flute with a

maximum FFT spectrum energy at 490 kHz. The last signal was a female speaking with

maximum FFT spectrum energy at 240 kHz. The clips had a sampling frequency of 8 kHz.

Figure 4.3.3.1: Independent audio signals used for EASI ICA analysis.

. The mixed audio signals were created as shown in Figure 4.3.3.2.

67

Figure 4.3.3.2: Mixed audio signals created for EASI ICA analysis.

The separations of the mixed signals are shown in Figure 4.3.3.3. The visual comparison of the

source and separated signals are shown in Figure 4.3.3.4.

Figure 4.3.3.3: Separated audio signals using the EASI ICA algorithm

68

Figure 4.3.3.4: Comparison of source and separated audio signals.

The separation matrix through the EASI ICA convergence and the resulting errors are shown in

Figure 4.3.3.5 and Figure 4.3.3.6 respectively.

Figure 4.3.3.5: Convergence of separation matrix for the audio signals using EASI ICA.

69

Figure 4.3.3.6: Errors of separation matrix for the audio signals using EASI ICA.

In Table 4.3.3, the maximum FFT spectrum energies were detected at approximately 49kHz for

signal one, 940 kHz for signal two and 490 kHz for signal three . The excess energies detected in

the FFT spectrum for signal one created a FFT spectrum error of 199.94%. Signal two and signal

three experienced FFT spectrum errors of 23.376% and 206.82% respectively. The product of

the mixing matrix and separation matrix had an error of 11.769%.The difference of the

separation matrix and the inversion of the mixing matrix had an error of 1.412%

Table 4.3.3: EASI ICA data for analysis for audio signals

Table 4.3.3: EASI ICA Analysis Data for Audio Signals

Performance Aspect Quantitative Values

FFT Measurements

Signal 1 - Max Freq (%Error) 490kHz (199.94%)

Signal 2 – Max Freq (%Error) 940kHz (23.376%)

Signal 3 – Max Frey (%Error) 490kHz (206.82%)

Mixing Separation Product Error 11.769%

Mixing Separation Difference Error 1.412%

70

As can be seen by the audio signals while they are independent source are difficult to analyze

with the EASI algorithm. This means use audio sources would difficult to analyze the

effectiveness of the EASI ICA in hardware. Simple independent sources are necessary for easy

analysis. The three sinusoidal of the 2 kHz, 7 kHz, and 10 kHz frequencies are the best for EASI

ICA implementation in hardware.

4.4 Conclusion

The EASI ICA algorithm is the chosen algorithm for implementation in hardware. The mixing

matrices, nonlinearities, and the use best use of sources for the algorithm were examined. The

current mixing matrix, hyperbolic tangent and independent sinusoidal sources were the best and

simplest for implementation. The algorithm will be implemented with three sources because of

its feasibility and lowest requirement of resources.

71

CHAPTER FIVE

EASI IMPLEMENTION WITH AN FPGA

5.1 The EASI Algorithm Hardware Implementation

The EASI algorithm was chosen for implementation in hardware. As can be seen in Figure 5.1.1

the EASI algorithm has multiple stages. The matrix equations with in the algorithm had to be

broken down to the individual multipliers and dividers as can be seen in Table 5.1.1.

Figure 5.1.1: The stages of the EASI algorithm.

72

Table 5.1 The matrix equations needed to implement the algorithm in hardware.

Table 5.1: EASI ICA Matrix Multiplication Requirements ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ

73

The algorithm was implemented with the following parameters:

 The numerical input values were 16 integer bit values where first 8 bits are integer bits

and the last bits are 8 fractional bits.

 The look up tables values were 16 bit integer values.

 Three independent cosine function look up tables for frequencies of 2kHz, 7kHz, and

10kHz

 One look up table will contain values corresponding to the hyperbolic tangent

nonlinearity

 The signals were mixed with values of mixing matrix one

 The learning rate will be 2-9

 The matrix multipliers will be scales by a factor of 2
8
 to prevent overflow

 The numerical output will be 8 bit integer values.

 The implementation will be done in Quartus 2 for Altera utilizing a Cyclone II FPGA.

The algorithm was implemented in hardware using three processes and a finite state machine as

seen in Figure 5.1.2.

Figure 5.1.2: The stages of the EASI algorithm in hardware.

74

5.2 Source and Mixed Signals Test bench

The implementation of the EASI algorithm in hardware began with the development of a source

and mixture test bench as shown in diagram in Figure 5.2.1. The test bench was created to ensure

the source inputs were correctly loaded into Altera, and the mixing matrix mixed the signals

correctly.

Figure 5.2.1: Diagram of the source and mixed signals Test Bench.

The simulation of the test bench was run using components seen in Table 5.2.

