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ABSTRACT 

The conditions that arise in the Cocktail Party Problem prevail across many fields 

creating a need for of Blind Source Separation. The need for BSS has become prevalent in  

several fields of work. These fields include array processing, communications, medical signal 

processing, and speech processing, wireless communication, audio, acoustics and biomedical 

engineering. The concept of the cocktail party problem and BSS led to the development of 

Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing 

real time signal processing. The goal of this thesis was to perform an extensive study on ability 

and efficiency of Independent Component Analysis algorithms to perform blind source 

separation on mixed signals in software and implementation in hardware with a Field 

Programmable Gate Array (FPGA).  The Algebraic ICA (A-ICA), Fast ICA, and Equivariant 

Adaptive Separation via Independence (EASI) ICA were examined and compared. The best 

algorithm required the least complexity and fewest resources while effectively separating mixed 

sources.   The best algorithm was the EASI algorithm.  The EASI ICA was implemented on 

hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance 

in real time.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Brief Overview 

The Cocktail Party Problem is a classic Digital Signal Processing problem focused on 

trying to separate voices or music mixed simultaneously based only on their mixtures. [1]  The 

problem arises when using a microphone or antenna a signal is received by a sensor signal.  This 

signal is a mixture of elements that are called sources. The signal received is a superimposition 

of signals emitted by the source which are in its area of reception. [2] In the cocktail party 

scenario, two people are talking at the same time on two microphones in different locations.  The 

recorded signal would then consist of a mixture of two speech signals. [3] The microphones 

provide two recorded time signals, which can be denoted by     and    . The amplitudes are 

represented     and     and the variable t, represents the time index. [4] The recorded signal is a 

weighted sum of the speech signals emitted by the two speakers. The signals are denoted by     and     which can be expressed as a linear equation: 

                        

                      [4] 

The parameters,                     , depend on the distances of the microphones from the 

speakers. The two original speech signals     and      can be estimated using only the 

recorded signals     and    . The sources and mixtures are unknown. A method for solving 

the cocktail party problem is to use some information on the statistical properties of the signals      to estimate the    , and assume     and      are statistically independent.  [4]  

 The aforementioned solution is Blind Source Separation (BSS).  As can be seen in 

Figure 1.1, BSS is able to estimate the coefficients that characterize this linear combination, and 

estimate the original signals. [1]  
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Figure 1.1: A general model of blind source separation. [5] 

 

BSS is performed by analyzing mixtures of independent sources and using their components 

only to recover the original signals. [6]  There is an existence of n statistically independent 

signals, s(t) = [s1(t), …, sn(t )] and observed n-mixes that are linear combinations to create x(t) = 

[x1(t ), …, xn(t )]. The mixtures are generated from the following model: [1] 

The simplified version of this equation is:         [6]. 

A is a square n x n mixing matrix with mixing components      Where x(t) is the observed 

vectors of mixture, which usually ignores noise. [6] Sources are separated by using the matrix 

W.  W is used in the following equation:  

WA = PD [6] 

Where P is a permutation matrix and D is a Diagonal matrix.   The resulting recovered sources 

are then made available in y(t) in the following calculation: 

                                                            y(t) = W*x(t) = P*D*s(t) [6]. 

The recovered sources are permutated and scaled versions of the original signals.  The result is 

ultimately the separation of the two original source signals     and     from their mixtures     and    . [4] [7] [8] [5] 
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1.2 Motivation 

The conditions that arise in the Cocktail Party Problem prevail across many fields 

creating a need for of Blind Source Separation. [2]  The need for BSS has become prevalent in 

several fields of work. These fields include array processing, communications, medical signal 

processing, and speech processing, wireless communication, audio, acoustics and biomedical 

engineering. [9]  All of the mentioned fields use several source signals without exact knowledge 

of their transmission channel, or extraction, which makes it difficult to analyze signals when 

necessary. Solving this problem allows many applications such as mobile multiuser 

telecommunication systems to eliminate redundancy and sparse coding in noise cancellation. [7] 

Additionally, BSS helped to create voice reinforcement in noisy environments, such as urban 

ecology where noise pollution caused by high sound levels [1] . The concept of the cocktail party 

problem and BSS led to the development of Independent Component Analysis (ICA) algorithms. 

[4] ICA proves useful for applications needing real time signal processing such a speech signal 

enhancement noise canceling and ECG signal analysis.[10]  ICA is being used in various signal 

processing applications such as audio signal processing, watermarking, and financial signal 

analysis. [11]  

1.3 Problem Scope 

The goal of this thesis was to perform an extensive study on ability and efficiency of 

Independent Component Analysis algorithms to perform blind source separation on mixed 

signals in software and implementation in hardware with a Field Programmable Gate Array 

(FPGA).  The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via 

Independence (EASI) ICA were examined and compared. The best algorithm required the least 

complexity and fewest resources while effectively separating mixed sources.   The best algorithm 

was the EASI algorithm.  The EASI ICA was implemented on hardware with Field 

Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.  

1.4 Organization of Thesis 

In this thesis the framework of the thesis is presented as follows: 

 Chapter 2 provides a literary review of the Independent Component Analysis, three 

algorithms, and use of ICA with FPGA for real time implementation. 
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 Chapter 3 provides the analysis and comparison of the each of the Algebraic ICA, Fast 

ICA and EASI ICA effectiveness and resources required for hardware implementation 

that ultimately led to the EASI ICA selection. 

 Chapter 4 provides a further analysis of the EASI ICA and methods for setting the best 

parameter for the implementation of the algorithm on hardware. 

 Chapter 5 provides the methodology and details for creating the EASI ICA system on 

hardware. This chapter also provides an analysis of the EASI ICA hardware 

implementation and compares it to the software simulations. 

 Chapter 6 provides a summary and conclusion of the findings from the research. 
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CHAPTER TWO 

INDEPENDENT COMPONENT ANALYSIS 

2.1 Background Information on ICA 

Principal Component Analysis (PCA) is defined by the eigenvectors of the covariance 

matrix of the input data.  ICA is an extension of PCA that has been developed to utilize blind 

separation of independent sources from their linear mixtures. [9] Standard PCA is optimal in 

approximating the input data in the mean-square error sense.   However, a problem arises 

because PCA does not provide the most meaningful representation for describing fundamental 

characteristics of data. ICA provides important analytic representations of the data than PCA. 

[12]  Independent component analysis, or simply ICA, was introduced in 1986 by Jeanny Herault 

and Christian Jutte as a neural network based on Hebb learning law capable of performing blind 

signal separation. [1] ICA is used to recover independent sources from given sensor signals that 

have been mixed through unknown channels. [13] ICA recovers the source signals by finding a 

linear transformation that can maximize the mutual independence of the mixture. [10] 

Specifically, these algorithms try to separate a number of statistically independent signals from 

the same number of input signals are the linear sum of the first.  [14]  As can be seen in Figure 

2.1, The ICA algorithms can be used to estimate the     based on the information of their 

independence. [4] [5] [14] 

 

Figure 2.1: Basic diagram of the ideology of ICA. 
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A basic ICA algorithm begins with assuming n linear mixtures ,            . These 

mixture are made from independent component such that                       for all j.  

The mixtures     and the components of the sources           are assumed to be statistically 

independent and random. [4] The mixed signals in    , are a product of the mixing matrix A, and 

the independent source signals, s. [11]. The mixing matrix A, contains elements    .  The 

observed values in     are similar to the microphone x(t) signals in the cocktail party problem, 

but are random instead of a proper time signal. It is assumed that both the mixture variables and 

the independent components have zero mean. If this is not true, then the observable variables    
can always be centered by subtracting the sample mean, which makes the model zero-mean. The 

starting point for ICA is the assumption that the components in s are statistically independent and 

have non-Gaussian distributions. The unknown mixing matrix, A is assumed to be square. After 

estimating the matrix A, it is possible to compute its inverse W or B to obtain the separated 

source signals.  This can be done in the following equation: y =Bx [4]. Consider the global 

system denoted    which is obtained by chaining the mixing matrix A and the separating 

matrix , that is        

Ideally, an adaptive source separator should converge to a matrix B, such that       , or 

equivalently, the global system Ct should converge to the n x n identity matrix I. [12] 

The key to estimating the ICA model is non-gaussainity and statistical independence. [11]  

The method of ICA has specific characteristics that should be considered. ICA allows the 

separation of the signals whenever these are statistically independent by maximizing non-

Gaussianity. Therefore Gaussian sources cannot be separated. In addition, there are two 

uncertainties in the method of ICA. The first is ICA cannot get the original amplitude of the 

mixed sources. The second is the outputs can be exchanged. [1] Consider two scalar valued 

random variable    and   . These variables are said to be independent if information on the 

value of     does not give any information on the value y2 and vice versa. This should always be 

the case for         but not with the mixture variables       . Independence can be defined 

by the probability densities.  The joint probability density of    and     is p(   ,   ). [4]  

The marginal densities for    and     is denoted by the following equation:        ∫              
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      ∫             [4] 

Hence    and    are independent if and only if the joint probability density is factorable in the 

following equation:                      [4] 

The matrix A is not identifiable for Gaussian independent components.  If just one of the 

independent components is Gaussian the ICA model can be estimated. The classical measure of 

non-gaussianity is kurtosis. The kurtosis of y is defined by            {  }   { {  }}  

Its assumed that y is of unit variance the right hand side simplifies to   {  }   . This shows 

that kurtosis is simply a normalized version of the fourth moment  {  }.  For a gaussian y, the 

fourth moment equals  { {  }} . Kurtosis is zero for a Gaussian random variable. [4] 

 Kurtosis is not zero for most nongaussian random variables.  Kurtosis can be both 

positive and negative.  Random variables that have a negative kurtosis are called subgaussian 

and those with positive kurtosis are called supergaussian. Nongaussianity is measured by the 

absolute value of kurtosis. These are zero for a gaussian variable and greater than zero for most 

nongaussian random variables.  Kurtosis or its absolute value has been widely used as a measure 

of nongaussity in ICA and related fields.  The main reason is its simplicity.  Computationally 

kurtosis can be estimated simply by using the fourth moment of the sample data.  [4] 

The statistical robustness achieved from the ICA and methods used depend on the choice 

of the objective function and the algorithm implementation. [11]  The performance of a good 

algorithm is determined based on factors including the following: 

 Convergence speed 

  Memory requirements  

 Numerical stability. [11] 

ICA falls into basic methods adaptive or algebraic.  The framework of most algebraic method 

can be expressed as whitening rotating. [15] After centering of the observed signal a linear 

transformation is performed on them using principal component analysis such as that the 

transformed variables are uncorrelated.  ICA algorithms revolve around the orthogonal matrix 

rotating problem.  The more the independent component could be separated completely the more 

powerful the ICA algorithm is.  Most ICA algorithms focus on separating mixtures of multiple  

sources.  [5] 
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2.2 Algebraic ICA 