Table 5.2 Components of the Source and Mixed Signals Test Bench

Table 5.2: Components of the Source and Mixed Signals Test Bench

Component Purpose

Clock 50 50 MHz clock for the simulation

Reset Used to clear out the registers and reset the

accumulator to zero.

Accumulator Increments the loading inputs from the Look

Up Tables

S0, S1 & S2 Each array holds information from the look up

table for each source

X0, X1 & X2 Mixed signals arrays

LUT 0, 1, 2, 3 Look up tables for the three independent

signals and Nonlinearity signal

75

Figure 5.2.2 Simulation results of the Source and Mixed Signals Test Bench.

5.3 Nonlinear Function Test Bench

A Nonlinearity Implementation Test Bench was developed as shown in diagram in Figure 5.3.1.

The test bench was created to ensure the nonlinearity values were loaded and converted

correctly. The VHDL code for the test bench is in the appendix.

Figure 5.3.1: Diagram of the nonlinear test bench.

76

The simulation of the test bench was run using components seen in Table 5.3.

Table 5.3 Components of the Nonlinearity Implementation Test Bench

Table 5.3: Components of the Source and Mixed Signals Test bench

Component Purpose

Clock 50 50 MHz clock for the simulation

Reset Used to clear out the registers and reset the

accumulator to zero.

Accumulator Increments the loading inputs from the Look

Up Tables

S0, S1 & S2 Each array holds information from the look up

table for each source

X0, X1 & X2 Mixed signals arrays

LUT 0, 1, 2, 3 Look up tables for the three independent

signals and Nonlinearity signal

VV 0, VV1, VV2 Index References for the nonlinearity

V0, V1, V2 Nonlinearity Values

Figure 5.3.2 Simulation results of the Nonlinearity Implementation Test Bench.

77

5.4 EASI Full Implementation Test Bench

5.4.1 The EASI Full Implementation Overview

The functionality of the Source and Mixed Signals and Nonlinearity Implementation Test

Benches were added together. The test benches compilation and the addition of a finite state

machine led to the development of the EASI Full Implementation Test bench as shown in the

diagram in Figure 5.4.1. The VHDL code for this test bench is located in Appendix

Figure 5.4.1: Diagram of Full Implementation EASI Test Bench.

5.4.2 Finite State Machine Addition

A Finite State Machine was created to move the algorithm through each step as shown in Figure

5.4.2.1.

Figure 5.4.2.1: Diagram of the finite state machine used to implement EASI ICA.

78

Counters were implemented to insure all steps of the algorithm were performed at the

appropriate times. The counters were necessary because:

 Some portions of the algorithm such as the nonlinearity implementation required

multiple clock cycles to load or calculate values before the next step.

 VHDL is procedural coding environment so all portions of the algorithm happen in real

time at the same time. Including matrix updates.

Without the counters and state machine the EASI algorithm would move to the next step of

implementation before Matrix and arrays were updated correctly. The resulting values

would be calculated incorrectly.

The complete EASI Full Implementation Test Bench is shown in the diagram of Figure 5.4.2.2.

Figure 5.4.2.2: Diagram of complete EASI ICA Test Bench.

The full implementation of the EASI algorithm contained the components seen in Table 5.4.2.

Table 5.4.2 Components of the Full EASI Implementation

Table 5.4.2: Components of the Full EASI Implementation

Component Purpose

Clock 50 50 MHz clock for the simulation

Reset Used to clear out the registers and reset the

accumulator to zero.

79

Table 5.4.2: Components of the Full EASI Implementation Continued

Component Purpose

Accumulator Increments the loading inputs from the Look

Up Tables

S0, S1 & S2 Each array holds information from the look up

table for each source

X0, X1 & X2 Mixed signals arrays

LUT 0, 1, 2, 3 Look up tables for the three independent

signals and Nonlinearity signal

VV 0, VV1, VV2 Index References for Nonlinearity

V0, V1, V2 Nonlinearity Values

Ykykt, fykt, ykft Matrix values for H matrix arithmetic

H H matrix

muHB, HB1, HB2 Matrix values for B matrix arithmetic

Btemp,Bmat Temporary matrix and B matrix

Yt, ytout0, ytout1, ytout2 The output values of the Full EASI

implementation

The simulation result for the EASI Full Implementation Test Bench are shown in Figure 5.4.2.3.

Figure 5.4.2.3: Simulation of the EASI Full Implementation Test Bench.

80

5.5 Result of the EASI Full Implementation Test Bench

The EASI algorithm was successfully implemented in hardware with an FPGA. The

values from the hardware simulation are similar to values seen in the Matlab simulation as

shown in Table 5.5.1 and Table 5.5.2.