The Algebraic ICA (A-ICA) algorithm is based on the algebraic dot product between two 

n-d data vectors as a distance measure. The dot product between two vectors  ̅      ̅ in same 

basis     
 is defined as  ̅    ̅   ̅     ̅   | ̅|| ̅|        where     n-d angle between the 

vectors  ̅     ̅. If the two vectors are lying along the same n-d direction, the absolute value of 

the cosine of the n-d angle      is maximum or one. If they are orthogonal to each other, the 

cosine of the angle    becomes zero. After projection onto a unit hyper-sphere, the notion of 

minimum distance is equivalent to the notion of maximizing the absolute dot-product between 

the projected vectors. Using the absolute value of the dot product produces a sign ambiguity that 

is inherent in any ICA algorithm i.e. |  ̅ ̅|  | ̅  ̅| where  ̅ = - ̅. Another useful property for the 

dot-product is its insensitivity to the order of the product, i.e  |  ̅ ̅|  | ̅  ̅| [16]. [17] 

The A-ICA algorithm is fast stable and does not use the whitening rotating framework. The A-

ICA algorithm is for two sources and based on non-whitening preprocessing. [12] 

Assume there are two source signals. If            and             are a random 

source vector and mixed signal vector. This system is represented by x = As where A is a 2x2 

mixing matrix in the form                 [15] 

According the ICA principle,    and    are mutually independent with unit variance and zero 

mean.   [    ]   [    ]  [    ] [18] 

The symbols α and β are unknown mixing rates given by                [18]                                                                                                      [18]     [   ]  {     }      [   ]  {     }                            [   ]   [   ]      
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    [     ]   [   ]          [     ]   [     ]          [      ]   [     ]          [      ]   [     ]          [     ]   [     ]           [     ]        [   ]      [   ]   [   ]      
 Where E[] denotes expectation or the mean of the random x vectors. [18] [17] 

2.3 Fast ICA 

Fast ICA is a fixed point iterative algorithm uses a nonlinear function f (y) = tanh (y), 

which is applied to the separation matrix, W.  W is continuously recalculated at every iteration 

of the algorithm. The input to the Fast ICA algorithm must be whitened by three steps. The first 

step is centering the data over the average. The second is to normalize the variance. The third is 

to make the data orthogonal. Multiple steps are necessary to implement the Fast ICA algorithm. 

The first step is to center the data to make its mean zero. The next to step is to whiten the data to 

give z. The third step is to choose an initial random vector w of unit norm. The next step is to let  

w=E{zg(wTz)}- E{g’(wTz)}w. In the next step let w=w/║w║. The last step of the Fast ICA 

check for convergence of the algorithm. If there isn’t any convergence the algorithm repeats the 

third and four steps. If there is convergence then the w is used in y = w*x to obtain the separated 

signal. The Fast ICA are show in detail below: [1]   

1. Center the data to be zero mean               { }                               
2. Recreate the mixed signals       
3. Whiten the data               

 

4. Choose and initial w        
5. Compute w 
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   {     }        }  

 

6. Find the norm of w     √‖   ‖ 

See if there is convergence. If there isn’t repeat steps five and six. 
7. Compute w 

              

 

8. Perform separation 

          

2.4 EASI ICA 

The EASI algorithm was initially created by Cardoso.  The theory behind its approach 

revolves around the use of batch estimators that are equivariant.  The key property shared by 

equivariant batch estimators for source separation is that they offer uniform performance [12] 

The Equivariant Adaptive Separation via Independence (EASI) algorithm is simple in parallel 

structure. The algorithm is performed using the following equations: 

1. Create yk vectors , B initially is an identity matrix           

2. Create the H matrix using the yk and a nonlinearity function                (                

3. Create the B matrix with H , current B and the learning rate                 

4. Repeat steps 1 through 3 until convergence 

5. Generate separated signals             

The B matrix updates itself each cycle of the algorithm. The matrix initially is an identity 

matrix. The f(y) represents the nonlinearity used that will shape the convergence and separation 

of the mixed signals.  Upon convergence of the algorithm the final updated matrix if multiplied 
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with the mixed signals to produce vectors of separated signals. The nonlinearity f(y) = -tanh(y) 

and a learning rate of        are typically used with this algorithm. [19] [7] [8] 

2.5 ICA Implementation With Field Programmable Gate Arrays (FPGA) 

FPGA technology can implement the digital signal processing algorithm and quickly 

verify the result in hardware.  Most FPGAs have on chip hardware multipliers and memory 

blocks which make them fit in the implementation of ICA which require high volumes of 

mathematical operations. VHDL used to the design the hardware.  Floating point arithmetic with 

high accuracy is necessary in calculation and large dynamic range of numbers is necessary for 

such signal processing techniques.  Floating point is difficult to implement on an FPGA because 

of the arithmetic complexity and large number of logic elements needed to implement it. [10]   

The complicated arithmetic, the iterative computation, slow convergence rate, and the 

generally large volumes of raw and processed data make ICA algorithms time-consuming for 

software implementation.  Hardware implementation provides potentially fast and real-time 

solutions. Software implementation is useful for investigating the capabilities of ICA algorithms. 

Hardware implementation is essential to benefit from the parallel architecture and to facilitate 

high-speed processing. The major difference between hardware and software implementations is 

hardware subroutines are executed by integrated circuits (ICs) instead of a series of 

microinstructions. Hardware implementation also solves the insufficient memory problem 

encountered by software for large data sets and high dimensionality. [20]   

The FPGA based on the reconfiguration technology are the most economic and efficient 

solutions to ICA. The complicated arithmetic of ICA is one of the main barricades in ICA 

hardware implementation. The hierarchy involves dividing an ICA process into sub processing 

modules until the complexity of the bottom level sub modules becomes manageable. These sub 

modules are independently developed, integrated put into a design and development 

environments. FPGAs provide the most economic and efficient solutions to comparatively 

simple ICA algorithms. FPGAs are standard and general-purpose products fabricated by 

hardware companies. FPGAs are developed based on reconfigurable technologies that allow end 

users to modify their designs for multiple times and program the interconnections instead of 

waiting several weeks for the final fabrication. These savings in the development expense and 

turnaround time of prototyping directly lead to time-to-market reduction and profit increase. 
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Typical FPGAs are composed of a two-dimensional array of input/output blocks, interconnects, 

and configurable logic blocks (CLBs) that can be customized to implement logic functions. The 

programmable interconnects between these CLBs allow end users to implement the multilevel 

logic functions [20] 
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CHAPTER THREE 

ICA ALGORITHM COMPARISON AND SELECTION 

3.1 Comparison Criteria for ICA Data  

The Algebraic ICA (A-ICA), Fast ICA, and EASI ICA were implemented in Matlab to analyze 

each algorithms ability to separate the mixed signals.  The independent sources used were cosine 

signals of varying frequencies.   

Each algorithm’s effectiveness was accessed on the following criteria: 

 Convergence speed 

 Visible separation:    

 Separated signal FFT spectrum energy error 

 Mixing matrix and separated matrix product error  

(Mixing Matrix * Separation Matrix = Identity Matrix) 

 Separated matrix and mixing matrix difference error 

(Separation Matrix – Inverse of Mixing = 0) 

 Number of resources required for implementation 

3.2 Algebraic ICA Data  

The first algorithm analyzed was the A-ICA. The A- ICA was simulated with cosine signals of 2 

kHz and 7 kHz frequencies as shown in Figure 3.2.1. 

 

Figure 3.2.1: Independent source signals used for A-ICA simulation. 



14 

 

  The following mixing matrix was used to create the mixed signals of the sources:              

The mixed signals generated from the product of mixing matrix and the source signals can be 

seen in Figure 3.2.2. 

 

Figure 3.2.2: Mixed signals used for A-ICA simulation. 

 

The A-ICA algorithm execution created the following separated signals as shown in  

Figure 3.2.3. 

 

Figure 3.2.3: Separated signals used for A-ICA simulation. 
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The signals plotted in Figure 3.2.1 are clearly distorted replicas of the original source signals. 

Figure 3.2.4 clearly outlines differences between the source and separated signals. Despite the 

fast convergence speed A-ICA visibly does not effectively separate the signals mixed signals.  

 

Figure 3.2.4: Source and separated signals comparison of the A-ICA simulation. 

 

As shown in Table 3.2.1 , the maximum FFT spectrum energies were detected to be 

approximately 2 kHz and 7 kHz for signal one and signal two respectively. The excess energies 

detected in the FFT spectrum plots for signals one and two created spectrum energy errors of 

0.374% and 2.3741% respectively.  The product of the mixing matrix and separation matrix had 

an error of 10.43%. The difference of the separation matrix and the inversion of the mixing 

matrix had an error of 1.98%. 

 

Table 3.2.1: A-ICA simulation data analysis results. 

 

 

Table 3.2.1: A-ICA Data Analysis Results 

Performance Aspect Quantitative Values 

Convergence Speed 1 iteration 

FFT Measurements  

Signal 1 – Max Freq (%Error) 2 kHz  (03.741%) 

Signal 2 – Max Freq (%Error) 7 kHz  (2.3741%) 

Mixing Separation Product Error 10.43% 

Mixing Separation Difference Error 1.98% 



16 

 

The A-ICA requires a large number of resources for implementation as see in Table 3.2.2.  

Although the ICA requires only an iteration to converge, the algorithm requires over well over 

100 multiplier and adders of resources for hardware implementation.  The finite number of 

resources is not known because several elements of the algorithm depend on the length of the 

signal. 

 

Table 3.2.2: The total required resources needed to implement the A-ICA. 