Table 5.5.1 Comparison of Matlab and VHDL simulation values for the source signals.

Table 5.5.1: Comparison of Matlab and VHDL Data Source Signals

Matlab Source Signals

256 255.6 254.7 253.2 251.08 248.3 244.9 241.0 236.5 231.4

256 252.2 241.0 222.7 197.89 167.2 131.6 92.1 49.9 6.2

256 248.3 225.7 189.6 142.22 86.2 25.0 -37.5 -97.9 -152.4

VHDL Source Signals

256 255 254 253 251 248 245 241 237 231

256 252 241 222 198 167 132 92 50 6

256 248 225 190 142 86 25 -38 -98 -152

Table 5.5.2 Comparison of Matlab and VHDL simulation values for the mixed signals.

Table 5.5.2: Comparison of Matlab and VHDL Data Mixed Signals

 Matlab Mixed Signals

448 440.32 417.61 380.89 331.77 272.41 205.40 133.61 60.08 -12.11

192 195.56 205.95 222.33 243.35 267.25 291.96 315.27 334.95 348.93

64 61.86 55.67 46.13 34.31 21.63 9.69 0.212 -5.16 -4.94

VHDL Mixed Signals

448 440 418 381 332 272 205 134 60 -12

192 196 206 222 243 267 292 315 334 349

64 62 56 46 34 22 10 0 -5 -5

There is a variation in the value between the Matlab and Quartus simulations shown in

Table 5.5.3 because of the truncation errors and nonlinear value limitations. In Matlab, the

actual hyperbolic tangent may be used and the scaling of the function happens through the actual

function. In VHDL, a look up table is required. The values are rounded to integer

81

representations, so the values do not exactly correlate completely to values seen in matlab.

Truncation errors arise because Matlab uses floating point numbers while integers were used in

VHDL

Table 5.5.3 Comparison of Matlab and VHDL simulation values for the separated signals.

Table 5.5.3: Comparison of Matlab and VHDL Data Separated Signals

 Matlab Separated Signals

361.9 356.6 340.8 314.9 279.8 236.5 186.3 130.6 71.0 9.4

372.2 371.5 369.2 365.4 360.3 354.0 346.6 338.3 329.3 319.7

64 61.8 55.6 46.1 34.3 21.6 9.6 0.2 -5.1 -4.9

VHDL Separated Signals

256 221 114 124 151 246 66 23 17 12

13 4 3 1 10 4 97 0 -6 -7

238 217 111 117 118 219 30 31 13 15

5.6 Conclusion

The EASI algorithm was successfully implemented in hardware with an FPGA. The

values from the hardware simulation are similar to values seen in the Matlab simulation.

Truncation errors arose because Matlab uses floating point numbers while integers were used in

VHDL. The implementation of the EASI ICA in hardware required 8150 Logic Elements, 120

multipliers, and 24576 Memory bits.

82

CHAPTER SIX

CONCLUSION

6.1 Summary of the Thesis

The Algebraic ICA, Fast ICA, and Equivariant Adaptive Separation via Independence

ICA were examined and compared. The best algorithm required the least complexity and fewest

resources while effectively separating mixed sources. The best algorithm chosen was the EASI

algorithm. The EASI algorithm was further analyzed by looking and stabling the best fit mixing

matrix, nonlinearity, number of resources, and a variation of the algorithm. The algorithm and

parameters were set from these results to create the best set up for its implementation on

hardware. The EASI ICA was implemented with a Cyclone II FPGA in an Altera Quartus 2

VHDL coding environment. A Source and Mixed Signal Test Bench and a Nonlinearity

Implementation Test Bench were developed to ensure the EASI algorithm was correctly

implemented in hardware. Simulations were run to ensure the hardware implementation matched

the Matlab simulations. The values were similar to the values generated from the Matlab

simulation. There were truncation errors present and slight discrepancy of the simulation output

values because the hardware implementation utilized integers only, while Matlab values are

floating point numbers.

6.2 Future Work

The work done for this thesis can be expanded in a variety of ways. The first would be to

add a floating point converter to the EASI ICA implementation. This converter would help to

eliminate the number truncation errors. Another extension would be to implementation of the

EASI algorithm utilizing the algorithmic variation to compare the effectiveness of both

algorithms and see which signals it works best for. An additional extension would be to

incorporate the analysis of music and speech signals for real time analysis.

83

BIBLIOGRAPHY

[1] M. G. Lopez, H. M. Lozano, L. P. Sanchez and L. N. O. Moreno, "Blind Source Separation

of Audio Signals Using Independent Component Analysis and Wavelets," Centro de

Investigacion en Computaciion-IPN, Escuela Superior de Computo-IPN, Mexico, 2009.