Table: 3.2.2 A-ICA Required Resources 

Equation Operation Breakdown 

N = # of elements 

Total Resources 

    1 multipliers 1 mults 1 multipliers     2 multipliers 2 mults 2 multipliers     3 multipliers 3 mults 3 multipliers     1 multipliers 1 mults 1 multipliers     2 multipliers 2 mults 2 multipliers     3 multipliers 3 mults 3 multipliers       1 multipliers 1  mults 1 multipliers         3 multipliers 3 mults 3 multipliers        2 multipliers 2 mults 2 multipliers        3 multipliers 3 mults 3 multipliers        2 multipliers 2 mults 2 multipliers        3 multipliers 3 mults 3 multipliers 

E[*] = Expectation Mean : (N-1) 

adders  

N  dividers 

E[*] = Expectation Mean : (N-1) 

adders  

N  dividers 
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Table: 3.2.2 A-ICA Required Resources continued 

Equation Operation Breakdown 

N = # of elements 

Total Resources 

    [   ]  {     }      [   ]  {     }                            [   ]   [   ]          [     ]   [   ]          [     ]   [     ]          [      ]   [     ]          [      ]   [     ]          [     ]   [     ]           [     ]        [   ]      [   ]   [   ]      

11*1 

Expectation 

11*1 

multipliers 

11*1 adder 

11*1 

Expectation 

Squared 

11*(N-1) adders  

11*N  dividers 

11*1 multiplier 

11*1 adder 

(subtraction) 

11*(N-1)
2
 adders  

11*N
2
 dividers 

11 Expectation 

(11N-11) adders  

,11N  dividers)) 

11 multipliers 

11 adder 

11 Expectation 

Squared 

(121N
2
+242N+11) 

adders + 121N
2
 

dividers) 

               
2 Multipliers 

2 adders 

2*(1 mults + 1 

adder) (2 sub) 

2 Multipliers 

2 adders (               (                            
+ (                           (                                   

25 Multipliers 

14 Adders 

(8  

Subtraction) 

(2+7+8+6+2) 

Mults 

(1+1+1+1+1+1 

+1+2+2+3+1) 

Adders 

(1+2+2+3+1) Sub 

25 Multipliers 

14 Adders 

(8  Subtractions) 

  Total Resources 64 multipliers 

121N
2
 + 

11Ndividers 

121N
2
+253N+49 

adders 

(8 subtractions) 
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3.3 Fast ICA Data 

The Fast ICA was simulated with cosine signals of 2 kHz, 7 kHz, and 10 kHz frequencies as 

shown in Figure 3.3.1. 

 

Figure 3.3.1: Independent source signals used for Fast ICA simulation. 

The following mixing matrix was used to create the mixed signals of the sources:    (                                ) 

The mixed signals created from the product of mixing matrix and the source signals can be seen 

in Figure 3.3.2. 

 

Figure 3.3.2: Mixed signals used for Fast ICA simulation. 
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The Fast ICA algorithm simulation produced the following separated signals as shown in  

Figure 3.3.3. 

 

Figure 3.3.3: Separated signals used for Fast ICA simulation. 

 

The signals plotted in Figure 3.3.3 appear to be very similar to the source signals. Figure 3.3.4 

highlights the similarities between the source and separated signals.  

 

Figure 3.3.4: Source signals and separated signal comparison of the Fast ICA simulation. 

 

As shown Table 3.3.1, the maximum FFT spectrum energies were detected at 

approximately 2 kHz for signal one, 7 kHz for signal two and 10 kHz for signal three. The excess 

energies detected in the FFT spectrum plot for signal one, two and three created a spectrum error 

of 0.116%., 2.000% and 2.116% respectively.  The product of the mixing matrix and separation 
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matrix had an error of 0.995%. The difference of the separation matrix and the inversion of the 

mixing matrix had an error of 1.483%. 

 

Table 3.3.1: Fast ICA simulation data analysis results. 

 

 

 

 

 

 

 

 

 

 

The Fast ICA requires a large number of resources for implementation as can be seen in Table 

3.3.2.  The algorithm requires over well over 200 multipliers and adders of resources for 

hardware implementation.  The finite number of resources is not known because several 

elements of the algorithm depend on the length of the signal. 

 

Table 3.3.2: The total of required resources needed to implement Fast ICA. 

Table 3.3.2: Fast ICA Required Resources 

Equation Operation Breakdown 

N = # of elements 

Total Resources 

  

Center data to make mean = 0 

                     { }                                 

 

 

9 multipliers 

7 + (N-1) adders 

N dividers 

(1 subtraction) 

 

3 mults,2 adders 

3 mults,2 adders 

3 mults,2 adders 

 (N-1) adders  

N  dividers 

1adder(subtraction) 

9 multipliers 

7 + (N-1) 

adders 

N dividers 

(1 subtraction) 

 

 

 

Table 3.3.1: Fast ICA Analysis Data 

Performance Aspect Quantitative Values 

Convergence Speed 11 iterations 

FFT Measurements  

Signal 1 – Max Freq (%Error) 2 kHz (0.116%) 

Signal 2 – Max Freq (%Error) 7 kHz (2.000%) 

Signal 3 – Max Freq (%Error) 10 kHz (2.116%) 

Mixing Separation Prod Error 0.995% 

Mixing Separation Diff Error 1.483% 
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Table 3.3.2: Fast ICA Required Resources continued 

Equation Operation Breakdown 

N = # of elements 

Total Resources 

      

Multipliers = (n
2
) 

Adders = (n-1)*n 

9 multipliers 

6 adders 

3 mults,2 adders 

3 mults,2 adders 

3 mults,2 adders 

9 multipliers 

6 adders 

Whiten Data to give z             

Choose initial W       

27 multipliers 

27 adders 

 (18 subtraction) 

9*(3 multipliers 

 + 3 adders) 

 (9*2 subtraction) 

27 multipliers 

27 adders 

 (18 subtraction) 

     {     }        }  2*(9 multipliers 

+6 adders) 

2 multipliers 

2* (N-1) adders  

2*N  dividers 

2*(3 mults,2 

adders 

3 mults,2 adders 

3 mults,2 adders) 

2 multipliers 

2* (N-1) adders  

2*N  dividers 

N*(20 

multipliers 

12+2N-2 adders  

2N  dividers) 

    √‖   ‖ 
2*(9 multipliers 

6 adders) 

 (divider) 

6 adders(norm) 

3 mults,2 adders 

3 mults,2 adders 

3 mults,2 adders 

3 mults,2 adders 

3 mults,2 adders 

3 mults,2 adders 

6 adders 

N* (18 

multipliers 

+6 adders 

 (divider) 

+6 

adders(norm)) 

Repeat n times until convergence :    {     }        }      √‖   ‖ 
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Table 3.3.2: Fast ICA Required Resources continued 

Equation Operation Breakdown 

N = # of elements 

Total Resources 

             
29 multipliers 

(2 multipliers) 

19 adders 

 (1subtraction) 

27multipliers 

2 multipliers 

18 adders 

1 adder 

(1subtraction) 

29 multipliers 

19 adders 

 

          

Multipliers = (n
2
) 

 Adders = (n-1)*n 

9 multipliers 

6 adders 

3 mults,2 adders 

3 mults,2 adders 

3 mults,2 adders 

9 multipliers 

6 adders 

  Total Breakdown 

For Finite 

elements 

83 multipliers 

58 adders 

(18 Subtraction) 

  Complete Total 141 finite Total 

Resources 

 

3.4 EASI ICA Data 

The EASI ICA was simulated with cosine signals of 2 kHz, 7 kHz, and 10 kHz frequencies as 

shown in Figure 3.4.1 

 

Figure 3.4.1: Independent source signals used for EASI ICA simulation. 
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The following mixing matrix was used to create the mixed signals of the sources:    (                                ) 

The mixed signals created from the product of mixing matrix and the source signals can be seen 

in Figure 3.4.2. 

 

Figure 3.4.2: Mixed signals used for EASI ICA simulation. 

 

The EASI ICA algorithm was simulated to generate the following separated signals as shown in 

Figure 3.4.3. 

 

Figure 3.4.3: Separated signals used for EASI ICA simulation. 
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The signals in Figure 3.4.3 appear to have similar to the appearance of the source signals. Figure 

3.4.4 provides a visual comparison of the source and separated signals.  

 

Figure 3.4.4: Source and separated signals comparison of the EASI ICA simulation. 

 

As shown in Table 3.4.1, the maximum FFT spectrum energies were detected at 

approximately 7 kHz for signal one, 2 kHz for signal two and 10 kHz for signal three. The excess 

energies detected in the FFT spectrum plot for signal one created an spectrum error of 0.0049%. 

Signals two and three experienced spectrum errors of  2.0555%and 2.0624% respectively.  The 

product of the mixing matrix and separation matrix had an error of 1.199%. The difference of the 

separation matrix and the inversion of the mixing matrix had an error of 0.0823%. 

 

Table 3.4.1 EASI ICA simulation data analysis results. 

 

 

 

 

 

 

 

 

 

Table 3.4.1: EASI ICA Analysis Data 

Performance Aspect Quantitative Values 

Convergence Speed 10 iterations 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz (0.0049%) 

Signal 2 – Max Freq (%Error) 2 kHz (2.0555%) 

Signal 3 – Max Freq (%Error) 10 kHz (2.0624%) 

Mixing Separation Product Error 1.199% 

Mixing Separation Difference Error 0.0823% 
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The EASI ICA requires a significant number of resources for implementation as shown in Table 

3.4.2.  The EASI ICA algorithm needs 63 multipliers, 48 adders, and 18 subtractions resources 

implement this algorithm.   

 

Table 3.4.2: The total required resources needed to implement the EASI ICA 

Table 3.4.2: EASI ICA Required Resources 

Equation Operation Breakdown 

N = # of elements 

Total Resources 

           

Multipliers = (n
2
) 

Adders = (n-1)*n 

9 multipliers 

6 adders 

3 mults,2 adders 

3 mults,2 adders 

3 mults,2 adders 

9 multipliers 

6 adders 

 

H  = I – yk*yk’ + yk*f ‘ - f*yk’ 

Multipliers =n
3
 

Adders = n
3
 

27 multipliers 

27 adders 

 (18 subtraction) 

9*(3 multipliers 

 + 3 adders) 

 (9*2 subtraction) 

27 multipliers 

27 adders 

 (18 subtraction) 

B = B + m*H*B 

Multipliers = 2* n
2 

Adders = n
2
 

18 multipliers 

9 adders 

9*(2 mults  

+ 1 adders) 

18 multipliers 

9 adders 

          

Multipliers = (n
2
) 

 Adders = (n-1)*n 

9 multipliers 

6 adders 

3 mults,2 adders 

3 mults,2 adders 

3 mults,2 adders 

9 multipliers 

6 adders 

  Total Breakdown 63 multipliers 

48 adders 

(18 Subtraction) 

111 Total Res. 

 

3.5 Comparisons of ICA Algorithms 

3.5.1 ICA Algorithm Comparison Data 

The data in Table 3.5.1.1 shows the convergence speed, and visible characteristics of the 

signals of the algorithms.  The A-ICA had the fastest algorithm convergence speed, but was most 

inaccurate.  The Fast ICA and EASI ICA were the most accurate algorithms visibly. 
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Table 3.5.1.1: Comparison of convergence speed and visible qualifications for each ICA. 

Table 3.5.1.1 Comparison of Convergence Speed & Visible Qualifications  

Algorithm Iterations Speed Visibly Accurate 

A-ICA 1 Fast No 

Fast ICA 11 Medium  Yes 

EASI ICA 10 Medium Yes 

 

As shown in table 3.5.1.2 the EASI algorithm had the smallest FFT spectrum error.   The A-ICA 

had the worst error of the three algorithms.  

 

Table 3.5.1.2: Comparison of the FFT spectrum error and frequency location for each ICA. 

Table 3.5.1.2 Comparison of FFT Spectrum Error  

Algorithm – Signal # Percent Error Max Freq Location 

A-ICA – Signal 1 0.374% 2 kHz 

A-ICA – Signal 2 2.374% 7 kHz 

Fast ICA  - Signal 1 0.116% 2 kHz 

Fast ICA  - Signal 2 2.000% 7 kHz 

Fast ICA  - Signal 3 2.116% 10 kHz 

EASI ICA  - Signal 1 0.0049% 7 kHz 

EASI ICA  - Signal 2 2.0555% 2 kHz 

EASI ICA  - Signal 3 2.0624% 10 kHz 

 

In Table 3.5.1.3 the EASI had the smallest mixing matrix and separation matrix product error.   

The A-ICA had the worst percentage error of the three algorithms. 

 

Table 3.5.1.3: Comparison of the mixing and separation matrices product error for each ICA. 

Table 3.5.1.3 Comparison of the Product of Mixing and Separated Matrices Errors 

Algorithm Percent Error 

A-ICA 10.43% 

Fast ICA 1.483 

EASI ICA 0.0823% 
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In table 3.5.1.4 shows all of percent errors for the mixing and separation matrix for all the 

algorithms.   The A-ICA had the worst percentage error of the three algorithms. 

 

Table 3.5.1.4: Comparison of the difference of mixing and separation matrices for each ICA. 

Table 3.5.1.4 Comparison of the Difference of the Mixing and Separation Matrices Errors 

Algorithm Percent Error 

A-ICA 1.98% 

Fast ICA 0.995% 

EASI ICA 1.199% 

 

3.5.2 ICA Algorithm Comparison Discussion 

The A- ICA requires on one iteration to converge, and is relatively quick to execute. The 

A-ICA algorithm does not require pre-whitening, which makes the algorithm easy to implement. 

However the algorithm poorly separates the signals, and works best for two signals. The 

algorithm requires a large number of resources for implementation. The Fast ICA has a relatively 

fast convergence and effectively separates mixed signals. The Fast ICA separated several source 

signals. The Fast ICA algorithm requires pre-whitening. The need for pre-whitening means the 

Fast ICA is a complex algorithm to implement and needs a vast supply of resources for 

implementation.The EASI algorithm has relatively fast convergence and effectively separates 

mixed signals for multiple sources. The EASI algorithm does not need pre-whitening, and is very 

simple to implement in hardware.  The only drawback with this algorithm is a large number of 

resources required for hardware implementation.   

3.6 Conclusion 

The Algebraic-ICA, Fast ICA and EASI ICA were implemented and their performance 

was analyzed.  The performance and the number of resources required for implementation of 

each algorithm was compared and contrasted. The EASI algorithm was chosen as the algorithm 

for further analysis and implementation on hardware.  The convergence speed, simplicity of the 

algorithm, and effectiveness made it the best algorithm in the end. 
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CHAPTER FOUR 

EASI ANALYSIS 

After selection for hardware implementation, the EASI algorithm performance was further 

examined.  The performance and other elements of the algorithm were analyzed to see what the 

best conditions are necessary for the most accurate implementation in hardware. 

4.1 Mixing Matrix Analysis 

The mixing matrix was analyzed to see whether it was the best for the EASI ICA 

implementation.  The best mixing matrix need to meet the following criteria: 

 The product of the mixing matrix and the separation matrix error needed to be minimal or 

close to an identity matrix as possible.  

(Mixing Matrix * Separation Matrix = Identity Matrix) 

 The difference of the separation matrix and the inverse of the mixing matrix needed to be 

minimal or close to 0 as possible. 

(Separation Matrix – Inverse of Mixing = 0) 

 The mixing matrix should contain values that require a low cost and are easy to design in 

hardware. 

Four mixing matrices were analyzed to see which would be the best for EASI ICA 

implementation. The nonlinearity of hyperbolic tangent, and independent sources used in the 

previous implementation of EASI ICA in chapter three.  

4.1.1 Mixing Matrix One Data 

Mixing matrix one and its inverse are given by the following values:  

     (                                )      (                                                ) 

  

The values represent the original mixing matrix chosen to test the algorithms. The values were 

chosen because each value is easy to implement in hardware. The mixed signals created with the 

mixing matrix are shown in Figure 4.1.1.1. 
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Figure 4.1.1.1 Mixed signal created with mixing matrix one. 

 

The separations of the mixed signals are shown in Figure 4.1.1.2. The visual comparison of the 

source and separated signals are shown in Figure 4.1.1.3. 

 

Figure 4.1.1.2:  Separated signals created with mixing matrix one. 
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Figure 4.1.1.3:  Comparison of source and separated signals created with mixing matrix one. 

 

The separation matrix through the EASI ICA convergence and the resulting errors are shown in 

Figure 4.1.1.4 and Figure 4.1.1.5 respectively.   

 

Figure 4.1.1.4:  Convergence of separation matrix using mixing matrix one. 
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Figure 4.1.1.5: Errors of separation matrix using mixing matrix one. 

 

In Table 4.1.1.1, the maximum FFT spectrum energies were detected at approximately 7 

kHz for signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies 

detected in the FFT spectrum for signal one created a FFT spectrum error of 0.0049% . Signal 

two and signal three experienced FFT spectrum errors of 2.0555%and 2.0624% respectively.  

The product of the mixing matrix and separation matrix had an error of 1.199%. The difference 

of the separation matrix and the inversion of the mixing matrix had an error of  0.0823%. 

 

Table 4.1.1.1: EASI ICA data for analysis for mixing matrix one 

 

 

 

 

 

 

 

 

Table 4.1.1.1:EASI ICA Analysis Data for Mixing Matrix One 

Performance Aspect Quantitative Values 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz ( 0.0049%) 

Signal 2 – Max Freq (%Error) 2 KHz (2.0555%) 

Signal 3 – Max Freq (%Error) 10 kHz (2.0624%) 

Mixing Separation Product Error 1.199% 

Mixing Separation Difference Error 0.0823% 
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4.1.2 Mixing Matrix Two Data 

Mixing matrix two is given by the following values:  

   (                           )     (                                                  ) 

The values were chosen to represent a matrix with values easy and difficult to design in 

hardware. The values were used in an earlier implementation of this algorithm.  

The mixed signals created with the mixing matrix are shown in Figure 4.1.2.1 . 

 

Figure 4.1.2.1:  Mixed signals created from mixing matrix two. 

 

The separation of the mixed signals is shown in Figure 4.1.2.2. The visual comparison of the 

source and separated signals are shown in Figure 4.1.2.3. 

 

 

Figure 4.1.2.2:  Separated signals created with mixing matrix two. 
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Figure 4.1.2.3:  Comparison of source and separation signals created with mixing matrix two. 

 

The separation matrix through the EASI ICA convergence and the resulting errors are shown in 

Figure 4.1.2.4 and Figure 4.1.2.5 respectively.   

 

 

Figure 4.1.2.4:  Convergence of separation matrix using mixing matrix two. 
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Figure 4.1.2.5:  Errors of separation matrix using mixing matrix two. 

 

In Table 4.1.2.1, the maximum FFT energies were detected at approximately 7 kHz for 

signal one, 10 kHz for signal two and 2 kHz for signal three. The excess energies detected in the 

FFT spectrum plot for signal one created an FFT spectrum error of 0.0049%. Signal two and 

signal three experienced FFT spectrum errors of 2.0554% and 2.0634% respectively.  The 

product of the mixing matrix and separation matrix had an error of 2.889%. The difference of the 

separation matrix and the inversion of the mixing matrix had an error of 2.359%. 

 

Table 4.1.2.1 EASI ICA analysis data for mixing matrix two. 

 

 

 

 

 

 

 

Table 4.1.2.1: EASI ICA Analysis Data for Mixing Matrix Two 

Performance Aspect Quantitative Values 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz ( 0.0049%) 

Signal 2 – Max Freq (%Error) 10 kHz (2.0554%) 

Signal 3 – Max Freq (%Error) 2 kHz (2.0634%) 

Mixing Separation Product Error 2.889% 

Mixing Separation Difference Error 2.359% 
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4.1.3 Mixing Matrix Three Data 

Mixing matrix three is given by the following values:  

    (                            )     (                                                       ) 

The values are from a mixing matrix used to implement another variation of EASI ICA in. The 

values are that were randomly generated. 

The mixed signals created with the mixing matrix are shown in Figure 4.1.3.1. 

 

Figure 4.1.3.1:  Mixed signals created from mixing matrix three. 

 

The separation of the mixed signals is shown in Figure 4.1.3.2. The visual comparison of the 

source and separated signals are shown in Figure 4.1.3.3. 

 

Figure 4.1.3.2:  Separated signals created with mixing matrix three. 
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Figure 4.1.3.3:  Comparison of source and separation signals created mixing matrix three. 

 

The separation matrix EASI ICA convergence and the resulting errors are shown in Figure 

4.1.3.4 and Figure 4.1.3.5 respectively.   

 

Figure 4.1.3.4:  Convergence of separation matrix using mixing matrix three. 
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Figure 4.1.3.5:  Errors of separation matrix using mixing matrix three. 

 

In Table 4.1.3.1, the maximum energies were detected around  approximately 2 KHz for 

signal one, 10 kHz for signal two and 7 kHz for signal three. The excess energies detected in the 

FFT spectrum plot for signal one created a FFT spectrum error of 0.0623% . Signal two and 

signal three experienced FFT spectrum errors of 2.0550% and 2.005% respectively.  The product 

of the mixing matrix and separation matrix had an error of 3.839%. The difference of the 

separation matrix and the inversion of the mixing matrix had an error of 26.401%. 

Table 4.1.3.1EASI ICA analysis data for mixing matrix three 

 

 

 

 

 

 

 

 

Table 4.1.3.1: EASI ICA Analysis Data for Mixing Matrix 

Three 

Performance Aspect Quantitative Values 

FFT Measurements  

Signal 1 – Max Freq (%Error) 2 kHz (0.0623%) 

Signal 2 – Max Freq (%Error) 10 kHz (2.055%) 

Signal 3 – Max Freq (%Error) 7 kHz (2.005%) 

Mixing Separation Product Error 3.839% 

Mixing Separation Difference Error 26.401% 
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4.1.4 Mixing Matrix Four Data 

Mixing matrix four is given by the following values:     (                                    )     (                                                ) 

The values are varied values of mixing matrix three. The values were modified to be values that 

are easier to implement on hardware. The mixed signals created with the mixing matrix are 

shown in Figure 4.1.4.1. 