[2] C. Jutten and J. Herault, "Blind Separation of Source, Part I: An Adaptive Algorithm Based

on Neuromimetic Architecture," Signal Processing , vol. 24, no. 1, pp. 1-10, 1991.

[3] F. Sattar and C. Charayaphan, "Low Cost Design And Implementation of An ICA Based

Blind Source Separation Algorithm," School of Electrical and Electronic Engineering,

Nanyang Technological University, IEEE, Nanyang, Singapore, 2002.

[4] A. Hyvarinen and E. Oja, "Independent Component Analysis: Algorithms and

Applications," Neural Networks, vol. 13, no. 4-5, pp. 411-430, 2000.

[5] S. Choi, A. Cichocki, H. Park and S.-Y. Lee, "Blind Source Separtion and Independent

Component Analysis: A Review," Neural Information Processing - Letters and Reviews,

vol. 6, no. 1, pp. 1-57, 2005.

[6] K. Torkkola, "Blind Separation of Convolved Sources Based on Information

Maximization," Motorola Inc., Phoenix Corporate Research Laboratories, Tempe, AZ,

1996.

[7] L. Yuan and Z. Sun, "A Survey of Using Sign Function to Improve The Performance of

EASI Algorithm," in Proceedings of the 2007 IEEE International Conference on

Mechatronic and Automation, Harbin, China, 2007.

[8] G. X. S. Li, "Adaptive Step-size EASI Algorithm Based on Separating Degree," in

ICWMMN2006 Proceeding, P.R. China, 2006.

[9] J. Karhunen, E. Oja, L. Wang, R. Vigario and J. Joutsensalo, "A Class of Neural Networks

for Independent Component Analysis," IEEE Transactions on Neural Networks, vol. 8, no.

3, pp. 486-504, 1997.

[10] K.-K. Shyu and M.-H. Li, "FPGA Implementation of FastICA Based on Floating-Point

Arithmetic Design for Real-Time Blind Source Separation," in 2006 International Joint

Conference on Neural Networks, Vancouver, BC, Canada, 2006.

[11] Y. Wei and C. Charoensak, "FPGA Implementation of Non-Iterative ICA for Detecting

Motion in Image Sequences," in Seventh International Conference on Control, Automation,

Robotics and Vision, Singapore, 2002.

84

[12] J.-F. Cardoso and B. H. Laheld, "Equavariant Adaptive Source Separation," IEEE

Transcations On Signal Processing , vol. 44, no. 12, pp. 3017-3031, 1996.

[13] H.-M. Park, S.-H. Oh and S.-Y. Lee, "Adaptive Noise Cancelling Based on Independent

Component Analysis," Electronic Letters, vol. 38 , no. 15, pp. 833-834, 2002.

[14] J. Karhunen, E. Oja, R. Vigario and J. Joutsensalo, "A Class of Neural Networks for

Independent Component Analysis," IEEE Transactions on Neural Networks , vol. 8, no. 3,

pp. 486 - 506, 1997.

[15] Y. Hongwei, Z. Hongmei and B. Wang, "A Novel ICA Algorithm For Two Source," in

International Conference on Signal Processing Proceedings , Beijing, China, 2004.

[16] K. Waheed and F. Salem, Algebraic Independent Component Analysis: An Approach for

Separation of Overcomplete Speech Mixture, East Lansing, MI: Circuits, Systems and

Neural Networks Laboratory, IEEE, 2003.

[17] K. Waheed and S. F.M., "Algebraic Overcomplete Independent Component Analysis," in

4th Internationational Symposium on Independent Component Analysis and Blind Signal

Separation (ICA 2003), Nara, Japan, 2003.

[18] D. Acharya, G. Panda and Y. Lakshmi, "Fixed-point Error Evaluation of Fast ICA and

Algebraic ICA Algorithms," in IEEE International Conference on Industrial Technology,

2006, Mumbai, India, 2006.

[19] S.-J. Kim, K. Umeno and R. Takahashi, "FPGA Implementation of EASI," IEICE

Electronics Express, vol. 4, no. 22, pp. 707-711, 2007.

[20] H. Du, H. Qi and X. Wang, "Comparative Study of VLSI Solutions to Independent

Component Analysis," IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 548-

559, 2007.

85

BIOGRAPHICAL SKETCH

Crispin Odom is from Atlanta, Georgia. She graduated with Honors from the Georgia

Institute of Technology with a Bachelor of Science in Electrical Engineering in December 2009.

In the Spring of 2012, she will graduate with Master of Science in Electrical Engineering.

	The Florida State University
	DigiNole Commons
	4-8-2012

	Independent Component Analysis Algorithm Fpga Design To Perform Real-Time Blind Source Separation
	Crispin Odom
	Recommended Citation