 

Figure 4.1.4.1:  Mixed signals created from mixing matrix four. 

 

The separation of the mixed signals is shown in Figure 4.1.4.2. The visual comparison of the 

source and separated signals are shown in Figure 4.1.4.3 

 

Figure 4.1.4.2:  Separated signals created with mixing matrix four. 
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Figure 4.1.4.3:  Comparison of source and separation signals created with mixing matrix four. 

 

The separation matrix evolution through the EASI ICA convergence and the resulting errors are 

shown in Figure 4.1.4.4 and Figure 4.1.4.5 respectively.   

 

Figure 4.1.4.4:  Convergence of separation matrix using mixing matrix four. 
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Figure 4.1.4.5:  Errors of separation matrix using mixing matrix four. 

 

In Table 4.1.4.1, the maximum energies were detected around approximately 2 KHz for 

signal one, 10 kHz for signal two and 7 kHz for signal three. The excess energies detected in the 

FFT spectrum plot for signal one created an FFT spectrum error of 0.0623% . Signal two and 

signal three experienced FFT spectrum errors of 2.0557% and 2.0050% respectively.  The 

product of the mixing matrix and separation matrix had an error of 2.792%. The difference of the 

separation matrix and the inversion of the mixing matrix had an error of 10.244%. 

 

Table 4.1.4.1EASI ICA analysis data for mixing matrix four. 

 

 

 

 

 

 

 

Table 4.1.4.1: EASI ICA Analysis Data for Mixing Matrix Four 

Performance Aspect Quantitative Values 

FFT Measurements  

Signal 1 – Max Freq (%Error) 2 KHz (0.0623%) 

Signal 2 – Max Freq (%Error) 10 kHz (2.0557%) 

Signal 3 – Max Freq (%Error) 7 kHz (2.005%) 

Mixing Separation Product Error 2.792% 

Mixing Separation Difference Error 10.244% 
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4.1.5  Mixing Matrix Data Comparison and Selection 

In Table 4.1.5.1 compares data and errors for each mixing matrix.  All of the mixing matrices 

had the similar FFT spectrum errors.  Mixing matrix one has the smallest product error while 

mixing matrix three had the worse.  The worst difference error belonged to mixing matrix three 

while the best belongs to mixing matrix. The best mixing matrix overall was mixing matrix one, 

and is the easiest to implement in hardware.  The matrix remained the matrix for EASI 

implementation. 

 

Table 4.1.5.1 Comparison of EASI ICA data for analysis for all mixing matrices 

 

4.2 Nonlinearity Testing 

4.2.1 Nonlinearities 

The nonlinearity portion of the EASI algorithm is important because it impacts the ability of the 

algorithm to separate the mixed signals. The tanh(y) nonlinearity was utilized because it has been 

noted as the best nonlinearity. The tanh(y) nonlinearity and seven other nonlinearities were tested 

with the EASI algorithm.   

The eight nonlinearities are shown in the following plots: 

Table 4.1.5.1: Comparison of EASI ICA Analysis Data for Each Mixing Matrices 

Performance Aspect Mixing Matrix Quantitative Values 

FFT Measurements MM 1 MM 2 MM3 MM4 

Signal 1 – Max Freq 

(%Error) 

7 kHz 

(0.0049%) 

7 kHz 

(0.0049%) 

2 KHz 

(0.0623%) 

2 KHz 

(0.0623%) 

Signal 2 – Max Freq 

(%Error) 

2 KHz 

(2.0555%) 

10 kHz 

(2.0554%) 

10 kHz 

(2.055%) 

10 kHz 

(2.0557%) 

Signal 3 – Max Freq 

(%Error) 

10 kHz 

(2.0624%) 

2 KHz 

(2.0634%) 

7 kHz (2.005%) 7 kHz 

(2.005%) 

Mixing Separation 

Product Error 

1.199% 2.889% 3.839% 2.792% 

Mixing Separation 

Difference Error 

0.0823% 2.359% 26.401% 10.244% 
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1. Signum Function  as showing Figure 4.2.1.1 

 

Figure 4.2.1.1: Nonlinearity one: Signum. 

 

2. Function of Y (F(y)  = y) as shown in Figure 4.2.1.2 

 

Figure 4.2.1.2: Nonlinearity two: Function of y. 
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3. Cubic Function (F(y) = y
3
) as shown in Figure 4.2.1.3 

 

Figure 4.2.1.3: Nonlinearity three: Cubic function 

 

4. Piecewise function as shown in Figure 4.2.1.4    {                   

 

Figure 4.2.1.4: Nonlinearity four: Piecewise function one 
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5. Inverse Tangent Function as shown in Figure 4.2.1.5 

             ( 
               )) 

 
 

 

Figure 4.2.1.5: Nonlinearity five: Inverse tangent function. 

 

6. Hyperbolic Tangent Function as shown in Figure 4.2.1.6.                      

 

Figure 4.2.1.6: Nonlinearity six: Hyperbolic tangent function. 
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7. Exponential Function as shown in Figure 4.2.1.7             

 

Figure 4.2.1.7: Nonlinearity seven: Exponential function. 

 

8. Difference between Function of Y and Hyperbolic Tangent Function as shown in Figure 

4.2.1.8.            

 

Figure 4.2.1.8: Nonlinearity eight: Difference between Function of y and hyperbolic tangent. 



46 

 

9. Piecewise Function as shown in Figure 4.2.1.9.    {                      

 

Figure 4.2.1.9: Nonlinearity nine: Piecewise function two. 

 

4.2.2 Nonlinearity Data Analysis 

The nine nonlinearities were implemented with the EASI algorithm.  Each of the nonlinearities 

for analyzed for the following: 

 Convergence speed 

 Visible separation    

 Separated signal FFT spectrum error 

 Mixing matrix and separated matrix product error  

(Mixing Matrix * Separation Matrix = Identity Matrix) 

 Separated matrix and mixing matrix difference error 

(Separation Matrix – Inverse of Mixing = 0) 

 Number of resources required for implementation  

4.2.2.1 Nonlinearity One: Signum 

The EASI ICA algorithm was implemented using nonlinearity one to create the following 

separated signals seen in Figure 4.2.2.1.1 
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Figure 4.2.2.1.1: Separated signals using nonlinearity one. 

 

A comparison of the source and separated signals are shown in Figure 4.2.2.1.2.  

 

 Figure 4.2.2.1.2: Comparison of source and separated signals for nonlinearity one. 

 

In Table 4.2.2.1, the maximum energies were detected around approximately 7 kHz for 

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the 

FFT spectrum plot for signal one created of 0.0167% . Signal two and signal three experienced 

FFT spectrum errors of 2.309%and 2.304% respectively.  The product of the mixing matrix and 
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separation matrix had an error of 1.219%. The difference of the separation matrix and the 

inversion of the mixing matrix had an error of 0.105%. 

 

Table 4.2.2.1 Nonlinearity one data for analysis 

 

 

4.2.2.2 Nonlinearity Two: Function of Y 

The EASI ICA algorithm was implemented using nonlinearity two to create the following 

separated signals seen in Figure 4.2.2.2.1. 

 

Figure 4.2.2.2.1: Separated signals using nonlinearity two. 

 

Table 4.2.2.1 NL 1 Analysis Data 

Performance Aspect Quantitative Values 

Visibly Correct Partially Yes 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz (0.0167%) 

Signal 2 – Max Freq (%Error) 2 kHz (2.309%) 

Signal 3 – Max Freq (%Error) 10 kHz (2.303%) 

Mixing Separation Product Error 1.218% 

Mixing Separation Difference Error 0.105% 
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A comparison of the source and separated signals are shown in Figure 4.2.2.2.2.  

 

 Figure 4.2.2.2.2: Comparison of source and separated signals for nonlinearity two. 

 

In Table 4.2.2.2, the maximum energies were detected around approximately 7 kHz for 

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the 

FFT spectrum plot for signal one, two and three created a FFT spectrum error of 22.03%, 

37.940% and 55.720% respectively.  The product of the mixing matrix and separation matrix had 

an error of 5.595%. The difference of the separation matrix and the inversion of the mixing 

matrix had an error of 12.36%. 

 

Table 4.2.2.2 Nonlinearity two data for analysis 

 

 

 

 

 

 

 

 

 

Table 4.2.2.2 NL 2 Analysis Data 

Performance Aspect Quantitative Values 

Visibly Correct No 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz (22.030%) 

Signal 2 – Max Freq (%Error) 2 kHz (37.940%) 

Signal 3 – Max Freq (%Error) 10 kHz (55.720%) 

Mixing Separation Product Error 5.595% 

Mixing Separation Difference Error 12.36% 
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4.2.2.3 Nonlinearity Three: Cubic function 

The EASI ICA algorithm was implemented using nonlinearity three to create the following 

separated signals seen in Figure 4.2.2.3.1. 

 

Figure 4.2.2.3.1: Separated signals using nonlinearity three. 

 

A comparison of the source and separated signals are shown in Figure 4.2.2.3.2.  

 

 Figure 4.2.2.3.2: Comparison of source and separated signals for nonlinearity three. 
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In Table 4.2.2.3, the maximum energies were detected around approximately 7 kHz for 

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the 

FFT spectrum plot for signal one, two and three created a FFT spectrum error of 29.390%, 

49.660% and 29.390% respectively.  The product of the mixing matrix and separation matrix had 

an error of 3.676%. The difference of the separation matrix and the inversion of the mixing 

matrix had an error of 3.614% 

 

Table 4.2.2.3 Nonlinearity three data for analysis 

 

 

4.2.2.4 Nonlinearity Four: Piecewise function one 

The EASI ICA algorithm was implemented using nonlinearity four to create the following 

separated signals shown in Figure 4.2.2.4.1. 

 

Figure 4.2.2.4.1: Separated signals using nonlinearity four. 

Table 4.2.2.3 NL 3 Analysis Data 

Performance Aspect Quantitative Values 

Visibly Correct No 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz (29.390%) 

Signal 2 – Max Freq (%Error) 2 kHz (49.660%) 

Signal 3 – Max Freq (%Error) 10 kHz (29.390%) 

Mixing Separation Product Error 3.676% 

Mixing Separation Difference Error 3.614% 
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A comparison of the source and separated signals are shown in Figure 4.2.2.4.2.  

 

 Figure 4.2.2.4.2: Comparison of source and separated signals for nonlinearity four 

 

In Table 4.2.2.4, the maximum energies were detected around approximately 7 kHz for 

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the 

FFT spectrum plot for signal one created a FFT spectrum error of 6.860%. Signal two and signal 

three experienced FFT spectrum errors of 41.100% and 35.83% respectively.  The product of the 

mixing matrix and separation matrix had an error of 1.836%. The difference of the separation 

matrix and the inversion of the mixing matrix had an error of 2.220%. 

 

Table 4.2.2.4 Nonlinearity four data for analysis 

 

 

 

 

 

 

 

 

 

 

Table 4.2.2.4 NL 4 Analysis Data 

Performance Aspect Quantitative Values 

Visibly Correct No 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz (6.860%) 

Signal 2 – Max Freq (%Error) 2 kHz (41.10%) 

Signal 3 – Max Freq (%Error) 10 kHz (35.83%) 

Mixing Separation Product Error 1.836% 

Mixing Separation Difference Error 2.220% 
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4.2.2.5 Nonlinearity Five: Inverse tangent  

The EASI ICA algorithm was implemented using nonlinearity one to create the following 

separated signals seen in Figure 4.2.2.5.1. 

 

Figure 4.2.2.5.1: Separated signals using nonlinearity five. 

 

A comparison of the source and separated signals are shown in Figure 4.2.2.5.2.  

 

 Figure 4.2.2.5.2: Comparison of source and separated signals for nonlinearity five. 

 

In Table 4.2.2.5, the maximum energies were detected around approximately 7 kHz for 

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the 
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FFT spectrum plot for signal one created a FFT spectrum error of 0.0049% . Signal two and 

signal three experienced FFT spectrum errors of 2.0555%and 2.0624% respectively.  The 

product of the mixing matrix and separation matrix had an error of 1.199%. The difference of the 

separation matrix and the inversion of the mixing matrix had an error of 0.0823%. 

 

Table 4.2.2.5 Nonlinearity five data for analysis 

 

 

 

 

 

 

 

 

 

 

4.2.2.6 Nonlinearity Six: Hyperbolic tangent 

 The EASI ICA algorithm was implemented using nonlinearity six to create the following 

separated signals seen in Figure 4.2.2.6.1. 

 

Figure 4.2.2.6.1: Separated signals using nonlinearity six. 

Table 4.2.2.5 NL 5 Analysis Data 

Performance Aspect Quantitative Values 

Visibly Correct No 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz (2.043%) 

Signal 2 – Max Freq (%Error) 2 kHz (5.096%) 

Signal 3 – Max Freq (%Error) 10 kHz (4.656%) 

Mixing Separation Product Error 1.2801% 

Mixing Separation Difference Error 0.169% 
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The source and separated signals are shown in Figure 4.2.2.6.2.  

 

 Figure 4.2.2.6.2: Comparison of source and separated signals for nonlinearity six. 

 

In Table 4.2.2.6, the maximum energies were detected around approximately 7 kHz for 

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the 

FFT spectrum plot for signal one created a FFT spectrum error of 0.0049% . Signal two and 

signal three experienced FFT spectrum errors of  2.0555%and 2.0624% respectively.  The 

product of the mixing matrix and separation matrix had an error of1.199%. The difference of the 

separation matrix and the inversion of the mixing matrix had an error of 0.0823%. 

 

Table 4.2.2.6 Nonlinearity six data for analysis 

 Table 4.2.2.6 NL 6 Analysis Data 

Performance Aspect Quantitative Values 

Visibly Correct Yes 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz (0.0049%) 

Signal 2 – Max Freq (%Error) 2 kHz (2.0555%) 

Signal 3 – Max Freq (%Error) 10 kHz (2.0624%) 

Mixing Separation Product Error 1.199% 

Mixing Separation Difference Error 0.0823% 
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4.2.2.7 Nonlinearity Seven: Exponential function 

The EASI ICA algorithm was implemented using nonlinearity one to create the following 

separated signals shown in Figure 4.2.2.7.1. 

 

Figure 4.2.2.7.1: Separated signals using nonlinearity one. 

 

A comparison of the source and separated signals are shown in Figure 4.2.2.7.2.  

 

 Figure 4.2.2.7.2: Comparison of source and separated signals for nonlinearity seven 

 

In Table 4.2.2.7, the maximum energies were detected around approximately 7 kHz for 

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the 
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FFT spectrum plot for signal one created a FFT spectrum error of 0.129%. Signal two and signal 

three experienced FFT spectrum errors of 2.0580% and 2.175% respectively.  The product of the 

mixing matrix and separation matrix had an error of 1.108%. The difference of the separation 

matrix and the inversion of the mixing matrix had an error of 0.129%. 

 

Table 4.2.2.7 Nonlinearity seven data for analysis 

 

 

 

 

 

 

 

 

 

 

 

4.2.2.8 Nonlinearity Eight: Difference between Function of y and hyperbolic tangent 

The EASI ICA algorithm was implemented using nonlinearity one to create the following 

separated signals shown in Figure 4.2.2.8.1. 

 

Figure 4.2.2.8.1: Separated signals using nonlinearity eight. 

Table 4.2.2.7 NL 7 Analysis Data 

Performance Aspect Quantitative Values 

Visibly Correct Mostly Yes 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz (0.129%) 

Signal 2 – Max Freq (%Error) 2 kHz (2.0580%) 

Signal 3 – Max Freq (%Error) 10 kHz (2.175%) 

Mixing Separation Product Error 1.108% 

Mixing Separation Difference Error 0.129% 
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A comparison of the source and separated signals are shown in Figure 4.2.2.8.2. 

 

 Figure 4.2.2.8.2: Comparison of source and separated signals for nonlinearity eight. 

 

In Table 4.2.2.8, the maximum energies were detected around approximately 7 kHz for 

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the 

FFT spectrum plot for signal one created a FFT spectrum error of 29.130%. Signal two and 

signal three experienced FFT spectrum errors of 48.000%and 50.276% respectively.  The 

product of the mixing matrix and separation matrix had an error of 4.800%. The difference of the 

separation matrix and the inversion of the mixing matrix had an error of 0.331% 

 

Table 4.2.2.8 Nonlinearity eight data for analysis 

 

 

Table 4.2.2.8 NL 8 Analysis Data 

Performance Aspect Quantitative Values 

Visibly Correct No 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz (29.130%) 

Signal 2 – Max Freq (%Error) 2 kHz (48.000%) 

Signal 3 – Max Freq (%Error) 10 kHz (50.276%) 

Mixing Separation Product Error 4.800% 

Mixing Separation Difference Error 0.331% 
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4.2.2.9 Nonlinearity Nine: Piecewise function two 

The EASI ICA algorithm was implemented using nonlinearity nine to create the following 

separated signals seen in Figure 4.2.2.9.1. 

 

Figure 4.2.2.9.1: Separated signals using nonlinearity nine. 

 

A comparison of the source and separated signals are shown in Figure 4.2.2.9.2.  

 

 Figure 4.2.2.9.2: Comparison of source and separated signals for nonlinearity nine. 
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In Table 4.2.2.9, the maximum energies were detected around approximately 7 kHz for 

signal one, 2 KHz for signal two and 10 kHz for signal three. The excess energies detected in the 

FFT spectrum plot for signal one created a FFT spectrum error of 29.160%. Signal two and 

signalthree experienced FFT spectrum errors of 40.570% and 47.570% respectively.  The 

product of the mixing matrix and separation matrix had an error of 0.154%. The difference of the 

separation matrix and the inversion of the mixing matrix had an error of 0.725%. 

 

Table 4.2.2.9 Nonlinearity nine data for analysis 

 

 

4.2.3 Resource Requirements for Nonlinearities  

The nonlinearity resource requirements were determined. The nonlinearities with the same 

number of resource requirements were grouped together.  Table 4.2.3.1 shows the resources 

required to implement the EASI algorithm with nonlinearities one, two, and four in hardware.  

The nonlinearities would not require any extra resources for implementation. 

 

Table 4.2.3.1: Resources required for nonlinearities one, two, and four. 

Table 4.2.3.1: Resources Required for Nonlinearities One, Two, and Four  

Equation Operation resource Breakdown  Total Resources 

Yk = B * x 9 multipliers 

6 adders 

3 mults, 2adds 

3 mults, 2adds 

3 mults, 2adds 

9 multipliers 

6 adders 

 

Table 4.2.2.9 NL 9 Analysis Data 

Performance Aspect Quantitative Values 

Visible Correct No 

FFT Measurements  

Signal 1 – Max Freq (%Error) 7 kHz (29.160%) 

Signal 2 – Max Freq (%Error) 2 kHz (40.570%) 

Signal 3 – Max Freq (%Error) 10kHz (47.570%) 

Mixing Separation Product Error 0.154% 

Mixing Separation Difference Error 0.725% 
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Table 4.2.3.1: Resources Required for Nonlinearities One, Two, and Four continued 

Equation Operation resource Breakdown  Total Resources 

H  = I – yk*yk’ + 

f*yk’ - yk*f ‘, 

f = f(y)  

27 multipliers 

27 adders 

(18 subtraction) 

9*(3 multipliers + 3 

adders) 

 (9*2 subtraction) 

27 multipliers 

27 adders 

(18 subtraction) 

B = B + m * H * B 18 multipliers 

9 adders 

9*(2 mults + 1 

adders) 

 18 multipliers 

  9 adders 

Yt = B * x 9 multipliers 

6 adders 

3 mults,2 adders 

3 mults,2 adders 

3 mults,2 adders 

9 multipliers 

6 adders 

  Total Resources 111  

 

Table 4.2.3.2 shows the resources required to implement the EASI algorithm with nonlinearity 9 

in hardware.  The nonlinearities would all require look up tables in the form of mif files for 

implementation.  The nonlinearities require two additional adders for implementation. 

 

Table 4.2.3.2: Resources required for nonlinearity nine. 

Table 4.2.3.2: Resources Required for Nonlinearity Nine  

Equation Operation resource Breakdown  Total Resources 

Yk = B * x 9 multipliers 

6 adders 

3 mults, 2adds 

3 mults, 2adds 

3 mults, 2adds 

9 multipliers 

6 adders 

H  = I – yk*yk’ + 

f*yk’ - yk*f ‘, f = 

f(y)  

 

27 multipliers 

27 adders 

(18 subtraction) 

(2adders(subtraction)) 

9*(3 multipliers 

 + 3 adders) 

 (9*2 subtraction)  

(1 adder(subtraction)) 

(1 adder subtraction) 

27 multipliers 

29 adders 

(18 subtraction) 

(2 function 

adders(subtraction)) 

B = B + m * H * B 18 multipliers 

9 adders 

9*(2 mults + 1 adders)  18 multipliers 

  9 adders 
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Table 4.2.3.2: Resources Required for Nonlinearity Nine continued 

Equation Operation resource Breakdown  Total Resources 

Yt = B * x 9 multipliers 

6 adders 

3 mults, 2adds 

3 mults, 2adds 

3 mults, 2adds 

9 multipliers 

6 adders 

  Total Resources 113  

 

Table 4.2.3.3 shows the resources required to implement the EASI algorithm with nonlinearities 

three, five, six ,and eight in hardware.  The nonlinearities would all require look up tables in the 

form of mif files for implementation.  The nonlinearities require four additional multipliers and a 

LUT for implementation. 

 

Table 4.2.3.3: Resources required for nonlinearities three, five, six, and eight. 

Table 4.3.4.3: Resources Required for nonlinearities three, five, six and eight 

Equation Operation resource Breakdown Resource  Total Resources 

Yk = B * x 9 multipliers 

6 adders 

3 mults, 2adds 

3 mults, 2adds 

3 mults, 2adds 

9 multipliers 

6 adders 

H =I – yk * yk’  

+ f* yk’ – yk* f’ 

27 multipliers 

27 adders 

(18 subtraction) 

(4 function 

multipliers) 

+LUT 

9*(3 multipliers 

 + 3 adders) 

 (9*2 subtraction)  

(2 function multipliers) 

 (2 function multipliers) 

31 multipliers 

27 adders 

(18 subtraction) 

(4 function 

multipliers) 

+LUT 

B = B + m * H * B 18 multipliers 

9 adders 

9*(2 mults + 1 adders)  18 multipliers 

  9 adders 

Yt = B * x 9 multipliers 

6 adders 

3 mults, 2adds 

3 mults, 2adds 

3 mults, 2adds 

9 multipliers 

6 adders 

  Total Resources 115  
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4.2.4 Nonlinearity Comparison and Selection  

Table 4.2.4 shows the comparison of the all the elements of each of the nonlinearities. 

As can be seen by the table is the worse nonlinearity is nonlinearity two. The best nonlinearities 

are nonlinearities six and seven. The best fit for hardware implementation of the EASI ICA 

variation is nonlinearity six as it has the lowest error percentages across the board.  

 

Table 4.2.4. Comparison of nonlinearity data results 

Table 4.2.4 Comparison of Nonlinearity Data Results 

Performance 

Aspect 

1 2 3 4 5 

Visibly 

Correct 

Partially Yes No No No No 

FFT 

Measurements 

 

Signal 1 – 

Max Freq 

(%Error) 

7 kHz 

0.0167% 

7 kHz 

22.030% 

7 kHz 

29.390% 

7 kHz 

6.860% 

7 kHz  

2.043% 

Signal 2 – 

Max Freq 

(%Error) 

2 kHz 

2.309% 

2 kHz 

37.940% 

2 kHz 

49.660% 

2 kHz 

41.100% 

2 kHz  

5.096% 

Signal 3 – 

Max Freq 

(%Error) 

10kHz 

2.303% 

 

10kHz 

55.720% 

10kHz 

29.390% 

10kHz 

35.830% 

10 kHz 

4.656% 

Mixing 

Separation 

Product Error 

1.218% 5.595% 3.676% 1.836% 1.280% 

Mixing 

Separation 

Difference 

Error 

0.105% 12.36% 3.614% 2.220% 0.169% 
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Table 4.2.4 Comparison of Nonlinearity Data Results continued 

Performance 

Aspect 

6 7 8 9 

Visibly Correct Yes Mostly Yes No No 

FFT 

Measurements 

 

Signal 1 – Max 

Freq (%Error) 

7 kHz  

0.0049% 

7 kHz  

0.129% 

7 kHz  

29.130% 

7 kHz  

29.160% 

Signal 2 – Max 

Freq (%Error) 

2 kHz  

2.0555% 

2 kHz  

2.0580% 

2 kHz 

48.000% 

2 kHz  

40.570% 

Signal 3 – Max 

Freq (%Error) 

10 kHz  

2.0624% 

10 kHz 

2.175% 

10 kHz 

50.276% 

10kHz  

47.570% 

Mixing 

Separation 

Product Error 

1.199% 1.108% 4.800% 0.154% 

Mixing 

Separation 

Difference Error 

0.0823% 0.129% 0.331% 0.725% 

 

4.3 Additional Analysis 

4.3.1 Multiple Sources 

The possibility of using more sources was analyzed.  Table 4.3.1 shows the amount of resources 

that are required for implementations of the EASI up to five sources.   

 

Table 4.3.1: Resources required for EASI implementation using three to five resources. 

Table 4.3.1: EASI –ICA Resources for Three to Five Sources 

Equation 3 Sources 4 Sources 5 Sources 

         

Multipliers = (n
2
) 

Adders = (n-1)*n 

9 multipliers 

6 adders 

16 multipliers 

12 adders 

25 multipliers 

20 adders 
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Table 4.3.1: EASI –ICA Resources for Three to Five Sources continued 

Equation 3 Sources 4 Sources 5 Sources 

H  = I -yk*yk’ + 

f*yk’ - yk*f ‘ 

 f = f(y)  

 

Multipliers =n
3
 

Adders = n
3
 

27 multipliers 

27 adders 

 (18 subtraction) 

64 multipliers 

64 adders 

(32 subtraction) 

125 multipliers 

125 adders 

(50 subtraction) 

B = B + m*H*B 

Multipliers = 2* n
2 

Adders = n
2
 

18 multipliers 

9 adders 

18 multipliers 

16 adders 

100 multipliers 

25 adders 

          

Multipliers = (n
2
) 

 Adders = (n-1)*n 

9 multipliers 

6 adders 

16 multipliers 

12 adders 

25 multipliers 

20 adders 

Total Resources 63 multipliers 

48 adders 

(18 Subtraction) 

114 multipliers 

104 adders 

(32 subtraction) 

275 multipliers 

190 adders 

(50 subtraction) 

 

4.3.2 Comparison of the EASI general algorithm the EASI variation 

The general version of the EASI algorithm and the variation of the algorithm are very similar in 

implementation.  The difference in each algorithms implementation occurs during the H matrix 

equation implementation. The variation uses two nonlinearities instead of one used by the 

original as can be seen in Table 4.3.2. The variation would require twice as many resources to 

efficiently implement it. The original algorithm remains the best approach. 

 

Table 4.3.2: Comparison of the general EASI algorithm and the two function variation. 

Table 4.3.2: Comparison of the General EASI and EASI Two Function Variation 

Algorithm Version  H Matrix Difference Resources Max Possible 

EASI General H  = I – yk*yk’ + f*yk’ - yk*f‘, 

 f = f(y)  

 

63 multipliers 

48 adders 

+ 4 multiplier + LUT 
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Table 4.3.2: Comparison of the General EASI and EASI Two Function Variation Continued 

Algorithm Version  H Matrix Difference Resources Max Possible 

EASI Variation H  = I – yk*yk’ + f1*f2’ – 

f2*f1’,  

f = f(y)  

63 multipliers 

48 adders 

+8 multiplier + 2LUT 

 

4.3.3 The Use of Independent Audio Sources 

The EASI ICA was implemented with three audio files shown in Figure 4.3.3.1 to see if audio 

files could be effectively separated with the EASI algorithm. The first signal was a clip of a flute 

maximum FFT spectrum energy at 940 kHz. The second signal was of a clip of a flute with a 

maximum FFT spectrum energy at 490 kHz. The last signal was a female speaking with 

maximum FFT spectrum energy at 240 kHz. The clips had a sampling frequency of 8 kHz.  

 

Figure 4.3.3.1: Independent audio signals used for EASI ICA analysis. 

 

. The mixed audio signals were created as shown in Figure 4.3.3.2. 
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Figure 4.3.3.2: Mixed audio signals created for EASI ICA analysis. 

 

The separations of the mixed signals are shown in Figure 4.3.3.3. The visual comparison of the 

source and separated signals are shown in Figure 4.3.3.4. 

 

Figure 4.3.3.3: Separated audio signals using the EASI ICA algorithm  
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Figure 4.3.3.4: Comparison of source and separated audio signals. 

 

The separation matrix through the EASI ICA convergence and the resulting errors are shown in 

Figure 4.3.3.5 and Figure 4.3.3.6 respectively.   

 

Figure 4.3.3.5:  Convergence of separation matrix for the audio signals using EASI ICA. 
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Figure 4.3.3.6: Errors of separation matrix for the audio signals using EASI ICA. 

 

In Table 4.3.3, the maximum FFT spectrum energies were detected at approximately 49kHz  for 

signal one, 940 kHz for signal two and 490 kHz for signal three . The excess energies detected in 

the FFT spectrum for signal one created a FFT spectrum error of 199.94%. Signal two and signal 

three experienced FFT spectrum errors of 23.376% and 206.82% respectively.  The product of 

the mixing matrix and separation matrix had an error of 11.769%.The difference of the 

separation matrix and the inversion of the mixing matrix had an error of 1.412% 

 

Table 4.3.3: EASI ICA data for analysis for audio signals 

 

 

 

 

 

 

 

 

 

 

Table 4.3.3: EASI ICA Analysis Data for Audio Signals 

Performance Aspect Quantitative Values 

FFT Measurements  

Signal 1 - Max Freq (%Error) 490kHz  (199.94%) 

Signal 2 – Max Freq (%Error) 940kHz  (23.376%) 

Signal 3 – Max Frey (%Error) 490kHz (206.82%) 

Mixing Separation Product Error 11.769% 

Mixing Separation Difference Error 1.412% 
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As can be seen by the audio signals while they are independent source are difficult to analyze 

with the EASI algorithm. This means use audio sources would difficult to analyze the 

effectiveness of the EASI ICA in hardware. Simple independent sources are necessary for easy 

analysis. The three sinusoidal of the 2 kHz, 7 kHz, and 10 kHz frequencies are the best for  EASI 

ICA implementation in hardware. 

4.4 Conclusion 

The EASI ICA algorithm is the chosen algorithm for implementation in hardware.  The mixing 

matrices, nonlinearities, and the use best use of sources for the algorithm were examined. The 

current mixing matrix, hyperbolic tangent and independent sinusoidal sources were the best and 

simplest for implementation. The algorithm will be implemented with three sources because of 

its feasibility and lowest requirement of resources. 
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CHAPTER FIVE 

EASI IMPLEMENTION WITH AN FPGA 

5.1 The EASI Algorithm Hardware Implementation 

The EASI algorithm was chosen for implementation in hardware.  As can be seen in Figure 5.1.1 

the EASI algorithm has multiple stages.  The matrix equations with in the algorithm had to be 

broken down to the individual multipliers and dividers as can be seen in Table 5.1.1. 

 

 

Figure 5.1.1: The stages of the EASI algorithm. 
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Table 5.1 The matrix equations needed to implement the algorithm in hardware. 

Table 5.1: EASI ICA Matrix Multiplication Requirements
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The algorithm was implemented with the following parameters: 

 The numerical input values were 16 integer bit values where first 8 bits are integer bits 

and the last bits are 8 fractional bits.   

 The look up tables values were 16 bit integer values. 

 Three independent cosine function look up tables for frequencies of 2kHz, 7kHz, and 

10kHz 

 One look up table will contain values corresponding to the hyperbolic tangent 

nonlinearity 

 The signals were mixed with values of mixing matrix one 

 The learning rate will be 2-9  

 The matrix multipliers will be scales by a factor of 2
8
 to prevent overflow 

 The numerical output will be 8 bit integer values. 

 The implementation will be done in Quartus 2 for Altera utilizing a Cyclone II FPGA. 

 

The algorithm was implemented in hardware using three processes and a finite state machine as 

seen in Figure 5.1.2. 

 

Figure 5.1.2: The stages of the EASI algorithm in hardware. 
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5.2 Source and Mixed Signals Test bench 

The implementation of the EASI algorithm in hardware began with the development of a source 

and mixture test bench as shown in diagram in Figure 5.2.1. The test bench was created to ensure 

the source inputs were correctly loaded into Altera, and the mixing matrix mixed the signals 

correctly.  

 

Figure 5.2.1: Diagram of the source and mixed signals Test Bench. 

 

The simulation of the test bench was run using components seen in Table 5.2. 

Table 5.2 Components of the Source and Mixed Signals Test Bench 

Table  5.2: Components of the Source and Mixed Signals Test Bench 

Component Purpose 

Clock 50 50 MHz clock for the simulation 

Reset Used to clear out the registers and reset the 

accumulator to zero. 

Accumulator Increments the loading inputs from the Look 

Up Tables 

S0, S1 & S2 Each array holds information from the look up 

table for each source 

X0, X1 & X2 Mixed signals arrays  

LUT 0, 1, 2, 3 Look up tables for the three independent 

signals and Nonlinearity signal 
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Figure 5.2.2 Simulation results of the Source and Mixed Signals Test Bench. 

 

5.3 Nonlinear Function Test Bench 

A Nonlinearity Implementation Test Bench was developed as shown in diagram in Figure 5.3.1. 

The test bench was created to ensure the nonlinearity values were loaded and converted 

correctly. The VHDL code for the test bench is in the appendix. 

 

Figure 5.3.1: Diagram of the nonlinear test bench. 
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The simulation of the test bench was run using components seen in Table 5.3. 

Table 5.3 Components of the Nonlinearity Implementation Test Bench 

Table  5.3: Components of the Source and Mixed Signals Test bench 

Component Purpose 

Clock 50 50 MHz clock for the simulation 

Reset Used to clear out the registers and reset the 

accumulator to zero. 

Accumulator Increments the loading inputs from the Look 

Up Tables 

S0, S1 & S2 Each array holds information from the look up 

table for each source 

X0, X1 & X2 Mixed signals arrays  

LUT 0, 1, 2, 3 Look up tables for the three independent 

signals and Nonlinearity signal 

VV 0, VV1, VV2 Index References for the nonlinearity 

V0, V1, V2 Nonlinearity Values 

 

 

 

Figure 5.3.2 Simulation results of the Nonlinearity Implementation Test Bench. 
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5.4 EASI Full Implementation Test Bench 

5.4.1 The EASI Full Implementation Overview 

The functionality of the Source and Mixed Signals and Nonlinearity Implementation Test 

Benches were added together. The test benches compilation and the addition of a finite state 

machine led to the development of the EASI Full Implementation Test bench as shown in the 

diagram in Figure 5.4.1. The VHDL code for this test bench is located in Appendix 

 

Figure 5.4.1: Diagram of Full Implementation EASI Test Bench. 

 

5.4.2 Finite State Machine Addition 

A Finite State Machine was created to move the algorithm through each step as shown in Figure 

5.4.2.1.  

 

Figure 5.4.2.1: Diagram of the finite state machine used to implement EASI ICA. 
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Counters were implemented to insure all steps of the algorithm were performed at the 

appropriate times.  The counters were necessary because: 

 Some portions of the algorithm such as the nonlinearity implementation required 

multiple clock cycles to load or calculate values before the next step.  

 VHDL is procedural coding environment so all portions of the algorithm happen in real 

time at the same time. Including matrix updates. 

Without the counters and state machine the EASI algorithm would move to the next step of 

implementation before Matrix and arrays were updated correctly.  The resulting values 

would be calculated incorrectly.  

The complete EASI Full Implementation Test Bench is shown in the diagram of Figure 5.4.2.2. 

 

 

Figure 5.4.2.2: Diagram of complete EASI ICA Test Bench. 

 

The full implementation of the EASI algorithm contained the components seen in Table 5.4.2. 

Table 5.4.2 Components of the Full EASI Implementation  

Table  5.4.2: Components of the Full EASI Implementation  

Component Purpose 

Clock 50 50 MHz clock for the simulation 

Reset Used to clear out the registers and reset the 

accumulator to zero. 
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Table  5.4.2: Components of the Full EASI Implementation Continued 

Component Purpose 

Accumulator Increments the loading inputs from the Look 

Up Tables 

S0, S1 & S2 Each array holds information from the look up 

table for each source 

X0, X1 & X2 Mixed signals arrays  

LUT 0, 1, 2, 3 Look up tables for the three independent 

signals and Nonlinearity signal 

VV 0, VV1, VV2 Index References for Nonlinearity  

V0, V1, V2 Nonlinearity Values 

Ykykt, fykt, ykft Matrix values for H matrix arithmetic 

H H matrix 

muHB, HB1, HB2 Matrix values for B matrix arithmetic 

Btemp,Bmat Temporary matrix and B matrix 

Yt, ytout0, ytout1, ytout2  The output values of the Full EASI 

implementation 

 

The simulation result for the EASI Full Implementation Test Bench are shown in Figure 5.4.2.3. 

 

 

Figure 5.4.2.3: Simulation of the EASI Full Implementation Test Bench. 
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5.5 Result of the EASI Full Implementation Test Bench 

The EASI algorithm was successfully implemented in hardware with an FPGA.  The 

values from the hardware simulation are similar to values seen in the Matlab simulation as 

shown in Table 5.5.1 and Table 5.5.2.  

 

Table 5.5.1 Comparison of Matlab and VHDL simulation values for the source signals. 

Table 5.5.1: Comparison of Matlab and VHDL Data Source Signals 

Matlab Source Signals 

256 255.6 254.7 253.2 251.08 248.3 244.9 241.0 236.5 231.4 

256 252.2 241.0 222.7 197.89 167.2 131.6 92.1 49.9 6.2 

256 248.3 225.7 189.6 142.22 86.2 25.0 -37.5 -97.9 -152.4 

VHDL Source Signals 

256 255 254 253 251 248 245 241 237 231 

256 252 241 222 198 167 132 92 50 6 

256 248 225 190 142 86 25 -38 -98 -152 

 

Table 5.5.2 Comparison of Matlab and VHDL simulation values for the mixed signals. 

Table 5.5.2: Comparison of Matlab and VHDL Data Mixed Signals 

 Matlab Mixed Signals  

448 440.32 417.61 380.89 331.77 272.41 205.40 133.61 60.08 -12.11 

192 195.56 205.95 222.33 243.35 267.25 291.96 315.27 334.95 348.93 

64 61.86 55.67 46.13 34.31 21.63 9.69 0.212 -5.16 -4.94 

VHDL Mixed Signals 

448 440 418 381 332 272 205 134 60 -12 

192 196 206 222 243 267 292 315 334 349 

64 62 56 46 34 22 10 0 -5 -5 

 

There is a variation in the value between the Matlab and Quartus simulations  shown in 

Table 5.5.3 because of the truncation errors and nonlinear value limitations.  In Matlab, the 

actual hyperbolic tangent may be used and the scaling of the function happens through the actual 

function. In VHDL, a look up table is required. The values are rounded to integer 
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representations, so the values do not exactly correlate completely to values seen in matlab.   

Truncation errors arise because Matlab uses floating point numbers while integers were used in 

VHDL 

 

Table 5.5.3 Comparison of Matlab and VHDL simulation values for the separated signals. 

Table 5.5.3: Comparison of Matlab and VHDL Data Separated Signals 

 Matlab Separated Signals  

361.9 356.6 340.8 314.9 279.8 236.5 186.3 130.6 71.0 9.4 

372.2 371.5 369.2 365.4 360.3 354.0 346.6 338.3 329.3 319.7 

64 61.8 55.6 46.1 34.3 21.6 9.6 0.2 -5.1 -4.9 

VHDL Separated Signals 

256 221 114 124 151 246 66 23 17 12 

13 4 3 1 10 4 97 0 -6 -7 

238 217 111 117 118 219 30 31 13 15 

 

5.6 Conclusion 

The EASI algorithm was successfully implemented in hardware with an FPGA.  The 

values from the hardware simulation are similar to values seen in the Matlab simulation.   

Truncation errors arose because Matlab uses floating point numbers while integers were used in 

VHDL.  The implementation of the EASI ICA in hardware required 8150 Logic Elements, 120 

multipliers, and  24576 Memory bits. 
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CHAPTER SIX 

CONCLUSION 

6.1 Summary of the Thesis 

The Algebraic ICA, Fast ICA, and Equivariant Adaptive Separation via Independence 

ICA were examined and compared. The best algorithm required the least complexity and fewest 

resources while effectively separating mixed sources.  The best algorithm chosen was the EASI 

algorithm. The EASI algorithm was further analyzed by looking and stabling the best fit mixing 

matrix, nonlinearity, number of resources, and a variation of the algorithm.  The algorithm and 

parameters were set from these results to create the best set up for its implementation on 

hardware.  The EASI ICA was implemented with a Cyclone II FPGA in an Altera Quartus 2 

VHDL coding environment.  A Source and Mixed Signal Test Bench and a Nonlinearity 

Implementation Test Bench were developed to ensure the EASI algorithm was correctly 

implemented in hardware. Simulations were run to ensure the hardware implementation matched 

the Matlab simulations.  The values were similar to the values generated from the Matlab 

simulation. There were truncation errors present and slight discrepancy of the simulation output 

values because the hardware implementation utilized integers only, while Matlab values are 

floating point numbers. 

6.2 Future Work 

The work done for this thesis can be expanded in a variety of ways. The first would be  to 

add a floating point converter to the EASI ICA implementation. This converter would help to 

eliminate the number truncation errors. Another extension would be to implementation of the 

EASI algorithm utilizing the algorithmic variation to compare the effectiveness of both 

algorithms and see which signals it works best for. An additional extension would be to 

incorporate the analysis of music and speech signals for real time analysis.    
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